ECONOMIC RESEARCH REPORTS

ON THE DESIGN OF OPTIMAL
ORGANIZATIONS USING
TOURNAMENTS:

AN EXPERIMENTAL EXAMINATION

by
Alannah Orrison,
Andrew Schotter,
and Keith Weigelt

RR# 97-26 July 1997

C.V. STARR CENTER
FOR APPLIED ECONOMICS

!

NEW YORK UNIVERSITY
FACULTY OF ARTS AND SCIENCE
DEPARTMENT OF ECONOMICS
WASHINGTON SQUARE
NEW YORK, NY 10003-6687



On The Design of Optimal Organizations Using

Tournaments: An Experimental Examination

Alannah Orrison, Andrew Schotter, Keith Weigelt,*
July 4, 1997

Contents
1 Introduction . . . . . .. . ... L 3
2 Section 2: Tournaments and Their Equilibria . . . . . . . . .. ... .. 6
2.1 A Simple Tournament Model . . . . . . . . . . .. ... ... .. 6
2.2 Some Theoretical Results . . . . . .. ... .. ... ... ... 8
2.3 Hypotheses To Be Tested . . . . . . .. ... ... ... ... .. 11
3 The Experiments Performed and the Experimental Design . . . . . . . 12
3.1 Experimental procedures . . . . . . ... . ... 12
4 Results . . . . . . . . . . oo 13
4.1 Hypothesis 1 - Organizational replication of symmetric tournaments 13
4.2 Hypothesis 2: Effort and compensation design . . . . . .. .. .. 14
4.3 Organizational Costs . . . . .. .. ... ... ... ........ 16
4.4 Hypothesis 3: Organizational replications of unfair towrnaments . 17
5 Section 5: Discussion and Conclusion . . . . . . ... ... ... .. 18
6 REFERENCES . . . . . . . . . . o e 20
Appendix . . . . ... 21
71 Appendix 1: Proofs . . . . . . ... oo oo 21
7.2 Appendix 2: Instructions . . . . . . ... L oL Lo 28

*The authors would like to thank the C. V. Starr Center for Applied Economics at New York

University and the Reginald Jones Center for Management Policy, Strategy, and Organization
of the University of Pennsylvania for their financial support. We would also like to thank Colin
Camerer, Yaw Nyarko, Tech Ho and Steve Hoch for their advice and suggestions. All errors are,
of course, those of the authors alone.



Abstract

This paper investigates multi-person tournaments both theoretically
and experimentally. It asks, and attempts to answer three questions: 1)
As the size of a tournament grows through replication (i.e. at any level as
the number of large prizes grow proportionally with the number of people
at that level), what happens to the effort of agents? 2) If the size of the
tournament is held fixed, what happens to effort levels as the fraction of
large prizes in it changes? 3)If discrimination exists within a tournament
in the sense that a fraction ¢, of the workers are discriminated against by
having to significantly outperform non-discriminated workers in order to
get a large prize, what happens to output as tournaament size increases
with the fraction ¢ held constant? We find that while the results of our
experiment support the theory in most instances, the deviations from the
theory we find raise a series of interesting questions about the proper design
of corporate compensation mechanisms.
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1. Introduction

Any modern hierarchical organization implicitly motivates its agents by having
them compete for promotions which get progressively more scarce as one moves
up through the ranks. Larmbert, Larcker , and Weigelt (1993) study a set of 303
large publicly traded corporations and find that the structure of organizational
incentives closely resembles that of an intra-firm tournament in which promo-
tions are used to motivate agents to work and compensation is set at each stage
to maintain incentives. Despite their common {implicit or explicit) use, tourna-
ments have met with relatively little empirical or experimental study. The few
investigations that exist, (see Nalbantian and Schotter (1997, forthcoming), Bull
Schotter and Weigelt (1987), Schotter and Weigelt (1992), Cappelli and Cascio
(1991), Ehrenberg and Bognanno (1990) tend to lend support for the theory, yet
many questions remain unanswered. !

