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Abstract

Fallback bargaining is a bargaining procedure under which bargainers begin by
indicating their preference rankings over all alternatives. They then fall back, in lockstep,
to less and less preferred alternatives—starting with first choices, then adding second
choices, and so on—until an alternative is found on which all bargainers agree. This
common agreement, which becomes the outcome of the procedure, may be different if a
decision rule other than unanimity is used. The outcome is always Pareto-optimal but
need not be unique; if unanimity is used, it is at least middling in everybody’s ranking.

Fallback bargaining may not select a Condorcet alternative, or even the first choice
of a majority of bargainers. However, it does maximize bargainers’ minimum
“satisfaction.” When bargainers are allowed to indicate “impasse” in their rankings—
below which they would not descend because they prefer no agreement to any lower-level
alternative—then impasse itself may become the outcome, foreclosing any agreement.

The vulnerability of fallback bargaining to manipulation is analyzed in terms of
both best responses and Nash equilibria. Although a bargainer can sometimes achieve a
preferred outcome through an untruthful announcement, the risk of a mutually worst
outcome in a Chicken-type game may well deter the bargainers from attempting to be
exploitative, especially when information is incomplete.

Fallback bargaining seems useful as a practicable procedure if a set of “reasonable”
alternatives can be generated. It leapfrogs the give-and-take of conventional bargaining,
which often bogs down in details, by finding a suitable settlement through the

simultaneous consideration of all alternatives.

JEL Classification:D58,D63,D71. Keywords: Bargaining; impasse; social

choice; Condorcet winner; implementation; Nash equilibrium.



Fallback Bargaining:

Once your fall-back positions are published, you have already fallen back to them (Eban,
1998, p. 81)
1. Introduction

If two bargainers are in a dispute, at least one must retreat to a fallback position to
reach a settlement. “Fallback” in our title would therefore seem redundéint—
bargaining involves at least one bargainer’s falling back to a less preferred position in
order to produce a settlement acceptable to both.

To be sure, it would seem unfair, and not “true” bargaining, if one bargainer simply
caved in to the demands of the other. Accordingly, we ask the following question: Is
there a procedure that facilitates a compromise, whereby bargainers retreat from their
most-preferred positions in order to achieve an equitable outcome?

We propose such a procedure, called “fallback bargaining,” whereby all
bargainers—not necessarily just two—fall back in lockstep to less and less preferred
positions until they agree on an outcome. In a variant of this procedure, we allow the
lockstep to be broken if a bargainer reaches a point where it prefers no agreement
(“impasse”) to any alternative that is ranked lower.

Among other things, we demonstrate that fallback bargaining yields an outcome
that is Pareto-optimal and, if there is no impasse, at least “middling” for all the
bargainers. Moreover, when restricted to just two bargainers, the procedure is difficult
(and frequently impossible) to manipulate, even if the bargainers have complete

information about each other’s preferences.

1Steven J. Brams gratefully acknowledges the support of the C. V. Starr Center for
Applied Economics at New York University. D. Marc Kilgour acknowledges the support
of the Social Sciences and Humanities Research Council of Canada and the Laurier
Centre for Military Strategic and Disarmament Studies. We thank Jeffrey S. Banks for
valuable comments on an earlier draft.



Our model extends a bargaining model of Brams and Doherty (1993; see also
Brams, 1994, ch. 7), which presumed that a simple majority, measured by weighted or
unweighted votes, must agree on an alternative. In the context of voting, Sertel and
Yilmaz (1997) and Hurwicz and Sertel (1997) developed related models, which we shall
say more about later, that focus on majority rule. While we focus on unanimity as the
decision rule, which seems appropriate in many bargaining situations, we give general
results for any decision rule and for any number of bargainers.

The plan of this paper is as follows. In section 2, we describe and illustrate
fallback bargaining, assuming a decision rule of unanimity. We determine the maximum
“depth” to which the bargainers might have to descend before reaching a common
agreement, indicating the parameters to which this depth is sensitive. In addition, we
prove that fallback bargaining always leads to a Pareto-optimal outcome that maximizes
the minimum satisfaction of all the bargainers (i.e., whose depth for the worst-off
bargainer is minimaBh.

In section 3, we compare the situation in which unanimous consent is required to
that in which only a simple or qualified majority of bargainers must agree, as is true in

most voting situations. We illustrate, among other things, how an outcome under the

2Proofs of all theorems, corollaries, and lemmata are given in the Appendix—where their
numbering is sometimes different and preceded’sy-but the numbers in the text are
always keyed to the Appendix numbers. We follow this unusual convention to

« facilitate exposition of the material in the text, where we start with fallback
bargaining with a decision rule of unanimity (section 2) and then generalize to all
possible decision rules (section 3);

* save space in the Appendix, where we make some theorems general from the start.

Thus, instead of proving that fallback bargaining maximizes the minimum satisfaction of
all bargainers (Theorem 3), we prove in the Appendix that under any decisigp rule
fallback bargaining maximizes the minimum satisfaction of at lphatgainers
(TheoremA2), whereg can range from 1 to.



unanimity rule may be less preferred by a majority of bargainers than another alternative
(i.e., the so-called Condorcet winner), which may even be their first choice.

In section 4, we consider the possibility that a bargainer might reach a point in
fallback bargaining whereby it would prefer no agreement, or impasse, to agreement. We
show that the inclusion of “impasse” in bargainers’ preference orders may lead to Pareto-
optimal outcomes quite different from those without impasse. These, we suggest, can be
observed in real-life bargaining situations in which bargainers, at some point, refuse to
compromise, preferring stalemate instead.

In section 5, we restrict attention to two-person bargaining situations, which are by
far the most common (Brams, 1990), but we place no restrictions on the number of
possible outcomes. If there are only two alternatives (e.g., one bargainer wins, the other
loses), it is always optimal for the bargainers to be truthful in ranking alternatives. But
truthfulness is not always optimal when there are more than two alternatives, as we
demonstrate with two theorems that characterize the best response of one bargainer to the
other’s truthful ranking.

While we leave a characterization of all Nash equilibria in two-person fallback
bargaining games to the Appendix, we offer a quantitative analysis of Nash equilibria in
three-outcome and four-outcome games in section 6. Although bargainers can benefit
from not being truthful in some games, we argue that they may refrain from trying to be
exploitative in others that are vulnerable to misrepresentation—in particular, a class of
Chicken-like games—because of the serious risks involved should the other bargainer act

similarly. Thus, both bargainers may be deterred from acting strategically.

3To be sure, Gibbard (1973), Satterthwaite (1975), and subsequent impossibility results in
the social-choice and game-theoretic literature establish that virtually no bargaining or
voting procedures are immune from manipulation. These results say little, however,
about the kinds of games that may be played, and their specific vulnerabilities, under
different procedures. In the case of fallback bargaining, we will argue that, practically
speaking, it would be a difficult procedure to manipulate, especially in games of
incomplete information.



In section 7, we suggest the kinds of disputes in which bargainers are most likely to
benefit from fallback bargaining, or to act as if they use it. These informal uses of the

procedure lead us to ask the following questions:

1. What real-life disputes would be most amenable to the formal use of fallback
bargaining?
2. Is the resolution of such disputes likely to be fairer, in some sense, than the

resolution that would be achieved without the formal procedure?

We conclude that invoking the formal procedure could facilitate the resolution of certain
kinds of disputes, but it will require considerable care in the generation of alternatives to

which it is applied.

2. Description and Properties
Assume that there arebargainers, and the set of alternatives (possible

agreements) ik, where K| =k. Each bargainer has a strict preference ranking ovédr the

alternatives; all rankings can be represented byxak matrix, A, whose ijj)-entry isa;;.
Each ranking is given in descending order: bargaisenost preferred alternative ag,
its least preferredi.

To illustrate, suppose the set of alternativds #s{a, b, c, d}, sok = 4. Suppose
there aren = 2 bargainers, whose preferences are given by

(abcd)
Al=\h d a c/.

Bargainer 1's preference rankingbgd is indicated by the first row—frora most
preferred tad least preferred—and bargainer 23l by the second row.

Fallback bargainingproceeds as follows:



1. The most-preferred alternative of each bargainer is considered. If this is the
same for all bargainers, then this common agreement is the bargaining outcome. The
procedure stops, and we call this a depth 1 agreement.

2. If there is no common agreement at depth 1 (i.e., not all the bargainers agree on
a most-preferred alternative), then the next-most preferred alternatives of all the
bargainers are considered. Any alternative within the top tweef/bargainer is a
depth 2 agreement (there may be either one or two common agreements at depth 2, as we
will illustrate shortly). If there is a depth 2 agreement, the procedure stops; otherwise, it
continues.

3. As long as there is no common agreement, the bargainers descend—one level at
a time—to lower and lower levels in their rankings until the intersection of their top-
ranked alternatives becomes, for the first time, nonempty. We call the set of common
agreements, when the procedure stops at d&ptbSA), or theCompromise Set (C8j

fallback bargaining for matriA.

Examples. The vertical lines in the following 2-bargainer, 4-alternative examples
below indicate the column in the matrix, going from left to right, at which a common
agreement first appears. In these four examples, the depth of the agrei&manies
from 1 (A3) to 3 (A%. Observe that in two of the exampléd andA3) the Compromise
Sets are singletons, whereas in the other two examflemn(lA%) the Compromise Sets

contain two alternatives:

(abc d)

Al=\h d a c/, CYA?! ={b}.
(a b c d)

A2=1h a c d/, CYA? ={a, b}.
[aabc)

A3=\a d b c/, CA3) ={a}.
(abc d)

At=\c d a b/, CSA% ={a c.



