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 Abstract

Fallback bargaining is a bargaining procedure under which bargainers begin by

indicating their preference rankings over all alternatives.  They then fall back, in lockstep,

to less and less preferred alternatives—starting with first choices, then adding second

choices, and so on—until an alternative is found on which all bargainers agree.  This

common agreement, which becomes the outcome of the procedure, may be different if a

decision rule other than unanimity is used.  The outcome is always Pareto-optimal but

need not be unique; if unanimity is used, it is at least middling in everybody’s ranking.

Fallback bargaining may not select a Condorcet alternative, or even the first choice

of a majority of bargainers.  However, it does maximize bargainers’ minimum

“satisfaction.”  When bargainers are allowed to indicate “impasse” in their rankings—

below which they would not descend because they prefer no agreement to any lower-level

alternative—then impasse itself may become the outcome, foreclosing any agreement.

The vulnerability of fallback bargaining to manipulation is analyzed in terms of

both best responses and Nash equilibria.  Although a bargainer can sometimes achieve a

preferred outcome through an untruthful announcement, the risk of a mutually worst

outcome in a Chicken-type game may well deter the bargainers from attempting to be

exploitative, especially when information is incomplete.

Fallback bargaining seems useful as a practicable procedure if a set of “reasonable”

alternatives can be generated.  It leapfrogs the give-and-take of conventional bargaining,

which often bogs down in details, by finding a suitable settlement through the

simultaneous consideration of all alternatives.

JEL Classification:  D58, D63, D71.  Keywords:  Bargaining; impasse; social

choice; Condorcet winner; implementation; Nash equilibrium.



Fallback Bargaining1

Once your fall-back positions are published, you have already fallen back to them (Eban,

1998, p. 81)

1.  Introduction

If two bargainers are in a dispute, at least one must retreat to a fallback position to

reach a settlement.  “Fallback” in our title would therefore seem redundant—all

bargaining involves at least one bargainer’s falling back to a less preferred position in

order to produce a settlement acceptable to both.

To be sure, it would seem unfair, and not “true” bargaining, if one bargainer simply

caved in to the demands of the other.  Accordingly, we ask the following question:   Is

there a procedure that facilitates a compromise, whereby bargainers retreat from their

most-preferred positions in order to achieve an equitable outcome?

We propose such a procedure, called “fallback bargaining,” whereby all

bargainers—not necessarily just two—fall back in lockstep to less and less preferred

positions until they agree on an outcome.  In a variant of this procedure, we allow the

lockstep to be broken if a bargainer reaches a point where it prefers no agreement

(“impasse”) to any alternative that is ranked lower.

Among other things, we demonstrate that fallback bargaining yields an outcome

that is Pareto-optimal and, if there is no impasse, at least “middling” for all the

bargainers.  Moreover, when restricted to just two bargainers, the procedure is difficult

(and frequently impossible) to manipulate, even if the bargainers have complete

information about each other’s preferences.

                                          

1Steven J. Brams gratefully acknowledges the support of the C. V. Starr Center for
Applied Economics at New York University.  D. Marc Kilgour acknowledges the support
of the Social Sciences and Humanities Research Council of Canada and the Laurier
Centre for Military Strategic and Disarmament Studies.  We thank Jeffrey S. Banks for
valuable comments on an earlier draft.
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Our model extends a bargaining model of Brams and Doherty (1993; see also

Brams, 1994, ch. 7), which presumed that a simple majority, measured by weighted or

unweighted votes, must agree on an alternative.  In the context of voting, Sertel and

Yilmaz (1997) and Hurwicz and Sertel (1997) developed related models, which we shall

say more about later, that focus on majority rule.  While we focus on unanimity as the

decision rule, which seems appropriate in many bargaining situations, we give general

results for any decision rule and for any number of bargainers.

The plan of this paper is as follows.  In section 2, we describe and illustrate

fallback bargaining, assuming a decision rule of unanimity.  We determine the maximum

“depth” to which the bargainers might have to descend before reaching a common

agreement, indicating the parameters to which this depth is sensitive.  In addition, we

prove that fallback bargaining always leads to a Pareto-optimal outcome that maximizes

the minimum satisfaction of all the bargainers (i.e., whose depth for the worst-off

bargainer is minimal).2

In section 3, we compare the situation in which unanimous consent is required to

that in which only a simple or qualified majority of bargainers must agree, as is true in

most voting situations.  We illustrate, among other things, how an outcome under the

                                          

2Proofs of all theorems, corollaries, and lemmata are given in the Appendix—where their
numbering is sometimes different and preceded by A’s—but the numbers in the text are
always keyed to the Appendix numbers.  We follow this unusual convention to

     • facilitate exposition of the material in the text, where we start with fallback
       bargaining with a decision rule of unanimity (section 2) and then generalize to all
       possible decision rules (section 3);

    • save space in the Appendix, where we make some theorems general from the start.

Thus, instead of proving that fallback bargaining maximizes the minimum satisfaction of
all bargainers (Theorem 3), we prove in the Appendix that under any decision rule q,
fallback bargaining maximizes the minimum satisfaction of at least q bargainers
(Theorem A2), where q can range from 1 to n.
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unanimity rule may be less preferred by a majority of bargainers than another alternative

(i.e., the so-called Condorcet winner), which may even be their first choice.

In section 4, we consider the possibility that a bargainer might reach a point in

fallback bargaining whereby it would prefer no agreement, or impasse, to agreement.  We

show that the inclusion of “impasse” in bargainers’ preference orders may lead to Pareto-

optimal outcomes quite different from those without impasse.  These, we suggest, can be

observed in real-life bargaining situations in which bargainers, at some point, refuse to

compromise, preferring stalemate instead.

In section 5, we restrict attention to two-person bargaining situations, which are by

far the most common (Brams, 1990), but we place no restrictions on the number of

possible outcomes.  If there are only two alternatives (e.g., one bargainer wins, the other

loses), it is always optimal for the bargainers to be truthful in ranking alternatives.  But

truthfulness is not always optimal when there are more than two alternatives, as we

demonstrate with two theorems that characterize the best response of one bargainer to the

other’s truthful ranking.

While we leave a characterization of all Nash equilibria in two-person fallback

bargaining games to the Appendix, we offer a quantitative analysis of Nash equilibria in

three-outcome and four-outcome games in section 6.  Although bargainers can benefit

from not being truthful in some games, we argue that they may refrain from trying to be

exploitative in others that are vulnerable to misrepresentation—in particular, a class of

Chicken-like games—because of the serious risks involved should the other bargainer act

similarly.  Thus, both bargainers may be deterred from acting strategically.3

                                          

3To be sure, Gibbard (1973), Satterthwaite (1975), and subsequent impossibility results in
the social-choice and game-theoretic literature establish that virtually no bargaining or
voting procedures are immune from manipulation.  These results say little, however,
about the kinds of games that may be played, and their specific vulnerabilities, under
different procedures.  In the case of fallback bargaining, we will argue that, practically
speaking, it would be a difficult procedure to manipulate, especially in games of
incomplete information.
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In section 7, we suggest the kinds of disputes in which bargainers are most likely to

benefit from fallback bargaining, or to act as if they use it.  These informal uses of the

procedure lead us to ask the following questions:

1.  What real-life disputes would be most amenable to the formal use of fallback

bargaining?

2.  Is the resolution of such disputes likely to be fairer, in some sense, than the

resolution that would be achieved without the formal procedure?

We conclude that invoking the formal procedure could facilitate the resolution of certain

kinds of disputes, but it will require considerable care in the generation of alternatives to

which it is applied.

2.  Description and Properties

Assume that there are n bargainers, and the set of alternatives (possible

agreements) is K, where |K| = k.  Each bargainer has a strict preference ranking over the k

alternatives; all rankings can be represented by an n x k matrix, A, whose (i,j)-entry is aij .

Each ranking is given in descending order:  bargainer i’s most preferred alternative is ai1,

its least preferred aik.

To illustrate, suppose the set of alternatives is K = {a, b, c, d}, so k = 4.  Suppose

there are n = 2 bargainers, whose preferences are given by

A1 = 
a b
b d

c d
a c .

Bargainer 1’s preference ranking (abcd) is indicated by the first row—from a most

preferred to d least preferred—and bargainer 2’s (bdac) by the second row.

Fallback bargaining proceeds as follows:
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1.  The most-preferred alternative of each bargainer is considered.  If this is the

same for all bargainers, then this common agreement is the bargaining outcome.  The

procedure stops, and we call this a depth 1 agreement.

2.  If there is no common agreement at depth 1 (i.e., not all the bargainers agree on

a most-preferred alternative), then the next-most preferred alternatives of all the

bargainers are considered.  Any alternative within the top two of every bargainer is a

depth 2 agreement (there may be either one or two common agreements at depth 2, as we

will illustrate shortly).  If there is a depth 2 agreement, the procedure stops; otherwise, it

continues.

3.  As long as there is no common agreement, the bargainers descend—one level at

a time—to lower and lower levels in their rankings until the intersection of their top-

ranked alternatives becomes, for the first time, nonempty.  We call the set of common

agreements, when the procedure stops at depth d*, CS(A), or the Compromise Set (CS) of

fallback bargaining for matrix A.

Examples.  The vertical lines in the following 2-bargainer, 4-alternative examples

below  indicate the column in the matrix, going from left to right, at which a common

agreement first appears.  In these four examples, the depth of the agreement, d*, varies

from 1 (A3) to 3 (A4).  Observe that in two of the examples (A1 and A3) the Compromise

Sets are singletons, whereas in the other two examples (A2 and A4) the Compromise Sets

contain two alternatives:

A1 = 
a b
b d

c d
a c ,      CS(A1) = {b}.

A2 = 
 a b

b a
c d
c d ,     CS(A2) = {a, b}.

