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Abstract

This paper investigates belief learning. Unlike other investigators who have
been forced to use observable proxies to approximate unobserved beliefs, we
have, using a belief elicitation procedure (proper scoring rule), elicited subject
beliefs directly. As a result we were able to perform a more direct test of the
proposition that people behave in a manner consistent with belief learning.
What we find is interesting. First to the extent that subjects tend to ”belief
learn” the beliefs they use are the stated beliefs we elicit from them and not the
”empirical beliefs” posited by fictitious play or Cournot models. Second, we
present evidence that the stated beliefs of our subjects differ dramatically, both
quantitatively and qualitatively, from the type of empirical or historical beliefs
usually used as proxies for them. Third, our belief elicitation procedures allow
us to examine how far we can be led astray when we are forced to infer the
value of parameters using observable proxies for variables previously thought to
be unobservable. By transforming a heretofore unobservable into an observable
we can see directly how parameter estimates change when this new information
is introduced. Again, we demonstrate that such differences can be dramatic.

Key Words: Belief Learning, Game Theory, Experimental Economics

JEL Classification: D83, C91, C73

1 Introduction

In recent years game theorists and experimental economists have focused a great deal
of attention on the question of how people learn when repeatedly playing a simple
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Economics for its financial support. In addition, we owe a great deal of thanks to Sangeeta Pratap
for all her assistance as well as that of Gautam Barua and Allan Corns. Finally, we would like
to thank the participants of the Cal Tech/UCLA Experimental Economics Workshop and the New
York University Microeconomcis Seminar for their helpful suggestions.



matrix game. While some, e.g., Roth and Erev (1995) and Arthur (1991), focus on
reinforcement learning in which people learn by looking back at their experience and
seeing what has been successful in the past!, others, Cheung and Friedman(1997),
Boylan and El-Gamal (1993), Sopher and Mookherjee (1994, 1997)%, Van Huyck,
Battalio and Rankin (1997) and Fudenberg and Levine (1998) focus on belief learning
and look to the past to update beliefs about their opponent’s future action. Still
others, Camerer and Ho (1997) select the best features of both of these models (among
other things) in an approach that has proven to be remarkably successful.

In all of this research, however, there is an assumption that while past actions and
payoffs are observable, beliefs are unobservable and therefore must be represented by
proxies and inferred. For example, in the two most common belief learning models,
the Cournot and fictitious play models, beliefs are either equivalent to the last period
action of one’s opponent, or an average of the previous actions of one’s opponent.
Some authors also use what we shall subsequently refer to as v — weighted empirical
beliefs (or simply empirical beliefs). Here a weighted average of past actions is taken
as a proxy for beliefs, where the weights decline geometrically at rate . (See Van
Huyck et al.(1997), Cheung and Friedman (1997) and Fudenberg and Levine’s (1998)
model of smooth fictitious play). At various points in our paper below we will focus
on fictitious play models because, given their widespread use, both experimentally
and theoretically, they form a natural baseline from which to measure our results

This paper presents the results of a series of two-person constant-sum game ex-
periments in which we directly elicited the beliefs of subjects using a “proper scoring
rule” which provided subjects with an incentive to report their beliefs truthfully. We
call these beliefs the subjects’ “stated” beliefs. In addition, in two of the three ex-
periments reported on here, we also allowed our subjects to choose mixed strategies.
As a result, this paper presents, we think for the first time, an investigation of belief
learning in which all relevant variables are observable; i.e., we study belief learning
using real beliefs.>*5 Our experimental results lead to two broad conclusions. First,
under the assumption that people best-respond to some beliefs, we find that stated
beliefs fit the data better than the other beliefs we study (Cournot, fictitious play
and more generally, the class of v — weighted empirical distributions). Second, under

!Reinforcement learning is actualy an outgrowth of the psychology literature (see, Thorndike
(1898) and Bush and Mosteller (1955)) whose main unifying theme is the “law of effect” which
states that actions that have been successful in the past should be used more often on the future.

2Sopher and Mookhejee actually investigate both belief and reinforcement learning

3We would like to thank Jason Shachat for supplying us with his mixed stratetgy laboratory
program.

4Shachat (1996) and Noussair (1997) allow for the use of mixed strategies, but neither allow for
observable beliefs.

5Others have elicited beliefs in the study of public goods problems most notably Offerman (1997)
and Offerman, Sonnemans, and Schram (1996). See also McKelvey and Page (1990). However,
this paper presents an attempt to integrate this belief solicitation procedure into the study of belief
learning, which, to our knowledge, has not been attempted before.



the assumption that people choose strategies via a logistic belief learning rule gener-
ated by some beliefs, we again find that stated beliefs fit the data the best. These
conclusions validate our belief elicitation procedure.

Specifically, we ask and attempt to answer three questions:

Question 1: Are fictitious play beliefs (or, more generally, v — weighted
empirical beliefs) a good proxy for stated beliefs.

Question 2: If subjects best respond, what is it that they best respond
to? I.e., do they best respond to their stated or their empirical beliefs?

Question 3: If, as the experimental learning literature leads us to be-
lieve, subject behavior can best be described by a logistic belief learning
model, which beliefs, when employed in such a model, provides the best
fit for our data?

What we find is quite revealing.

First, we find little support for the idea that the process of forming fictitious play
or empirical beliefs is descriptive of how subjects (or perhaps people in general) form
their true or stated beliefs. Fictitious-play beliefs define a very stable time path while
the stated beliefs of our subjects vary greatly from period to period. This leads us to
question the validity of all belief-based models which rely on history alone to define
beliefs, such as fictitious play or Cournot Best Response models.

Our study of Question 2 indicates that it is stated beliefs that they best respond
to the most often. More specifically, in our Experiment 1 where only pure strate-
gies are permitted for subjects, the strategy choices of subjects are consistent with
best responses to their stated beliefs almost 75% of the time, while the comparable
percentages for Cournot and Fictitious play beliefs don’t exceed 50%. Finally, in
studying Question 3, we use a logit model to predict choice behavior of individuals,
and use this to compare three belief formation models — Cournot, Fictitious play,
and Stated — in an effort to see which explains our data best. What we find is that
the logit model using Stated beliefs does a far better job of explaining our choice data
than do any of the other belief formation models we examined. Our results, through
goodness of fit measures, tend to support the view that people do, in fact, follow a
belief learning method of play. The only caveat, of course, is that they appear to use
their heretofore unobserved stated beliefs to do so and not the fictitious play beliefs so
often referred to in the literature or various other ~ — weighted empirical beliefs. It
is this discovery that we feel provides one of the main lessons to be learned from this
paper. Furthermore, because we are able in this work to measure beliefs directly and
compare them to the types of empirical beliefs so frequently used in the literature,
our experimental design provides a perfect setting within which to investigate how
far off parameters estimates derived using only observable action data can be when
compared to the those estimated using true or at least stated beliefs.

In this paper we will proceed as follows: In Section 2 we will explain the exper-
iments performed and present our experimental design. In Sections 3 and 4 we will
discuss our results, while in Section 5 we will discuss what we feel we have learned



from these experiments and present some conclusions.

2 Experimental Design and Procedures

2.1 Experimental Design

Three different sets of experiments were run using the experimental laboratory of the
C.V. Starr Center for Applied Economics at New York University during the Fall
of 1997 and Spring of 1998. Subjects were recruited from undergraduate economics
courses and reported to the lab for experiments that took between 1% and 2 hours.
No subjects had any training in game theory. In these experiments subjects played a
2x2 game 60 times with the same opponent under various treatments. Payoffs were
denominated in experimental dollars and converted into U.S. dollars at a rate of 1 pt.
=$.05 for row choosers and 1 pt. = $ 0.05 for column choosers. Subjects, on average,
earned approximately $15.00 for their participation which was paid to them at the
end of the session. They were paid $3.00 simply for showing up.

The program used to run the experiments was generously supplied to us by Jason
Shachat and the Experimental Science Lab of the University of Arizona. In using
this program, subjects are able, if they wish, to actually choose mixed strategies by
specifying the exact probability mixture to use in any given round.®

In the three experiments the identical 2x2 constant sum game was run under
different informational and strategic conditions. In Experiment 1, as is true in most of
the literature, subjects were constrained to only use pure strategies. In Experiments
2 and 3, subjects played this game with the ability to use both pure and mixed
strategies. In both Experiment 1 and Experiment 2, after each round the subject was
informed only of the action chosen by his or her opponent and the payoffs of each
subject. They were not informed about the actual mixture used. In Experiment 3, at
the end or each round subjects could view the actual mixture used by their opponent.
Experiment 1 will be called the Pure strategy experiment, Experiment 2 will be called
the Low information experiment, and Experiment 3 the High information experiment.
The game used in Experiments 1-3 is presented below:

Game Played in Experiments 1-3:
Payoff Matrix

Player 2
Red Green
Player 1  Red 6,2 3,5
Green 3,5 9,3

This game has many features we desired in our design. First, we wanted a game
that was easy to understand, with an equilibrium that was not too difficult to either

8The instructions were computerized and are available upon request from the author.