For example, if workers compete for promotions at any level within the or-
ganization what is the optimal fraction of workers to promote? Having too few
promotions, one might think, may lead to discouragement while having too many,
so that the probability of promotion is great, may lead to shirking. Is the effort
level of workers homogenous of degree zero for proportionate increases in the size
of the organization? Are large work groups better than small ones and if so what
factors are important in determining work-group size (i.e. the size of the tourna-
ment to run)? Finally, a whole host of questions arise for organizational design
when discrimination exists at the workplace, i.e.. when certain workers have to be
virtual superstars in order to get a promotion. For instance, if discrimination ex-
ists are its effects most damaging to organizational output in larger versus smaller
organizations?

These questions are formalized as follows:

1) Organizational Replication:

As the size of the organization grows through replication (i.e. at any level as
the number of promotions grows proportionally with the number of people at that
level), what happens to the effort of agents? For instance, do agents work more
or less hard in organizations with 10 employees and 5 promotion possibilities than
ones with 100 agents and 50 promotlon p0551b1htles7

2) Prize Structure:

If the tournament size is held ﬁxed what happens to effort levels as the fraction

ITor a discussion of the theory see Lazear and Rosen (1981), O'Keefe, Viscusi, and Zeck-
hauser, (1984), Green and Stokey (1983), Nalebuff and Stiglitz ( 1983) and others.



of promotions in the organization changes? For instance, do agents work more or
less hard in a 10 worker organization with 3 promotion possibilities than they do
in the same organization with 6 promotion possibilities?

3) Organizational Size and Discrimination:

If discrimination exists within an organization in the sense that a fraction
¢, of the agents are discriminated against by having to significantly outperform
non-discriminated agents in order to get the same promotion, what happens to
organization output as organization size increases with the fraction  held con-
stant?

Theory gives us some insight in answering these questions as follows. Ac-
cording to the theory of tournaments, the equilibrium effort level for identical
agents engaged in symmetric tournaments does not change as the size of these
tournaments increases. Tournament equilibrium effort is homogeneous of degree
zero in tournament size. Second, for organizations where the random shocks are
uniformly distributed, the theory predicts that the prize structure in the tourna-
ment should not effect equilibrium effort levels. Hence, at interior equilibria, a ten
person tournament with three large and seven small prizes (i.e., three promotion
possibilities) should elicit the same effort level as one with seven large and three
small prizes.

Finally, and perhaps most surprisingly, as the size of unfair tournaments in-
creases (i.e., tournaments where some fraction of the population is discriminated
against), the effort levels of agents approaches that of symmetric fair tournaments.
Put differently, the efficiency loss of discrimination decreases as the tournament
size increases even with fairly small tournaments. |

Obviously these results are of significance for the optimal design of organi-
zations yet little attention has been paid to them. We hope to take a step to
rectify this situation here. To do this we investigate a set of 2, 4, and 6 person
experimental tournaments and compare the behavior of our subjects across them.
While financial constraints prevented us from increasing our laboratory organiza-
tions beyond a size of 6, we still find behavior fairly consistent with that predicted
by the theory. More precisely, in answering the three questions posed above we
find that as the size of the laboratory tournament grows through replication from
size 2 to 4 to 6 the mean effort level of subjects remains constant. This result,
therefore, seems to contradict the commonly held belief that people tend to work
less hard in large impersonal organizations as opposed to small ones.

The same is true of the mean effort levels of subjects in 6-person tournaments
as the prize distribution changes from having 3 small and 3 large prizes to one



having 2 small and 4 large ones. There is, however, a significant decrease in effort
when we move to the 4-large and 2-small prize structure.. The implication of
this result is striking since, if effort levels decrease in tournaments with relatively
more large prizes, the per-unit cost of output significantly increases. A profit
maximizing manager should therefore choose that prize structure with the smallest
number of large prizes consistent with the desired output goal. Finally, in unfair
tournaments, holding the fraction of people discriminated against constant but
allowing the tournament to grow from 4 to 6 subjects, leads to an increase in the
mean effort levels of subjects as predicted by the theory. This result indicates
that the efficiency cost of discrimination is greatest in smaller rather than larger
organizations. However, counter to the theory, no significant difference in behavior
was found when comparing 2-person and 6-person tournaments. We discuss this
anomaly in the paper.

