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ABSTRACT
EQUILIBRIUM STRATEGIES FOR FINAL-OFFER ARBITRATION
Steven J. Brams, New York University
Samuel Merrill, III, Wilkes College
Final-offer arbitration is a procedure for settling disputes

between two parties in which an arbitrator chooses the final offer of
the party closest to what he considers a fair settlement. This procedure
is modeled as a two-person, zero-sum, infinite game of incomplete
information, in which the parties are assumed to know the probability
distribution of the abitrator's fair settlements and to make bids that
maximize their expected payoffs. Necessary and sufficient conditions
for there to be local and global equilibria in pure strategies are
derived, and necessary conditions for mixed strategies in a particular
case are found. Optimal strategies are shown not always to be convergent,
and implications of this finding, and the difficulties that mixed

strategies (or no equilibria) pose in seeking settlements, are discussed.



EQUILIBRIUM STRATEGIES FOR FINAL-OFFER ARBITRATION

Steven J. Brams, New York University
Samuel Merrill, III, Wilkes College

1. Introduction

A strikingly simple procedure for settling disputes between two
parties was proposed fifteen years ago by Carl Stevens [8], though
it had been discussed on an ad hoc basis before that [7, p. 113, ftn. 7].
It is called final-offer arbitration (FOA) and involves each party's
submitting its final offer for settlement to a (presumably neutral)
arbitrator, who must choose one final offer or the other. The offer
chosen by the arbitrator determines the settlement. Unlike conventional
arbitration, the arbitrator is not permitted to "split the difference,”
or compromise the offers of each side in any other way. One or the
other side "wins" by getting its offer accepted.

Ostensibly we have a game, and omne which, it seems, will force
the two players to converge, eliminating the need for a settlement
imposed by the arbitrator, as in binding arbitration. To one analyst,

the reasons for convergence are rather evident:

The theory which underlies final-offer arbitration is
quite simple. If the arbitrator or panel was permitted to
select only one or the other of the parties' final offers,
with no power to make a choice anywhere in between, it was

expected that the logic of the procedure would force negotiating



parties to continue moving closer together in search of a
position that would be most likely to receive neutral sympathy.
Ultimately, so the argument went, they would come so close
together that they would almost inevitably find their own
settlement. 1In short, final-offer arbitration would obviate
its own use thus eliminating the chilling effect of binding

arbitration [6, p. 218].

One purpose of our article is to show that while there is a good
deal of truth to this theory, it is not quite as simple as is often
assumed.

As a practical matter, FOA is now used to settle labor disputes
involving certain classes of public employees in six states (Connecticut,
Iowa, Massachusetts, Michigan, New Jersey, and Wisconsin), and to
resolve salary disputes in major-league baseball. Recent experience
with FOA, particularly in baseball, is discussed in [1l], and in
public-sector ‘disputes in [4].

With the exception of a recent article by Farber [3], there
seems to be no analysis of the equilibrium properties of FOA. Farber's
model, though developed independently, is similar to ours. He showed,
among other things, the sensitivity of final~offer Nash equilibrium
strategies to the risk-aversity of parties, the size of the contract
zone (defined by the minimum and maximum offers the "low" and "high"
parties, respectively, will accept in lieu of using FOA), and uncertainty
about the arbitrator's preferences.

The focus of our analysis will be on the degree of convergence--

or lack thereof--that different assumptions about the arbitrator's



preferences have on the existence and nature of equilibrium strategies
of the two parties. We shall provide necessary and sufficient
conditions for both local and global equilibria in pure strategies,
which Farber does not do, and necessary conditions for two-point mixed
strategies, given a symmetry condition, as well.

Specifically, we shall model FOA as an infinite, two-person,
zero-sum game of incomplete information between the disputing parties.
Because Farber assumed that the parties might have independent utility
functions over the possible settlements the arbitrator might choose,
the game he modeled was not necessarily zero-sum. Although this
permitted him to analyze the effects of such properties as risk aversity
on the choice of equilibrium strategies, his model did not allow him to
derive the kinds of quantitative results we obtain.

The uncertainty in the game that we assume is played between the
two parties stems from their not knowing what the arbitrator comnsiders
to be a "fair" settlement. We assume, however, that both parties know,
and agree on, the probability distribution over what the arbitrator
thinks is fair. The game is for each party to choose an offer that
maximizes his expected payoff, given that the arbitrator will choose
the offer closest to what he considers fair.

The payoff may be monetary or not, but what we assume is that
the greater utility one player has for it, the less the other does,
with the sum of their utilities zero for all payoffs. Our first two
theorems give (i) necessary and sufficient conditions for there to
be local equilibrium strategies, and says what they are, and (ii)

necessary and sufficient conditions for these strategies to be global



equilibrium strategies, which define a saddlepoint in the FOA game.

Roughly speaking, global equilibrium strateiges are at least as
good as, and sometimes better than, any other strategy, regardless of
the choice of the other player; by contrast, neither player has an
incentive to deviate by a small amount from local equilibrium strategies,
though large deviations may be optimal. Thus, it would never be
rational for either player to depart from global equilibrium strategies,
but a large deviation by one player from a local equilibrium strategy
may lead to a larger expected payoff.