4



Table 1: Experimental Design

Feasible Strategies | Information | No. of | No.of No. of
Rounds | Subjects | Pairs

Experiment 1 | pure low 60 28 14
Experiment 2 | mixed low 60 28 14
Experiment 3 | mixed high 60 20 10

calculate or learn deductively. We wanted the equilibrium to be a mixed one, however,
since we did not want equilibrium beliefs to be degenerate. These features were
provided by a 2x2 constant sum game since a 2x2 game is as simple a game as one
can find and the equilibria of such games are supported not only by the logic of
best responses but also the entire weight of the mini-max theorem. Further, because
our objective was to study learning, we wanted subjects to play against the same
partner repeatedly but in a setting where the repeated game equilibrium prescription
is unambiguous. This criterion was also met nicely by the 2x2 game we employed.

Finally, an important feature of the 2x2 game is that there are large portions of
the unit interval, the domain of beliefs, over which the best response is constant. For
example, in our experimental game whenever stated or empirical beliefs predict that
Red will be chosen with a probability p € [0.4, 1],these beliefs prescribe the same
best response for our subjects. Such a best response function stacks the deck against
observing differences across our belief models so that if we do observe statistically
significant differences our results are that much more persuasive.

The full experimental design is described in Table 1:

2.2 Eliciting Beliefs

Before subjects chose their mixed or pure strategies in any round, they were asked to
write down on a worksheet a probability vector that they felt represented their beliefs
or predictions about the likelihood that their opponent would use each of his of her
pure strategies.”

In Experiment 1, where only pure strategies are allowed, we rewarded subjects for
their beliefs as follows: First subjects report their beliefs by writing down a vector
I = (TRed, TGreen) indicating their belief about the probability that the other subject
will use the Red or the Green strategies®. Since in this experiment only one such
strategy will actually be used, the payoff to player i when the Red strategy is chosen

“See Appendix 1 for the instructions concerning this part of the experiment.
8In the instructions m; and r;; are expressed as numbers in [0,100], so are divided by 100 to get
probabilities.



by a subject’s opponent and r is the reported belief vector of subject i will be:

1
Thea = 0.10 = o5 { (1= 7ea)® + (rGreen) | (1)

The payoff to subject i when the Green strategy is chosen is, analogously,

1
MGreen = 0.10 — 2_0 {(1 - TGTeen)Q + (TRed)Q} . (2)

The payofts from the prediction task were all received at the end of the experiment.

Note what this function says. A subject starts out with $0.10 and states a belief
vector I = (7'Rred, TGreen)- 1f their opponent chooses Red, then the subject would have
been best off if he or she had put all of their probability weight on Red. The fact
that he or she assigned it only rz.; means that he or she has made a mistake. To
penalize this mistake we subtract (1 — rgeq)? from the subject’s $0.10 endowment.
Further, the subject is also penalized for the amount he or she allocated to the Green
strategy, TGreen Dy subtracting (rgreen)? from his or her $0.10 endowment as well.
(The same function applies symmetrically if Green is chosen). The worst possible
guess, i.e. predicting a particular pure strategy only to have your opponent choose
another, yields a payoff of 0 (and explains the normalization constant (1/20) which
appears in the formula). It can easily be demonstrated that this reward function
provides an incentive for subjects to reveal their true beliefs about the actions of
their opponents. Telling the truth is optimal.

In Experiments 2-3, in order to induce subjects to report truthfully in any period
t, we rewarded them for their predictions in that period using the following reward
function:

1
Prediction Payoff for Subject i =0.10 — 2—22- (my — 1i5)? (3)

0 7=t

where, 7;; is the probability weight reported by subject i as to i’s prediction about

his opponent’s use of strategy j, and m; is the actual weight assigned to strategy j in
the mixed strategy chosen by i’s opponent.

As you can see, this function offers them a $0.10 payment if they predict correctly
and then subtracts an amount proportional to the squared distance of their stated
belief vector from the actual mixed strategy used by their opponent in that period.
Obviously, if a subject predicts correctly, the loss term would be zero and the subjects
would keep all of his $0.10 for that round. Again, the worst possible outcome is a
payoff of 0.

As is true of all scoring functions, while payoffs are maximized by truthful reve-
lation of beliefs, there are other beliefs that could be stated which are more secure in
the sense that they guarantee a higher minimum payment. For example, reporting
equal probability for each strategy would guarantee the largest minimal payment. °

9See Camerer (1995) and Allen (1987) for a discussion of this point.
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If subjects were risk averse, such an action might be desirable. As can be seen in the
data, there is little indication that such equi-probable vectors were used.

We made sure that the amount of money that could potentially be earned in the
prediction part of the experiment was not large in comparison to the game being
played. (In fact, the maximum earnings that could be earned in the prediction part
of Experiments 1, 2 and 3 was only $6.00 as opposed to the average payoffs in the
game of $15.00). The fear here was that if more money could be earned by predicting
well rather than playing well, the experiment could be turned into a coordination
game in which subjects would have an incentive to co-ordinate their strategy choices
and play any particular mixed or pure strategy repeatedly so as to maximize their
prediction payoffs at the expense of their game payoffs. Again, absolutely no evidence
of such coordination exists in the data. In fact, we offer quite a bit of evidence that
supports the view that the beliefs we elicited were truthful.

2.3 Defining Beliefs

Given any 7 in (-00,00), we define, using the notation of Cheung and Friedman
(1997), player i’s y-weighted empirical beliefs (or, for simplicity, «- empirical beliefs)
to be the sequence defined by

Yoo — 1t(aj) + Zi;ll'ﬁltfu(aj)
it+1 — — u
" 1+ 22:11 Y

(4)

where b/, 41 is player i’s belief about the likelihood that the opponent will choose
action a’ in period t+1, 1(a’) is an indicator function equal to 1 if a/ was chosen in
period t and 0 otherwise, and ~}* is the weight given to the observation of action a’
in period t-u. Fictitious play beliefs are those as above for the special case of v = 1.
For experiments 1 and 2, where players only observe the actions of their opponents
(and not their mixed strategies) we define the Cournot beliefs to be those which assign
probability one to opponent’s previous period play. This is the special case of (4) for v
= 0. In experiment 3, the high information experiment where in each period a player
observes the previous period mixed strategy of her opponent, we define the Cournot
belief in that period to be the previous period mixed strategy of her opponent.

Since there are only two actions, we represent all beliefs in terms of the probability
assigned to the action RED. Let BS; and b;(y) denote player i’s date t stated beliefs
and player i’s date t v — weighted empirical belief (where t€ {1,...,T})(and, for
emphasis, these are probabilities the player assigns to the event that the opponent will
choose action RED). We define v* to be the value of oy which minimizes the distance
between the stated beliefs and the v — weighted empirical beliefs in a mean squared
error sense. That is, v* is the value of v which solves Min, Y7, | BS,—b,(y) |? . A
subject’s v*— empirical belief is b;(7*).



3 Results

We will structure the discussion of the results of our experiment by answering a series
of questions which originally motivated our research.

3.1 Question 1: Are empirical beliefs a good proxy for stated
beliefs.

To demonstrate the relationship between stated v — weighted empirical and fictitious
play beliefs we present Figures 1a-1f, 2a-2d and Table 2. Figures la-1c¢ which presents
three histograms of the distributions of absolute difference between the stated, v —
weighted empirical, and fictitious play belief that the Red strategy will be chosen
by one’s opponent. These differences are presented, subject-by-subject for the first,
second, and third 20 round segments of each experiment. That is, we divide the
data set into three twenty round periods and for each period we present a histogram
of the absolute differences between the beliefs subjects reported to us (their stated
beliefs about the probability of Red being chosen) and the fictitious play beliefs we
calculated and aggregate these differences in 20 round segments. This is done for each
experiment. Table 2 presents a set of descriptive statistics about these histograms.
In addition, we present in Figures 1d-1f the mean Euclidean distance between stated,
v — weighted empirical, and fictitious play beliefs for each round. Finally, to give
some insight as to how the two time series differed on the individual level, Figures
2a-2d present some representative belief time series graphs of four subjects taken from
Experiment 2.

Figures 1a-1f, Figures 2a-2d, and Table 2 Here

Looking at Figures 2a-2d first, we see that while fictitious play beliefs soon become
stable, stated beliefs are quite variable over the full horizon of the experiment. (These
figures are more than typical of the population of subjects). Even Figure 2d, which
presents an individual whose stated beliefs were relatively stable, the variability in
stated beliefs is far greater than that of the fictitious play belief series it is compared
to.

With respect to Figures la-1c, if there is a great deal of agreement between stated
and fictitious play beliefs, then we would expect that the histogram of the absolute
value of these differences would be concentrated around 0 with a small variance around
that point and a mode close to 0 as well. If stated and fictitious play beliefs tended
to differ, then most of the observations would be spread over then full support of the
distribution and represent large positive or negative differences.

As we can see, there is little support for the hypothesis that the absolute value
of the differences between subjects’ stated and fictitious play beliefs is zero. To
characterize these histograms we calculated the mean and median absolute difference



as well as the inter-quartile range!® of the distribution. These are presented in Table
2. In general, the mean absolute difference between stated and fictitious play beliefs
of choosing Red varies from a low of 0.220 in rounds 21-40 of Experiment 2 to a high
of 0.254 in rounds 21-40 of Experiment 1 with the median varying from a low of 0.195
rounds 21-40 of Experiment 2 to a high of 0.256 in rounds 1-20 of Experiment 3. The
inter-quartile range of these distribution start from a low of 0.1554 in rounds 20-40
of Experiment 1 to a low of 0.2141 in round 1-20 of Experiment 1. The fact that
the lower endpoints of the inter-quartile ranges tend to be substantially above zero
indicates that in general stated and fictitious play beliefs differ.