A3 = 
a b
a d

c d
b c ,     CS(A3) = {a}.

A4 = 
a b
c d

c d
a b ,     CS(A4) = {a, c}.
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What is the maximum depth at which a common agreement can appear?  The upper

bound is given by

Theorem 1.  d* • |_k - k/n + 1_|.

Proof.  See the proof of Theorem A1 in the Appendix; an equivalent theorem for

the so-called Kant-Rawls Social Compromise, which also assumes unanimity, is given in

Hurwicz and Sertel (1997).  The proof of the general case—allowing for any decision rule

(not just unanimity), which includes Hurwicz and Sertel’s (1997) so-called Majoritarian

Compromise (simple majority)—is given for Theorem A3 in the Appendix.

Among the earlier examples, A4 shows that the upper bound in Theorem 1 can be

attained:  d* = 3 = |_4 - 4/2 + 1_|; in the Appendix, we show that this bound is always

tight.  We next consider how the upper bound of Theorem 1 behaves as n or as k

increases:

1.  Dependence on n.  As the number n of bargainers increases, but the number k

of alternatives remains fixed, the upper bound on depth eventually reaches k, the number

of alternatives.  Thus, if k = 4 (as in our previous examples), and n increases from 2 to 4,

fallback bargaining may have to descend to d* = 4 before the Compromise Set becomes

nonempty, as illustrated by the following example:

A5 = 

 

a b c d
b c d a
c d a b
d a b c

,
      CS(A5) = {a, b, c, d}.

For any preference matrix A, and any alternative x ∈ K, we define m(x) = m(x, A),

the mean depth of x in A,  to equal the (arithmetic) average rank of x over all rows of A.

For instance, m(a) = m(x, A5) = (1 + 4 + 3 + 2)/4 = 2.5.

In A5, the maximal depth of the agreement is mitigated by the fact that all four

alternatives are in the Compromise Set.  If one of these is selected at random as the

outcome, then the probability that a bargainer will suffer its worst outcome is only 25%.
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Moreover, the mean depth of the outcome thus selected is m(a) = m(b) = m(c) = m(d) =

2.5, so on average each bargainer obtains a middling outcome.

2.  Dependence on k.  As the number k of alternatives increases, but the number of

bargainers n remains fixed, the upper bound on depth approaches (1 - 1/n)k + 1 =

[(n - 1)/n]k + 1, or a fixed fraction of k plus 1.  For example, if n = 2 (as in our first four

examples), and k increases from 4 to 8, the upper bound given by Theorem 1 increases

from d* = 3 (illustrated by A4) to d* = 5, which is illustrated by example A6:

A6 = 

a b
e f

c d
g h

e f
a b

g h
c d ,     CS(A6) = {a, e}.

In this example, the worst-case scenario for each bargainer is a below-average alternative

(5th out of 8), whereas the best-case scenario is a best alternative (1st out of 8).  Thus,

m(a, A6) = m(e, A6) = (1 + 5)/2 = 3.

As the examples above illustrate, fallback bargaining yields, on average, outcomes

that are at least middling for each bargainer, whatever the number of bargainers or the

number of alternatives.  In the case of two bargainers and two alternatives, a and b—in

which one bargainer prefers a to b and the other b to a—the Compromise Set will be

simply {a, b}.  This, of course, is hardly a resolution of their bargaining problem.

If, however, both bargainers think some compromise alternative c is better than the

other bargainer’s preferred alternative, then c will be the outcome of fallback bargaining

if it is included as an alternative:

A7 = 
a c
b c

b
a ,     CS(A7) = {c}.

In the concluding section, we will suggest how, through the introduction of several

compromise alternatives, fallback bargaining can be rendered a useful practical device for

finding an acceptable resolution.

Next we give lower and upper bounds on the number of alternatives in the

Compromise Set:
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Lemma 1.  1 • | CS | • min{d*, n}

Proof.  See the proof of Lemma A1 in the Appendix.  The proof of the general case

for any decision rule is given for Lemma A2 in the Appendix.

The lower bound on the number of outcomes in the Compromise Set is illustrated by A1,

A3,  and A7, and the upper bound by A2, A4 , and  A5.

Of course, if the number of alternatives in the Compromise Set is large, as in

example A5 [|CS(A5)| = 4], there is no ready resolution of the bargaining problem.  But

this result, we would argue, is to be expected in this example, because majorities cycle:

a > b > c > d > a, where “>” indicates majority preference.  Later we shall consider

examples in which preferences are not cyclical and ask whether fallback bargaining

chooses a “desirable” alternative.

Next we ask whether fallback bargaining always leads to a Pareto-optimal

outcome.4

Theorem 2.  If x ∈CS, then x is Pareto-optimal.

Proof.  See the proof of Theorem A4 in the Appendix, which also covers the

general case (i.e., any decision rule).

Example A1 shows that the converse of Theorem 2 is false:  alternative a is Pareto-

optimal but does not belong to the Compromise Set.  More specifically,

Theorem 3.  The Compromise Set comprises all Pareto-optimal alternatives that

maximize the minimum ranking of the bargainers.

Proof.  See the proof of Theorem A2 in the Appendix, which also covers the

general case (i.e., any decision rule).

                                          

4Let x and y be any two outcomes.  We say x is Pareto-superior to y, written x  ��y, if all
the bargainers rank x higher than y; in this case, y is Pareto-inferior to x.  If y has the
property that there exists no x such that x � y, then y is Pareto-optimal.
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Notice in example A1 that there are two Pareto-optimal alternatives, a and b.

(Alternative c is Pareto-inferior to both a and b, and alternative d is Pareto-inferior to b.)

The lowest ranking that either bargainer assigns to a is 3, and the lowest ranking that

either bargainer assigns to b is 2.  Consequently, the Compromise Set is {b}, which, as

shown below, is the first alternative to become common:

• 0 common at depth 1:  {∅}

• 1 common at depth 2:  {b}

• 2  common at depth 3:  {a, b}

• 4 common at depth 4:  {a, b, c, d}.

In examples A2 - A6, the Compromise Sets contain all the Pareto-optimal

alternatives.  By contrast, all three alternatives are Pareto-optimal in example A7, but only

alternative c is in the Compromise Set:  it becomes common at depth 2, whereas the

Pareto-optimal alternatives, a and b, do not become common until depth 3.

In summary, the Compromise Set produces outcomes that are Pareto-optimal

(Theorem 2) and at least middling (Theorem 1), based on their depth or mean depth.

These outcomes also maximize the minimum satisfaction that any bargainer enjoys

(Theorem 3):  the lowest rank given by a bargainer to any alternative not in the

Compromise Set, even if it is Pareto-optimal, is always less.5

3.  Alternative Decision Rules

The choice of a middling outcome may be controversial, as example A8 illustrates:

                                          

5Fallback bargaining, however, fails one of Arrow’s (1963) contions (as it must):
independence from irrelevant alternatives.  Thus in A2, if the preference ranking of
bargainer 2 changes from bacd to cbad (i.e., bargainer 2 moves c up from third to first
place without changing the ranking of the other alternatives), the Compromise Set would
change from {a, b} to { b}.  In other words, the preference of bargainer 2 for “irrelevant
alternative” c affects the social choice between a and b, lowering a in the social ordering
by singling out b as the unique social choice.
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A8 = 
 

a b c d
a b c d
a d b c
d c b a ,     CS(A8) = {b}.

Notice that alternative b is at rank 2 for two bargainers and at rank 3 for two bargainers,

giving it a mean rank of 2.50.  By comparison, alternative a is at rank 1 for three

bargainers and at rank 4 for one bargainer, so its mean rank is 1.75.  Moreover, not only

is a the Condorcet winner (in pairwise contests, a majority prefers it to every other

alternative), but it is also ranked first by three of the four bargainers.  Nevertheless,

fallback bargaining chooses b, whose only merit seems to be that nobody dislikes it too

much (by ranking it last).

The choice of b, we believe, is quite indefensible in a voting situation.  Indeed, not

only would a Condorcet voting procedure select a, but so would virtually all other voting

procedures, including the Borda count and the Hare system of single transferable vote.

On the other hand, insofar as unanimous consent is required in a bargaining situation, the

choice of b seems to us entirely appropriate.

To be sure, if majority support were deemed sufficient to reach a consensus in a

bargaining situation, then fallback bargaining could be modified to reflect this less

stringent decision rule.  With this modification, a would be chosen at the outset (i.e., at

depth 1) in A8.6

In all 2-person bargaining situations, of course, the unanimity decision rule is the

same as the majority decision rule, so there would be no change of outcome sets in our

previous 2-person examples.  Neither would there be in our earlier 4-person example

(A5), in which majorities cycle (i.e., there is no Condorcet outcome).

                                          

6If the Condorcet winner, a, were deleted from every bargainer’s ranking, the
Compromise Set would expand from {b} to { b, c, d}:  all three remaining (Pareto-
optimal) alternatives would be selected by fallback bargaining.  In fact, all four
alternatives are Pareto-optimal in A8; fallback bargaining singles out b as the outcome, in
contrast to the simple-majority outcome, a.
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In general, however, the decision rule will make a difference in n-person

bargaining situations.  Consequently, bargainers must decide what is an appropriate level

of consensus to require in order to make an agreement binding on all parties.

We next can generalize fallback bargaining to q-approval fallback bargaining, in

which the decision rule is that, for acceptance, the approval of at least q (for quota)

bargainers is required, where q lies between 1 and n inclusive.  Until now, we have used

the decision rule q = n (i.e., unanimity).  Normally, we suppose, the quota will be at least

a simple majority of bargainers (i.e., q • |_(n + 1)/2_|), but our results apply for any q in

the range 1 • q • n.

The use of q-approval fallback bargaining produces the q-approval Compromise

Set, CSq, which is the set of alternatives that are approved of, for the first time as the

depth increases, by at least q bargainers.  For every q, there will be a dq*; when q = n

(under fallback bargaining), d* = dn*.