Several examples of probability distributions that satisfy the
necessary and sufficient conditions are given, as well as examples
which admit local but not global equilibria, or which admit no
equilibria in pure strategies at all. We then provide necessary
conditions for two-point mixed strategies for symmetric distributions
and give examples to illustrate this case. Implications of our
findings, particularly with respect to the question of convergence

of the parties under FOA, are addressed in the concluding section.

2. Equilibrium Solutions Using Pure Strategies:

Continuous Distributions

Qur main result for continuous distributions consists of two
parts (I and II), one giving necessary and sufficient conditions for
local equilibria, and the other these conditions for global equilibria,
when the solution is in pure strategies. As we show below, for a
pure-strategy solution to exist, the probability density function at

the assumed median of 0, £(0), must be greater than zero; if this



condition and the other conditions are met, then the equilibrium
strategies are a reciprocal function of £(0) and equidistant from
the median. The reader is referred to [5] for basic definitions and

results concerning probability distributions.

THEOREM 1. Suppose the arbitrator's notion of a fair settlement

has a continuous distribution with probability demnsity £ and

distribution function F with F'=f (or at least one-sided derivatives

of F exist for each x ). Assume without loss of generality, that

the median is O .

I. If f'(0) exists and £(0) > 0 , then

ag=-1/[2£(0)] and b, = 1/[2£(0)] (1)

are local equilibrium strategies for the low and high

bidders, respectively, if

1£7(0) | < 4£%(0) . (2)

I1f the inequality in (2) is reversed, no local equilibrium

exists. 1f equality holds in (2), (ao, bo) may or may not

be a local equilibrium.

IT. If £(0) > 0 , then the pair (ao, bO) defined by (1) is

a global equilibrium if and only if the following conditioms

hold:

X
[ £(t)dt < x/(2by - 2x) for 0 < x < I/[4£(0)] , (3
0

X
[ £(t)dt > x/(2b, + 2x) for x>0, (4)
0



0
and the same inequalities hold for f f(t)dt in place of

-~X

X
J f(t)at .
0
PROOF. The expected payoff to the high bidder (as well as the
low bidder since the game is assumed to be zero-sum) is the sum of

the bids times the respective probabilities that the arbitrator's choice

is closer to each:

aF[(a + b)/2] + b[1l - F(a + b)/2)] (5

g(a, b)

b - (b - a)F[(a + b)/2]

To determine local equilibria, we note that g is differentiable (or
at least there exist one-sided partial derivatives), and that if a

critical point occurs at (a, b), then

na F[(a + b)/2] - (1/2)(b - a)f[(a + b)/2] =0 (6)
28 -1 - Fl(a+b)/2] - (1/2)(b - a)E[(a + b)/2] = 0 -

(where one-sided derivatives of F are used in place of f if

necessary). Adding and subtracting (6) and (7), we obtain

(b - a)f[(a+1b)/2] =1 (8)

2F[(a + b)/2] =1 . (9

From (9), we see that

0= (a+Db)/2 (10)



by the definition of the median. Thus by (8),
b - a=1/£(0) , (11)

so that (1) follows.

To determine when this solution for (ao, b is a local

0

equilibrium, note that

2
378 = fl(a + b)/2] - (1/4)(b - a)f'[(a + b)/2]

and

A2

3b2

- f[(a +b)/2] - (1/4)( - a)f'[(a + b)/2]

when f' is defined. Thus

2
2% _ _£'(0) _ 4£7(0) - £'(0)
w: (ag> Bg) = £(0) = 45(0) 4£(0)

which is > 0 if and only if f£f'(0) < 4f2(0) . Also

2
32g _ _f'(0) _ - 4f7(O) - £'(O0)
o2 200 P T 7 FO =75 4£(0)

which is < 0 if and only if f£'(0) > - 4f2(0) . Hence (ao, bo) is
a local equilibrium point if |f'(0)| < 4f2(0) , and no such point
exists if the inequality is reversed. It is easy to construct examples
with or without local equilibrium if equality occurs in (2). This

completes the proof of part I of the theorem.



In proving part II, we note that f has a local (global)
equilibrium at (ao, bo) if and only if h(x) = [1/£(0)]£f(x/£(0)) has
a local (global) equilibrium at (aof(O), bof(O)) .  Furthermore, f
satisfies (3) and (4) if and only if h is a density satisfying the
corresponding conditions for h . Also, h(0) = 1 . Hence, without
loss of generality, we may assume that f£(0) = 1 . ©Note that h is
obtained from f by a linear change of scale.

Under the assumption that f£(0) =1, (a bo) = (-1/2, 1/2)

0’
We can demonstrate that (-1/2, 1/2) is a global equilibrium by
showing that g(-1/2, b) < g(-1/2, 1/2) = 0 for all b€ (-», =)
A similar argument can be used to show that g(a, 1/2) > 0 for all
a€ (-, )

It is clear that g(-1/2, b) <0 if b < 0 , so we assume that

b > 0 . Note that the following sequence of statements are equivalent:

g(-1/2, ) =b - (b + 1/2)F[(-1/2 + b)/2] < O

or

F(b/2 - 1/4) > b/(b + 1/2) ,
or, subtracting 1/2 from both sides,

F(b/2 - 1/4) = 1/2 > [(b - 1/2)/21/(b + 1/2) ,
or

y
[ £()dt > y/ (b + 1/2) , : (12)
0

where we have set



v =b/2 - 1/4 . (13)

Solving (13) for b , we obtain b = 2y + 1/2 , so that (12) is in

turn equivalent to

J'yf(t)dt > y/(1 + 2y) (14)
0
for y >0 (i.e., b > 1/2) , which is equivalent to the first formula
in (4). The other formula in (4) is equivalent to the statement
ga, 1/2) > 0 for a <-1/2.
If, on the other hand, 0 <b < 1/2 , then -1/4 <y <0,

and (14) may be replaced by

0
[ f(t)dt < - y/(1 + 2y)
y
Setting x = -y , we have 0 <x < 1/4 , and
0
[ f(tyde < x/(1 - 2%) ,
-x

as in (3). The other formula in (3) is equivalent to g(a, 1/2) > O

for -1/2 <a <0 . Q.E.D.