To demonstrate that these differences do not change or decrease over time, we
performed a set of Kolmogorov-Smirnov tests on the data to test whether the distri-
bution of these absolute difference changes over time, i.e., whether the distribution
of absolute differences is the same in the first as in the final 20 round period. What
we find is that one can not reject the hypothesis that these distributions are identical
within each experiment. In other words, the distribution of absolute differences within
the first 20 rounds of any experiment is not significantly from that same distribution
say in the last 20 rounds. !

Finally, Figures 1d-1f presents the round-by-round mean Euclidean distance be-
tween stated and fictitious play beliefs. As we can see, on average over the 60 rounds
of the experiment the mean Euclidean distance between stated and fictitious play
beliefs is 0.351, 0.323, and 0.338 in Experiments 1, 2, and 3 respectively.

Table 3 presents data on the y*—empirical beliefs for each subject.

[Table 3 here]

Note that these v*’s are clustered around 1 with a relatively small variance. This
is interesting since it would, on the face of it, indicate that fictitious play beliefs are
about as good as we can get as an approximation to stated beliefs using the belief
formation model (3.1). This does not imply that the fit is very good, however, as is
evidenced by the large sum of squares terms in the table. In fact, as we have seen
in Figures 2a-2d, by choosing v's near 1 v* -empirical beliefs are, in many instances,
attempting minimize the distance between empirical and stated beliefs by passing a
relatively stable straight empirical belief series through the middle of a cycling stated

10The interquartile range is the interval between the first and third quartile of a distribution.

HTn the results below, D is the calculated test statistic defined by the Kolmogorove-Smirnov test.
Critical value for D at the 5% level is 8.

Stated vs empirical Experiment 1, rounds 1-20 vs rounds 40-60 D=7

Experiment 2, rounds 1-20 vs rounds 40-60 D=6

Experiment 3, rounds 1-20 vs rounds 40-60 D=4

Stated vs - empirical

Experiment 1, rounds 1-20 vs rounds 40-60 D=7

Experiment 2, rounds 1-20 vs rounds 40-60 D=5

Experiment 3, rounds 1-20 vs rounds 40-60 D=4



beliefs series. With only one parameter, this may be the best we can do but that still
may not be very good.

A pair-wise Kolmogorov-Smirnov test of these distributions indicate that there is
no difference in the distribution of 4} ’s across these experiments at the 5% level.!?
This is interesting, especially when comparing Experiments 2 and 3 since, in Ex-
periment 3 subjects are informed of their opponent’s last period mixture after every
round. This extra information does not seem to affect stated beliefs in such a way as
to alter the fit between them and a subject’s v -empirical beliefs.

The entries in Table 2 and Figures la-1f and 2a-2d labeled v* - empirical beliefs
replicate the calculations we have performed for fictitious-play beliefs using our now
more sophisticated v* - empirical belief measure. As you can see, while there is a
closer relationship between ~* - empirical and stated beliefs than there was between
fictitious play and stated beliefs, qualitatively all of the conclusions stated before carry
through here. For example, while the mean absolute difference between fictitious play
and stated beliefs over the 60 rounds of the experiments 1, 2, and 3 were 0.351, 0.323,
and 0.338, respectively, they were 0.331, 0.298, and 0.331 using v*— empirical beliefs.
The histograms of absolute differences (as summarized in Table 2) show the exact
same features as those for empirical beliefs and the Kolmogorov-Smirnov test run
to investigate whether there was a tendency for the differences between stated and
~v*— empirical beliefs to converge over time could also detect no significant difference
between any two 20 round distributions in any experiment.

In short, as these descriptive statistics indicate, stated and fictitious play beliefs
show a great tendency to differ within each of our three experiments and theses
differences show no tendency to diminish as the experiment progresses over its 60
round horizon.

Even if fictitious play beliefs are a poor proxy for true or stated beliefs, however,
it does not mean that fictitious play beliefs are not a useful model since operationally
all that matters is that the two sets of beliefs prescribe the same best-response action
at each (or most) point in time. In the 2x2 games used in our experiments this might
be quite likely since, as we stated above, there are broad ranges of beliefs over which
the same response action is prescribed so there is a great deal of room available for
fictitious play and stated beliefs to differ and yet prescribe the same action. For
example, in Experiments 1-3, any belief on the part of the row player that their

12D is the test statistic defined by the
Kolmogorov Smirnov test.
Experiment 1 vs Experiment 2

D=5, x* = 1.78

Experiment 2 vs Experiment 3

D= 0.164, x? = 1.26.

Experiment 1 vs Experiment 3

D= 0.2, x? = 1.87.

Critical value for x?

is 5.99 at the 5% level.
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opponents are likely to use the Red strategy with a probability greater than 0.40 will
lead them to chose Red as a best response. For column players, just the opposite is
true. Any belief that the row player will use Red with a probability grater than .4
will lead the column player to choose Green with probability 1. Hence, if both stated
and fictitious play beliefs spend the majority of their time appropriate regions, then
no mater how different they might be, they would be observationally equivalent with
respect to prescribed actions.

This conjecture is easily tested on the individual level by taking the time series
of best responses to fictitious play beliefs and comparing it to that predicted as best
responses to the time series of stated beliefs. We do this by constructing a “counting”
index defined as follows. In each round of each experiment there are N subjects. Each
subject in each round has a stated belief and a fictitious play belief. In addition, if
they are maximizers, they would have a best response to those beliefs which, except
when they hold equilibrium beliefs, prescribes a pure strategy. From these N subjects
count in each period the number of subjects whose prescribed best response under
fictitious play beliefs is the same as that under their stated belief. Hence, if fictitious
play and stated beliefs were strategically equivalent, they would prescribe the same
actions in each period and we should observe all N subjects choosing the same action.
If the beliefs always prescribed different best responses, our index should be zero. In
particular, our index is a measure of how close the best-response prescriptions of the
two time series of beliefs are.

In Figures 3a-3d we plot our index, the fraction of agreements between the best
responses to these different beliefs, period by period for Experiments 1-3.

Figures 3a-3d here

As we can see, looking at the line describing the difference between prescribed
best responses for fictitious play and stated beliefs, in all of these figures, (and the
line describing the difference between stated and Cournot beliefs in Figure 3c) there
is quite a bit of similarity between the prescribed best responses of all of our belief
time series. On average in any period the stated and fictitious play beliefs prescribe
the same behavior approximately 66% of the time in Experiments 1, 2, and 3. (The
actual averages are 0.6464, 0.6642,0.6683, for the comparison of stated and fictitious
play beliefs in Experiments 1, 2, and 3 and 0.6900 for the comparison of stated and
Cournot beliefs in Experiment 3.) Whether you consider this to be a large or small
amount of agreement depends on how you model the process of belief formation for
individuals. If you were to think that subjects simply draw their beliefs uniformly
over the interval [0,1], then the probability that the beliefs of two subjects playing
each other in an experimental game will both simultaneously lie in the sub-intervals
[0, 0.4] or [0.4,1] (and hence prescribe the same best response), would be 0.52, which
does not appear greatly different than 0.66. However, given the fact that empirical
beliefs define a very flat time series, such beliefs are likely to be in only one of these
sub-intervals almost all of the time. Hence, if stated beliefs were to remain in the
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other sub-interval for the majority of their lifetime, we would expect relatively little
agreement in best responses. In such a situation 0.66 would seem large.

As we can see in Figures 3a-3d, there is also no tendency for this difference to
disappear as time goes on so that there does not appear to be much learning over
time.

Finally, as Figures 3a -3c show, using y*-empirical beliefs does not change the
correspondence between the prescribed best response to stated and ~*-empirical be-
liefs. On average they correspond about 66% of the time within each experiment.
In conclusion, we have attempted to answer the question of whether, despite the ob-
served difference between stated and fictitious play (or v*— empirical ) beliefs, it is
possible that they still prescribe basically the same best responses. What we find is
a remarkably strong correspondence between these prescribed best responses (about
66% in the case of both empirical and v*— empirical beliefs). It is important to
point, however, that this strong correspondence is merely a correspondence in the
prescriptions of a theory which may or may not be revealed in the actual behavior
of subjects. For example, it would fail completely if subjects did not behave so as to
best-respond to their beliefs. These considerations prompt our third question.

3.2 Question 2: If subjects best respond, what is it that they
best respond to?

Up to this point we have spoken very little about subject behavior, i.e., their actions.
As a first cut at the data one might refute the best response hypothesis immediately
since in Experiments 2 and 3, where mixed strategies are available, subjects consis-
tently use them despite the fact that for almost all beliefs on the part of the their
opponent (in particular for all beliefs other than the equilibrium beliefs) they have
a pure strategy best response. More precisely, mixed strategies are used 75.8% and
80.3% of the time in Experiments 2 and 3 respectively, despite the fact that subjects
hold equilibrium beliefs only 9.3% and 7.4% of the time in these experiments.