What is the maximum depth at which a common agreement can appear? The upper

bound is given by

Theorem 1. d*e | k-k/n+ 1 |.

Proof. See the proof of TheoreAl in the Appendix; an equivalent theorem for
the so-called Kant-Rawls Social Compromise, which also assumes unanimity, is given in
Hurwicz and Sertel (1997). The proof of the general case—allowing for any decision rule
(not just unanimity), which includes Hurwicz and Sertel's (1997) so-called Majoritarian

Compromise (simple majority)—is given for Theoré&®in the Appendix.

Among the earlier examplea4 shows that the upper bound in Theorem 1 can be
attained:d*=3 =|_4-4/2 + 1_|; in the Appendix, we show that this bound is always
tight. We next consider how the upper bound of Theorem 1 behanes ask

increases:

1. Dependence on. As the numben of bargainers increases, but the nunitber
of alternatives remains fixed, the upper bound on depth eventually réathesnumber
of alternatives. Thus, K= 4 (as in our previous examples), anidcreases from 2 to 4,
fallback bargaining may have to descend*e 4 before the Compromise Set becomes

nonempty, as illustrated by the following example:

AS5 = CYA5) ={a, b, ¢, d}.

2009

bcd
c da
dab
aboc

For any preference matrix and any alternative™ K, we definem(x) = m(x, A),
themean depth of x in,Ato equal the (arithmetic) average rank oiver all rows ofA.
For instancem(a) =m(x, AS) = (1 + 4 + 3+ 2)/4 = 2.5.

In A>, the maximal depth of the agreement is mitigated by the fact that all four
alternatives are in the Compromise Set. If one of these is selected at random as the

outcome, then the probability that a bargainer will suffer its worst outcome is only 25%.



Moreover, the mean depth of the outcome thus selecta@)s= m(b) = m(c) = m(d) =

2.5, so on average each bargainer obtains a middling outcome.

2. Dependence oR. As the numbek of alternatives increases, but the number of
bargainers remains fixed, the upper bound on depth approaches If}k-+11 =
[(n-1)h]k + 1, or a fixed fraction df plus 1. For example, if = 2 (as in our first four
examples), anld increases from 4 to 8, the upper bound given by Theorem 1 increases

from d* = 3 (illustrated byA%) to d* = 5, which is illustrated by examphs:

abcdefgh
ps=le fghabctdl cqas={a e

In this example, the worst-case scenario for each bargainer is a below-average alternative
(5t out of 8), whereas the best-case scenario is a best alterngitinet @ 8). Thus,

m(a, AS) =m(e, AS) = (1 + 5)/2 = 3.

As the examples above illustrate, fallback bargaining yields, on average, outcomes
that are at least middling for each bargainer, whatever the number of bargainers or the
number of alternatives. In the case of two bargainers and two alternatarety—in
which one bargainer prefeasgo b and the othep to a—the Compromise Set will be
simply {a, b}. This, of course, is hardly a resolution of their bargaining problem.

If, however, both bargainers think some compromise alternats/better than the
other bargainer’s preferred alternative, themill be the outcome of fallback bargaining
if it is included as an alternative:

ach
A7:(b c a), CYAY) ={c}.

In the concluding section, we will suggest how, through the introductiseveiral
compromise alternatives, fallback bargaining can be rendered a useful practical device for
finding an acceptable resolution.

Next we give lower and upper bounds on the number of alternatives in the

Compromise Set:



Lemmal. 1¢|CS |+ mind* n}
Proof. See the proof of Lemm#sl in the Appendix. The proof of the general case

for any decision rule is given for Lemm2 in the Appendix.

The lower bound on the number of outcomes in the Compromise Set is illustrated by
A3, andA’, and the upper bound B¢, A4, and A>.

Of course, if the number of alternatives in the Compromise Set is large, as in
exampleA® [|CHAd)| = 4], there is no ready resolution of the bargaining problem. But
this result, we would argue, is to be expected in this example, because majorities cycle:
a>b>c>d>a, where “>" indicates majority preference. Later we shall consider
examples in which preferences are not cyclical and ask whether fallback bargaining
chooses a “desirable” alternative.

Next we ask whether fallback bargaining always leads to a Pareto-optimal

outcome#

Theorem 2. If x |jCS then x is Pareto-optimal
Proof. See the proof of TheoreAd in the Appendix, which also covers the

general case (i.e., any decision rule).

ExampleAl shows that the converse of Theorem 2 is false: alterrats/@areto-

optimal but does not belong to the Compromise Set. More specifically,

Theorem 3. The Compromise Set comprises all Pareto-optimal alternatives that
maximize the minimum ranking of the bargainers.
Proof. See the proof of TheoreA®R in the Appendix, which also covers the

general case (i.e., any decision rule).

4Let x andy be any two outcomes. We sais Pareto-superioito y, writtenx >y, if all
the bargainers rankhigher thary; in this casey is Pareto-inferiorto x. If y has the
property that there exists mesuch thak > y, theny is Pareto-optimal



Notice in examplé\! that there are two Pareto-optimal alternatiaesndb.
(Alternativec is Pareto-inferior to bota andb, and alternative is Pareto-inferior td.)
The lowest ranking that either bargainer assigrssisa3, and the lowest ranking that
either bargainer assignshias 2. Consequently, the Compromise Sebis Which, as

shown below, is the first alternative to become common:

* 0 common at depth 1:D{}
* 1 common at depth 2:b}
» 2 common at depth 3:a{b}

* 4 common at depth 4:a{b, c, d}.

In examplesA? - AS, the Compromise Sets contain all the Pareto-optimal
alternatives. By contrast, all three alternatives are Pareto-optimal in exatmpig only
alternativec is in the Compromise Set: it becomes common at depth 2, whereas the
Pareto-optimal alternatives,andb, do not become common until depth 3.

In summary, the Compromise Set produces outcomes that are Pareto-optimal
(Theorem 2) and at least middling (Theorem 1), based on their depth or mean depth.
These outcomes also maximize the minimum satisfaction that any bargainer enjoys
(Theorem 3): the lowest rank given by a bargainer to any alternative not in the

Compromise Set, even if it is Pareto-optimal, is always°less.

3. Alternative Decision Rules

The choice of a middling outcome may be controversial, as exa#plastrates:

SFallback bargaining, however, fails one of Arrow’s (1963) contions (as it must):
independence from irrelevant alternatives. Thu&inf the preference ranking of

bargainer 2 changes frapacdto cbad(i.e., bargainer 2 movesup from third to first

place without changing the ranking of the other alternatives), the Compromise Set would
change from §, b} to { b}. In other words, the preference of bargainer 2 for “irrelevant
alternative”c affects the social choice betwesandb, loweringain the social ordering

by singling outb as the unique social choice.
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b d
b d
d C
C a

@R ERGR

A8 = b a/, CYAS8)={b}.

Notice that alternativb is at rank 2 for two bargainers and at rank 3 for two bargainers,
giving it a mean rank of 2.50. By comparison, alternadiveat rank 1 for three

bargainers and at rank 4 for one bargainer, so its mean rank is 1.75. Moreover, not only
is a theCondorcet winnefin pairwise contests, a majority prefers it to every other
alternative), but it is also ranked first by three of the four bargainers. Nevertheless,
fallback bargaining chooséswhose only merit seems to be that nobody dislikes it too
much (by ranking it last).

The choice ob, we believe, is quite indefensible in a voting situation. Indeed, not
only would a Condorcet voting procedure sediut so would virtually all other voting
procedures, including the Borda count and the Hare system of single transferable vote.
On the other hand, insofar asanimous consel required in a bargaining situation, the
choice ofb seems to us entirely appropriate.

To be sure, if majority support were deemed sufficient to reach a consensus in a
bargaining situation, then fallback bargaining could be modified to reflect this less
stringent decision rule. With this modificatiawould be chosen at the outset (i.e., at
depth 1) inA8.6

In all 2-person bargaining situations, of course, the unanimity decision rule is the
same as the majority decision rule, so there would be no change of outcome sets in our

previous 2-person examples. Neither would there be in our earlier 4-person example

(A®), in which majorities cycle (i.e., there is no Condorcet outcome).

6If the Condorcet winneg, were deleted from every bargainer’s ranking, the
Compromise Set would expand frofo} fo { b, c, d}: all three remaining (Pareto-
optimal) alternatives would be selected by fallback bargaining. In fact, all four
alternatives are Pareto-optimalA#; fallback bargaining singles ohtas the outcome, in
contrast to the simple-majority outconae,
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In general, however, the decision rule will make a differencepearson
bargaining situations. Consequently, bargainers must decide what is an appropriate level
of consensus to require in order to make an agreement binding on all parties.

We next can generalize fallback bargainingtapprovalfallback bargainingin
which the decision rule is that, for acceptance, the approval of atl@asiquota)
bargainers is required, whegdies between 1 andlinclusive. Until now, we have used
the decision rulg =n (i.e., unanimity). Normally, we suppose, the quota will be at least
a simple majority of bargainers (i.g.¢ |_t + 1)/2_]), but our results apply for agyn
therange 1 g+ n.