To illustrate the effects of different quotas, consider again example A8:

CS1(A8) = {a, d} at depth d1* = 1

CS2(A8) = {a} at depth d2*= 1

CS3(A8) = {a} at depth d3* = 1 (simple majority decision rule)

CS4(A8) = CS(A8) = {b} at depth d4* = d* = 3 (unanimity decision rule).

Alternative a is what Hurwicz and Sertel (1997) call the “Majoritarian Compromise,”

whereas alternative b, our fallback-bargaining outcome, is what they call the “Kant-Rawls

Social Compromise.”7  In the Appendix, we give generalizations of Theorem 1, Lemma

1, Theorem 2, and Theorem 3, which we summarize as follows:

                                          

7The Majoritarian Compromise will always be selected from the left half of alternatives
in A (Sertel and Yilmaz, 1997; Hurwicz and Sertel, 1997), whereas the Kant-Rawls Social
Compromise might force a descent to the greatest possible depth (i.e., the right-most
column), so one bargainer (or more) might obtain its worst alternative.
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General Results for q-Level Fallback Bargaining.  For 1 • q • n,

• the upper bound on depth is dq
*  • |_(kq - k + n)/n_| (Theorem A3);

• bounds on the size of CSq are 1 < |CSq| < min{nd*/q, n} (Lemma A2);

• if x  ∈CSq, then x is Pareto-optimal (Theorem A4)

• the alternatives in  CSq maximize the minimum  satisfaction of  the q most

  satisfied bargainers (Theorem A2).

The Pareto-optimality of all alternatives chosen by q-level fallback bargaining,

from q = 1 to q = n, is perhaps surprising.  This fact, however, is not a good reason for

considering all these alternatives to be serious candidates for outcomes of either a

bargaining process or a voting process.  For example, alternative d in example A8 is in

CS1; but because it is the last choice of two of the four bargainers, it is not an alternative

that we would recommend as a consensus choice.

Alternative c is the one alternative in example A8 that is not chosen by q-level

fallback bargaining for any q.  Nevertheless, it is Pareto-optimal, demonstrating that the

members of all Compromise Sets do not exhaust the set of Pareto-optimal alternatives.

More surprising, perhaps, is that q = |_(n + 1)/2_| (simple majority), which does

choose the Condorcet alternative a in example A8 when fallback bargaining (unanimity)

fails to, is not always to so successful, as the following 7-person example by Sertel and

Yilmaz (1997) demonstrates:

A9 = 

a b c d e
c b a d e
d b a c e
e b a c d
a d c e b
a e d c b
c d a e b ,     CS4 = {b}.

Alternative b is, in fact, the Condorcet loser—majorities prefer it to each of the other

alternatives in this example—whereas alternative a is the Condorcet winner.  Moreover,

fallback bargaining (q = 7) finds a at depth d* = 3, suggesting it to be a “better” decision
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rule in this instance (actually, any qualified majority q > 4 finds a).  Thus, the case for the

Majoritarian Compromise, which chooses {b}, seems weak in example A9.

It is worth noting that the Condorcet winner may be chosen using non-majority

quotas, as the following simple example—in which alternative a is the Condorcet

winner—illustrates:

A10 = 

a b c
a b c
c b a .

Notice that a is in the Compromise Sets for both q = 1 and q = 2, but it is alternative b,

chosen by fallback bargaining (q = 3), that seems most to deserve the appellation

“compromise”:

CS1(A10) = {a, c} at depth d1* = 1

CS2(A10) = {a} at depth d2*= 1 (simple majority decision rule)

CS3(A10) = {b} at depth d3*= d* = 2 (unanimity decision rule).

In example A11 below, there is no Condorcet winner because there is a paradox of

voting, in which majorities cycle:  c > a > d > e > c, where “>” indicates the majority

preference of the five voters:

A11 = 

a d e c b
a d e c b
b d e c a
b c a d e
c e d a b .

As in example A10, the Compromise Sets in A11 yield all possible outcomes:

CS1(A11) = {a, b, c} at depth d1* = 1

CS2(A11) = {a, b} at depth d2* = 1

CS3(A11) = {d} at depth d3*= 2 (simple majority decision rule)

CS4(A11) = {e} at depth d4* = 3 (qualified majority decision rule)

CS5(A11) = CS(A11) = {c} at depth d5* = d* = 4 (unanimity).
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Not only is alternative d, the simple-majority outcome, not a Condorcet winner, but q = 4

(qualified majority) gives a different outcome from either q = 3 (simple majority) or q = 5

(unanimity).  Because all five alternatives are chosen by the various q’s, a consensus

choice is by no means evident.

Clearly, the decision rule, even when restricted to a simple majority or greater, can

make a big difference in the outcome.  In the concluding section, we will turn to the

question of what level of consensus should be required in order to implement a

compromise agreement.

4.  The Effects of Impasse

We next consider the possibility that bargainers set limits—or “reservation prices,”

in the vernacular of economics—on how low they will dip in their rankings before

“throwing in the towel” (i.e., giving up rather than accepting a less-preferred agreement).

Specifically, assume that each bargainer puts I (for impasse) in its preference ranking at

the level at which it prefers no agreement to any lower-level alternative.  We call this

modification of fallback bargaining fallback bargaining with impasse.8

Fallback bargaining with impasse proceeds exactly as does fallback bargaining, but

with one restriction.  Once the descent process reaches I for a bargainer, it stops for that

bargainer.  If no common agreement is reached by the time the level descends to every

bargainer’s I, I—not an alternative in K—is the outcome.

In fallback bargaining with impasse, the Compromise Set is called CSI, and it is

reached at depth d*.  If there are n bargainers and the alternative set is K, where |K| = k,

                                          

8Brams and Doherty (1993; see also Brams, 1994, ch. 7) were the first to introduce
impasse into the preferences of bargainers.  Like Sertel and Yilmaz (1997) and Hurwicz
and Sertel (1997), they assumed that only a simple majority of bargainers need agree on
an alternative in order for it to be chosen.  Unlike the present model, however, I can be
breached in the Brams-Doherty (1993) model:  a bargainer will support an alternative
below I  if there is another alternative that would otherwise be chosen that the bargainer
ranks still lower than I.  Thus, I is not an impregnable barrier in their model.
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then preferences are given not by an n x k matrix A but by an n x (k + 1) matrix B, in

which the ith row gives bargainer i’s ranking of K ∪ { I}.

Examples.  In the following four examples, the preference rankings of the two

bargainers for the set of four possible agreements, {a, b, c, d}, duplicate those of example

A4 earlier.  Now, however, the appearance of I at different levels in each bargainer’s

ranking may change the Compromise Sets from CS(A4) =  {a, c}: 9

B1 = 
a I
c I

b c
d a

d
b ,      CSI(B1) = {I}

B2 = 
a I
c d

b c
a I

d
b ,     CSI(B2) = {a}

B3 = 
a b
c d

c I
I a

d
b ,     CSI(B3) = {c}

B4 = 
a b
c d

c I
a b

d
I ,     CSI(B4) = {a, c}.

 Notice that the common agreements in the Compromise Sets are either Pareto-

superior to I or I itself.  Moreover, if either a or c is Pareto-superior to I, then it falls in

the Compromise Set.  That this is no accident is shown by

Theorem 4.  Let the n x (k + 1) matrix B describe the preferences of the

bargainers under fallback bargaining with impasse.  Let x ∈ K, the set of alternatives,

and construct the n x k matrix A by deleting I from each row of B.  Then  x ∈ CSI(B) if

x �  I (i.e., x is Pareto-superior to I) and x ∈ CS(A); if I ∈ CSI(B), then I is the unique

member of CSI(B).

Proof.  See Theorem A5 in the Appendix.

Corollary 1.  All elements of CSI(B) are Pareto-optimal.

                                          

9As before, in each example we indicate with vertical lines the level, going from left to
right, at which common agreement(s) or I  first appear.  Notice that in all the examples
except B4, at least one bargainer “reaches” I, but it never descends past it.



16

Proof.  See Corollary A1 in the Appendix.  

Let x ∈ K.  Theorem 4 states that if x ∈ CS(A) and x � I, then x ∈ CSI(B).  The

converse, however, is not true.  If x ∈ CS(B), then x � I, but it is nonetheless possible that

x ∉ CS(A), as shown by the following example:

B5 = 
a I
c b

b c
a I ,    CSI(B5) = {a};          A5 = 

a b
c b

c
a ,    CS(A5) = {b}.

Here a, which is Pareto-superior to I, is the only member of the Compromise Set with

impasse, whereas b is the only member of the corresponding Compromise Set without

impasse.

It follows from Theorem 4 that I is the unique member of the Compromise Set with

impasse iff I is Pareto-optimal.  To determine CSI, one can begin by finding alternatives

Pareto-superior to I; if there are none, then CSI contains only I.

An example that illustrates this rule, wherein b is the only alternative Pareto-

superior to I, is

B6 = 

a b I
b I c
c a b

c
a
I ,      CSI(B6) = {b}.

Not surprisingly, the most intransigent bargainer—the one that ranks I highest (bargainer

2, or B2, whose preferences are given in the second row of B6)—is the one that gets its

most-preferred alternative (b).10

The choice of b in this example might be contested on the ground that a majority of

bargainers (B1 and B3) prefer a to b, which we write as a > b.  But, in fact, the story is

                                          

10If either B1 or B3 tried to be more intransigent for strategic reasons (i.e.,  by ranking,
against its true preferences, I higher than b rather than vice versa), then I would be the
outcome.  Thus, being “strategically” intransigent may succeed only in sabotaging a
preferred agreement, especially if the other bargainers are acting similarly.
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more complicated than this, because majorities cycle:  a > b > I > c > a, where “>“

indicates majority preference.  Thus, there is a paradox of voting that includes I.11

If we rule out c on the ground that a majority of bargainers (B1 and B2) prefer I to

c, this still leaves a and b as viable possibilities.  While b is the fallback bargaining

outcome and also has the greater mean depth, one wonders whether the fact that a > b

should not swing the bargaining choice toward a.