To investigate the best response behavior of subjects let us perform the following
exercise. Given fictitious play, Stated, and Cournot beliefs we can predict, for any
individual and any time during the experiment, what his or her best response should
be to each of these. Hence, we can count the number of times the strategy choices
of our subjects (either in Experiment 1 where pure strategies were chosen or in Ex-
periments 2 and 3 where mixed strategies were used) were consistent with the best
responses dictated by these different beliefs. When the chosen strategy of the subjects
is consistent with two or even three beliefs (or none) we count them separately.

The results of this exercise are presented in Table 4 which present calculations of
Experiments 1, 2 and 3, respectively.

[Table 4 here]
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In this table we have placed Cournot, fictitious play and Stated beliefs along the
first three rows and columns. (We could have added other v — weighted empirical
beliefs to this table as well, but for ease of exposition we have decided to limit our
comparisons to the most familiar empirical models of belief formation — Fictitious
Play and Cournot). Any cell in the matrix presents the number of times that the
actions of subjects were consistent with the best response suggested by one of these
beliefs notions either alone or in conjunction with other beliefs. For example, along
the diagonal of the initial 3x3 matrix, i.e. the cells (CC), (HH) and (SS) we present
the number (fraction) of times that the strategy chosen was consistent with that
prescribed by one and only one belief notion. Hence in the (CC) cell of the table
relating to Experiment 2 we see that in that low information experiment there were
23 instances in which the observed behavior of subjects was consistent with the best
response dictated by Cournot beliefs while in the HH cell there were 33 instances
where behavior was consistent with only best responses to fictitious play beliefs. The
off diagonal entries, such as CS, indicate when observed behavior was consistent
simultaneously with the best-response prescriptions of two belief notions (in this case
Cournot and Stated). If a mixed strategy was chosen, then that strategy would
correspond to a best response to none of the beliefs (except when the subject held
equilibrium beliefs). It would also be possible for a pure strategy to correspond to
a best response to none of our three beliefs if, for example, the subject chose Green
when all beliefs simultaneously indicated that Red would be best.

There are several things to note. First notice that in Experiments 2 and 3 there are
a rather large number of cases where people do not best respond to any beliefs. This
was mostly due to the fact that subjects used mixed strategies so often. Next, note
that when they do best respond, they are much more likely to best respond to their
stated beliefs, either in isolation or jointly with some other belief. For example, in
the pure strategy experiment, Experiment 1, subjects best responded to their stated
beliefs 800 (47.6%) times while best responding to their fictitious play and Cournot
beliefs only 359 and 462 times respectively. It is rather remarkable, in fact, that
while they best respond to their stated beliefs alone in Experiment 1 302 times, they
do so with respect to their Cournot and fictitious play beliefs only 92 and 67 times
respectively. A similar pattern occurs in Experiment 2 which is the low-information
mixed-strategy experiment. There they best respond to their stated beliefs alone 216
times while they do so to their Cournot and fictitious play beliefs only 23 and 33 times
respectively. In Experiment 3, the high-information mixed-strategy experiment, these
differences are not as dramatic. Here they only best respond to their stated beliefs
alone 88 times but do so to their Cournot beliefs 54 times. This is not so strange
since it is in this experiment that they are given information about their opponent’s
previous period mixed strategy and hence are able to best respond to them if they
wish.

In conclusion, it would appear that Stated beliefs are far more likely than Cournot
or fictitious play beliefs to be the beliefs that subjects best respond to. This result, to
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some extent, tends to validate our beliefs elicitation procedure since it would appear
that the beliefs we had subjects report to us were ones that they acted upon when
money was on the line in the experiment. This finding, we feel, is important if such
scoring rules are to be used in the future in experiments.

3.3 Question 3: If subject behavior can best be described by
a logistic belief learning model, which beliefs provide the
best fit for our data?

Our question here differs from that asked in question 2 since there we were interested
only in best response choices and predictions while here we are interested in which
of the beliefs we have, when employed in an appropriate discrete choice model of
behavior, best explains the choices of our subjects. In such a model, the best response
function is a continuous function of beliefs and prescribes a probability with which a
subject should choose a given pure strategy rather than, as is true in deterministic
fictitious play, having a point of discontinuity at which pure strategy prescriptions
change. We will actually consider the model where, at time period t, the probability
that any subject, i, chooses the Red strategy (in a 2x2 game with a Red and a Green
Strategy available) is a function of the expected payoff difference between these two
strategies. To calculate such expected payoffs we must use some set of beliefs and in
our experiments we have at our disposal a number of different ones to choose between.
After we have settled on the beliefs we expect to use, we must choose some form for
the behavior rule.

In our analysis below we will use the frequently employed logistic function pre-
sented as:

B . ‘ eBo+B1(E(n]))
Probability of Red in period t = L o B EGD (5)
ePo+BL(E(r))

T 1+ ePotBi(B(r)

Probability of Green in period t =

where F(rf), is the expected payoff difference to be derived from using the Red
strategy instead of the Green strategy in period t given the beliefs that the subjects
holds at that time, and 3y and 3; are constants to be estimated. When fictitious play
beliefs are used to compute the expected payoff differences in this function, we obtain
what Fudenberg and Levine (1998) call “smooth fictitious play”.

There are two different interpretations of the logistic rule in (5), with subtle dif-
ferences in the implications for the behavior of players. The first interpretation is
that of a random utility model, henceforth the R.U.M. In that interpretation, the
payoff accruing to a strategy, say Red, is composed of the deterministic part given
by the expected stage game payoffs as in previous sections, plus a random term g4
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(assumed to be i.i.d. over time). The expected payoff to Red, given this player’s
beliefs about her opponent, is therefore equal to Emg.y plus the random term. In any
round subjects act after seeing the realizations of .y and egpeen, for that round. The
Red strategy is therefore chosen whenever Emgreq + €red > ETGreen + EGreen- Hence,
generically, the player will choose a pure strategy at each date. It is however assumed
that these shocks are not observed by the experimenter. The ex ante probability, or
the probability assessed by the experimenter, that the Red strategy is chosen is then
Pr(€ged — €creen)™> (ETGreen — ETRed)], 1.€. the probability that the difference in the
random shocks attached to the utility of each strategy is greater than the difference of
the expected utility of these strategies given the subject’s beliefs. Given this formu-
lation, strategies with higher expected payoffs are given higher probabilities of being
chosen, yet the probability of choosing any such strategy depends upon how much
greater its expected utility is from that of other strategies. When the distribution
of the disturbances is of the extreme value type'?, these probabilities result in the
logistic behavioral rule (5).

The second interpretation is based on the work of Luce (1959). Luce studied some
axioms of choice and showed that they implied that subjects choose actions proba-
bilistically. The probability each action is chosen is some function of the expected
payoft to that action. By appropriately choosing that function we obtain the spec-
ification in (5). We shall call this interpretation the Luce Model. Under the Luce
Model players will generically be choosing mixed strategies at every date.

If players are constrained to choose only pure strategies (as in Experiment 1) there
is no way of distinguishing the R.U.M from the Luce model. On the other hand, if
players are able to choose mixed and pure strategies (as in Experiments 2 and 3), then
one would expect pure strategies to be used in the R.U.M and mixed strategies to be
used in the Luce model. This provides a method of distinguishing the two models.
Since in practically all rounds of experiments 2 and 3 players choose mixed strategies,
this would suggest that the R.U.M interpretation of behavior fails.

Most of the learning literature constrains players to choose only pure strategies.
The literature then estimates a R.U.M using maximum likelihood techniques. To
compare our results to those of the literature we also perform this exercise. In partic-
ular, we will ignore mixed strategies (and the fact that, contrary to the R.U.M, they
actually do mix). We will then use the actions realized from their mixed strategies,
and assume that these were chosen pure. We then perform the maximum likelihood
exercises used in the literature.

We estimate five such models each run on individual outcome observation data
generated by our three experiments. These models are estimated on the individual
level as well as on the aggregate level using pooled data. These differ only according
to the belief formation process we posit for the subjects. In model 1, we use the stated

13For a more complete dervation of such a logistic function see McKelvey and Palfry (1995) where
they derive the existience of a quantal-response equilibrium in which subjects play probabilistically
as described here but where the beliefs defined are equlibrium or self-fulfilling beliefs.
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beliefs of subjects to calculate expected payoffs while in model 2 we use fictitious play
beliefs. In model 3 we estimate what we will call the 4- empirical beliefs model where
the s themselves are estimated using maximum likelihood techniques simultaneously
with Gy and ;. Model 4 uses Cournot beliefs. Finally, in model 5 we use our ~y*-
empirical beliefs (as defined in section 2.3) as our belief proxy.

Next, in Model 6 we estimate the Luce model. We use the observed mixed strat-
egy as our left hand or dependent variable. Instead of using maximum likelihood
techniques to estimate (y and (3,we find the 3y and f;that determines (using stated
beliefs) a best fit, in the sum-of-squares sense, between the observed mixtures and the
predictions of these probabilities using the logit function. Call these estimates of 3y
and ; our Luce or “minimum sum of square estimates” to indicate that they
are derived to minimize a sum of squared errors and not to maximize a likelihood
function. In particular, if m; denotes the date t mixed strategy probability of Red,
we find parameters 3y and 3; to solve the problem

T (oL (B(rd)

. . 2
Mlnﬁoﬁl ;[mt 1+ ePoth (E(wf)] (6)

where T is the total number of periods in the experiment. This exercise is equiv-
alent to estimating the parameters (3, and [3; through non-linear least squares regres-

7\,(1
sion my = G(Bo, Ar, E(nf))+ v where G(Bo, 81, E(7fl))= PotB1(E(D)

noise term with the standard properties.