The use ofj-approval fallback bargaining produces thapproval Compromise
Set CS1, which is the set of alternatives that are approved of, for the first time as the
depth increases, by at legdbargainers. For every there will be alg*; wheng =n

(under fallback bargainingdt* = dn*.

To illustrate the effects of different quotas, consider again exaiiple

CSH(A8) ={a, d} at depthd,* = 1

CS(A8) = {a} at depthd,*= 1

CS(A8) = {a} at depthds* = 1 (simple majority decision rule)

CSHA8) = CHA8) = {b} at depthd,* = d* = 3 (unanimity decision rule).

Alternativea is what Hurwicz and Sertel (1997) call the “Majoritarian Compromise,”
whereas alternativie, our fallback-bargaining outcome, is what they call the “Kant-Rawls
Social Compromise?” In the Appendix, we give generalizations of Theorem 1, Lemma

1, Theorem 2, and Theorem 3, which we summarize as follows:

The Majoritarian Compromise will always be selected from the left half of alternatives

in A (Sertel and Yilmaz, 1997; Hurwicz and Sertel, 1997), whereas the Kant-Rawls Social
Compromise might force a descent to the greatest possible depth (i.e., the right-most
column), so one bargainer (or more) might obtain its worst alternative.
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General Results forg-Level Fallback Bargaining. For 1 q * n,

* the upper bound on depth i§*d |_(kq - k + n)/n_| (Theorem A3);

* bounds on the size of C&e 1 < |C3| < min{nd*/q, n} (Lemma A2);

o if x |:|CSJ, then x is Pareto-optim&lheorem A4)

« the alternatives in CG8naximize the minimum satisfaction of the q most

satisfied bargainers (Theorem A2).

The Pareto-optimality of all alternatives choserghgvel fallback bargaining,
from g = 1toq=n, is perhaps surprising. This fact, however, is not a good reason for
considering all these alternatives to be serious candidates for outcomes of either a
bargaining process or a voting process. For example, alterdativexampleA8 is in
CS,; but because it is the last choice of two of the four bargainers, it is not an alternative
that we would recommend as a consensus choice.
Alternativec is the one alternative in examp@ that is not chosen hylevel
fallback bargaining for ang. Nevertheless, it is Pareto-optimal, demonstrating that the
members of all Compromise Sets do not exhaust the set of Pareto-optimal alternatives.
More surprising, perhaps, is tlgat |_(n + 1)/2_| (simple majority), which does
choose the Condorcet alternataven exampleA8 when fallback bargaining (unanimity)
fails to, is not always to so successful, as the following 7-person example by Sertel and

Yilmaz (1997) demonstrates:

abcde
c bade
dbace
ebacd
adceb
aedchb

A=\'c d a e b/, CS={h}

Alternativeb is, in fact, the Condorcet loser—majorities prefer it to each of the other
alternatives in this example—whereas alternadiiethe Condorcet winner. Moreover,

fallback bargainingd = 7) findsa at depthd* = 3, suggesting it to be a “better” decision



rule in this instance (actually, any qualified majoqty 4 findsa). Thus, the case for the
Majoritarian Compromise, which choosdg {seems weak in examph®.

It is worth noting that the Condorcet winner may be chosen using non-majority
guotas, as the following simple example—in which alternatiigethe Condorcet
winner—illustrates:

aboc
aboc
c b al.

AlO -
Notice thata is in the Compromise Sets for batlx 1 andq = 2, but it is alternative,
chosen by fallback bargaining € 3), that seems most to deserve the appellation

“compromise”:

CSHA19) ={a, c} at depthd;* = 1
CS(A19) = {a} at depthd,*= 1 (simple majority decision rule)
CS(AL0) = {b} at depthdz*= d* = 2 (unanimity decision rule).

In exampleAllbelow, there is no Condorcet winner because there is a paradox of

voting, in which majorities cyclec >a >d >e > ¢, where “>” indicates the majority

preference of the five voters:

adechbhb
adechbhb
bdeca
bcade
All=\c e d a b
As in exampleAl0, the Compromise Sets A}l yield all possible outcomes:

CS(ALY) ={a, b, ¢ at depthd* = 1

CS(ALY) ={a, b} at depthdy,* = 1

CS(AY) = {d} at depthds*= 2 (simple majority decision rule)
CSHA1LY) = {e} at depthds* = 3 (qualified majority decision rule)
Cc(Al1) = CgALY = {c} at depthds* = d* = 4 (unanimity).

13



Not only is alternativel, the simple-majority outcome, not a Condorcet winnergbut
(qualified majority) gives a different outcome from eithjer 3 (simple majority) og =5
(unanimity). Because all five alternatives are chosen by the vaygus consensus
choice is by no means evident.

Clearly, the decision rule, even when restricted to a simple majority or greater, can
make a big difference in the outcome. In the concluding section, we will turn to the
guestion of what level of consensl®uldbe required in order to implement a

compromise agreement.

4. The Effects of Impasse

We next consider the possibility that bargainers set limits—or “reservation prices,”
in the vernacular of economics—on how low they will dip in their rankings before
“throwing in the towel” (i.e., giving up rather than accepting a less-preferred agreement).
Specifically, assume that each bargainer p(fisr impasse) in its preference ranking at
the level at which it prefers no agreement to any lower-level alternative. We call this
modification of fallback bargaininfallback bargaining with impasge

Fallback bargaining with impasse proceeds exactly as does fallback bargaining, but
with one restriction. Once the descent process reddbea bargainer, it stops for that
bargainer. If no common agreement is reached by the time the level descends to every
bargainer’'d, [—not an alternative iK—is the outcome.

In fallback bargaining with impasse, the Compromise Set is caidand it is

reached at depti. If there aren bargainers and the alternative se{jsvhere K| =k,

8Brams and Doherty (1993; see also Brams, 1994, ch. 7) were the first to introduce
impasse into the preferences of bargainers. Like Sertel and Yilmaz (1997) and Hurwicz
and Sertel (1997), they assumed that only a simple majority of bargainers need agree on
an alternative in order for it to be chosen. Unlike the present model, howeaprbe
breached in the Brams-Doherty (1993) model: a bargainer will support an alternative
belowl if there is another alternative that would otherwise be chosen that the bargainer
ranks still lower thah. Thus,|l is not an impregnable barrier in their model.

14
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then preferences are given not bynank matrix A but by am x (k + 1) matrixB, in

which theith row gives bargainéts ranking ofk [ {1}.

Examples. In the following four examples, the preference rankings of the two
bargainers for the set of four possible agreemeat, €, d}, duplicate those of example
A4 earlier. Now, however, the appearance aff different levels in each bargainer’s
ranking may change the Compromise Sets f@&®A?) = {a, c}:°

a

Blz( c ., CSI(BY ={I}

a

|
B2 :( c ) CSI(B?) = {a}
|

I
a b/, CsSI(B3={c

|
d
(abc
B3:Cd|
b

( abc | )
B4=\c d a b1/ CSKB% ={ac}.

Notice that the common agreements in the Compromise Sets are either Pareto-
superior td orl itself. Moreover, if eithea or c is Pareto-superior g then it falls in

the Compromise Set. That this is no accident is shown by

Theorem 4. Let the n x (k 1) matrix B describe the preferences of the
bargainers under fallback bargaining with impasde=t xU K, the set of alternatives,
and construct the n x k matrix A by deleting | from each row of B. T@@SI(B) if
x &~ | (i.e., x is Pareto-superior to 1) andt CS(A); if | CSI(B), then I is the unique
member of CSI(B).

Proof. See Theoremb5 in the Appendix.

Corollary 1. All elements of CSI(B) are Pareto-optimal.

%As before, in each example we indicate with vertical lines the level, going from left to
right, at which common agreement(s) ofirst appear. Notice that in all the examples
exceptB4, at least one bargainer “reach&sbut it never descends past it.
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Proof. See CorollanAl in the Appendix.

Letx L K. Theorem 4 states thaxit- CSA) andx > I, thenx U CSKB). The
converse, however, is not true. xIE] CYB), thenx > I, but it is nonetheless possible that
x J CYA), as shown by the following example:

albc abec
B5:(c b a I), CSIB®) = {a}; A5:(c b a), CHAd) ={b}.

Herea, which is Pareto-superior tpis the only member of the Compromise Set with
impasse, wheredsis the only member of the corresponding Compromise Set without
impasse.

It follows from Theorem 4 thdtis the unique member of the Compromise Set with
impasse iffi is Pareto-optimal. To determi@S|, one can begin by finding alternatives
Pareto-superior th if there are none, thedSIcontains only.

An example that illustrates this rule, wherbiis the only alternative Pareto-

superior td, is

a
b
B6=\¢

Not surprisingly, the most intransigent bargainer—the one that Fdngggest (bargainer

b
I
a

| C
c a
b 1/, CSKBS) ={b}.