By differentiating the right-hand-side expressions in (3) and

(4), we obtain the bounding density functions
£.(x) =b./2(b. - x)° and £.(x) = b./2(b, + x)°
1 xX) = 0 ( 0 X an 2 (%) = by 0 X s

which are plotted in Figure 1. According to (3) - (4), the mean value,
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X
f f(t)dt, between 0 and x of a density f possessing global
0

equilibria must lie between the corresponding mean values of f1 and

f2 . This is not to say that the density f itself must lie between

f1 and f2 but rather that, for every x , the average value of f

between 0 and x must lie between the corresponding average values

of f and f

1 An example of such a demsity, the normal curve, is

9

shown by the dashed line in Figure 1.

Figure 1 about here

Although part II of Theorem 1 provides necessary and sufficient
conditions for the existence of a global equilibrium, the following
corollary provides a set of sufficient conditions which are more

easily applied to many distributions.

COROLLARY. Suppose that the arbitrator's notion of a fair

settlement has a continuous distribution with density f and median O .

If £(0) > 0, then the following are sufficient conditions that

(ao, bo) defined by (1) be a global equilibrium:
£(x) < £(0) + 4£2(0) |x| , for |x| < 1/[4£(0)] , (15)

and there exist ¢

1 and c, with me< ¢y <0< Cy 2 such that

£(x) > £(0) exp(-2£C0)|x[) , ¢; <x<ec,, and (16a)

£(x) < £(0) exp(-2£(0)|x|) , x <ec; and x> c, . (16b)
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Figure 1
Bounding Probability Density Functions f1 and f2 (Solid Curves) for
Continuous Distributions Possessing Global Equilibria for FOA (See Text).

Dashed Curve Represents Normal Distribution, Normalized so £f(0) =1

i

2

2
Ez(x) = b°/2(b0 + x) fl(x) = b0/2(b0 - x)

f(x) = exp(-wxz)




PROOF. As before we may assume that f£(0) = 1 , since conditions
(15) and (16) are unaltered by a linear change of scale. By Theorem 1,
it suffices to show that (15) implies (3) and (16) implies (4).

Suppose that (15) holds, so that

pis X
ff(t)dtif(1+4t)dt=x+2x2, for 0 < x < 1/4 .
0 0
But x + 2x2 = x(1 + 2x) < x/(1 - 2x) for x >0 (the last inequality
can be checked by cross-multiplication), so that (3) follows.
Condition (l6a) implies that for 0 < x < ¢

2 b4

X X
[fas [ ar= /0 - & 2% .
0

0

Hence, to show (4), we must prove that

-2x

l1-e > 2x/(1 + 2x) for 0<x<c¢

which reduces to

e2x >1+2x for 0 <x ¢y o

But this follows from the power series expansion for e2x .

On the other hand,

[£9]

f f(t)dt < f e—2tdt = (1/2)e—2X for x> ¢
X . x

2 b4

so that

12
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X -2 -2
[ f(tyde > 1/2 - /e F = @/ - & %,
0

so that (4) holds also for x > Cy - (The arguments for x < 0 are

similar.) Q.E.D.

Examples. We first show that several well-known distributions satisfy
conditions (15) and (16) and hence by the corollary possess global
equilibrium solutions given by (1). Since, as we have seen, the
existence of such solutions is independent of scale and location
parameters, it is sufficient to consider only the standardized form
for each parametric family.

Seven continuous probability distributions possessing global
equilibria in pure strategies are plotted in Figure 2, A - G. Four
continuous distributions possessing local but not global equilibria
in pure strategies are plotted in Figure 2, H - K, together with an
example (L) having local and global equilibria in mixed (but not pure)
strategies and some discrete distributions, M - 0 (see sections 3 and
4 for the descriptions of plots 1. - 0). 1In each plot, local equilibria
are designated by heavy dots; global equilibria are designated by

circles.

Figure 2 about here

1. Global Pure

A. Double Exponential. f(x) = (1/2)exp(~|x|) for all x .

First note that f has a maximum at 0 so (15) holds trivially.



Figure 2
Probability Densities, with Local Equilibria (Heavy Dots) and Global

Equilibria (Circles) for FOA.

1. Global Pure

Y| 1 [Wara
A\~ A~ A
L \ oL =g 0 a
7 o/
- 0 P D. Triangular

A. Double exponential

| 1
D\ 1 Fon ! l
\/ A4 fh ] ] ] A
-0 0 g A4 o
-g 0 g
B. Exponential
- F. Uniform
fon | 1 o\ L) 1 { ]
o/ o/ A4 o/
-g 0 [of -1 0 1

C. Logistic G. Cauchy

14
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Figure 2 (cont.)