All of these models, 1 - 6, were estimated individual by individual. In addition,
we have estimated a set of aggregate regressions, one for each experiment, using the
same specification along with dummies to represent the fixed effects present across
individuals. Table 5 presents the estimates of our aggregate logit models and our
Luce or minimum sum of squares model. In these tables we present the number of
observations, the estimated (3, (;coefficients, (in model 3 the maximum likelihood
estimates of 7 are also presented) along with the standard errors of the estimates and
their significance levels for each model and each experiment. In addition we present
for each model the maximized likelihood.

and v; is a white

[Table 5 here]

As we can see, there are some similarities across each of these experiments. First,
in all regressions the [3; coefficient was positive and significant at at least the 5%
level. Obviously, we expected the positive sign since the model is predicated on the
notion that strategies expected to yield higher payoffs should be used more often. The
constant term varied both in sign and significance across models and experiments.
For example, in Experiment 1, where pure strategies are used, the constant term
was positive and significant in four out of the five models (all except the stated belief
model), while in the high information experiment it was negative and insignificant (at
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the 5% level) in four out of the five experiments. More interesting, however, are the
estimates of the v parameter (i.e., the 4's). Here, we have statistically significant (5%)
estimates for 7 in the low information and pure strategy experiments (Experiments 1
and 2) of 0.6672 and 0.6098, respectively, while in the high information experiment,
Experiment 3, v was insignificantly different from zero. This is interesting because
when, in our belief formation rule (4), v takes on a value of 0, beliefs equal opponent’s
previous period pure strategy. It is our suspicion that because the high information
experiment focused subjects attention to the previous round by giving them the mixed
strategy information about their opponent, the previous outcome of their opponent
might have become focal and led them to give it excessive importance.

Finally, at the more micro level, it is interesting to note how different the ~+'s
estimated in our individual model 3 regressions are from those calculated earlier
when we defined our v* - empirical beliefs. These v's are presented in tabular form
in Table 6 and graphically in Figures 4a, 4b, and 4c.

[Table 6 and Figure 4a-4c here]

Looking at Figures 4a-4c notice how dramatic the difference between the estimated
v's of Model 3 and our calculated v*'s is. For example, in all experiments every ~y
which was calculated from our «*-empirical series is greater than their counterparts
estimated in model 3. A Wilcox two-tailed test indicates that in each experiment
these distributions are different at the 1% percent level.!* Further, while the ~*-
empirical estimates are centered around 1, those estimated from Model 3 tend to be
centered around zero with nine of the 28 being negative.'®

We consider this comparison important since it demonstrates exactly how far off
parameter estimates can be when we attempt to use maximum likelihood techniques
on data constructed from observable proxies for unobservable data ( as most economic
data is). More precisely, standard empirical analysis as conducted by economists is
most like our Model 3 where 7 is estimated using discrete (0-1) data using historical
proxies for unobserved variables. Because we are able to observe both beliefs and
true mixed strategies, we can calculate v directly by finding that v which best fits
our stated belief series (our y*-empirical. beliefs). Hence, this paper offers a controlled
experiment enabling us to measure how far off economists and policy makers may be

M Experiment 1, Pure Strategies
T =0, z =-4.622, p(z) < .00005
Experiment 2, Low Information
T =0, z=-3.919, p(z) < .00005
Experiment 3, High Information
T =5, z = -4.508, p(z) < .00005

T is the test statistic of the Wilcoxon test. z is a transformation of T with a standard normal
distribution.

15These results are strikingly simmilar to those of Cheung and Friedman (1997) in their estimates
of .
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when they are forced to use historical proxies for unobservable variables. Because
these differences are so dramatic in our work here, we take these results as a warning
urging us to be careful when we too quickly accept parameter estimates estimated in
that manner.

4 Model Selection among Logistic Models

We now select among models 1 -6 of section 3.4 in terms of their goodness of fit. We
will proceed in two ways. First, because we have data on the actual mixed strategies
used by each subject in Experiments 2 and 3, we are able to use this data to construct
direct measure of the goodness of fit of each of our models. More precisely, for these
experiments we can simply take each individual’s mixture in each round and compare
it to the probabilities predicted by each of our logit regression models to see which
fits the mixture data best. We can also, of course, compare the goodness of fit of
these models by performing a set of model selection tests on our aggregate regressions
which we will do shortly.

To explain our first approach more completely, consider the following: For each
individual and for each of our logit models (i.e. Stated, fictitious play, 4- empirical,
Cournot, v* - empirical), we have an estimated'® 8, and 3; coefficient. Hence, for
any round if we were to plug in one of our belief measures in to the logit equation,
we would get a predicted probability of Red for that round. Calling the difference
between the predicted probability of Red in round t and the true probability of Red
that the subject used in his mixed strategy the model’s prediction error for that
round, we can use the average prediction error round by round in each model as a
goodness of fit measure.

More precisely, assume there are N people in an experiment and let p*zt be person
i’s round t predicted probability of playing the Red strategy using logit model j, and
m;; be the observed mixed strategy probability that subject i actually used for Red.
The goodness of fit measure for model j in round t is then equal to the mean prediction
error averaged across all N subjects in round t or:

MPEztj:Efil |pft—mit|/N.

Obviously, at any round t when there is a perfect match between the predicted and
observed probabilities this measure will be 0 (i.e. the error will be minimized). It will
take on a value of 1 at time t when the predicted and each observed belief differ by
their maximum amount. Tables 7 and 8 present these calculations for Experiments
2 and 3 respectively using the Minimum Sum of Squares, Stated, fictitious play,
Cournot, and %4 - empirical and v* - empirical models while Figures 5a-5b present
them graphically.

[Table 7 and 8 Figures 5a and 5b here]

165 is estimated jointly with g and f3;.
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As can be seen from Tables 7 - 8 and Figures 5a-5b, in both the high and low
information experiments, Experiments 2 and 3, the stated belief model fits the data
better than any of our other models (except the minimum square error model). For
example, in comparing the mean prediction errors round by round between the stated
and empirical belief models, we see that the stated belief model has a smaller mean
prediction error in 58 of the 60 rounds in both the Low and High Information Experi-
ments. It outperforms the Cournot model in 58 of 60 rounds in the High Information
Experiment as well and 55 of the 60 rounds in the Low Information Experiment.

On average, however, the model which predicts mixed strategies the best is the
Minimum Sum of Squares model using stated beliefs (mean MPE! = 0.1720 in the
low and 0.2273 in the high-information experiments) which is not surprising since its
objective is to minimize an objective function not very different from our goodness
of fit measure. The model using stated beliefs, Model 1, comes in a close second,
however (mean 0.2045 in the low and 0.2379 in the high information experiment) and
outperforms the model using either fictitious play (mean 0.2632 in the low and 0.2940
in the high information experiment), Cournot (mean 0.2529 in the low and 0.2928 in
the high information experiment)) or the y-empirical model (mean 0.2544 in the low
and 0.2931 in the high information experiment) beliefs. The fact that the Cournot
model outperforms both the fictitious play and the 4— empirical model may be due
to the fact that subjects may be somewhat myopic in their period to period reactions
and hence events in the more distant past may have little if any influence on their
actions today. Presumably, since the Cournot model is nested in the y— empirical
model (i.e. 7 = 0) we should expect that just the opposite might be true. Obviously
for our goodness of fit metric this presumption was not born out.

A series of pair-wise Mann-Whitney U-tests performed on individual data from
both experiments to test whether the sample of MPE‘Z’S (i. e., the mean prediction
error for individual i averaged over all 60 periods of the experiment) for the stated
belief model in Tables 7- 8 come from populations with the same means as the other
models strongly rejects that hypothesis in favor of the alternative that our goodness
of fit measure was higher in the stated belief model at the 5% or less level for each
comparison. 17 In summary, it appears as if having to rely on empirical proxies (like

ITExperiment 2: Low Information

Stated vs. - empirical: U=264, z = -2.097
Stated vs. empirical: U=256, z = -2.228
Stated vs. Cournot: U = 268, z = -2.031
Stated vs.y*- empirical: U=262, z = -2.130
Empirical vs. v*- empirical: U=384, z = -0.131
Empirical vs. - empirical: U=368, z = -0.393
Gamma- Empirical vs. y*- empirical: U=410, z = -0.294
Experiment 3: High Information

Stated vs. - empirical: U=137, z = -1.704
Stated vs. empirical: U=130, z = -1.893
Stated vs. Cournot: U = 126, z = -2.463
Stated vs. y*- empirical:U=149, z = -1.379
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fictitious play) to infer the hitherto unobservable stated beliefs can lead to results
which, according to our metric, greatly inhibit the accuracy of our learning models.