2, orB2, whose preferences are given in the second rd8§)efis the one that gets its
most-preferred alternativé)(10

The choice ob in this example might be contested on the ground that a majority of

bargainersB1 andB3) prefera to b, which we write ag >b. But, in fact, the story is

19f either B1 orB3 tried to be more intransigent for strategic reasons (i.e., by ranking,
against its true preferencédjigher tharb rather than vice versa), thewould be the
outcome. Thus, being “strategically” intransigent may succeed only in sabotaging a
preferred agreement, especially if the other bargainers are acting similarly.
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more complicated than this, because majorities cyzteb > 1 > ¢ > a, where “>*
indicates majority preference. Thus, there is a paradox of voting that inthides

If we rule outc on the ground that a majority of bargaindds &ndB2) preferl to
¢, this still leaves andb as viable possibilities. Whikeis the fallback bargaining
outcome and also has the greater mean depth, one wonders whether thedacbthat
should not swing the bargaining choice toward

In the normative social-choice and voting literature, questions such as this are
addressed, but we will not pursue them further here. Suffice it to say that fallback
bargaining with impasse produces a set of Pareto-optimal alternatives, or impasse, that
maximize the minimum satisfaction of bargainers—but now vtkcluding certain
alternatives that, withouf might have been considered satisfactory.

We turn next to an analysis of the vulnerability of fallback bargaining to strategic
manipulation, first by characterizing best responses (section 5) and then Nash equilibria
(section 6). To keep matters simple, we will restrict the analysis to two bargainers and
assume that they cannot indicate impasse. In section 7 we will offer some thoughts on
generalizing our results, allowing both for more bargainers and for the possibility of

impasse.

5. Vulnerability of Two-Person Fallback Bargaining: Best Responses
In section 2 we discussed the situation in which there are only two alternatives,
andb, whereinB1 prefersato b andB2 prefersb toa. If each bargainer truthfully

indicates its preference, the Compromise Sea, b}

11f | were deleted from the rankingsBf, then the paradox of voting would remain,
wherebya >b >c >a. In this case, fallback bargaining (without impasse) would give
{a, b, c} as the Compromise Set, wherdg#s(with thel’s included) singles oui. We
see nothing wrong with the fact that inclusion of llsenarrows down the outcomes in
the Compromise Set.



Neither bargainer can do better by being untruthful. For exam@2,iifdicated
that it, likeB1, preferreda to b, then it would succeed only in ensuring its less preferred
alternativea.

But with as few as three alternatives, fallback bargaining becomes vulnerable to
strategic misrepresentation. To illustrate, assume the truthful preferences of two
bargainers are those of exampl& below, which gives two outcomes in the

Compromise Set:

pe=(888) cqmy=(an.

18

Now if B1 announced its preferences to be those shown in the first row of either examples

Al3 or Al4 below, andB2 stuck with its true preferences in the second row, the
Compromise Set would be a singleton, contaifdfhig most-preferred alternative:

acb)

A13:(h a ¢’/ CqAL) ={a}

A14:(g g 2) CYAL) = {a}.
Thus,B1 would have good reason to falsify its preference ranking if it kneB2{§) true
preference ordering and (ii) thB2 did not know it was being manipulated in this way
(and would have no reason, therefore, not to be truthful).

The relationship of the orderings selected by the bargainers to the resulting
Compromise Set constitute the game-form of fallback bargaining (Hurwicz, 1996). For

the case ok = 3 alternatives, the game-form is shown in Figure 1 (ignore the asteriks for

Figure 1 about here

for now). Note that the game-form does not describe preferences; nonetheless, it is a
natural tool to study the consequences of a bargainer’s reporting its preferences, either

truthfully or untruthfully.
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For instance, suppose tlt’s true preference orderingabc From Figure 1, one
can determine whether reportiagc or some other ordering, givB& a better outcome.
As we show in the AppendiB1 cannot do better than choadmif B2’s ordering is any
of abg ach, bca cba orcab, but if B2’s odering ishac Bl is better off choosingch

Whether bargainers can benefit from misrepresenting their preferences rather than
reporting them truthfully is essentially the question that Sertel and Yilmaz (1997) and
Hurwicz and Sertel (1997) ask concerning the + ()/2_|-approval Compromise Set (or
the Majoritarian Compromise). Like them, we show that Nash-equilibrium
implementability is impossiblé—not for the Majoritarian Compromise, however, but for
fallback bargaining. As a prelude to characterizing Nash equilibria under fallback
bargaining, we examine the optimal response of one bargainer (truthful or untruthful) to
the other bargainer’s ranking.

Theorems 5 and 6 below cover, respectively, the cases of an odd and an even

number of alternativels

Theorem 5. If k = 2h -1is odd (so h is integral), and B2’s ranking, b, is fixed and
known to B1, then the best Compromise Set that B1 can achieve is a singleton containing
B1's most-preferred alternative among by, . . ., Iy (i.e., among the top h items in
B2’s ranking). Call this best alternative. @ o achieve {3, B1 submits its true ordering,

a, unless pis ranked (strictly) lower by B2 than by B1, and there are alternatives ranked

at or above level r by B1 that are preferred tdoy B2. In this case, B1 can achieve}b

12Sertel and Yilmaz (1997) demonstrate, additionally, that the Majoritarian Compromise
is subgame-perfect implementable, but they do not find any “natural” mechanism for
effecting such implementation. In the absence of a simple mechanism—whose message
space can easily be explained to voters—we will concentrate in section 6 on the
conditions under which, when the message space is the bargainers’ direct statement of
their preferences, truthful revelation is a Nash equilibrium. (Our theorems in section 6,
however, characterize all Nash equilbria—both those involving truthful revelation and
those involving misrepresenation.)



by switching these alternatives with alternatives that would otherwise be below level r in
both B1's and B2’s orderings.
Proof. See the proof of TheoreA6 in the Appendix.

ExamplesAls, A6 andAl’ illustrate Theorem 5.

Examples. Letk = 7 and suppose the preference rankinBlofsabcdefg If B2's
ranking isedbgacfwe have, if bottB1 andB2 are truthful,

abcdefg
as=\e d b c ad f| cgais={n.

Becausd31l’'s most-preferred alternative up to lehet 4 inB2’s ordering id, the best
Compromise Set th&1 can achieve isk}. With respect to Theorem b= 3. While
alternativeb is ranked higher bB1 than byB2, there are no alternatives ranked at or
above level = 3 byB1 and preferred tb by B2. ThereforeBl’'s best response is to be
truthful.

Now assume thd2’s ranking iscegbadf. If B1 is truthful, we have

Al6=\C € gD a ‘]; ., CYAI) = {c}.
BecausdBl’'s most-preferred alternative up to lehet 4 inB2’s ordering i, again the
best Compromise Set that can achieve isldf. With respect to Theorem 5= 4. But
because alternativeis ranked at or above level 4 B§, and it is preferred to alternative
b by B2, B1 can do better by falsifying its preferences. Following Theore®i 8an
switch alternative with an alternative that is ranked below level 4 in both bargainers’
rankings, which is alternatiidn exampleAls.

If B1 interchanges andf in its truthful ranking—announcingbfdecginstead—the
Compromise Set is indeet) § rather than ¢ }:

abfdecg
Al7=\Cc eg b adf/ CA) ={b}.

20
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Thus,B1 obtains its second rather than its third choice when it acts strategically,

according to Theorem 5.

Theorem 6. If k = 2h is even (so h is integral), and B2’s ranking, b, is fixed and

known to B1, then the best Compromise Set that B1 can achieve is githevr{taining

B1's most-preferred alternative among the top h alternatives in B2’s ranking, or

{by, bh+1},. The latter is preferred to the former iffsa > b, (i.e., if b+, is preferred to p
according to B1's true ordering, a). To achieve a Compromise Set of the f¢rBXis

choice of ordering is essentially the same as in Theorem 5. To achieve a Compromise Set
of the form {b, bh+1}, B1’s ordering must place kat level h +1, which is a necessary
condition for B1 to be able to submit its true ranking. If this condition is not satisfied by
B1’s truthful ranking, it can always be arranged to do so.

Proof. See the proof of TheoreAY in the Appendix.

To show the interesting twist that can occur when the number of alternatives is
even, lekk = 6. Suppose th&l's true ranking isbcdef and thaBl knows thaB2 will
submit the rankindgcdbea If B1 submits its true ranking, the Compromise Set will be
{c}. But by reporting its ranking to kebecdf B1 can achieve a Compromise Set that it

prefers to €}:

(a becd f)
AlB=\1f c d b e a/, CYA) ={b,c}.

An essential step in constructiBd’s reported ranking is to mowkbelow the fourth
level.

Finally, in the Appendix we note that there is no limit to the number of ordinal
rankings by whictB1 can improve the Compromise Set by misrepresenting its
preferences. To illustrate this result when therkar® alternatives (sb = 5), suppose

thatB1's true preference orderingabdcefghj and thaB2 submits the ranking



defgabchi By reporting its true rankin@®1 obtains the Compromise Sef{but by
reporting rankingabchifgde B1 improves the Compromise Setlby 2 = 3 ordinals:

fgde

abchi
fgabcechil cga9-=/{a)

Al®=\d e
As shown in the Appendix, this example can be generalized to any vdl{arafk =
2h - 1) to show thaB1 can improve the Compromise Set, relative to truthful reporting, by
h - 2 ordinals.

So far we have assumed tlBdt has complete information abd®’s ranking of
alternatives. MoreoveB1 knows what rankin®2 will submit (truthful or not), perhaps
by having a spy iB2’s camp. TherebB1 can formulate a best response, which may
involve making a false announcement of its preference ranking.

In most bargaining situations, however, it is unlikely that there will be such an
asymmetry of information that would alld®i to exploitB2 in this manner. Thus, we
next turn to an analysis of the game that two bargainers play when they both know each

other’s preference rankings and must, independently, choose announcement strategies.