2. local Pure

] i 1 1
-1 0 1

H. Chi-square (1 d.f.)

3. Global Mixed

L. Mixed strategies

4, Discrete

-1 0 1

I. Reciprocal power 1 < p < 2
(p = 3/2)

—— d L — Vg
-113 -6 -3 0 3 6 113

J. Mixture of 2 normals
(v = 3)

K. Mixture of 3 normals
(u=5)

4 -~
-1 ) 1

M. Unique median (global solution)

L 1 A

-3 =2 -1 0 1 2

N. Py =0 (solution in mixed strategies)

|

-1 0 1

0. p; = 0 (no solutiom in pure strategies)



Furthermore, f(x) = f(O)exp(—Zf(O)lxl) for all x , so that (16) is

valid for all x (for any choices of ¢y and c¢

2 )
B. Expomential. f(x) =} (1/2)exp(-x) , x > =-1n(2)
0 , X < -1n(2)

(Note that the density has been normalized so that the median is 0 .)

Since f(Q) = 1/2 and |f'(x)l < exp(0) =1 = 4f2(0) for all

x > -1n(2) , the latter inequality holds a fortiori for
x > - 1/[4£(0)] = -1/2 . Hence (15) is valid by the mean-value
theorem. Now set ;= - 1n(2) and cy = 0 . For ¢y <x <0,

£(x) = (1/2)exp(-x) > (1/2)exp(x) = £(0)exp(-2£(0) |x|) , so (l6a) is

satisfied. If x < ¢y s f(x)

the other hand, if x > 0 ,

0 , so (16b) is satisfied there. On

£(x) = (1/2)exp(-x) = £(0)exp(-2£(0)|x]|) ,

so (16) is satisfied in that range as well.

-x. 2
x) . Since the maximum of f

C. Logistic. f(x) =e /(1 + e
occurs at 0 and f dis symmetric, it suffices to note that
f(x) < e /4 < f(0)exp(-2£(0)x) for x > 0 and set - c; = o

D. Triangular. £(x) =1~ |x| for |[x| <1, 0 otherwise.
The verification of conditions'(ls) - (16) is simple.

E. Normal. f£(x) = (1/V27) exp(—x2/2) . Since f has a maximum

at 0, (15) is trivial. Now observe that

£(0)exp (-2£(0) |x|) = (1/V271) exp(~2/(V2n) |x|)

(1/V37 ) exp(-x2/2)

|v

16
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if and only if |x| > 4/V/2m = 1.596 , so that (16b) is satisfied for

-c, = = 4//or . If |x| <ec

1 %2 2

£(x) > (1/V21) exp(-2/V271) |x|) = £(0)exp(-2£(0) |x|) ,

so (l6a) is satisfied.

F. Uniform. f(x) =1 for |x| <1/2, 0 otherwise. The
verification is trivial.

G. Cauchy. f£f(x) = 1/(1 + ﬂ2X2) . It can be shown that
(-1/2, 1/2) 1is a global equilibrium by appealing to Theorem 1 directly.1
However, the conditions of the corollary are violated.

Next we provide examples of distributions with local equilibria

given by (1) which are not global equilibria.

2. Local Pure

H. Chi-square with one degree of freedom. Condition (3) is

violated.

I. Reciprocal power. 1 <p < 2 . f£f(x) = k/lxlp , for

|x| >m , and defined on [-m, m] so that f(0) =1, £'(0) =0,
and f dis a density. Condition (4) is violated.3

K. Mixture of two normals. £(x) = [¢(x + n) + ¢(x - n)1/2

where ¢ 1is standard normal and u the distance from the median of
each of the two modes. It is easy to check that for u > 2 , (3) is
violated (e.g., take x =yp ), and the local equilibrium (at + 113

for py =3 ) 1is not global.

L. Mixture of three mormals. f(x) = [¢(x + n) + ¢(x) + ¢(x - w)1/3 .

For p > 4 , the distance from the median of each of the outer modes,
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(4) is violated (e.g., take x = 3 ), and the local equilibrium (at
+3.76 for u = 5) is not global.

A mixture of n normals provides an appropriate model for an
arbitration setting in which there are n 1likely values for the
arbitrator's notion of a fair settlement, each associated with a
degree of imprecision. It is noteworthy that for the mixture of three
normals (K), the equilibria (% 3.76) stay well within x = tu= £5 ,
but for the mixture of two normals (J), the two equilibria (= 113) lie
far outside x = tuy = =3 . It seems that a mode at the median 0 in
the odd case draws in the bidders, whereas no mode at the median in the
even case leads to divergence, though it should be emphasized that the
equilibria in both cases are only local.

Conditions (3) and (4) and the foregoing examples suggest very
roughly that a global equilibrium exists if the probability density
(1) does not have a deep dip at the median, and (ii) has tails that are
not too heavy. In other words, we can expect global stability when
there is neither too much concentration of probability mnear but not at
the median (as in H and J) nor too much probability far from the median
(as in I and K). Too deep a dip at the median violates the upper
bounding curve (see Figure 1); too heavy tails leaves too little
probability near the median, violating the lower bounding curve.