A more conventional approach toward model selection would be to run a set of
maximum likelihood ratio tests on our aggregate regressions to test if, pair-wise, any
of these models fit the data better than any others. Because our models are not
nested in a parametric sense, however, we can not employ the classical Maximum
Likelihood Ratio Tests. Rather, we use a test of Vuong (1989) for non-nested models.
As Vuong (1989) demonstrates, for any two such models, f and g, with maximized
log likelihoods log £y and log £, and n observations, the test statistic

ﬁ[Z(log £y —log £,)%]

under the null hypothesis that models f and g are identical, tends asymptotically
in distribution, to a standard normal random variable N(0,1). k(f,g) = (5logn —
Zlogn),where p is the number of parameters in model f and q is the number of
parameters in model g, is a correction factor for models with different numbers of
parameters. 8The results of these tests are presented in Table 9 below:

T

Table 9 here

In this table each entry presents the test statistic (asymptotically a standard
normal random variable (see Vuong (1989)) used to test the null hypothesis that
there is no difference in the goodness of fit between any two of our five models. For
example, in Table 9 the entry in the M1-M2 cell indicates the results of the pair-wise
test of the hypothesis that there was no difference between the goodness of fit of the
Stated Belief (M1) and Fictitious play (M2) models. Test statistic values between
-1.96 and +1.96 would indicate failure to reject at the 5% level while values greater
than 1.96 would indicate that model M1 fits the data better than M2. A value less
than -1.96 indicates just the opposite, M2 provides a better fit than M1.

Table 9 confirms, on the aggregate level, exactly the conclusion reached above
based on our individual calculations. In every experiment the Stated belief model,
Model 1, outperforms all other models and does so significantly at at least the 5%
level. In addition, except for the comparison between the Cournot Model (M3) and
the v*— empirical model (M4) in Experiment 3 (where the Cournot model provides
a better fit to the data), none of the other models distinguish themselves from each
other in a statistically significant manner. This result once again affirms our claim

Empirical vs. v*- empirical: U=168, z = -0.865

Empirical vs. - empirical: U=211, z = -0.297

Gamma- Empirical vs. y*- empirical: U=178, z = -0.595

18We run these tests on the aggregate regressions since we need to make binary comparisons in
these tests and this would not be feasible on individual regressions since there are 76 of them in
total.
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that if belief learning is to provide a good guide to the behavior of laboratory subjects,
one is going to have to be careful and get them to reveal their true beliefs. Using
empirical proxies can lead one astray.

To reconfirm this finding using a more disaggregated approach which uses the
information provided by the likelihoods estimated on an individual by individual
basis, we compared the individual maximized likelihoods derived from the individual
regressions run across models within any experiment to see whether one model fits
the data better on an individual-by-individual basis.

More precisely, consider the sample of maximized likelihoods generated by our
stated belief model, Model 1 in say Experiment 2, as compared to the sample of such
maximized likelihoods generated by our empirical belief model, in that experiment.
There are 28 such likelihoods, one for each subject in the experiment. In addition,
each model generates one such sample, so within the low information experiment
there are five such samples. The question we ask is whether within an experiment
these samples, when compared pair-wise, came from populations with the same mean.

A Wilcoxon Matched-Pairs Signed-Ranks test performed to test this hypothesis
rejects that hypothesis at the 5% level of significance for all comparisons between
stated and 4- empirical, fictitious play and Cournot beliefs in both Experiment 2
and 3. The exception is the comparison between stated and 4 - empirical beliefs in
Experiment 2 where the null can not be rejected.!” In other words, on an individual-
by-individual basis, using the sample of individual maximized likelihoods, our logit
models fit the data best when stated beliefs are used as arguments in the logit function
instead of any other types of beliefs. If people are basing behavior in our experiments
on beliefs, then they are basing on stated beliefs.

Finally, it is interesting to note that our v* - empirical model outperforms the
4 - empirical model using these matched-pairs tests. This is important because it
indicates that not only are the estimates we get from our ~* calculation different

9Low Information Experiment (Experiment 2).

T is the test statistic for the Wilcoxon test while z is a transformation of T with a standard normal
distribution.

Stated vs vy empirical: T = 151, z=-1.184

Stated vs empirical: T=101, z=-2.322

Stated vs Cournot: T= 110, z= -2.117

Stated vs v+ -Empirical: T =0, z = 4.622

Empirical vs v - Empirical , T = 66, z = -3.119

Empirical vs. v+ - Empirical, T = 0, z = -4.6226

~ Empirical vs. y% - Empirical, T = 0, z = -4.622

High Information Experiment (Experiment 3)

Stated vs v empirical: T = 58, z =-1.754

Stated vs empirical: T=41, z =-2.389

Stated vs Cournot: T= 39, z = -2.463

Stated vs yx -Empirical: T =0, z =-3.919

Empirical vs v - Empirical , T = 63, z = -1.567

Empirical vs. y* - Empirical, T = 0, z = -3.919

v - Empirical vs. y* - Empirical, T =0, z = -3.919
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from the parameter estimates we get for v in Model 3, but on an individual-by-
individual basis, the logit model using v* - empirical beliefs actually outperforms the
model which is based on inferring + using only observable outcome data.

5 Conclusions

This paper has investigated belief learning. Unlike other investigators who have been
forced to use observable proxies to approximate unobserved beliefs, we have, using a
belief elicitation procedure (proper scoring rule), elicited subject beliefs directly. As
a result we were able to perform a more direct test of the proposition that people
behave in a manner consistent with belief learning. What we find is interesting.

First to the extent that subjects tend to ”belief learn” the beliefs they use are the
stated beliefs we elicit from them and not the ”empirical beliefs” posited by fictitious
play or Cournot models. Hence, while we present data that lends support to the
notion that people behave in a manner consistent with belief learning, we must be
careful to specify the type of beliefs that must be used as inputs to these models.

Second, we present evidence that the stated beliefs of our subjects differ dramat-
ically, both quantitatively and qualitatively, from the type of empirical or historical
beliefs usually used as proxies for them. While empirical beliefs, i.e. those beliefs
formed by counting the frequency with which subjects have used their various strate-
gies in the past, tend to generate a fairly stable time series, stated beliefs vary wildly
from period to period and exhibit no tendency to settle down as the experiment pro-
gresses. Still, such differences would be inconsequential if they had no impact on
behavior, i.e., if despite their apparent difference both stated and empirical beliefs
prescribed the same behavior. As we have seen, such is not the case.

Third, our belief elicitation procedures allow us to examine how far we can be led
astray when we are forced to infer the value of parameters using observable proxies
for variables previously thought to be unobservable. By transforming a heretofore
unobservable into an observable we can see directly how parameter estimates change
when this new information is introduced. Again, we demonstrate that such differences
can be dramatic.

Finally, in the future we hope to use our elicited beliefs to investigate whether
subjects, when playing this game, are capable of achieving an ”equilibrium in beliefs”.
In such an equilibrium each subject would believe that the other would use his or
her strategies with the frequencies prescribed by the Nash (mini-max) equilibrium of
the game. While in such an equilibrium beliefs should remain stable over time, the
actions of the agents need not resemble those prescribed by the static equilibrium of
the game. In other words, while others have investigated the predictive ability of the
Nash theory by looking at the history of the observable actions, we feel that we can
verify the theory independently using stated beliefs. Such an attempt might prove to
discover equilibria where they previously had been thought not to exist.
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Table 2: Absolute Difference in Beliefs

Experiment 1: Pure Strategy

Stated vs. Fictitious Play Beliefs

Stated vs. v*- Empirical Beliefs

Rounds Mean Median Inter-Quantile Range Mean Median Inter-Quantile Range
1-20 0.250 0.244 0.2141-0.2851 0.243 0.234 0.2024-0.2797
20-40 0.254 0.246 0.1554-0.3513 0.236 0.240 0.1515-0.3166
40-60 0.242 0.237 0.1604-0.3013 0.223 0.228 0.1490-0.2692

Experiment 2: Low Information
Stated vs. Fictitious Play Beliefs Stated vs. v*- Empirical Beliefs

Rounds Mean Median Inter-Quantile Range Mean Median Inter-Quantile Range
1-20 0.240 0.230 0.2131-0.2849 0.227  0.221 0.1952-0.2628
20-40 0.220 0.195 0.1560-0.2846 0.195 0.167 0.1281-0.2709
40-60 0.225 0.209 0.1458-0.2771 0.209 0.198 0.1383-0.2657

Experiment 3: High Information
Stated vs. Fictitious Play Beliefs Stated vs. v*-Empirical Beliefs

Rounds Mean Median Inter-Quantile Range Mean Median Inter-Quantile Range
1-20  0.2382  0.2566 0.1893-0.2747 0.2242  0.2335 0.1912-0.2730
20-40  0.2286 0.2331 0.2106-0.2656 0.2374 0.2110 0.2223-0.2800
40-60  0.2522  0.2458 0.2062-0.2944 0.2425 0.2327 0.2046-0.2802
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Table 3: Calculated v*

Experiment 1
(Pure Strategy)

Experiment 2
(Low Information)

Experiment 3
(High Information)

Player y*
1 0.751
2 1.034
3 0.873
4 0.972
) 0.948
6 1.926
7 1.238
8 1.066
9 0.994
10 2.754
11 1.124
12 1.430
13 1.009
14 1.085
15 1.946
16 1.152
17 0.556
18 1.012
19 1.012
20 1.029
21 1.367
22 1.400
23 1.114
24 0.933
25 0.981
26 0.854
27 1.402
28 1.085