6. Vulnerability of Two-Person Fallback Bargaining: Nash Equilibria

To illustrate our general results that characterize all Nash equilibria in two-person
fallback bargaining games, we start with the cade-08 alternatives,d, b, c}.
Consider the 2 x 2 game betwdghwith preferenceabcandB2 with preferencebac
Assume each bargainer may be either truthful in its announcement (first strategy) or
untruthful (second strategy):

B2
bac bca

abc {a,b} {b}
B1

acb {a} {c}

22
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Clearly, each bargainer does better by being untruthful when the other bargainer is
truthful—obtaining its best possible Compromise Sa} {¢r B1 and {} for B2)—
whereas each bargainer gets its worst Compromise &etvHen both bargainers are
untruthful. In between, both bargainers obtain a middling CompromiseaSk}, {vhen
both are truthful. This game is, in fact, Chicken, and outcomgesnd {b}, which we
have underscored, represent the two pure-strategy Nash eqd#libria.

TheoremdsA8 andA9 in the Appendix establish necessary and sufficient
conditions for pairs of rankings to be Nash equilibria. These theorems, which
characterize all Nash equilibria in two-person fallback bargaining games—in which
unanimity and majority rule are the same—are analogous to Theorems 5 and 6 in section
6 (there is both an odd and even case).

To continue our development of tke 3 case, the two pure-strategy Nash
equilibria shown in the 2 x 2 game become four pure-strategy Nash equilibria in an

expanded 3 x 3 game that includes additional strateglefor B1 andcbafor B2:

B2
bac bca cha
abc {a,b} {b} {b}
Bl acb {a} {c} {c}
cab {a} {¢¢ {c

13If the payoffs to the bargainers were in cardinal utilities, there would be a third mixed-
strategy Nash equilibrium. Even if we were to assume payoffs in utiles, the mixed-
strategy equilibrium would not be compelling because it is Pareto-inferiar bd. {

14Because Theoren#s’ andA8 require considerable technical development to state
precisely, we thought it more instructive not to repeat this development in the text but,
instead, to provide a detailed quantitative analysis of the cakesdaindk = 4

alternatives. These two cases offer new insights into the kinds of games that two
bargainers might play, which the characterization of Nash equilibria given by Theorems
A7 andA8 does not illuminate. These theorems, nevertheless, are used to determine the
equilibria in the two cases.
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The strategies associated with the four underscored outcomes—all involving truthfulness
by one bargainer and untruthfulness by the other—occur in essentially the only two-
bargainer, three-alternative cases in which truthfulness on the part of one bargainer is not
a best response to truthfulness on the part of the other. In effect, this game is an
expanded version of the classic 2 x 2 Chicken game.

But each bargainer can submit any of six possible orderings, producing a more
complex, but still Chicken-like, game. Assume tA&®s preference order &bc and
B2's isbac The the ten possible pure-strategy Nash equilibria are indicated by asterisks

in Figure 1. Observe that if

» B1 submits an ordering consistent with any equilibriah({ts most-preferred
outcome); and
» B2 submits an ordering consistent with any equilibrih({ts most-preferred

outcome),

the Compromise Set i}, which is the worst outcome for both bargainers. We repeat,
however, that this casal{cversushac) is unusual in the sense that if there are three
alternatives, and the bargainers’ true preference orders are selected equiprobabily, then
the probability that truthful reporting is not a Nash equilibrium is only 1/6.

Does the relative invulnerability of fallback bargaining to manipulation hold when
there are more than three alternatives? We next consider the &asd afternatives,
{a, b, c, d}, which each bargainer can rank in 4! = 24 different ways. Holding ®4esl
preference ranking @bcd we have analyzed when being truthful is a Nash equilibrium

in all four-alternative situations. Our results follow:

1. Truthfulness. Truthfulness on the part of both bargainers is a Nash equilibrium
in 15 of the 24 cases (62.5%B2 can do no better than be truthful if its rankings are as

follows:
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 abcd abdg acbd acdh adbg andadch all giving {a}

» bcdaandbdca both giving db};

 cdabandcdbg giving {a, ¢} and {b, c}, respectively;

» dabcanddach both giving f};

* dbca dcah dcba giving {b}, { a, c}, and {b, c}, respectively.

2. Chicken. There are two pure-strategy Nash equilibria in the three games in
which B2’s truthful ranking isacd badg orcbad(12.5%). To illustrate these three
games, consider the game in whig2is truthful ranking ifoacd The Compromise Sets
associated with Nash equilibria in the following 2 x 2 game, which are underscored,

involve one bargainer’s being truthful while the other is not:

B2
bacd bdca
abcd {a,b} {b}
Bl
adcb {a} {d}

This game is analogous to our earlier 2 x 2 game of Chicken—in which each bargainer
ranked only three alternatives—except now the “disastrous” outcome when both
bargainers are untruthful (i.ed}) is ranked fourth rather than third by both of them.
Of course, this 2 x 2 game is only a microcosm of the 24 x 24 game that the
bargainers would actually play. Application of Theoéshows that several of the
other 22 strategies for each bargainer are in equilibrium. For exéBifdeshoice of
acdh acbd oradbcalso results ind} if B2 is truthful by announcinigacd Similarly,
B2 has three additional Nash equilibrium strategies that it can use &fEssuthful
announcement afbcd All these games are, in a sense, expanded versions of Chicken.
3. Best ResponseOne bargainer has a best response, which is untruthful, to the
other bargainer’s truthful announcement, but not vice versa, in 6 of the 24 cases (25%).

When such one-sided manipulation is possible, the resulting Nash equilibrium yields a
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pair of alternatives that favors the untruthful bargaing&raid 2d choices) over the

truthful bargainer (% and 3d choices):

» AssumeB1 is truthful and announcebcd Then ifB2’s truthful rankings are
cabd cadh orcbad B2’s best responses ardah cdah andcdbg respectively, resulting
in{a, ¢}, {a, c}, and {b, c}.

» AssumeB?2 is truthful and announcégad bdag ordbac ThenBl's best

responses amdbg acbd andacbd respectively, resulting ing{ b} in each case.

Discussion. In the games in whicB1 andB2 do not agree on a first choice, the
cases vulnerable to strategic manipulation increase from 16.7% (1 out of 6) in the three-
alternative case to 37.5% (9 out of 24) in the four-alternative case. We hypothesize that
the strategic incentives for manipulation continue to increase, even on a proportional
basis, as the number of alternatives increases.

On the other hand, the benefits of manipulation may be illusory in some of these
situations. Because the game is Chicken in the one case vulnerable to manipulation when
k = 3, and in three cases whien 4, the risks are as great as the benefits. Instead of
ensuring at least a next-best outcome by being truthful, a bargainer choosing an optimal
manipulative strategy in Chicken risks its worst outcome in attempting to obtain its best
outcome. We believe that many bargainers, using fallback bargaining, would obbose
to court disaster in Chicken, even if they had complete information about their
opponent’s preferences.

By contrast, the six best-response cases in the four-outcome games are “safe” in the
sense that the other bargainer has no counter-response that yields it a better outcome.
Hence, the untruthful bargainer can use a manipulative strategy with impunity, because a
rational opponent has no recourse—it can do no better than be truthful.

But the benefits of such manipulation are not great: an optimal strategy in the best-

response cases ensures the untruthful player of either its best or next-best outcome instead
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of, unfailingly, its next-best outcome when it is trutifulFurthermore, becausach
bargainer has the opportunity of using a best-response strategy in only three of the 24
cases (12.5%), there are relatively few occasions in which to exploit such a strategy.

In the best-response cases, notice that the preferences of the bargainers are neither
coincident nor diametrically opposed. Thus, for examp] ifruthfully announces
abcd B2 can be exploitative by being untruthful only if its truthful preferencesaivd
cadh orcbad In each case, what is best B¥ is next-worst foB1.

Most real-life bargaining situations, of course, are suffused with incomplete
information, to which our theoretical results on Nash equilibria in the three-outcome and
four-outcome complete-information games are not applicable. Nevertheless, there is
certainly something Chicken-like in many bargaining situations; our findings support this
view, suggesting risks even when information is complete.

Under fallback bargaining, the bargainers’ rankings of alternatives completely
determine which one(s) will be chosen. Because a bargainer has less opportunity to “feel
out” the resolve of an opponent when this procedure is invoked than when there is
endless haggling, we think that fallback bargainers will be reluctant to risk disaster, at
least in Chicken. Moreover, if the bargainers have incomplete information about each
other’s preferences, they may not even know that they are playing Chicken—or one of the
more numerous games in which truthfulness is an optimal strategy. Thus, it will often

pay for them to exercise caution by being truthful under fallback bargaining.

7. Conclusions
Possible Bias.While fallback bargaining seems a promising procedure for

inducing compromises, it is legitimate to ask how the alternatives on which the procedure

15To be sure, a reasonable chance of getting one’s best alternative, versus negotiating a
compromise that reflects an “average” of one’s best and next-best alternatives, will not be
trivial if there is a big difference between these two alternatives, as measured by their
cardinal-utility values.
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operates might be generated. If the alternatives are strongly biased in favor of one
bargainer, then the procedure’s selection of a Pareto-optimal and middling outcome is a
cruel joke against the bargainer or bargainers suffering this bias.