In the normative social-choice and voting literature, questions such as this are

addressed, but we will not pursue them further here.  Suffice it to say that fallback

bargaining with impasse produces a set of Pareto-optimal alternatives, or impasse, that

maximize the minimum satisfaction of bargainers—but now with I excluding certain

alternatives that, without I, might have been considered satisfactory.

We turn next to an analysis of the vulnerability of fallback bargaining to strategic

manipulation, first by characterizing best responses (section 5) and then Nash equilibria

(section 6).  To keep matters simple, we will restrict the analysis to two bargainers and

assume that they cannot indicate impasse.  In section 7 we will offer some thoughts on

generalizing our results, allowing both for more bargainers and for the possibility of

impasse.

5.  Vulnerability of Two-Person Fallback Bargaining:  Best Responses

In section 2 we discussed the situation in which there are only two alternatives, a

and b, wherein B1 prefers a to b and B2 prefers b to a.  If each bargainer truthfully

indicates its preference, the Compromise Set is {a, b}.

                                          

11If I were deleted from the rankings of B6, then the paradox of voting would remain,
whereby a > b > c > a.  In this case, fallback bargaining (without impasse) would give
{ a, b, c} as the Compromise Set, whereas B6 (with the I’s included) singles out b.   We
see nothing wrong with the fact that inclusion of the I’s narrows down the outcomes in
the Compromise Set.
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Neither bargainer can do better by being untruthful.  For example, if B2 indicated

that it, like B1, preferred a to b, then it would succeed only in ensuring its less preferred

alternative, a.

But with as few as three alternatives, fallback bargaining becomes vulnerable to

strategic misrepresentation.  To illustrate, assume the truthful preferences of two

bargainers are those of example A12 below, which gives two outcomes in the

Compromise Set:

A12 = 
a b c
b a c ,    CS(A12) = {a, b}.

Now if B1 announced its preferences to be those shown in the first row of either examples

A13 or A14  below, and B2 stuck with its true preferences in the second row, the

Compromise Set would be a singleton, containing B1’s most-preferred alternative:

A13 = 
a c b
b a c ,     CS(A13) = {a}

A14 = 
c a b
b a c ,     CS(A14) = {a}.

Thus, B1 would have good reason to falsify its preference ranking if it knew (i) B2’s true

preference ordering and (ii) that B2 did not know it was being manipulated in this way

(and would have no reason, therefore, not to be truthful).

The relationship of the orderings selected by the bargainers to the resulting

Compromise Set constitute the game-form of fallback bargaining (Hurwicz, 1996).  For

the case of k = 3 alternatives, the game-form is shown in Figure 1 (ignore the asteriks for

________________________________________________________________________

Figure 1 about here
________________________________________________________________________

for now).  Note that the game-form does not describe preferences; nonetheless, it is a

natural tool to study the consequences of a bargainer’s reporting its preferences, either

truthfully or untruthfully.
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For instance, suppose that B1’s true preference ordering is abc.  From Figure 1, one

can determine whether reporting abc, or some other ordering, gives B1 a better outcome.

As we show in the Appendix, B1 cannot do better than choose abc if B2’s ordering is any

of abc, acb, bca, cba, or cab, but if B2’s odering is bac, B1 is better off choosing acb.

Whether bargainers can benefit from misrepresenting their preferences rather than

reporting them truthfully is essentially the question that Sertel and Yilmaz (1997) and

Hurwicz and Sertel (1997) ask concerning the |_(n + 1)/2_|-approval Compromise Set (or

the Majoritarian Compromise).  Like them, we show that Nash-equilibrium

implementability is impossible12—not for the Majoritarian Compromise, however, but for

fallback bargaining.  As a prelude to characterizing Nash equilibria under fallback

bargaining, we examine the optimal response of one bargainer (truthful or untruthful) to

the other bargainer’s ranking.

Theorems 5 and 6 below cover, respectively, the cases of an odd and an even

number of alternatives k:

Theorem 5.  If k = 2h - 1 is odd (so h is integral), and B2’s ranking, b, is fixed and

known to B1, then the best Compromise Set that B1 can achieve is a singleton containing

B1’s most-preferred alternative among b1, b2, . . .,   bh  (i.e., among the top h items in

B2’s ranking).  Call this best alternative br. To achieve {br}, B1 submits its true ordering,

a, unless br  is ranked (strictly) lower by B2 than by B1, and there are alternatives ranked

at or above level r by B1 that are preferred to br  by B2.  In this case, B1 can achieve {br}

                                          

12Sertel and Yilmaz (1997) demonstrate, additionally, that the Majoritarian Compromise
is subgame-perfect implementable, but they do not find any “natural” mechanism for
effecting such implementation.  In the absence of a simple mechanism—whose message
space can easily be explained to voters—we will concentrate in section 6 on the
conditions under which, when the message space is the bargainers’ direct statement of
their preferences, truthful revelation is a Nash equilibrium.  (Our theorems in section 6,
however, characterize all Nash equilbria—both those involving truthful revelation and
those involving misrepresenation.)
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by switching these alternatives with alternatives that would otherwise be below level r in

both B1’s and B2’s orderings.

Proof.  See the proof of Theorem A6 in the Appendix.

Examples A15, A16, and A17 illustrate Theorem 5.

Examples.  Let k = 7 and suppose the preference ranking of B1 is abcdefg.  If B2’s

ranking is edbgacf, we have, if both B1 and B2 are truthful,

A15 =  

a b c d e f g
e d b c a g f ,     CS(A15) = {b}.

Because B1’s most-preferred alternative up to level h = 4 in B2’s ordering is b, the best

Compromise Set that B1 can achieve is {b}.  With respect to Theorem 5, r = 3.  While

alternative b is ranked higher by B1 than by B2, there are no alternatives ranked at or

above level r = 3 by B1 and preferred to b by B2.  Therefore, B1’s best response is to be

truthful.

Now assume that B2’s ranking is cegbadf.  If B1 is truthful, we have

A16 = 
a b c d e f g
c e g b a d f ,      CS(A16) = {c}.

Because B1’s most-preferred alternative up to level h = 4 in B2’s ordering is b, again the

best Compromise Set that B1 can achieve is {b}.  With respect to Theorem 5, r = 4.  But

because alternative c is ranked at or above level 4 by B1, and it is preferred to alternative

b by B2, B1 can do better by falsifying its preferences.  Following Theorem 5, B1 can

switch alternative c with an alternative that is ranked below level 4 in both bargainers’

rankings, which is alternative f in example A16.

If B1 interchanges c and f in its truthful ranking—announcing abfdecg instead—the

Compromise Set is indeed {b } rather than {c }:

A17 = 
a b f d e c g
c e g b a d f ,     CS(A17) = {b}.
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Thus, B1 obtains its second rather than its third choice when it acts strategically,

according to Theorem 5.

Theorem 6.  If k = 2h is even (so h is integral), and B2’s ranking, b, is fixed and

known to B1, then the best Compromise Set that B1 can achieve is either {br}, containing

B1’s most-preferred alternative among the top h alternatives in B2’s ranking, or

{br, bh+1},.  The latter is preferred to the former iff bh+1 > br (i.e., if bh+1 is preferred to br

according to B1’s true ordering, a).  To achieve a Compromise Set of the form {br}, B1’s

choice of ordering is essentially the same as in Theorem 5.  To achieve a Compromise Set

of the form {br, bh+1}, B1’s ordering must place br  at level  h + 1, which is a necessary

condition for B1 to be able to submit its true ranking.  If this condition is not satisfied by

B1’s truthful ranking, it can always be arranged to do so.

Proof.  See the proof of Theorem A7 in the Appendix.

To show the interesting twist that can occur when the number of alternatives is

even, let k = 6.  Suppose that B1’s true ranking is abcdef, and that B1 knows that B2 will

submit the ranking fcdbea.  If B1 submits its true ranking, the Compromise Set will be

{ c}.  But by reporting its ranking to be abecdf, B1 can achieve a Compromise Set that it

prefers to {c}:

A18 =  
a b e c d f
f c d b e a ,    CS(A18) = {b, c}.

An essential step in constructing B1’s reported ranking is to move d below the fourth

level.

Finally, in the Appendix we note that there is no limit to the number of ordinal

rankings by which B1 can improve the Compromise Set by misrepresenting its

preferences.  To illustrate this result when there are k = 9 alternatives (so h = 5), suppose

that B1’s true preference ordering is abdcefghi, and that B2 submits the ranking
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defgabchi.  By reporting its true ranking, B1 obtains the Compromise Set {d}; but by

reporting ranking abchifgde, B1 improves the Compromise Set by h - 2 = 3 ordinals:

A19 = 
a b c h i f g d e
d e f g a b c h i ,    CS(A19) = {a}.

As shown in the Appendix, this example can be generalized to any value of h (and k =

2h - 1) to show that B1 can improve the Compromise Set, relative to truthful reporting, by

h - 2 ordinals.

So far we have assumed that B1 has complete information about B2’s ranking of

alternatives.  Moreover, B1 knows what ranking B2 will submit (truthful or not), perhaps

by having a spy in B2’s camp.  Thereby B1 can formulate a best response, which may

involve making a false announcement of its preference ranking.

In most bargaining situations, however, it is unlikely that there will be such an

asymmetry of information that would allow B1 to exploit B2 in this manner.  Thus, we

next turn to an analysis of the game that two bargainers play when they both know each

other’s preference rankings and must, independently, choose announcement strategies.  