Min SSQ
3.676
1.925

11.066
4.447
9.992
8.376
4.071
3.919
3.286
4.181

11.738
4.485
1.976
1.856
5.125
6.553

11.450
4.201
0.653
9.342
0.884
6.434
1.295
3.656
4.319
3.987

10.978
8.793

Player ~v*  Min SSQ
1 1.168 6.392

2 0.925 3.748
3 0.919 4.704
4 1.825 0.552
d 0.768 2411
6 0.935 1.674
7 1.356 3.438
8 1.337 1.906
9 1.012 5.176

10 1.487 3.054
11 1.100 1.997
12 1.661 2.245
13 1.327 0.444
14 1.019 7.889
15 1.044 4.809
16 1.040 4.395
17 1.637 12.617
18 0.924 2.387
19 1.109 4.532
20 0.882 1.246
21 1.097 3.056
22 0.951 3.718
23 0.936 9.931
24 0.863 12.486
25 0.844 3.546
26 1.657 4.699
27 2.086 6.685
28 0.958 5.066

Player ~*  Min SSQ

1 0.961 7.617
1.531 2.898
0.942 6.262
0.948 3.496
0.774 2.737
1.740 5.465
0.927 4.879
0.893 4.065
9 1.037 3.875
10 1.037 3.875
11 1.057 5.179
12 1.064 2.806
13 1.039 3.514
14 2.493 4.372
15 0.960 6.749
16 1.139 4.060
17 1.932 1.411
18 0.873 4.690
19 1.860 5.908
20 1.031 7.290

O ~J O U i W I
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Table 4: Correspondence Between Actions and Best Response Prescriptions

Experiment 1: Pure Strategy
Cournot Fictitious Play Stated Total None All

Cournot 92 132 238 462 117 472
Fictitious Play 132 67 260 459
Stated 238 260 302 800

Experiment 2: Low Information
Cournot Fictitious Play Stated Total None All

Cournot 23 38 47 108 1134 121
Fictitious Play 38 33 68 139
Stated 47 68 216 331

Experiment 3: High Information
Cournot  Fictitious Play Stated Total None All

Cournot o4 19 32 105 829 99
Fictitious Play 19 48 31 98
Stated 32 31 88 151
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Table 5:

Regression Results

Pure Strategy Experiment (Experiment 1)

Model Bo 061 Std. Error Std. Error o Std. Error Obs Mean Log
(Prob): By (Prob): p; (Prob) Likelihood

Model 1 0.0753  0.5672 0.0610 0.0388 NA NA 1680  —0.6154
(0.1084) (0.0000)

Model 2 0.1049  0.3000 0.0522 0.0605 NA NA 1680  —0.6841
(0.0222) (0.0000)

Model 3 0.0892  0.2017 0.0498 0.0516 0.6098 0.1547 1680  —0.6831
(0.0367) (0.0000) (0.0000)

Model 4 0.0943 0.0912 0.0520 0.0199 NA NA 1680  —0.6854
(0.0348) (0.0000)

Model 5 0.0967  0.2686 0.0492 0.0544 NA NA 1680  —0.6844
(0.0326) (0.0000)

Low Information Experiment (Experiment 2)

Model Bo 51 Std. Error Std. Error o Std. Error  Obs  Mean Log
(Prob):6y  (Prob):5y (Prob) Likelihood

Model 1 0.0494 0.4412 0.0435 0.0403 NA NA 1680  -0.6514
(0.1280) (0.0000)

Model 2 0.0469  0.2897 0.0606 0.0594 NA NA 1680  -0.6832
(0.2196) (0.0000)

Model 3 0.0682  0.2628 0.0514 0.0576 0.6672 0.1242 1680  -0.6775
(0.0919) (0.0000) (0.0000)

Model 4 0.1110  0.1056 0.0471 0.0201 NA NA 1680  -0.6823
(0.0093) (0.0000)

Model 5 0.0429  0.3328 0.0732 0.0613 NA NA 1680  -0.6812
(0.2790) (0.0000)

High Information Experiment (Experiment 3)

Model Bo 51 Std. Error Std. Error o Std. Error  Obs  Mean Log
(Prob): By (Prob): p; (Prob) Likelihood

Model 1 -0.0431 0.2362 0.0596 0.0411 NA NA 1200  -0.0678
(0.2345) (0.0000)

Model 2 -0.0426 0.1571 0.0523 0.0594 NA NA 1200  -0.6902
(0.2074) (0.0041)

Model 3 -0.0348 0.0834 0.0484 0.0233 0.0207 0.0896 1200  -0.6877
(0.2361) (0.0002) (0.0000)

Model 4 -0.0275 0.0536 0.0599 0.0336 NA NA 1200  -0.6919
(0.3231) (0.0557)

Model 5 -0.0388 0.1413 0.0498 0.0647 NA NA 1200 -0.6911
(0.2177) (0.0145)

Model 1:  Stated Beliefs

Model 2:
Model 3:
Model 4:
Model 5:

Fictitious Play Beliefs
A-EdPirical Beliefs
Cournot Beliefs
~v*-Empirical Beliefs



Table 6: Calculated v* and Estimated #

Experiment 1
(Pure Strategy)

Experiment 2
(Low Information)

Experiment 3
(High Information)

Player

e e e T e T e T e T S Gy
©C O ~TO R W, O ©TD TR WD

DN DNDNDNDNNDN
00 O Ol Wi+~ O

*

~
0.751

1.034
0.873
0.972
0.948
1.926
1.238
1.066
0.994
2.754
1.124
1.430
1.009
1.085
1.946
1.152
0.556
1.012
1.012
1.029
1.367
1.400
1.114
0.933
0.981
0.854
1.402
1.085

,’y
0.847
-1.063
-0.479
-0.171
-0.902
0.358
0.959
-0.546
0.404
-0.519
-0.803
-0.846
0.019
0.068
-0.282
-0.140
-0.274
0.998
0.400
-0.365
1.468
0.232
0.679
0.040
0.392
0.445
-0.530
-0.686

Player
1

O ~J O U i W N

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

*

~
1.168

0.925
0.919
1.825
0.768
0.935
1.356
1.337
1.012
1.487
1.100
1.661
1.327
1.019
1.044
1.040
1.637
0.924
1.109
0.882
1.097
0.951
0.936
0.863
0.844
1.657
2.086
0.958

,’y
0.469
0.559
0.115

-0.801
-0.235
0.405
0.724
-0.884
0.145
0.170
0.395
-0.422
0.153
0.269
208.698
0.350
-0.388
0.803
0.289
-0.124
0.442
0.378
-0.054
0.582
0.168
-0.668
0.884
-0.212

Player
1

O ~J O U i W I

11
12
13
14
15
16
17
18
19
20

*

~
0.961

1.531
0.942
0.948
0.774
1.740
0.927
0.893
1.037
1.037
1.057
1.064
1.039
2.493
0.960
1.139
1.932
0.873
1.860
1.031

,3/
0.608
-0.220
-0.587
-0.581
0.494
-0.219
0.193
0.476
-0.128
-0.128
-0.117
0.902
-0.197
0.946
-0.494
-0.163
-0.980
0.814
0.982
-0.175
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Table 7: Individual Goodness of Fit: Low Information

Player Min SSQ Stated 4 Empirical Fictitious Play Cournot ~* Empirical

Beliefs Beliefs Beliefs Beliefs Beliefs

1 0.07116  0.29417 0.29823 0.29810 0.29495 0.29843
0.10620  0.22695 0.11629 0.06626 0.10642 0.06692

2 0.11653  0.54876 0.40170 0.37630 0.36382 0.38208
0.13084 0.21318 0.17141 0.13953 0.16548 0.14123

3 0.15691  0.17302 0.27201 0.28187 0.27269 0.28123
0.14701  0.13792 0.15550 0.16299 0.15434 0.16019

4 0.06281 0.12886 0.17134 0.12477 0.12838 0.14314
0.04364 0.06175 0.11339 0.06266 0.06956 0.08455

5 0.19451  0.20033 0.24046 0.24659 0.24123 0.23468
0.16100  0.16838 0.15506 0.15802 0.15585 0.15243

6 0.11721 0.11881 0.13682 0.18480 0.15912 0.17529
0.11528  0.12553 0.13278 0.11563 0.13098 0.12730

7 0.10386 0.11724 0.12672 0.11535 0.12034 0.10787
0.12240 0.11306 0.11999 0.10639 0.11049 0.10076

8 0.09243  0.09178 0.14173 0.15289 0.13102 0.15423
0.07901  0.08040 0.12552 0.09544 0.08165 0.08925

9 0.26997  0.27937 0.27657 0.28014 0.27653 0.28031
0.14323  0.16339 0.15280 0.16185 0.15246 0.16106

10 0.15228  0.15441 0.20029 0.18203 0.20282 0.16230
0.11246  0.11213 0.13556 0.15054 0.13522 0.14096

11 0.17266  0.18381 0.17357 0.17417 0.17336 0.17397
0.12360  0.16563 0.12957 0.13177 0.13007 0.13084

12 0.14008  0.14013 0.14687 0.14804 0.14567 0.15217
0.10907  0.10972 0.11444 0.11289 0.11086 0.11523

13 0.07663  0.10449 0.10128 0.11738 0.10137 0.09370
0.11499 0.10736 0.10822 0.12239 0.10724 0.12221

14 0.40055  0.39882 0.41575 0.42288 0.41633 0.42410
0.18753  0.19136 0.17281 0.16846 0.17210 0.16654