Generating Alternatives. One possible solution to the bias problem is to allow
the bargainers themselves to propose different alternatives. If the bargaining is over a
future contract between labor and management, for example, each side could propose
alternative agreements that have similar cost implications, albeit in opposite directions.

A neutral party might be used to assess that each side’s alternative proposals more or less
match the gains and losses of each other, or are equidistant from the status quo. Fallback
bargaining would then enable the bargainers to leapfrog the give-and-take of conventional
bargaining, which often bogs down in details, by finding a suitable settlement through the
simultaneous consideration of all alternatives.

Correspondence to Real-Life CompromisesWe think the give-and-take of
conventional bargaining, especially that which results in the successful settlements of
disputes, often approximates what fallback bargaining formalizes. This is probably
especially true in business disputes, in which the costs and benefits of alternative
agreements can often be calculated with some precision.

In personal disputes, including divorce, this assessment is undoubtedly harder. For
this purpose procedures like “adjusted winner,” in which the parties can allocate points
over the items (goods or issues) in dispute, may be more practicable (Brams and Taylor,
1996).

Normative Advantages. We believe that one important advantage of fallback
bargaining over the give-and-take of traditional negotiations is that it allows for many
different proposals to be on the table at once. Moreover, no decisions need be made
about features that are acceptable or not acceptable—as in the usual step-by-step
bargaining—in order for the parties to “advance” to a next stage. Indeed, advancing in

fallback bargaining means generating new ideas, or packaging them in different ways,
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both of which may be facilitated by a mediator's making independent proposals, or
combining parts of old ones, that are then put on the table as new alternatives.

In the end, of course, these alternatives must be ranked by the parties, but it may
not be clear, even to them, how best to do this until there are no more proposals put
forward. Although it is possible that the parties will try to anticipate each others’ choices
and strategize when they announce their rankings, we think this would be extremely
difficult if there are, say, ten or more alternatives on the t&bkes we have illustrated
with only three or four alternatives and two bargainers, misrepresenting one’s preferences
may sometimes allow one to reap large benefits—but can dangerously backfire as well, to
the detriment of all.

The Role of Impasse.We have mixed feelings about allowing the bargainers to
incorporate impassé)(into their rankings. On the one hand, some bargainers might
genuinely prefet to any agreement below it and should be entitled to so indicate their
position. On the other hand, the inclusion ofay lead to continuing disagreement that
is not authentic, because it allows for, and may even encourage, strategizing beyond that
which would occur without.

Withoutl, fallback bargaining ensures some agreement and, therefore, closure of
the negotiation process. But the middling outcome produced may not be a Condorcet
winner, as we showed, or possess other desirable features.

Fairness. If there are more than two bargainers, it may be advisable to relax the
unanimity rule, assuming this is acceptable to the bargainers. A simple or qualified-

majority decision rule will, in general, be more likely to find Condorcet alternatives, if

16When there are relatively few alternatives, fallback bargaining is more likely to produce
ties, which suggests that there needs to be a device for selecting one alternative from
Compromise Sets that contain more than one. Sertel and Yilmaz (1997) offer different
suggestions for breaking ties, including choosing the alternative with the most first-
choice approvals, then second-choice approvals, and so on. One might also choose the
alternative with the highest average approval.
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they exist, than does fallback bargaining (with unanindityBut the choice of a

Condorcet alternative could be at the price of inflicting on some bargainers outcomes
that, while Pareto-optimal, are quite damaging. In such cases, a middling outcome for
everybody may be fairer.

We mention these effects of the inclusion,and the weakening of the unanimity
decision rule, to underscore that, as always, there are trade-offs. Although most of our
analysis has been of fallback bargaining, which assumed unanimity and was often for
only two bargainers, further consideration of the multibargainer case, with a non-

unanimous decision rule and the inclusion,afould be desirabl&

170On these and other grounds, Sertel and Sanver (1997) argue that the Majoritarian
Compromise, which presumes a simple-majority decision rule, would be desirable in
certain kinds of elections in Turkey. Also at a normative level, Brams and Fishburn
(1983) argue for approval voting in multicandidate elections. The approval-voting
winner and the Majoritarian Compromise will coincide if (i) all voters indicate the same
level of approval in making their selections and (ii) that level is the depth at \&hich
majority winner appears for the first time. Approval voting, in contragtapproval

fallback bargaining, makes no presumption of the lockstep descent of all voters to lower
and lower levels of approval untilopapproval winner appears; instead, it leaves open to
the voter where he or she draws the line between acceptable and unacceptable candidates.
Although this is somewhat akin to bargainers’ indicatimgtheir preference rankings—
below which alternatives are unacceptable—there is no descent process under approval
voting: all candidates approved of receive their votes at the start. Insofar as voters do
rank candidates, their rankings are unexpressed and, therefore, invidious.

18]n the context of elections, it is worth mentioning those for a council or legislature, in
which there are multiple winners and one wishes to achieve proportional representation
(PR). In this situation, we believe it sensible tocsedlatively low (e.g., the size of the
electorate divided by the size of the legislature, or the size of an average constituency).
Then one would elect candidates who are ranked relatively high by relatively few
voters—the number in an average-size constituency—which would help to ensure that a
diversity of views is represented and thereby satisfy PR. Related PR systems are
analyzed in Potthoff and Brams (1998).
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APPENDI X

Assume there are n bargainers, and the set of alternatives (possible agreements) isK,
where [K| = k. Preferences of the bargainers over the alternatives are specified by ann x k
matrix A = (a;) such that, for = 1, 2, ... n, thei" row of A is a permutation of
representing the ranking (in descending order) of bargainer

For each bargainer, and each alternatives K, definej*(x) to be the value gf
satisfyinga; = x. Thus,(x) is bargainei’s ranking for alternative. Definei’s
satisfaction with alternativeby h*(x) =k - jA(X). Usually,j.(x) andh*(x) can be
denoted;(x) andh,(x), respectively, with no possibility of confusion. Note tatsi’s
most preferred alternative, g&(a,) = 1 andch’(a,) =k - 1.

To describe fallback bargaining formally, define the selepth d agreements as

Cs, - {xeK:ji(x)gd Vi :1,2,...,n}

ford=0, 1, 2, ...k. Note thatCS; is the set of all alternatives that are among theliop
the ranking of every bargainer. Thus, any outcon@Syproduces a minimum

satisfaction level ok - d for every bargainer. Clearly,

C§=2<c<C5cCS5c...cCq =K.

Next, define thelfargaining) depth, d*, by

d* =min{d:CS, #o}.

Because of the chain of containment relations alafvis,well-defined. The

Compromise Set, CSA) = CS is the subset df defined byCS=CS,. Thus, the
Compromise Set is the set of all alternatives that are among th#* finsthe ranking of

every bargainer, whe* is the smallest value that makes this set non-empty. In terms of
satisfaction, every alternative @5 gives every bargainer a satisfaction level of at lleast

- d*, and any alternative not @S gives at least one bargainer a satisfaction level strictly
less thark - d*. This observation demonstrates tR&is identical to the Kant-Rawls

Social Compromise Hurwicz and Sertel (1997).



A2

Bounds on the size of CSc K can be found easily.

LemmaAl.

Pr oof.

1 < |CY < min{d*, n}.

Because CSisnon-empty, |CY > 1. Because every element of CS must
appear among each bargain@f*shighest ranked alternative€q <
d*. BecauseCS, , = o, every element oESis thed*"entry in the

ranking of some bargainer. There are anhargainers, S&€H < n

follows.

The bargaining deptla*, can be as low as 1, when all bargainers rank the same

alternative first. The maximum valuedfis given by

Theorem Al.

Pr oof.

d* < |k- kin+1|.

The firstd entries of alh rows ofA containnd items, some of which

may be duplicates. Each item is one ofkladternatives irK. By the

pigeonhole principle, some alternative must appear at|ledkt times.
Now suppose that >k - k/n. Becaused/k>n - 1, some

alternative must appeartimes in the first items of all rows. This

implies thatd > d*. If k- k/nis integral, we have shown that

d* < k- k/n + 1; if not, we have shown thdt < [k - k/n]. The

conclusion now follows easily.

We now demonstrate by example that the bound in Theorem Al is tight. That is,

for anyn andk, it is possible to find an x k matrixA such that the bargaining degth
=|k-kin+ 1. Wetake&K ={1, 2, ... Kk}

If n> k, a matrix with the required property is easy to construct; simply choese

that, fori = 1, 2, ...k, a, =i. Thus, each of the firktrows ofA has a different final

entry, guaranteeing thet = k.
Assume thah <k and letp = [k/n|. Fori=1, 2, ... n,andj =1, 2, ... k, define the



entries of A% by

a®, = [(i-1)p+j] modk.

It is easy to verify that, for the matrix A** so defined, d* =k - p+ 1. For example, if n=
3and k=11,

1 2 3 45 6 7 8 9101
AAML - |5 6 7 8 91011 1 2 3 4],

91011 1 2 3 4 5 6 7 8
so d* =8, whereasif n=3 and k=12,

1 2 3 4 5 6 7 8 910 11 12
AALZ - 5 6 7 8 9101112 1 2 3 4|,

9101112 1 2 3 4 5 6 7 8
sod* =09.

Now we generalize the definition of fallback bargaining to g-approval fallback
bargaining, where 1 < g < n. Asindicated in the text, the idea is to weaken the conditions
for compromise so that acceptance by only g bargainersis required for a compromise.