When there are global equilibria in pure strategies, however,
they may or may not fall within one standard deviation, i.e., o .
Moreover, if they lie more than one standard deviation froﬁ the median,
they may lie at the extremes of the distribution (F), or an equilibrium

may even lie outside the domain of £ (B).
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In the case of the latter distribution (exponential), the low
bidder should propose - o even though it has zero‘probability of
being the arbitrator's choice. Intuitively, this is an optimal strategy
not because -0 will ever be chosen (it won't), but rather because
it is sufficiently close to values that will be chosen that it will
"beat" the high bidder's strategy often enough to maximize the low
bidder's expected payoff.

Because a major objective of FQOA is to draw the bids of the two
parties closer together, it is useful to measure the efficacy of a
family of distributions for FOA in terms of the distance between
equilibrium strategies. In order that the measure of efficacy be
independent of the unit of measurement, the distance between optimal
strategies should be divided by a scale parameter. We adopt the

following definition:

d = dispersion for FOA = (b0 - ao)/o = 1/0£(0)

where o 1is the standard deviation. The following table provides
values of the dispersion d for all continuous distributions in
Figure 1 with global equilibria in pure strategies. It should be
noted that a different measure of scale (e.g., the median of the

absolute deviations) would give somewhat different values for dispersion.

Distribution Dispersion d
Double exponential /2 = 1.41
Exponential 2 = 2.00
Logistic 4/3/m = 2.21

Triangular V6 2.45



Normal Vor = 2.51
Uniform Y12 = 3.46
Cauchy Not defined

Not surprisingly, the uniform distribution is most dispersive and the
double exponential least, illustrating the drawing power of a

concentration of probability at the median.

3. Equilibrium Solutions using Pure Strategies:

Discrete Distributions

Thus far we have admitted only continuous distributions for the
arbitrator's notion of a fair settlement. Suppose instead that both
the arbitrator's notion and the bids are restricted to multiples of
some quantity § >0, which we may assume, without loss of
generality, to be 1. We denote the probability function for the
arbitrator’'s distribution by p and write P, = p(n) . An integer m
is called a median of p if both an, n <m , and an, n>m, are

"less than or equal to 1/2. According to this definition, the median m
is unique if both of these sums are strictly less than 1/2. In example
M below, 0 is the unique median; in example N, -1, 0, and 1 are all
medians; in example O, -1 and 0 are medians.

If m is a median, we define the partition:

-+

where

+ —
1/2 - z P s and P, = 1/2 - z P -
n<m n>m

J
1

20



Thus, the median is unique if and only if p; and p; are both
different from zero.

Without loss of generality, we may set m = 0 , where m is
chosen as (one of) the medians. 1In the example M below, where

- +
Py =Py =P = 1/3 , note that Po = Pg = 1/6 . For x>0,

define sums

N [fj
x  Po L Py
i=1
(17)
if _
S_ = p. + p' ’
X gepx1e1 b0
where [x] is the largest integer < x .
THEOREM 2. TIf Py > 0, define
bO = 1/2pO + o
(18)
ag = —'bO ,
where b, is an integer and - 1/2 < @ < 1/2 . Then (ap> by) is
a global equilibrium if and only if whenever 2x is an integer
SX j_x/(ZbO - 2x) , 0 <x < b0/2 s (19)
> >
SX‘_ x/(2b0 + 2x) , X o, (20)

and the same inequalities hold for S_X in place of Sx .

PROOF, Since the proof is almost identical with that of Theorem

1, part II, we only provide an outline. Arguing as before, if b > 0 ,

21
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the statement

g(ao, b) <0
is equivalent to

F(y) - 1/2 > y/(b - ao) , (21)
where we have set

y = (a0 +b)/2 .

Thus b = 2y - a so for y >0 (i.e., b > -a

0° 0

+ [yl
S, = Pg * izlpi > y/(2y - 2a3) = y/(2bg + 2y)

If, on the other hand, 0 <b < -a, , then a0/2 <y <0, and

setting x = -y , (21) may be replaced by
-1 _
S _ = 2 p. + Py < x/(2b, - 2x)
o= [Cx]Hl T 0 0
for 0 < x < b0/2 . The other inequalities follow from a consideration
of g(a, bo)

Note in particular that if x = 1/2 , (20) implies that

S, = pg > (1/2)/(2by + 1) > 0

1
72

and a similar argument shows that pa > 0 as well, so the median must

be unique for a global equilibrium to occur. Q.E.D.
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Examples (see Figure 2 for plots).

M. p: Py = Py =Py = 1/3 . Then (-1, 1) is a global

N. p: p_; =Py = 1/2 . Since Py = 0 , no global equilibrium

exists in pure strategies. (But see section 4 for a mixed-strategy solution.)

0. p: p_; = 1/2 Py = P; = 1/4 . Here pa = 0 and pg = 1/4

Again by Theorem 2, no global equilibrium exists in pure strategies.

Discrete distribution M seems analogous to continuous distribution
F (uniform), with global equilibria at the extremes of the distribution,
though an argument can be made that it more resembles continuous
distribution K, whose local equilibria are not at the extremes.
Distribution N, which has no continuous analogue (except perhaps J),
fails to meet the necessary condition for both continuous and discrete
distributions that the density be greater than zero at the median.

The closest continuous analogue to distribution O is B
(exponential), but unlike B it has no unique median. Altogether, these
discrete distributions, and the conditions for a global equilibrium of
Theorem 2 (note that local equilibria are undefined in the discrete
case) suggest that the search for stability may be more difficult for
discrete distributions whose arguments can assume only integer values

(or multiples of some other positive quantity).