The policy implications of this discrimination result are mixed. On the one
hand, if efficiency is the sole reason why society is concerned about discrimination,
an assumption that is probably far from the truth, then this result implies that
enforcement efforts of the government might be best aimed at small rather than
Jarge firms since it is there that these discrimination costs are greatest. On the
other hand, however, as Becker (1957) has suggested, if employers have a taste.
for discrimination which is not exercised when the efficiency cost of doing so
is too high, then we might expect more discrimination in large firms than in
small ones since it is in large firms that the opportunity cost associated with
discrimination are smallest. This would imply that enforcement efforts on the
part of the government should be aimed at large firms since (as Becker (1957)
points out) the market would police small firms exercising an irrational and costly
taste for discrimination.

In this paper we will proceed as follows: In Section 2 we will quickly review the
theory relevant to our experiments and prove four theorems which answer, at least
theoretically, the three questions posed above. These theorems will provide us
with three hypotheses which we will use to organize the results of our experiments.
In Section 3 we present our experimental design, while in Section 4 we present
and discuss our results. Finally, in Section 5 we offer some concluding remarks.

<
.



2. Section 2: Tournaments and Their Equilibria

2.1. A Simple Tournament Model

Consider the following n-person tournament with n identical agents 1 = 1,2,.....,n
each having the same utility functions separable in the payment received and the
effort exerted.

u(p,e) = w(p) - cleg), i =1,2,....,m, (2.1)

where p denotes the non-negative payment to the agent, e; is the agent’s non-
negative effort level. The positive and increasing functions w(-) and c(-) are,
respectively, concave and convex. Agent 1 chooses a level of effort from a closed
and bounded set on the real line. This effort is not observable to anyone except
agent i but generates an output y; according to

v = fled) + & (2.2)

where the production function f(-) is concave and &; is a random shock drawn
independently for each agent i from an identical and continuous density function
defined on a common closed and bounded support. All other agents have a similar
technology and face an identical decision problem. In this tournament there will
be n prizes (i.e. the number of prizes is equal to the number of participants in the
tournament) each of which can take one of two values, M or m, with M > m. A
prize structure AT = (X, 1— X) is defined by a fraction, A, indicating the fraction
of large prizes existing in the tournament with 1 — X being the fraction of small
prizes.

The rules of the tournament are as follows: After outputs are determined for
each of the n agents, let S; be the set of agents j in the tournament such that y;
> y;. In other words, S; is the set of agents who agent i "beats” in the sense of
having a larger output. Let C(S;) be the cardinality of S;. In a tournament with
prize structure AT the payment to agent i is M > 0 if C(8;) > (1 — A)n and is m
< Mif C(S) < (1-A)n. Put differently, the agents with the top An outputs get
the large prize M (the promotion), the remaining (1-A)n agents get m.

In some tournaments, a subset of agents are favored in the sense that they do
not have to perform as well as disfavored or discriminated against agents in order
to win a large prize. This can be modelled by adding a constant k to their output
so that whatever their effort is, their ”effective” output is guaranteed to be larger
by k. Such a constant is not added to the output of disfavored agents. Viscusi,
Zeckhauser, and O’Keeffe (1984) call such tournaments unfair with k being the
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discrimination factor. Given any vector e = (e;,.....,e,) Of effort choices by the
agents, agent i’s probability of winning M can be denoted by m{e;,e—;) where e_;
is the vector e with the ith agent’s effort level deleted. Thus i’s expected payoff
from such a choice is

Ezi(es, ;) = wles, e—i)w(M) + (1 —n(e;, e_))(w(m)) —ele),i = 1,2,...,n (2.3)

where 7(e;, e_;) is the probability of winning a large prize for agent i given the
effort choices, e_;, of his n-1 competitors.

The above tournament defines a game with payoffs given by (2.3) and a strat-
egy set I given by the feasible set of effort choices, which we assume is a closed
interval on the real line. The theory of tournaments restricts itself to the game’s
pure strategy Nash equilibria and in much of what we do here we will restrict
ourselves even further to the symmetric pure strategy equilibria where e* = e™;
— .= e* . With suitable restrictions on the distribution of random shocks
and the utility functions posited above, a unique pure strategy symmetric Nash
equilibrium will exist for all of the tournaments we will be dealing with in our
experiments (seec Theorems 2 and 4 below). The theory requires the specification
of the utility function, the production function, the distribution of shocks and the
prize structure. One specification we use in our experiment below is the following:

Us(pi, €:) =p—e*fe,i=1,2,..,n (2.4)