Therefore, define the set of g-approval agreements of depth d by
CS® = {xeK:|{i :ji(x)gd}|zq }

ford=0, 1, 2, ..., k. Thus, CSisthe set of all alternatives that are ranked among the top
d by at least q bargainers. This definition generalizes fallback bargaining, which sets q =
n. Thus, CS, =CS;". Clearly,

C =ocCS'cCS'c...cCS!=K.
Define the (g-approval fallback bargaining) depth, d.*, by
d,* = min{d: CS # o}

Because of the chain of containment relations above, d,* is well-defined. The g-approval
Compromise Set, CS' isthe subset of K defined by CS'= CS whered = d;*. Thus, the
g-approval Compromise Set is the set of all aternatives that are among the d,* highest
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ranked for at least q bargainers, where d;* is the smallest value that makes this set non-
empty.

We now characterize the g-approval Compromise Set in terms of satisfaction. For
aternative x € K, recall that bargainer i’'s satisfaction level ig,(x) =k - j;(X). Define the

g-satisfaction level ok by
hd(x) = max{h:|{i :h(X > h}|z q}.

Thus, for at leagy bargainers the level of satisfactiorxas at leash’(x), but there are
fewer thang bargainers whose level of satisfactiox atrictly exceed$&(x). In other

words,h%(x) is the minimum satisfaction level of thhanost satisfied bargainers»at

Theorem A2. Let xe K. Then xe CS'if and only ifx maximizesh?(x). The

maximum value oh’(x) isk - d,*.

Proof. For anyx € K, x e C§if and only if there are at leagdifferent
bargainersi, for whomj,(x) < d, i.e.,h(x) > k- d. First suppose that
e CS. Becaus€S' = CS/ ford =d.*, it follows that there are at least
q different bargainers, for whomh,(x) > k - d;*, soh%(x) > k- d *.
Suppose thdt,(x) =h >k - d.*. Then there are at leagbargainersi,
for whomh,(x) > h, i.e., j;(X) < k- h, so
CS '# @. Butk- h<d/*, andd,* is the minimum value of for
whichCS® # . This contradiction shows thatifte CS', then
hi(x) =k - d,*.

Now suppose that¢ CS'. Then there are fewer thgrdifferent
bargainersi, for whomj;(x) < d*, i.e.,h(x) > k- d;*. Thereforehi(x)
<k- d;*. We have shown that the maximum valuent{k) isk - d ¥,

and this value is attained if and onlxi¢ CS'.
Bounds on the size @S’ c K are easily found.

LemmaA2. 1 < |CS| < min{nd*/q, n}.
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Proof. The proof that 1 < |CS'| < nisexactly asin LemmaAl. Every element
of CS'must appear at least g times among the d* highest-ranked
alternatives of the n bargainers. Thus g|CS'| < nd,*, and the lemma

follows easily.

The bargaining depth, d,*, can be aslow as 1, when there is one alternative that is
ranked first by at least g bargainers. Infact, d;* = 1 always. The maximum value of d*

IS given by
Theorem A3, d * = Lw J
n

Proof. Asin Theorem A1, the pigeonhole principle shows that some
alternative must appear at least [nd/k | timesin thefirst d entries of al n
rowsof A. If d>k(q- 1)/n, thennd/k>q - 1, which impliesthat d >
d,*. If k(g - 1)/nisintegra, this proves that
d,* < k(q- 1)/n+ 1;if not, if provesthat d™ < [k(q - 1)/n]. The

conclusion now follows directly.

The construction given above, exemplified by A and A**?, can be used to demonstrate
that the bound in Theorem A3 is the best possible.

We now show that, for any value of g, the g-approval Compromise Set, CS',
contains only Pareto-optimal alternatives. Recall that alternativey is Pareto-superior to
aternative x, writteny - x, if and only if j,(y) <j,(x) foral i =1, 2, ..., n. If xhasthe
property that no y exists such that y > x, then x is Pareto-optimal.

Theorem A4.  If x e CS, then x is Pareto-optimal.

Proof. We provethat if x is not Pareto-optimal, then x ¢ CS'. Assume that
Yy > X, that the bargaining depth is d,* = d, and that x ¢ C§* = CS'.
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Then there exists aset of bargainers, B< {1, 2, ..., n}, such that |B| >
gandj(x) <dforalie B. Butforeveryi=1,2,..,n,

1Y) <Ji(¥). Thus, for everyi € B, j(y) <d - 1. It follows that

CS,_ % # o, contradicting the hypothesis that the bargaining depth isd.

The conclusion now follows.

Now we provide aformal description of fallback bargaining with impasse. For
each of the n bargainers, a preference ranking on K u {1} isassumed, where | represents
“Impasse” an is the set of alternatives. (Note thatK.) If |[K| =k, then the
bargainers’ preferences are specified by ank + 1) matrixB = (b;) such that, for= 1,
2, ... ,n, thei™ row of B is bargainei’s ranking (in descending order). For each
bargainerj, and alternative € K, denote byj,*(x) the value of satisfyingb; = x, and by
ji°(1) the value of satisfyingb; = 1.

Now, ford =0, 1, 2, ...k, define the set alepth d agreements as

CS, - {x € K:j(x) < min{d, j(D} Vi-12..,n}.

Note thatCS, is the set of all alternatives that are among theltoghe ranking of every

bargainer, and that every bargainer prefeis tGlearly,

CS|0:®QCS|lQCS|2g...gCSIk K.

N

Note thatCSl, = o is possible; it occurs when no alternative is preferred by every
bargainer td.

The Compromise Set with Impasse, CS(B) = CS, is defined byCS = {I} if
CS, = 2. Otherwise, define theargaining depth, d*, by

d* =min{d:C3,* o},

and defineCS = C3.. Thus, the Compromise Set with Impasse consists of either
Impasse, or of all alternatives that are (i) preferred by every bargainemid (i) among
the topd* in the ranking of every bargainer; hed,is the smallest value that makes this
set non-empty.

The next result connects fallback bargaining with and without impasse.
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Theorem A5.  Infallback bargaining with impasse, |et the alternative set be K and let
then x (k + 1) matrixB represent preferences. Then
CY(B) # o, and, ifl e CH(B), thenCI(B) ={I}. If xe Kandx ¢
CH(B), thenx - I. Construct the x k matrix A by deletingl from each
row of B. If x > | andx € C§A), thenx e CS(B).

Proof. First note that, by construction, eitl@8 (B) = {1} or CS(B) = CH for
somed such thaC3, # . MoreoverCS,c K. Thus
CY(B) # o, and eitheCS(B) = {1} or CS(B) < K. Now suppose that
e K andx e CS(B). Thenx must precedein the ranking of each
bargainerj, sox - |. Finally, suppose that- | andx e CSA). If x ¢
Cd(B), then there existge K such thay > | and
max {jB(y)} < max {jB(¥)}. But, for each, j®(y) <j&() and
ji2(%) <j(), which implies thai(y) =j.2(y) andjA(x) =jB(x). It
follows that max {*(y)} < max {jA(X)}, contradicting the assumption
that x e CHA).

Corollary A1.  All elements ofC3(B) are Pareto-optimal.

Proof. First suppose th&@3(B) = {I}. By construction, there is noe K such
thatjB(x) <jB(l) for alli = 1, 2, ...n, sol is Pareto-optimal. Otherwise,
suppose that € K andx € C3(B). As demonstrated in the proof of
Theorem A5, no alternativee K Pareto-superior te can exist. Thug

is Pareto-optimal.

Now we turn to the question of one bargainer’s best response to another’s ranking.
The next theorem concerns the optimal ranking choice for bardgainghenB1 knows
the ranking of its opponer2. For simplicity, we assume that
K={1, 2, ... K}, and thatB1's true preference ranking ovéris given (in descending

order) by the permutatida = <1, 2, ... k>. For now, we assume that knows thaB2’s
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ranking will be the permutation b = <b,, b,, ..., b,>. B1 can submit any permutation a =
<ay, &y, ., A
Define abargaining matrix A(a, b) by constructing a 2 k matrix with first rowa
and second row. LetCYa, b) = C§A(a, b)) denote the Compromise Set for this matrix.
As a ranges over all permutationskf many different Compromise Sets can arise.
Denote this collection of subsetskoby P(b) c 2, the power set df. B1's objective is
to pick a permutatioa such thaCSa, b) is most preferred withiR(b) (according to
B1's true preference ordering).
B1's preference ordering, = <1, 2, ...k> is defined oK rather than'? . To

represenBl’s preferences on‘2 , and thereforeRgh), we assume that

(A1) If 1 <r<s<k, then{} ~ {s}
(A2) If ScKand §> 2, then minf:re § >~ S> max{r:r e S.

whereS, > S, means thaBl prefersS to S,. This preference ordering is a minimal
extension from a complete order kinto a partial order on“2 . Note that using this partial
order, we cannot say whetH&t prefers {1, 3} or {2}; we know only that {1} {1, 2} >
{2} ~{2,3} - {3tand {1} ~ {1, 2} ~ {1, 3} ~ {2, 3} ~ {3}.