6.  Vulnerability of Two-Person Fallback Bargaining:  Nash Equilibria

To illustrate our general results that characterize all Nash equilibria in two-person

fallback bargaining games, we start with the case of k = 3 alternatives, {a, b, c}.

Consider the 2 x 2 game between B1 with preferences abc and B2 with preferences bac.

Assume each bargainer may be either truthful in its announcement (first strategy) or

untruthful (second strategy):

                                    B2
               bac        bca

                abc    {a, b}      {b}
         B1

    acb      {a}        {c}
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Clearly, each bargainer does better by being untruthful when the other bargainer is

truthful—obtaining its best possible Compromise Set ({a} for B1 and {b} for B2)—

whereas each bargainer gets its worst Compromise Set, {c}, when both bargainers are

untruthful.  In between, both bargainers obtain a middling Compromise Set, {a, b}, when

both are truthful.  This game is, in fact, Chicken, and outcomes {a} and {b}, which we

have underscored, represent the two pure-strategy Nash equilibria.13

Theorems A8 and A9 in the Appendix establish necessary and sufficient

conditions for pairs of rankings to be Nash equilibria.  These theorems, which

characterize all Nash equilibria in two-person fallback bargaining games—in which

unanimity and majority rule are the same—are analogous to Theorems 5 and 6 in section

6 (there is both an odd and even case).14

 To continue our development of the k = 3 case, the two pure-strategy Nash

equilibria shown in the 2 x 2 game become four pure-strategy Nash equilibria in an

expanded 3 x 3 game that includes additional strategies cab for B1 and cba for B2:

                                              B2

                 bac         bca       cba

                 abc     {a, b}      {b}       {b}

        B1    acb       {a}         {c}       {c}

    cab       {a}         {c}       {c}

                                          

13If the payoffs to the bargainers were in cardinal utilities, there would be a third mixed-
strategy Nash equilibrium.  Even if we were to assume payoffs in utiles, the mixed-
strategy equilibrium would not be compelling because it is Pareto-inferior to {a, b}.

14Because Theorems A7 and A8 require considerable technical development to state
precisely, we thought it more instructive not to repeat this development in the text but,
instead, to provide a detailed quantitative analysis of the cases of k = 3 and k = 4
alternatives.  These two cases offer new insights into the kinds of games that two
bargainers might play, which the characterization of Nash equilibria given by Theorems
A7 and A8 does not illuminate.  These theorems, nevertheless, are used to determine the
equilibria in the two cases.
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The strategies associated with the four underscored outcomes—all involving truthfulness

by one bargainer and untruthfulness by the other—occur in essentially the only two-

bargainer, three-alternative cases in which truthfulness on the part of one bargainer is not

a best response to truthfulness on the part of the other.  In effect, this game is an

expanded version of the classic 2 x 2 Chicken game.

But each bargainer can submit any of six possible orderings, producing a more

complex, but still Chicken-like, game.  Assume that B1’s preference order is abc, and

B2’s is bac.  The the ten possible pure-strategy Nash equilibria are indicated by asterisks

in Figure 1.  Observe that if

• B1 submits an ordering consistent with any equilibrium {a} (its most-preferred

   outcome); and

• B2 submits an ordering consistent with any equilibrium {b} (its most-preferred

   outcome),

the Compromise Set is {c}, which is the worst outcome for both bargainers.  We repeat,

however, that this case (abc versus bac) is unusual in the sense that if there are three

alternatives, and the bargainers’ true preference orders are selected equiprobabily, then

the probability that truthful reporting is not a Nash equilibrium is only 1/6.

Does the relative invulnerability of fallback bargaining to manipulation hold when

there are more than three alternatives?  We next consider the case of k = 4 alternatives,

{ a, b, c, d}, which each bargainer can rank in 4! = 24 different ways.  Holding fixed B1’s

preference ranking of abcd, we have analyzed when being truthful is a Nash equilibrium

in all four-alternative situations.  Our results follow:

1.  Truthfulness.  Truthfulness on the part of both bargainers is a Nash equilibrium

in 15 of the 24 cases (62.5%).  B2 can do no better than be truthful if its rankings are as

follows:
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• abcd, abdc, acbd, acdb, adbc, and adcb, all giving {a}

• bcda and bdca, both giving {b};

• cdab and cdba, giving {a, c} and {b, c}, respectively;

• dabc and dacb, both giving {a};

• dbca, dcab, dcba, giving {b}, { a, c}, and {b, c}, respectively.

2.  Chicken.  There are two pure-strategy Nash equilibria in the three games in

which B2’s truthful ranking is bacd, badc, or cbad (12.5%).  To illustrate these three

games, consider the game in which B2’s truthful ranking is bacd.  The Compromise Sets

associated with Nash equilibria in the following 2 x 2 game, which are underscored,

involve one bargainer’s being truthful while the other is not:

 B2
                bacd       bdca

                abcd    {a, b}      {b}
         B1

   adcb       {a}        {d}

This game is analogous to our earlier 2 x 2 game of Chicken—in which each bargainer

ranked only three alternatives—except now the “disastrous” outcome when both

bargainers are untruthful (i.e., {d}) is ranked fourth rather than third by both of them.

Of course, this 2 x 2 game is only a microcosm of the 24 x 24 game that the

bargainers would actually play.  Application of Theorem A6 shows that several of the

other 22 strategies for each bargainer are in equilibrium.  For example, B1’s choice of

acdb, acbd, or adbc also results in {a} if B2 is truthful by announcing bacd.  Similarly,

B2 has three additional Nash equilibrium strategies that it can use against B1’s truthful

announcement of abcd.  All these games are, in a sense, expanded versions of Chicken.

3.  Best Response.  One bargainer has a best response, which is untruthful, to the

other bargainer’s truthful announcement, but not vice versa, in 6 of the 24 cases (25%).

When such one-sided manipulation is possible, the resulting Nash equilibrium yields a
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pair of alternatives that favors the untruthful bargainer (1st and 2nd choices) over the

truthful bargainer (1st and 3rd choices):

• Assume B1 is truthful and announces abcd.  Then if B2’s truthful rankings are

cabd, cadb, or cbad, B2’s best responses are cdab, cdab, and cdba, respectively, resulting

in {a, c}, { a, c}, and {b, c}.

• Assume B2 is truthful and announces bcad, bdac, or dbac.  Then B1’s best

responses are adbc, acbd, and acbd, respectively, resulting in {a, b} in each case.

Discussion.  In the games in which B1 and B2 do not agree on a first choice, the

cases vulnerable to strategic manipulation increase from 16.7% (1 out of 6) in the three-

alternative case to 37.5% (9 out of 24) in the four-alternative case.  We hypothesize that

the strategic incentives for manipulation continue to increase, even on a proportional

basis, as the number of alternatives increases.

On the other hand, the benefits of manipulation may be illusory in some of these

situations.  Because the game is Chicken in the one case vulnerable to manipulation when

k = 3, and in three cases when k = 4, the risks are as great as the benefits.  Instead of

ensuring at least a next-best outcome by being truthful, a bargainer choosing an optimal

manipulative strategy in Chicken risks its worst outcome in attempting to obtain its best

outcome.  We believe that many bargainers, using fallback bargaining, would choose not

to court disaster in Chicken, even if they had complete information about their

opponent’s preferences.

By contrast, the six best-response cases in the four-outcome games are “safe” in the

sense that the other bargainer has no counter-response that yields it a better outcome.

Hence, the untruthful bargainer can use a manipulative strategy with impunity, because a

rational opponent has no recourse—it can do no better than be truthful.

But the benefits of such manipulation are not great:  an optimal strategy in the best-

response cases ensures the untruthful player of either its best or next-best outcome instead
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of, unfailingly, its next-best outcome when it is truthful.15  Furthermore, because each

bargainer has the opportunity of using a best-response strategy in only three of the 24

cases (12.5%), there are relatively few occasions in which to exploit such a strategy.

In the best-response cases, notice that the preferences of the bargainers are neither

coincident nor diametrically opposed.  Thus, for example, if B1 truthfully announces

abcd, B2 can be exploitative by being untruthful only if its truthful preferences are cabd,

cadb, or cbad.  In each case, what is best for B2 is next-worst for B1.

Most real-life bargaining situations, of course, are suffused with incomplete

information, to which our theoretical results on Nash equilibria in the three-outcome and

four-outcome complete-information games are not applicable.  Nevertheless, there is

certainly something Chicken-like in many bargaining situations; our findings support this

view, suggesting risks even when information is complete.

Under fallback bargaining, the bargainers’ rankings of alternatives completely

determine which one(s) will be chosen.  Because a bargainer has less opportunity to “feel

out” the resolve of an opponent when this procedure is invoked than when there is

endless haggling, we think that fallback bargainers will be reluctant to risk disaster, at

least in Chicken.  Moreover, if the bargainers have incomplete information about each

other’s preferences, they may not even know that they are playing Chicken—or one of the

more numerous games in which truthfulness is an optimal strategy.  Thus, it will often

pay for them to exercise caution by being truthful under fallback bargaining.

7.  Conclusions

Possible Bias.  While fallback bargaining seems a promising procedure for

inducing compromises, it is legitimate to ask how the alternatives on which the procedure

                                          

15To be sure, a reasonable chance of getting one’s best alternative, versus negotiating a
compromise that reflects an “average” of one’s best and next-best alternatives, will not be
trivial if there is a big difference between these two alternatives, as measured by their
cardinal-utility values.
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operates might be generated.  If the alternatives are strongly biased in favor of one

bargainer, then the procedure’s selection of a Pareto-optimal and middling outcome is a

cruel joke against the bargainer or bargainers suffering this bias.