4. Equilibrium Solutions Using Two-Point Mixed Strategies

We now consider the case in which £f(0) = 0 . As we have seen,

no equilibrium exists in pure strategies when the density or probability
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function is zero at the median. However, in this section we obtain
necessary (but not sufficient) conditions for an equilibrium to exist
for two-point mixed strategies under the assumption that the density
or probability function is symmetric. We then provide examples for
both the continuous and discrete cases of distributions satisfying
these conditions which possess global equilibria.

We treat the continuous case first. Suppose that the low bidder

chooses pure strategies a and a, with probabilities o and

1
(1 - o) ; the high bidder chooses pure strategies b1 and b2 with
probabilities R and (1 - B) . Assume for convenience that a, < a,
and b1 > b2 . Denote these mixed strategies by a= (al, a,, o) and
b = (bl’ b2, B) . Then the expected payoff is given by
g(a, b) = aBF(p; ) (a; = by) + all - BYF(p ,)(a) - b,)
+ (1 - @)BF(p,)(a,=b) + (1 - o)1 - 8) (22)

¢ F(pzz) (32 - bz) + Bbl + (1 - B)bz s

where p.j = (ai + bj)/2 and F is the distribution function of the

1

arbitrator's estimate.

If LE = (5, b) constitutes a local equilibrium, then
a; = -bl > @, = -'b2 » and g = B (23)
by the symmetry of the distribution. It follows that
F(p;) = F(p,,) = 1/2 (24)

and



£(py)) = £(pyp) = 0 .

Furthermore, we can set

x = (b, +a,)/2= - (b, +a)/2
y=(b, - ay)/2= (b, - 2a))/2.
Noting that x = Py; = ~Pyp » Wwe have

F(-x) + F(x) = 1 .

Furthermore, if the partial derivatives are evaluated at LE

obtain:

;; = a2/2 + a(l - )[F(-x) - yf(x)] =0
1
5g 2
3a2 =(1l-0a)/2+a(l - )[F) -yfx)] =0
2E = a(a; - b))/2 - 201 - DFCR)Y + 20FR)Y

- (1 - a)(a2 - b2)/2 =0,

where one-sided derivatives of F are used in place of f

3

if

we

(25)

(26)

(27)

(28)

(29)

(30)

necessary. (It follows from the symmet of f and some algebra that
ry ry g

the first partial derivatives with respect to the bi lead to the same

equations.)

Subtracting (29) from (28) vyields:

w/2 = (1 - &)?/2 + a(l - Q) [F(-x) - F(x)] =0,

25
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or

__20-1 _ - 2
2F(x) - 1 = 2all = o) 2e/(1 - %) , (31)
where we have set
a= (1 +¢e)/2. (32)

Adding equations (28) and (29) and using (27) yields:

[o + (1 - a)]2/2 - 20(1 - a)yf(x) =0 ,
or

YEGO = 1/[ha(l - @)] = 1/(1 - &) . (33)
Equation (30) when simplified yields:

a(a1 - bl)/2 - (1 - on)(a2 - b2)/2 -~ 2y[F(-x) - a] = 0 .
Using (23), (27), and (32), this becomes

2yF(xX) =y + x . (34)
Together with (31), this yields

xly = 2¢/(1 - %), (35)
which proves the following theorem:

THEOREM 3. If the distribution function F is continuous and

possesses at least one-sided derivatives for each x , and if the

corresponding density f is symmetric, then conditions (33) - (353)




are necessary for the existence of a local equilibrium in two-point

mixed strategies.

Thus, any local equilibrium must satisfy equatioms (33), (34),
and (35) and is specified by the quantities x , y , and € . Since
equations (33) - (35) define a differentiable transformation of
(x, v, €) space into itself, Newton's method will provide a convergent
solution by iteration if the determinant of the matrix of partial
derivatives of this transformation does not wvanish at the solution.

Furthermore, note that by our assumptions and (26), x and vy
are both positive. Thus, it follows from (35), and the fact that
F(x) <1, that y>x, i.e., a In particular,

0 <x/y<1l, soby (35), 0<e< V2 -1 , 1.e., 0.5 <o < Y2/2 = 0.707.

We conclude that the high bidder should use a mixture of two non-negative

pure strategies, weighted slightly toward the higher of these strategies

(the low bidder should behave symmetrically).

Example. L. Define f£(t) = [(p + 1)/2]|t|p for -1<t<1. For
fixed p > 1, f 1is a differentiable density function on (-1, 1)
with f(0) =0 . If x, y , and ¢ specify a local equilibrium,

equation (34) implies that

y = x . (36)
Combining (33) and (35), we get vyf(x) = x/(2ey) . Using the definition
of f and (36), this yields:

- xp+1

/(p +1) . (37)
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Using (37) to substitute in (35) leads after some simplification to:

2 1/(2p+2

x = (p> - 1/ (38)
Thus (36) - (38) specify a solution for x , y , and € . Since

x > 0, we must restrict p so that 1 < p < V2 = 1.414 . 1If we

1.2

take p = 1.2 (so that f(t) = 1.1t ), numerical solution yields

-a, =b, =2.0807, -a

1 1 = b2=0.4212 , and a=0.6508 . Computer

2
evaluation of g(a, b) shows that this is a global solution (see
Figure 2L for a plot). 1In fact, a global solution is obtained for p
in the vicinity of 1.2; however, for p = 1.3 , the values obtained
froﬁ conditions (36) - (38) provide a local but not global equilibrium.
For p = 1.4 or 1.1, the corresponding values are not even a local

equilibrium. Hence conditions (33) - (35), although necessary, are

not sufficient for a local equilibrium using two—-point mixed strategies.