Givenb, we say that a permutatia= a* = <a,*, a,*, ... , a*> is abest response
for B1 if CS@a*, b) = CS*(b) is maximal withinP(b) according to this partial ordering. In
general, it is possible fé?(b) to have many maximal elements; as will be seen below,
however, the maximal subset (with respect to the partial order defined above) is always
unique in this case. If so, we call the unique maximal s@f3¢b) anoptimal
compromise for B1, and call ang* such thatCSa*, b) = CS*(b) an optimal response for
B1. If CSE, b) = CS*(b), thenB1 can do no better than to respond truthfullip.toNe
call b incentive-compatible (for B1) in this case.

Fort=1, 2, ... k, define thaop-t set of b by U(b, t) = {b;, b,, ... ,b}. ThusU(b, t)
is the set consisting of the fitsélements iB2’s permutation. Similarly, define thip-
tsetof E=<1, 2, ... k> byU(E t) ={1, 2, ... ,t}.

It is convenient to identify best responses according to the parity of the alternative

set. The next theorem describes the case when the number of alternatives is odd.
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Pr oof:
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Fix b, and suppose that k = 2h - 1 where hisintegral. Definer = by, =
min{s: se U(b, h)}. Then CS* ={r}, and b isincentive-compatible
for Blif either r > forr <fand U(b, f) n U(E, f)={b}. Otherwise, V =
{sr<s<fandse U(b, f)} # . Inthiscase, bisnotincentive-
compatible for B1; to construct an optimal response, defineW={se K
- U(b, f): s>f}. Then |V| < W, so given any enumerations of V = {v,,

V,, ... } and W={w,;, w,, ... }, a* can be constructed as follows:

w, ifi=v,eV
a* = vy ifi =w,eW and s < |V
I otherwise

First, note that the bound given by Theorem Alisd* < h. Thusthe
fallback process must end within h steps, and the best compromise set
that B1 can hopeto achieveis{r} ={b}. Notethat f < h. We show
that this Compromise Set can always be achieved by an appropriate
choice of a*. Infact, it iseasy to verify that CS(E, b) = {r} whenever r
> forr<fandU(b, f) n U(L, f)={b}, so b isincentive-compatible for
Blinthiscase, and CS* = {r}.

Now assumethat r <f. Itiseasy to show that
U(b, ) n U(E, f) =V u {b}. The case that remains to be settled occurs
whenV # o; if so, CYE, b) must contain an alternative other than r (it

may contain r also).

We show how to achieve {r} = CS*(b). The overlap set V isthe
set of possible compromises that might supplant {r}; they follow r in
B1's ordering, but precede it B2’s. The permutation* constructed
as indicated is identical =<1, 2, ... k>, except that all entries W
are interchanged with entries\vi This works becaus# contains
only alternatives that followb; in b, so cannot be i€Sa*, b). Also
the entries oV andW cannot coincide, because V impliess < f, and

se Wimpliess>f.
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It remainsto show that |V| < W. The elements of U(b, f) that do
not exceed f arer and the elements of V. Because |V|+ 1 of thef entries
of U(b, f) arelessthan or equal tof, f - |V| - 1 entries must exceed f.
Butinal of K, only 2h - 1 - f elements exceed f. Thus W, which
contains exactly the elements that exceed f and fall in K but not U(b, f),
must contain exactly
M =2h-1-f-[f-|V|-1] =2h- 2f + |V|entries. Becausef < h, if
followsthat |V| < W, completing the proof.

When the number of alternativesis even, the situation is alittle more complicated, as

shown next:

Theorem A7.

Pr oof.

Fix b, and suppose that k = 2h, where hisintegral. Definer = b, =min
{s:se U(b, h)}. If r <b,,,, then CS* ={r}, and b isincentive-
compatible for B1if eitherr > for r <fand

U(b, f) n U(E, f) ={bg}. Otherwise, b is not incentive-compatible for
B1, and a* as constructed in Theorem A5 produces CS(@*, b) ={r}. If
r>b,,,, thenCS ={r, b, } and bisincentive-compatible for B1 if

and only if r =h + 1. Otherwise, an optimal response for Bl is

by . if 1 <i<h
. b, ifi-h+1
& T )b ., ifh+2<i<h+l+f
b if h+1+f <i < 2h

i-h

Note that the bound given by Theorem Alisd* < h+ 1. Thefalback
process must end within h steps, producing a Compromise Set
containing either one or two elements of U(b, h), or end in exactly h + 1
steps, producing a Compromise Set containing b, , ; and one element of
U(b, h). It can be verified directly that, subject to these restrictions, the
most preferred compromise set that B1 can achieveisCS* ={r} if r =
b;<b,,;,,and CS ={r, b, } ifr>b,,,. Again, the plan of the proof is
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to show that these possibilities can always be achieved.

First, if r <b,,,, the proof of Theorem A6 can be mimicked to
demonstrate that b isincentive-compatible for B1 if either r > f or
r <fand U(b, f) n U(E, f)={b}, and that otherwise b is not incentive-
compatible for B1, and an optimal response a* can be constructed
exactly asin Theorem AB6.

Now supposethat r > b,,,. Then Bl prefersb, ., toany of b,, b,
..., by Itiseasy to verify that if B1 submitsthe ordering E =<1, 2, ...,
k>, then the result will be CS* ={r, b, ,} ifandonlyifr =h+ 1,
which means that the first h elements of b are the last h elementsin
B1's true preference ordering.

If r<h+ 1, itis easy to verify directly théaf,, , ¢ CSE, b).
Under the preference order B(b) defined above, b, .} > {r} >
CYE, b). Itis not difficult to verify directly thad*, as constructed
above, produceSSa*, b) ={r, b, .}.

The text contains examples showing the application of Theorems A6 and A7.

One example, given in the text o= 9 (A”), is worth elaborating in general. It
shows that the potential benefits of usaigather than the truthful ordering are
unlimited. Suppose th&t= 2h - 1, whereh is integral, and that

b=<h-1,h..,02-3,1,2,..h-2,h-2,h-1>
Note thatb, = 1, and tha€CYE, b) = {h - 1}. By Theorem A6CS*(b) = {1} becausea =
1 andf =h. UsingV={h- 1,h} andW={2h - 2, 2h - 1}, the optimal Compromise Set
CSt(b) = {1} can be achieved by the optimal response

a*=<1,2,..h-2,h-2,h-1,h+1,..,5h-3,h-1,h>

Note that the use of the best response improved the Compromise Sehfrabh o {1},
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relative to the truthful response, E.

We end this Appendix with a characterization of truthful equilibria, which are
illustrated in the text. We continue with the assumptions introduced earlier to define a
partial preference order for B1 on P(b), and apply them also to B2 to produce a partial
order on P(a). We use subscripts to indicate which partial order is being referred to; for
instance, s, -, S, means s, is preferred to s, according to ordering a—in other words, that
S, precedes, in a. Likewise, ifSc K, then max § is the most-preferred element$
according the ranking, and max §} is the most-preferred element8according the
preference ranking. As usual, the ranking is in descending order of preference, so
alternatives earlier in the ranking are more preferred.

Let CS*(b; a) represent the optimal Compromise SetBar based on preference
permutatiors, given thaiBB2’s ranking ish, and 1etCS*(a; b) represent the optimal
Compromise Set fd82, based on preference permutatipgiven thaBl1's ranking isa.
The pair of rankingsa( b) represents a Nash equilibrium if and onlZ#(a, b) = CS+(b;
a) = CSt(a; b), in other words, i is a best response lddor B1, given that represents
B1's true preference ranking, ahds a best response ador B2, given thab represents
B2'’s true preference ranking.

The next two theorems characterize all Nash equilibrium pairs of rankings. As

usual, that the situation is more complicated when the number of alternatives is even.

Theorem A8. If k=2n- 1is odd, theng, b) is a Nash equilibrium pair if and only if
max, {U(b, h)} = max,{U(a, h)} = c and, for somel satisfying 1< d <
h, U(a, d) n U(b, d) = {c}.

Proof. From Theorem A6CSt(b; a) = max {U(b,h)} and CS*(a; b) =
max,{U(a, h)}, so the requirement that maxJ{b, h)} =
max, {U(a, h)} follows from the definition of Nash equilibrium.
Assuming it is met, let the most-preferred common alternative be
If, for somed, 1 < d < h, a, = b, =c, then Theorem A6 shows that
neither bargainer can do better than to submit its true preference

ordering. Otherwise, suppose thgt c anda, = ¢, wheref <d. By
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Theorem A6, B2 cannot do better than to submit b. To achieve c, it may
be necessary for B1 to submit an ordering other than a; this occurs if
and only if V # o, where

V={seK:g>,s>,a,ands >, by}. Butce U(a d) nU(b, d), and
U(a, d) n U(b, d)={c} iff V=0o. Thesituation isanaogousif c

appearsearlierinb thanin a.

Theorem A9.  If k=2hiseven, defineu, = max, {U(b, h)},
v; = max, {U(b, h+ 1)}, u, = max, {U(a, h)}, and
v, = max, {U(a, h+ 1)}. Then (a, b) isaNash equilibrium pair iff
eitheru, =v, =u,=v,=cand, forsomed, 1 < d < h,
U(a, d) nU(b,d) ={c}, oru, <, v, U, <, V,, U, = V,, U, =V, and
U(a,h+1)nU(b, h+1)={u, u} ={v, v,}.

Proof. Based on Theorem A7, analogous to the relation of Theorem A8 to
Theorem AG6.

The text contains examplesillustrating Theorems A8 and A9.