Generating Alternatives.  One possible solution to the bias problem is to allow

the bargainers themselves to propose different alternatives.  If the bargaining is over a

future contract between labor and management, for example, each side could propose

alternative agreements that have similar cost implications, albeit in opposite directions.

A neutral party might be used to assess that each side’s alternative proposals more or less

match the gains and losses of each other, or are equidistant from the status quo.  Fallback

bargaining would then enable the bargainers to leapfrog the give-and-take of conventional

bargaining, which often bogs down in details, by finding a suitable settlement through the

simultaneous consideration of all alternatives.

Correspondence to Real-Life Compromises.  We think the give-and-take of

conventional bargaining, especially that which results in the successful settlements of

disputes, often approximates what fallback bargaining formalizes.  This is probably

especially true in business disputes, in which the costs and benefits of alternative

agreements can often be calculated with some precision.

In personal disputes, including divorce, this assessment is undoubtedly harder.  For

this purpose procedures like “adjusted winner,” in which the parties can allocate points

over the items (goods or issues) in dispute, may be more practicable (Brams and Taylor,

1996).

Normative Advantages.  We believe that one important advantage of fallback

bargaining over the give-and-take of traditional negotiations is that it allows for many

different proposals to be on the table at once.  Moreover, no decisions need be made

about features that are acceptable or not acceptable—as in the usual step-by-step

bargaining—in order for the parties to “advance” to a next stage.  Indeed, advancing in

fallback bargaining means generating new ideas, or packaging them in different ways,
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both of which may be facilitated by a mediator’s making independent proposals, or

combining parts of old ones, that are then put on the table as new alternatives.

In the end, of course, these alternatives must be ranked by the parties, but it may

not be clear, even to them, how best to do this until there are no more proposals put

forward.  Although it is possible that the parties will try to anticipate each others’ choices

and strategize when they announce their rankings, we think this would be extremely

difficult if there are, say, ten or more alternatives on the table.16  As we have illustrated

with only three or four alternatives and two bargainers, misrepresenting one’s preferences

may sometimes allow one to reap large benefits—but can dangerously backfire as well, to

the detriment of all.

The Role of Impasse.  We have mixed feelings about allowing the bargainers to

incorporate impasse (I) into their rankings.  On the one hand, some bargainers might

genuinely prefer I to any agreement below it and should be entitled to so indicate their

position.  On the other hand, the inclusion of I may lead to continuing disagreement that

is not authentic, because it allows for, and may even encourage, strategizing beyond that

which would occur without I.

Without I, fallback bargaining ensures some agreement and, therefore, closure of

the negotiation process.  But the middling outcome produced may not be a Condorcet

winner, as we showed, or possess other desirable features.

Fairness.  If there are more than two bargainers, it may be advisable to relax the

unanimity rule, assuming this is acceptable to the bargainers.  A simple or qualified-

majority decision rule will, in general, be more likely to find Condorcet alternatives, if

                                          

16When there are relatively few alternatives, fallback bargaining is more likely to produce
ties, which suggests that there needs to be a device for selecting one alternative from
Compromise Sets that contain more than one.  Sertel and Yilmaz (1997) offer different
suggestions for breaking ties, including choosing the alternative with the most first-
choice approvals, then second-choice approvals, and so on.  One might also choose the
alternative with the highest average approval.
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they exist, than does fallback bargaining (with unanimity).17  But the choice of a

Condorcet alternative could be at the price of inflicting on some bargainers outcomes

that, while Pareto-optimal, are quite damaging.  In such cases, a middling outcome for

everybody may be fairer.

We mention these effects of the inclusion of I, and the weakening of the unanimity

decision rule, to underscore that, as always, there are trade-offs.  Although most of our

analysis has been of fallback bargaining, which assumed unanimity and was often for

only two bargainers, further consideration of the multibargainer case, with a non-

unanimous decision rule and the inclusion of I, would be desirable.18

                                          

17On these and other grounds, Sertel and Sanver (1997) argue that the Majoritarian
Compromise, which presumes a simple-majority decision rule, would be desirable in
certain kinds of elections in Turkey.  Also at a normative level, Brams and Fishburn
(1983) argue for approval voting in multicandidate elections.  The approval-voting
winner and the Majoritarian Compromise will coincide if (i) all voters indicate the same
level of approval in making their selections and (ii) that level is the depth at which  a
majority winner appears for the first time.  Approval voting, in contrast to q-approval
fallback bargaining, makes no presumption of the lockstep descent of all voters to lower
and lower levels of approval until a q-approval winner appears; instead, it leaves open to
the voter where he or she draws the line between acceptable and unacceptable candidates.
Although this is somewhat akin to bargainers’ indicating I in their preference rankings—
below which alternatives are unacceptable—there is no descent process under approval
voting:  all candidates approved of receive their votes at the start.  Insofar as voters do
rank candidates, their rankings are unexpressed and, therefore, invidious.

18In the context of elections, it is worth mentioning those for a council or legislature, in
which there are multiple winners and one wishes to achieve proportional representation
(PR).  In this situation, we believe it sensible to set q relatively low (e.g., the size of the
electorate divided by the size of the legislature, or the size of an average constituency).
Then one would elect candidates who are ranked relatively high by relatively few
voters—the number in an average-size constituency—which would help to ensure that a
diversity of views is represented and thereby satisfy PR.  Related PR systems are
analyzed in Potthoff and Brams (1998).
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APPENDIX

Assume there are n bargainers, and the set of alternatives (possible agreements) is K,

where |K| = k.  Preferences of the bargainers over the alternatives are specified by an n × k

matrix A = (a ) such that, for i = 1, 2, ... , n, the i  row of A is a permutation of Kij
th

representing the ranking (in descending order) of bargainer i. 

For each bargainer, i, and each alternative x 0 K, define j (x) to be the value of ji
A

satisfying a  = x.  Thus, j (x) is bargainer i’s ranking for alternative x.  Define i’sij i
A

satisfaction with alternative x by h (x) = k ! j (x).  Usually, j (x) and h (x) can bei i i i
A A A A

denoted j (x) and h (x), respectively, with no possibility of confusion.  Note that a  is i’si i i1

most preferred alternative, so j (a ) = 1 and h (a ) = k ! 1.i i1 i i1
A A

To describe fallback bargaining formally, define the set of depth d agreements as 

for d = 0, 1, 2, ..., k.  Note that CS  is the set of all alternatives that are among the top d ind

the ranking of every bargainer.  Thus, any outcome in CS  produces a minimumd

satisfaction level of k ! d for every bargainer.  Clearly, 

Next, define the (bargaining) depth, d*, by 

Because of the chain of containment relations above, d* is well-defined.  The

Compromise Set, CS(A) = CS, is the subset of K defined by  CS = CS .  Thus, thed*

Compromise Set is the set of all alternatives that are among the first d* in the ranking of

every bargainer, where d* is the smallest value that makes this set non-empty.  In terms of

satisfaction, every alternative in CS gives every bargainer a satisfaction level of at least k

! d*, and any alternative not in CS gives at least one bargainer a satisfaction level strictly

less than k ! d*.  This observation demonstrates that CS is identical to the Kant-Rawls

Social Compromise Hurwicz and Sertel (1997).
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 Bounds on the size of CS f K can be found easily. 

Lemma A1. 1 # |CS| # min{d*, n}.  

Proof. Because CS is non-empty, |CS| $ 1.  Because every element of CS must

appear among each bargainer’s d*  highest ranked alternatives, |CS| #

d*.  Because CS  = i, every element of CS is the d*  entry in thed* ! 1
th

ranking of some bargainer.  There are only n bargainers, so |CS| # n

follows. 

The bargaining depth, d*, can be as low as 1, when all bargainers rank the same

alternative first.  The maximum value of d* is given by 

Theorem A1. d* # lk ! k/n + 1m .

Proof. The first d entries of all n rows of A contain nd items, some of which

may be duplicates.  Each item is one of the k alternatives in K.  By the

pigeonhole principle, some alternative must appear at least jnd/kk times.

Now suppose that d > k ! k/n.  Because nd/k > n ! 1, some

alternative must appear n times in the first d items of all rows.  This

implies that d $ d*.  If k ! k/n is integral, we have shown that 

d* # k ! k/n + 1; if not, we have shown that d* # jk ! k/nk.  The

conclusion now follows easily.

We now demonstrate by example that the bound in Theorem A1 is tight.  That is,

for any n and k, it is possible to find an n × k  matrix A such that the bargaining depth d*

= lk ! k/n + 1m.  We take K = {1, 2, ... , k}.

If n $ k, a matrix with the required property is easy to construct; simply choose A so

that, for i = 1, 2, ..., k, a  = i.  Thus, each of the first k rows of A has a different finalik

entry, guaranteeing that d* = k.

Assume that n < k and let p = jk/nk.  For i = 1, 2, ... , n, and j = 1, 2, ... , k, define the



a Ak
ij ' [ ( i & 1) p % j ] mod k .

A A11 '

1 2 3 4 5 6 7 8 9 10 11

5 6 7 8 9 10 11 1 2 3 4

9 10 11 1 2 3 4 5 6 7 8

,

A A12 '

1 2 3 4 5 6 7 8 9 10 11 12

5 6 7 8 9 10 11 12 1 2 3 4

9 10 11 12 1 2 3 4 5 6 7 8

,

CSd
q ' x 0 K : i : ji (x ) # d $ q

CS q
0 ' i f CS q

1 f CS q
2 f . . . f CS q

k ' K .

dq
( ' min { d : CS q

d û i }

A3

entries of A  byAk

It is easy to verify that, for the matrix A  so defined, d* = k ! p + 1.  For example, if n =Ak

3 and k = 11,

so d* = 8, whereas if n = 3 and k = 12, 

so d* = 9.

Now we generalize the definition of fallback bargaining to q-approval fallback

bargaining, where 1 # q # n.  As indicated in the text, the idea is to weaken the conditions

for compromise so that acceptance by only q bargainers is required for a compromise. 