Clearly, the existence of an equilibrium, and whether it is
local or global, is very sensitive to the parameter p for the
symmetric density £(t) . A mixed-strategy solution is needed when
p = 1.2 to protect against, on the one hand, the other player's
bidding "too high" or "too low," for then one can win by being close
to t =03 to exploit, on the other hand, the steep rise in the
density by making an "extreme" bid when the other player does and
winning half the time (in the symmetric case). Why this subtle blend
of protection and exploitation works for some values of p globally,
for other values locally, and for still other wvalues not at all raises

questions which require further investigation.
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Conditions (33) - (35), which are nécessary for an equilibrium
to exist, apply to continuous distributions. If, on the other hand,
the bidders are restricted to discrete and symmetric distributions
of the type described in section 3, we note that (34) remains a
necessary condition for an equilibrium, for its derivation depends
only on differentiation with respect to the weighting factor o . 1In
what follows, we assume that if the two bidders are equidistant from
the arbitrator's estimate, one of the bids is chosen by lot as the
settlement. This leads us to interpret F(n) in formula (5) for the
expected payoff as

F(n) = iani +p /2,
where n is an integer.

We now provide an example of a discrete symmetric distribution
possessing a global equilibrium in two-point mixed strategies. For
the example, set Py =P = 1/2 (see Figure 2, example N). We first

use the necessary condition (34), which we rewrite as
b, /(b; + by) = F(x) ,

to suggest candidate values of b and b2 for an equilibrium.

1

Since b1 > b2 by assumption, either F(x) = 3/4 , 1in which case

b1 =3, b2 =1, and x=13; or F(x) =1, so that b1 >3,

b, =0, with x = b1/2 .
The latter does not lead to an equilibrium. However, if

b= (3,1, o) , direct verification shows that g(a, b) > 0 for any

29
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(integral) pure strategy a where 1/2 < a < 2/3. Therefore,
a=(-3,-1,a) and b= (3, 1, @) with 1/2 < o < 2/3 constitute
a global equilibrium in mixed strategies for example N.

Are there probability distributions of the arbitrator that have
no equilibrium, even in mixed strategies (without the restriction to
two points)? The discrete distribution O, which has no pure-strategy
solution, is a candidate, though it would seem that a distribution as
simple as 0 would probably have some mixed-strategy solution. Yet,
the necessary condition given by (34) is not applicable to nonsymmetric
distributions like O.

We have not been able to find a mixed-strategy solution for O,
nor have we been able to prove that one does not exist. The problem
seems to be that each player wants to exploit the arbitrator's choice
when it is favorable to him (e.g., the high bidder wants to be to the
right of 1 when it is chosen) but at the same time protect himself
from exploitation by being close to O when the arbitrator's choice
is unfavorable to him (; 1.

It may not be an unrealistic problem for two bidders, and thus
more than of merely mathematical interest. Imagine a situation in
which both bidders estimate that the facts of a case will sway the
arbitrator toward one position (- 1) half the time; the other half
he will either favor the other position (1) or split the difference
(0), each with equal probability. Although equilibrium strategies
in this nonsymmetric problem are unknown, we do know that if the
arbitrator will not or cannot split the difference--~and hence will

favor one side (-1) or the other (1) with equal probability--there



is a mixed-strategy solution (5, B) , given earlier for (symmetric)
example N.

This might occur, for example, if the arbitration involves a
"lumpy good," which cannot be split and therefore must go to one side
or the other. Then, if this is the only thing the dispute is about,
the arbitrator cannot choose something "in the middle," which may
give rise to a discrete distribution similar to N. But if the
conditions for the award of the lumpy good are flexible, the bidders
still can choose conditions, defined by points along the real line,
which are more or less favorable to them. 1In this case, though the
distribution is discrete, because we do not limit the players to
integral values, the previous mixed-strategy solution to example N
is not applicable. We believe, however, that limiting the players
to bids that are multiples of a common value (e.g., integers) offers
a more realistic model of bidding than positing real values if there
is lumpiness in the good sought:

Recall that, in example N, (3, 1, o) and (-3, -1, w) are
the global equilibria when the arbitrator is limited to discrete
(integral) values. Although either bidder could choose the midpoint

0, his mixed strategy does not include this point, so the equilibrium

solution, were the arbitrator limited to odd integers, would be exactly

the same as that when all integers are feasible. We interpret this
to mean that if there is no midpoint that is feasible (e.g., a lumpy
good can go to either one side or the other), the previous optimal

mixed strategies in the discrete case would a fortiori still obtain.
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5. Conclusions

We have shown that final-offer arbitration can be modeled as a
two-person, zero-sum, infinite game of incomplete information played

between two parties who make "bids,"

with an arbitrator choosing the
bid closest to what he considers a fair settlement. The bidders are
assumed to know the probability distribution of the arbitrator's

fair settlements and to make bids that maximize their expected payoffs.
From these assumptions we derived necessary and sufficient conditions
for there to be local and global equilibria in pure strategies (only
global equilibria for discrete distributions with equally spaced
intervals), which we showed to be reciprocal functions of the density
at the median.