15 0.10141  0.13851 0.28232 0.28348 0.27958 0.28502
0.13036  0.14521 0.10409 0.09407 0.08130 0.09627

Note: Standard Deviations below
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Player =~ Min SSQ Stated 4 Empirical Fictitious Play Cournot ~* Empirical
Beliefs Beliefs Beliefs Beliefs Beliefs
16 0.21444  0.21792 0.22327 0.23187 0.20658 0.23327
0.10995  0.10647 0.15995 0.13684 0.16109 0.13691
17 0.11920  0.13639 0.38342 0.44890 0.39805 0.45146
0.22356  0.21538 0.21312 0.15323 0.20285 0.14970
18 0.11013  0.12823 0.41098 0.43593 0.45342 0.41652
0.22610  0.21723 0.17838 0.14007 0.13022 0.16939
19 0.15395  0.15455 0.17220 0.15104 0.16546 0.15621
0.09742  0.10506 0.11108 0.10329 0.10911 0.10323
20 0.09627  0.10454 0.20692 0.26919 0.20039 0.24116
0.09046  0.11477 0.16139 0.10920 0.15861 0.10526
21 0.37736  0.37324 0.31878 0.37992 0.34667 0.38366
0.17039  0.18615 0.17763 0.15814 0.17419 0.16354
22 0.10880  0.10788 0.12945 0.10860 0.14129 0.11358
0.12940 0.13811 0.12771 0.13126 0.13172 0.13489
23 0.22600  0.23227 0.38038 0.42271 0.37976 0.41049
0.22543  0.21940 0.18446 0.15695 0.18354 0.17066
24 0.23075  0.23314 0.23696 0.23056 0.23709 0.23365
0.14906  0.16066 0.15897 0.15023 0.15797 0.15390
25 0.28478  0.28662 0.26454 0.29871 0.26216 0.27751
0.17454  0.17437 0.15765 0.17599 0.16121 0.16650
26 0.29993  0.29300 0.27654 0.29770 0.27084 0.29087
0.14362  0.15935 0.18076 0.16449 0.16468 0.16898
27 0.28514  0.28551 0.33550 0.34631 0.30738 0.31446
0.18560  0.18971 0.19147 0.18403 0.17711 0.18915
28 0.06891  0.08371 0.40304 0.35874 0.40537 0.36156
0.14599  0.14547 0.18482 0.22778 0.18224 0.22681
Average 0.17160  0.20391 0.25456 0.26318 0.25292 0.25832
0.09364  0.10954 0.09850 0.10709 0.10195 0.10617

Note: Standard Deviations below
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Table 8: Individual Goodness of Fit: High Information

Player Min SSQ Stated #Empirical Fictitious Play Cournot ~* Empirical

Beliefs Beliefs Beliefs Beliefs Beliefs

1 0.31841 0.31827  0.33591 0.36671 0.36028 0.35671
0.16434 0.15733  0.16185 0.15285 0.16143 0.15387

2 0.12269 0.13583  0.29931 0.29300 0.29350 0.29073
0.18949 0.19583  0.19509 0.19428 0.19967 0.18930

3 0.24280 0.23294  0.24580 0.23005 0.23130 0.25093
0.12476  0.12395  0.16647 0.19013 0.16686 0.18374

4 0.36815 0.35378  0.38578 0.34699 0.34925 0.29891
0.15767 0.16632  0.16010 0.16889 0.16999 0.16010

5 0.35517  0.33808  0.34368 0.33989 0.34488 0.23172
0.26637  0.24726 0.26131 0.24522 0.24628 0.16264

6 0.26498 0.25734  0.25625 0.25215 0.24816 0.25124
0.16876  0.16255  0.16744 0.17180 0.16683 0.14584

7 0.27255  0.26928  0.25313 0.26220 0.29984 0.21101
0.19490 0.19189  0.18569 0.18245 0.19612 0.17723

8 0.38006  0.41193  0.39991 0.40180 0.40199 0.24746
0.15793 0.16386  0.15355 0.15391 0.16225 0.16423

9 0.19872  0.19932 0.22185 0.22194 0.22299 0.22267
0.20674 0.22118  0.19695 0.18981 0.18899 0.17762

10 0.26178  0.28566  0.28301 0.28895 0.29781 0.28659
0.14021  0.14757 0.13417 0.13521 0.13207 0.13249

11 0.01458  0.11288 0.25587 0.23720 0.14417 0.19926
0.15866  0.14973  0.15103 0.17150 0.18881 0.16431

12 0.33110  0.33072  0.32646 0.34645 0.34658 0.34508
0.01731  0.01688  0.15480 0.16929 0.16130 0.16684

13 0.26666  0.27152  0.25938 0.27975 0.28365 0.31432
0.14725 0.16383 0.16018 0.14392 0.14464 0.14322

14 0.03369 0.05535  0.28136 0.28861 0.28406 0.28836
0.19080 0.19471  0.17933 0.18128 0.19348 0.18080

15 0.27709 0.27689  0.26231 0.27180 0.28282 0.26994
0.01896  0.04523  0.16552 0.15936 0.15792 0.15886

Note: Standard Deviations below
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Player =~ Min SSQ Stated AEmpirical Fictitious Play Cournot ~* Empirical

Beliefs Beliefs Beliefs Beliefs Beliefs

16 0.17749  0.18705 0.21048 0.20026 0.21786 0.19926
0.12185  0.15777 0.13086 0.16866 0.13887 0.13850

17 0.27481  0.29470 0.33949 0.34206 0.34997 0.33714
0.17768  0.17806 0.17812 0.18963 0.19452 0.18228

18 0.19589  0.18865 0.30969 0.31461 0.29943 0.33598
0.18306  0.16874 0.14654 0.14287 0.14032 0.14605

19 0.03575  0.07466 0.28397 0.28519 0.29432 0.28254
0.15410 0.16719 0.18618 0.18246 0.18415 0.17813

20 0.06406  0.08121 0.59625 0.57260 0.61017 0.56933
0.03423  0.03955 0.18535 0.18855 0.18765 0.18920
Average 0.22282  0.23380 0.30749 0.30711 0.30815 0.28946
0.11486 0.10133 0.08479 0.08156 0.09270 0.08158

Note: Standard Deviations Below
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Table 9: Model Selection Tests

Low Information

Model 1 Model 2 Model 3 Model 4 Model 5

Model 1 4.704 3.909 4.200 4.368
Model 2 -1.004 -0.279 -1.108
Model 3 0.682 0.243
Model 4 -0.269

High Information

Model 1 Model 2 Model 3 Model 4 Model 5

Model 1 2.400 2.370 2.880 2.640
Model 2 0.325 0.960 0.600
Model 3 0.340 0.015
Model 4 -5.520

Pure Strategy

Model 1 Model 2 Model 3 Model 4 Model 5

Model 1 7.258 7.253 7.056 7.560
Model 2 0.422 0.269 0.185
Model 3 -0.107 -0.282
Model 4 -0.178

Model 1: Model Using Stated Beliefs

Model 2: Model Using Fictitious Play Beliefs
Model 3: Model Using 4-Empirical Beliefs
Model 4: Model Using Cournot Beliefs
Model 5:  Model Using ~v*-Empirical Beliefs
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Figure la

Average Absolute Differences (Pr. of Red), Experiment 1, Rounds 1-20
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Figure 1b

Average Absolute Differences (Pr. of Red), Experiment 2, Rounds 1-20
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Figure 1c

Average Absolute Differences (Pr. of Red), Experiment 3, Rounds 1-20
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Figure 1d
Average Euclidean Distance Between Stated and Fictitious Play
and Stated and Gamma* Empirical Beliefs
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Figure 1e
Average Euclidean Distances Between Stated and Fictitous Play
and Stated and Gamma* Empirical Beliefs
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Figure 1f
Average Euclidean Distance Between Stated and Fictitious Play
and Stated and Gamma* Empirical Beliefs

(o]
I

(&)
|

o Averageddistance o
¢ Sagedista ¢

N
L

o
=
|
T

o




1.20

Figure 2a: Stated vs Fictitious Play Beliefs Player 2
Low Information Experiment (Exp. 2))
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Figure 2b:Stated vs Fictitious Play Beliefs Player 7 Low Information
Experiment (Exp. 2)
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Figure 2c: Stated vs Fictitious Play Beliefs Player 5
Low Information Experiment (Exp. 2)
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Figure 2d: Stated vs Fictitious Play Beliefs Player 4
Low Information Experiment (Exp. 2)
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Figure 3a (Experiment 1):

Agreement of Best Responses: Stated vs Fictitious Play

and Stated vs Gamma* Empirical
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Figure 3b (Experiment 2):
Agreement of Best Responses: Stated vs Fictitious Play
1 and Stated vs Gamma* Empirical
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Figure 3c (Experiment 3):
Agreement of Best Responses: Stated vs Cournot

and Fictitious Play vs Cournot
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Figure 3d (Experiment 3):
Agreement of Best Responses: Stated vs Fictitious Play

and Stated vs Gamma* Empirical
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Figure 4a: Ggmma* Empirical and Estimated Gammas:Exp. 1
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Figure 4C'2g-:amma* Empirical and Estimated Gammas: Exp. 3
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Figure 5a
Mean Prediction Error (MPE) Models 1-6, Experiment 2
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MPE) Models 1-6, Experiment 3

Figure 5b
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