Therefore, define the set of q-approval agreements of depth d by  

for d = 0, 1, 2, ..., k.  Thus, CS  is the set of all alternatives that are ranked among the topd
q

d by at least q bargainers.  This definition generalizes fallback bargaining, which sets q =

n.  Thus, CS  = CS .  Clearly,d d
n

Define the (q-approval fallback bargaining) depth, d *, by q

Because of the chain of containment relations above, d * is well-defined.  The q-approvalq

Compromise Set, CS  is the subset of K defined by CS  = CS  where d = d *.  Thus, theq q q
d q

q-approval Compromise Set is the set of all alternatives that are among the d * highestq
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ranked for at least q bargainers, where d * is the smallest value that makes this set non-q

empty.

We now characterize the q-approval Compromise Set in terms of satisfaction.  For

alternative x 0 K, recall that bargainer i’s satisfaction level is h (x) = k ! j (x).  Define thei i

q-satisfaction level of x by 

Thus, for at least q bargainers the level of satisfaction at x is at least h (x), but there areq

fewer than q bargainers whose level of satisfaction at x strictly exceeds h (x).  In otherq

words, h (x) is the minimum satisfaction level of the q most satisfied bargainers at x.q

Theorem A2. Let x 0 K.  Then x 0 CS  if and only if x maximizes h (x).  Theq q

maximum value of h (x) is k ! d *.q
q

Proof. For any x 0 K, x 0 CS  if and only if there are at least q differentd
q

bargainers, i, for whom j (x) # d, i.e., h (x) $ k ! d.  First suppose that xi i

0 CS .  Because CS  = CS  for d = d *, it follows that there are at leastq q q
d q

q different bargainers, i, for whom h (x) $ k ! d *, so h (x) $ k ! d *. i q q
q

Suppose that h (x) = h > k ! d *.  Then there are at least q bargainers, i,q q

for whom h (x) $ h, i.e.,  j (x) # k ! h, so i i

CS  û i.  But k ! h < d *, and d * is the minimum value of d fork ! h q q
q

which CS  û i.  This contradiction shows that if x 0 CS , then d
q q

h (x) = k ! d *.q
q

Now suppose that x Û CS .  Then there are fewer than q differentq

bargainers, i, for whom j (x) # d *, i.e., h (x) $ k ! d *.  Therefore, h (x)i q i q
q

< k ! d *.  We have shown that the maximum value of h (x) is k ! d *,q q
q

and this value is attained if and only if x 0 CS .q

Bounds on the size of CS  f K are easily found.q

Lemma A2. 1 # |CS | # min{nd*/q, n}.q
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( ' l kq & k % n

n m .
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Proof. The proof that 1 # |CS | # n is exactly as in Lemma A1.  Every elementq

of CS  must appear at least q times among the d * highest-rankedq
q

alternatives of the n bargainers.  Thus q|CS | # nd *, and the lemmaq
q

follows easily.

The bargaining depth, d *, can be as low as 1, when there is one alternative that isq

ranked first by at least q bargainers.  In fact, d * = 1 always.  The maximum value of d *1
q

is given by

Theorem A3.

Proof. As in Theorem A1, the pigeonhole principle shows that some

alternative must appear at least jnd/kk times in the first d entries of all n

rows of A.  If d > k(q ! 1)/n, then nd/k > q ! 1, which implies that d $

d *.  If k(q ! 1)/n is integral, this proves that q

d * # k(q ! 1)/n + 1; if not, if proves that d * # jk(q ! 1)/nk.  Theq
q

conclusion now follows directly.

The construction given above, exemplified by A  and A , can be used to demonstrateA11 A12

that the bound in Theorem A3 is the best possible.

We now show that, for any value of q, the q-approval Compromise Set, CS  ,q

contains only Pareto-optimal alternatives.  Recall that alternative y is Pareto-superior to

alternative x, written y  x, if and only if j (y) < j (x) for all i = 1, 2, ... , n.  If x has thei i

property that no y exists such that y  x, then x is Pareto-optimal.

Theorem A4. If x 0 CS , then x is Pareto-optimal.q

Proof. We prove that if x is not Pareto-optimal, then x Û CS .  Assume that q

y  x, that the bargaining depth is d * = d, and that x 0 CS  = CS . q d
q q
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Then there exists a set of bargainers, B f {1, 2, ... , n}, such that |B| $

q and j (x) # d for all i 0 B.  But for every i = 1, 2, ..., n, i

j (y) < j (x).  Thus, for every i 0 B, j (y) # d ! 1.  It follows that i i i

CS  û i, contradicting the hypothesis that the bargaining depth is d. d ! 1
q

The conclusion now follows.

Now we provide a formal description of fallback bargaining with impasse.  For

each of the n bargainers, a preference ranking on K c {I} is assumed, where I represents

“Impasse” and K is the set of alternatives.  (Note that I Û K.)  If |K| = k, then the

bargainers’ preferences are specified by an n × (k + 1)  matrix B = (b ) such that, for i = 1,ij

2, ... , n, the i  row of B is bargainer i’s ranking (in descending order).  For eachth

bargainer, i, and alternative x 0 K, denote by  j (x) the value of j satisfying b  = x, and byi ij
B

j (I) the value of j satisfying b  = I.i ij
B

Now, for d = 0, 1, 2, ..., k, define the set of depth d agreements as 

Note that CS  is the set of all alternatives that are among the top d in the ranking of everyd

bargainer, and that every bargainer prefers to I.  Clearly, 

Note that CSI  = i is possible; it occurs when no alternative is preferred by everyk

bargainer to I.  

The Compromise Set with Impasse, CSI(B) = CSI, is defined by CSI = {I} if 

CSI  = i.  Otherwise, define the bargaining depth, d*, by k

and define CSI = CSI .  Thus, the Compromise Set with Impasse consists of eitherd*

Impasse, or of all alternatives that are (i) preferred by every bargainer to I, and (ii)  among

the top d* in the ranking of every bargainer; here, d* is the smallest value that makes this

set non-empty.

The next result connects fallback bargaining with and without impasse.
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Theorem A5. In fallback bargaining with impasse, let the alternative set be K and let

the n × (k + 1) matrix B represent preferences.  Then 

CSI(B) û i, and, if I 0 CSI(B), then CSI(B) = {I}.  If x 0 K and x 0

CSI(B), then x  I.  Construct the n × k matrix A by deleting I from each

row of B.  If x  I and x 0 CS(A), then x 0 CSI(B).

Proof. First note that, by construction, either CSI(B) = {I} or CSI(B) = CSI  ford

some d such that CSI  û i.  Moreover, CSI  f K.  Thus d d

CSI(B) û i, and either CSI(B) = {I} or CSI(B) f K.  Now suppose that x

0 K and x 0 CSI(B).  Then x must precede I in the ranking of each

bargainer, i, so x  I.  Finally, suppose that x  I and x 0 CS(A).  If x Û

CSI(B), then there exists y 0 K such that y  I and 

max  {j (y)} < max  {j (x)}.  But, for each i, j (y) < j (I) and i i i i i i
B B B B

j (x) < j (I), which implies that j (y) = j (y) and j (x) = j (x).  Iti i i i i i
B B A B A B

follows that max  {j (y)} < max  {j (x)}, contradicting the assumptioni i i i
A A

that  x 0 CS(A).  

Corollary A1. All elements of CSI(B) are Pareto-optimal.

Proof. First suppose that CSI(B) = {I}.  By construction, there is no x 0 K such

that j (x) < j (I) for all i = 1, 2, ..., n, so I is Pareto-optimal.  Otherwise,i i
B B

suppose that x 0 K and x 0 CSI(B).  As demonstrated in the proof of

Theorem A5, no alternative y 0 K Pareto-superior to x can exist.  Thus x

is Pareto-optimal.

Now we turn to the question of one bargainer’s best response to another’s ranking. 

The next theorem concerns the optimal ranking choice for bargainer B1 when B1 knows

the ranking of its opponent, B2.  For simplicity, we assume that 

K = {1, 2, ... , k}, and that B1’s true preference ranking over K is given (in descending

order) by the permutation E = <1, 2, ... , k>.  For now, we assume that B1 knows that B2’s
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ranking will be the permutation b = <b , b , ... , b >.  B1 can submit any permutation a =1 2 k

<a , a , ... , a >.1 2 k

Define a bargaining matrix A(a, b) by constructing a 2 × k matrix with first row a

and second row b.  Let CS(a, b) = CS(A(a, b)) denote the Compromise Set for this matrix. 

As a ranges over all permutations of K, many different Compromise Sets can arise. 

Denote this collection of subsets of K by P(b) f 2 , the power set of K.  B1’s objective isK

to pick a permutation a such that CS(a, b) is most preferred within P(b) (according to

B1’s true preference ordering, E).

B1’s preference ordering, E = <1, 2, ..., k> is defined on K rather than 2 .  ToK

represent B1’s preferences on 2 , and therefore on P(b), we assume that K

(A1) If 1 # r < s # k, then {r}  { s}.

(A2) If S f K and |S|$ 2, then min{r: r 0 S}  S  max{r: r 0 S}.

where S   S  means that B1 prefers S  to S .  This preference ordering is a minimal1 2 1 2

extension from a complete order on K to a partial order on 2 .  Note that using this partialK

order, we cannot say whether B1 prefers {1, 3} or {2}; we know only that {1}  {1, 2} 

{2}  {2, 3}  {3} and  {1}  {1, 2}  {1, 3}  {2, 3}  {3}.  