Generally speaking, optimal bids are more dispersed for "flat"
distributions, such as the uniform, or those with a dip at the median,
such as the mixture of two normals. For these, optimal bids violate the
stated rationale of FOA--that it will force the two sides together.
Indeed, there are distributions, like the exponential, in which one
party's globally optimal bid is outside the domain of the arbitrator's
probability distribution, and some, like the mixture of two normals,
in which both parties' locally optimal bids are far from the median,
resulting in divergence rather than convergence.

Necessary conditions for local equilibria sustained by two-point
mixed strategies were given for symmetric distributions, but no
existence conditions for general mixed strategies are known. One
discrete distribution with no pure-strategy equilibria was discussed;

it remains an open question whether it has a solution in mixed

strategies.



FOA, as modeled herein, neither forces convergence of the parties
nor even guarantees that they have optimal strategies. Even if one
could show that optimal strategies always exist, the use of mixed
strategies by real-life players would seem decidedly problematical
and would, by definition, not necessarily lead to convergence.

Is there a solution to the problem of convergence? One analyst
has suggested that FOA be modified to allow the arbitrator to make an ini-
tial choice (as under binding arbitration)--perhaps the median of his
distribution—--but if one party found it unacceptable, then FOA would
be applied to the parties' two previously submitted bids [2]. But
since one party can always guarantee himself at least as much as his
expected payoff in FOA, he will challenge the arbitrator's settlement
if it is not on his side of the median, given the parties are risk
neutral. If they are not, risk as analyzed in [3] would come into
play, or perhaps each party might make a Bayesian calculation based
on the information revealed by the arbitrator's proposed settlement
(which is a calculation we shall not develop here).

This game involving an initial proposal by the arbitrator would
allow for the possibility of a settlement that the arbitrator
considered fair, such as the median, whereas FOA in its form modeled
here would never, for example, lead to the median choice in any single
play (though, over a number of plays, it could in an expected-value
sense).4 It highlights the conflict between an imposed outcome, which
may be fair (to the arbitrator) but is not one the parties themselves
arrived at, and one induced by the play of a game, which may not be
fair but is one the parties must accept once they have agreed to the

rules of the game.
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As FOA has gained acceptance in several states, it seems to
have acquired a kind of procedural legitimacy. For many probability
distributions of the arbitrators, the parties do have optimal
strategies not far (on the order of one standard deviation) from the
median. But for other distributions, this is certainly not the case.
This finding, we believe, should suggest to proponents of FOA a note
of caution on its convergence properties, even in principle.

Suffice it to say that the picture is cloudy--and indeed quite
opaque for discrete distributions for which optimal strategies, if
they exist, are mixed. TIronically, a clearer recognition of these
difficulties may help to vindicate one claim of FOA supporters—'"that
it increases the pressure on the parties to take realistic bargaining
positions and to settle their disputes through direct negotiations
without use of arbitration" [7, p. 3]. Thereby the option of using
FOA may lead to its own demise once it is understood by the parties

that their optimal strategies preclude a median settlement.
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Notes

1. For the Cauchy distribution, condition (3) is trivial. To

verify (4), we must show that

X

f 1/(1 + ﬂzxz) = (1/7) arc tan(mx) > x/(1 + 2x)

0
for x> 0 . To this end define p(x) = arc tan(mx) - wx/(l + 2x)
Setting p'(x) = 0 , we obtain X = 0 and X, = 4/(ﬂ2 - 4) as the

only critical points on [0, «). Since p(xl) = lim p(x) = 0 and
X0

p(x2) >0, we conclude that p(x) > 0 for x > 0 . Thus (4) holds,
so (=-1/2, 1/2) 1is a global equilibrium by Theorem 1. However, {(16b)
holds only for 0.268 < |x| < 1.683 or x =0, so that (16) is not
satisfied.

2. The chi-square distribution with one degree of freedom is

1
e

given by £f(x) = (1//5;)x exp(-x/2) . From a standard chi-square

table we see that the median {i 4is 0.455. Direct calculation shows

that |£'(i)| = 0.753 < 0.887 = 4£2(§) , so that local equilibrium

strategies ag = - 0.606 and bO = 1.516 are given by (1). To see
that this equilibrium is not global, we use a chi-square table again
to observe that F(0.016) = O.i . If we choose x = (a0 + b)/2 = 0.016 ,
then b = 0.638 and g(ao, b) =b - (b - aO)F(x) = 0.638 - (0.638 +

0.606) (0.1) = 0.514 > 0.455 = g(ao, b Hence, the high bidder may

0)
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do better by deviating from the strategy b so the equilibrium

O ’
is not global. Direct calculation shows that condition (3) is violated.

co

3. Computing f f(t)dt shows that (4) fails, so no global
x

equilibrium exists.

4. An exception is if the arbitrator has a (degenerate) probability
distribution of choosing the median 0 with probability 1. Then, if
all real values are feasible, the unique equilbrium strategy for each
party is to bid 0. On the other hand, if feasible bids are restricted to
the integers, each party's dominant equilibrium strategy is not to bid 0
but rather +1 (high bidder) or -1 (low bidder). These bids ensure the
expected value of 0 and are better for each party than bidding 0 should

the other party's bid exceed 1 in absolute value.
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