Given b, we say that a permutation a = a* = <a *, a *, ... , a *> is a best response1 2 k

for B1 if CS(a*, b) = CS*(b) is maximal within P(b) according to this partial ordering.  In

general, it is possible for P(b) to have many maximal elements; as will be seen below,

however, the maximal subset (with respect to the partial order defined above) is always

unique in this case.  If so, we call the unique maximal subset CS*(b) an optimal

compromise for B1, and call any a* such that CS(a*, b) = CS*(b) an optimal response for

B1.  If CS(E, b) = CS*(b), then B1 can do no better than to respond truthfully to b.  We

call b incentive-compatible (for B1) in this case.

For t = 1, 2, ... , k, define the top-t set of b by U(b, t) = {b , b , ... , b }.  Thus U(b, t)1 2 t

is the set consisting of the first t elements in B2’s permutation.  Similarly, define the  top-

t set of E = <1, 2, ... , k> by U(E, t) = {1, 2, ... , t}.  

It is convenient to identify best responses according to the parity of the alternative

set.  The next theorem describes the case when the number of alternatives is odd. 
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Theorem A6. Fix b, and suppose that k = 2h ! 1 where h is integral.  Define r = b  =f

min {s: s 0 U(b, h)}.  Then CS* = {r}, and b is incentive-compatible

for B1 if either r $ f or r < f and U(b, f) 1 U(E, f)= {b }.  Otherwise, V =f

{s: r < s # f and s 0 U(b, f)} û i.  In this case, b is not incentive-

compatible for B1; to construct an optimal response, define W = {s 0 K

! U(b, f): s > f}.  Then |V| # |W|, so given any enumerations of V = {v ,1

v , ... } and W = {w , w , ... }, a* can be constructed as follows:2 1 2

Proof: First, note that the bound given by Theorem A1 is d* # h.  Thus the

fallback process must end within h steps, and the best compromise set

that B1 can hope to achieve is {r} = {b }.  Note that f # h.  We showf

that this Compromise Set can always be achieved by an appropriate

choice of a*.  In fact, it is easy to verify that CS(E, b) = {r} whenever r

$ f or r < f and U(b, f) 1 U(1, f)= {b }, so b is incentive-compatible forf

B1 in this case, and CS* = {r}.  

Now assume that r < f.  It is easy to show that 

U(b, f) 1 U(E, f) = V c {b }.  The case that remains to be settled occursf

when V û i; if so, CS(E, b) must contain an alternative other than r (it

may contain r also). 

We show how to achieve {r} = CS*(b).  The overlap set V is the

set of possible compromises that might supplant {r}; they follow r in

B1’s ordering, but precede it in B2’s.  The permutation a* constructed

as indicated is identical to E = <1, 2, ... , k>, except that all entries in V

are interchanged with entries in W.  This works because W contains

only alternatives s that follow b  in b, so cannot be in CS(a*, b).  Alsof

the entries of V and W cannot coincide, because s 0 V implies s # f, and

s 0 W implies s > f.  
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It remains to show that |V| # |W|.  The elements of U(b, f) that do

not exceed f are r and the elements of V.  Because |V| + 1 of the f entries

of U(b, f) are less than or equal to f, f ! |V| ! 1 entries must exceed f. 

But in all of K, only 2h ! 1 ! f elements exceed f.  Thus W, which

contains exactly the elements that exceed f and fall in K but not U(b, f),

must contain exactly 

|W| = 2h ! 1 ! f ! [f ! |V| ! 1] = 2h ! 2f + |V| entries.  Because f # h, if

follows that |V| # |W|, completing the proof.

When the number of alternatives is even, the situation is a little more complicated, as

shown next:

Theorem A7. Fix b, and suppose that k = 2h, where h is integral.  Define r = b  = minf

{s: s 0 U(b, h)}.  If r < b , then CS* = {r}, and b is incentive-h + 1

compatible for B1 if either r $ f or r < f and 

U(b, f) 1 U(E, f) = {b }.  Otherwise, b is not incentive-compatible forf

B1, and a* as constructed in Theorem A5 produces CS(a*, b) = {r}.  If

r > b , then CS* = {r, b } and b is incentive-compatible for B1 ifh + 1 h + 1

and only if r = h + 1.  Otherwise, an optimal response for B1 is 

Proof. Note that the bound given by Theorem A1 is d* # h + 1.  The fallback

process must end within h steps, producing a Compromise Set

containing either one or two elements of U(b, h), or end in exactly h + 1

steps, producing a Compromise Set containing b  and one element ofh + 1

U(b, h).  It can be verified directly that, subject to these restrictions, the

most preferred compromise set that B1 can achieve is CS* = {r} if r =

b  < b , and CS* = {r, b } if r > b .  Again, the plan of the proof isf h + 1 h + 1 h+1
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to show that these possibilities can always be achieved.  

First, if  r < b , the proof of Theorem A6 can be mimicked toh + 1

demonstrate that b is incentive-compatible for B1 if either r $ f or 

r < f and U(b, f) 1 U(E, f)= {b }, and that otherwise b is not incentive-f

compatible for B1, and an optimal response a* can be constructed

exactly as in Theorem A6.

Now suppose that r > b .  Then B1 prefers b  to any of b , b ,h+1 h + 1 1 2

... , b .  It is easy to verify that if B1 submits the ordering E = <1, 2, ...,h

k>, then the result will be CS* = {r, b } if and only if r = h + 1,h + 1

which means that the first h elements of b are the last h elements in

B1’s true preference ordering.  

If r < h + 1, it is easy to verify directly that b  Û CS(E, b). h + 1

Under the preference order on P(b) defined above, {r, b }  { r} ë h + 1

CS(E, b).  It is not difficult to verify directly that a*, as constructed

above, produces CS(a*, b) = {r, b }. h + 1

The text contains examples showing the application of Theorems A6 and A7.

One example, given in the text for k = 9 (A ), is worth elaborating in general.  It19

shows that the potential benefits of using a* rather than the truthful ordering are

unlimited.  Suppose that k = 2h ! 1, where h is integral, and that 

b = <h ! 1, h, ... , 2h ! 3, 1, 2, ... , h ! 2, 2h ! 2, 2h ! 1>

Note that b  = 1, and that CS(E, b) = {h ! 1}.  By Theorem A6, CS*(b) = {1} because r =h

1 and f = h.  Using V = {h ! 1, h} and W = {2h ! 2, 2h ! 1}, the optimal Compromise Set

CS*(b) = {1} can be achieved by the optimal response

a* = <1, 2, ... , h ! 2, 2h ! 2, 2h ! 1, h +1, ... , 2h ! 3, h ! 1, h>

Note that the use of the best response improved the Compromise Set from {h ! 1} to {1},
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relative to the truthful response, E.  

We end this Appendix with a characterization of truthful equilibria, which are

illustrated in the text.  We continue with the assumptions introduced earlier to define a

partial preference order for B1 on P(b), and apply them also to B2 to produce a partial

order on P(a).  We use subscripts to indicate which partial order is being referred to; for

instance, s   s  means s  is preferred to s  according to ordering a—in other words, that1 a 2 1 2

s  precedes s  in a.  Likewise, if S f K, then max {S} is the most-preferred element in S1 2 a

according the ranking a, and max {S} is the most-preferred element in S according theb

preference ranking b.  As usual, the ranking is in descending order of preference, so

alternatives earlier in the ranking are more preferred.

Let CS*(b; a) represent the optimal Compromise Set for B1, based on preference

permutation a, given that B2’s ranking is b, and let CS*(a; b) represent the optimal

Compromise Set for B2, based on preference permutation b, given that B1’s ranking is a. 

The pair of rankings (a, b) represents a Nash equilibrium if and only if CS(a, b) = CS*(b;

a) = CS*(a; b), in other words, if a is a best response to b for B1, given that a represents

B1’s true preference ranking, and b is a best response to a for B2, given that b represents

B2’s true preference ranking.  

The next two theorems characterize all Nash equilibrium pairs of rankings.  As

usual, that the situation is more complicated when the number of alternatives is even.

Theorem A8. If k = 2h ! 1 is odd, then (a, b) is a Nash equilibrium pair if and only if

max {U(b, h)} = max {U(a, h)} = c and, for some d satisfying 1 # d #a b

h, U(a, d) 1 U(b, d) = {c}.

Proof. From Theorem A6, CS*(b; a) = max {U(b,h)} and CS*(a; b) =a

max {U(a, h)}, so the requirement that max {U(b, h)} = b a

max {U(a, h)} follows from the definition of Nash equilibrium. b

Assuming it is met, let the most-preferred common alternative be c. 

If, for some d, 1 # d # h, a  = b  = c, then Theorem A6 shows thatd d

neither bargainer can do better than to submit its true preference

ordering.  Otherwise, suppose that b  = c and a  = c, where f < d.  Byd f
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Theorem A6, B2 cannot do better than to submit b. To achieve c, it may

be necessary for B1 to submit an ordering other than a; this occurs if

and only if V û i, where 

V = {s 0 K: a   s ë  a  and s  b }.  But c 0 U(a, d) 1 U(b, d), andf a a d b d

U(a, d) 1 U(b, d)= {c} iff V = i.  The situation is analogous if c

appears earlier in b than in a.

Theorem A9. If k = 2h is even, define u  = max  {U(b, h)}, 1 a

v  = max  {U(b, h + 1)}, u  = max  {U(a, h)}, and 1 a 2 b

v  = max  {U(a, h + 1)}.  Then (a, b) is a Nash equilibrium pair iff2 b

either u  = v  = u  = v  = c and, for some d, 1 # d # h, 1 1 2 2

U(a, d) 1 U(b, d) = {c}, or u  ñ  v , u  ñ  v , u  = v , u  = v , and 1 a 1 2 b 2 1 2 2 1

U(a, h + 1) 1 U(b, h + 1) = {u , u } = {v , v }.1 2 1 2

Proof. Based on Theorem A7, analogous to the relation of Theorem A8 to

Theorem A6.

The text contains examples illustrating Theorems A8 and A9.