Yi =ei+§i7i:1:21""7ﬂ': (25)

where ¢ > 0 and &, is distributed uniformly over the interval [-q, q], g > 0 and
independently across agents. e; is restricted to lie in [0, 100]. In particular, the
agents’ expected payoff in the tournament is:

Ezi(ei,ei) = m+m(es,e_)[M —m] — ef/c (2.6)

We call this our Experimental Specification and note it is defined by the parame-
ters ' = {M,m,q,c,k,¢(£),i = 1,2,....,n}, where M, m, q, k, and c are defined
above and ¢(£,) is a uniform density function determining each independent re-
alization £;. At the unique interior pure strategy Nash equilibrium, each agent’s
first order condition must be fulfilled,

aEz‘i — aﬂ—(ei? 6_1‘,) . [M — m] _ 281'/0 = 0 (27)

) ae,- 38,-
or iﬂ_g%&i) M —m] = 2efc (2.8)




This first order condition has a simple explanation. On the left hand side we have
the marginal benefit to a tournament participant from increasing his or her effort
level. Obviously, this is equal to the increase in the probability of winning caused
by the effort increase 91(—‘(%’5—1) —the marginal probability of winning— multiplied by
the net benefit of winning, [M-m]. The right hand side is simply the marginal cost
of effort. The second order conditions guarantee that this is indeed a maximum.

Using a uniform distribution with support i-q,+q], at a symmetric equilibrium

where e; = ¢; =e*, we know that Q’%fﬂl = 515. Hence the first order condition
becomes,
‘ 1
which, when solved for the optimal e*, yields,
M —
ex = M= m)e (2.10)
4q

Note that whenever the equilibrium marginal probability of winning is z—lq for all
agents, the equilibrium effort level is defined by (2.10). We will use this fact later.
In our experiments we parameterize this model by setting q = 60, M = 2.04,
m=0.86, q = 60, and ¢ = 15,000, which determines e*=73.75.

2.2. Some Theoretical Results

The model presented above yields some interesting results when the number of
participants in the tournament and its prize structure are allowed to vary. In ad-
dition, the introduction of discriminatory behavior on the part of the tournament
organizer has interesting implications as well both for organizational efficiency
and social policy. What we will do in this subsection is to prove a number of
simple theorems pertaining to symmetric and asymmetric tournaments. To state
our results efficiently, however, we need to make a few distinctions about types of
symmetries and asymmetries we are concerned with here.

Tournaments are characterized by three factors: the characteristics of the
agents functioning in them, ie. their utility and cost of effort functions, the
tournament parameters, i.e. the prize distribution MM, ¢, and m, and finally
the fairness of the rules, i.e. whether k is equal to, greater than, or less than
zero for any subset of players. We will call a tournament Fully Symmetric if
all factors mentioned above are symmetric. For example, a tournament is fully
symmetric if all players have identical cost functions, A = 1/2 so that there is
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an equal number of large and small prizes, and k = 0 for all i = 1, 2, ..... , 1
so that there is no discrimination against any group. The asymmetries we are
interested in occur when an asymmetry is introduced into one of our three factors
leaving the other two untouched. We will call a tournament Unfair if A= 1/2, all
agent cost functions are identical, but k > 0 for some subset of agents. Likewise,
a tournament is Prize-Asymmetric if k = 0 for alli = 1, 2, ..., n, all cost
functions for agents are identical, but A # %, so the number of large prizes is not
equal to one half the number of agents in the tournament. Finally, we call an
equilibrium symmetric if e; = e* foralli=1, 2, ..., n.

With these concepts defined we now state and prove three results which furnish
the hypotheses to be tested in our experiments.

Theorem 1. Let e* = (e1*, & *,....., e,*) be a symmetric equilibrium for a fully
symmetric tournament with n players using our experimental specification. Then,
ceteris paribus, ¢* remains a symumetric equilibrium for that tournament as n
increases. In addition, holding n constant, e* remains a symmetric equilibrium
for any prize-asymmetric tournament that can be derived from that tournament by
allowing X to vary away from A = 1/2 which satisfies the participation constraint
of the agents.

Proof. : See Appendix 1

Note that Theorem 1 answers both of our questions about organizational repli-
cation and prize structure (questions 1 and 2) posed in the Introduction since it
shows that, at a symmetric equilibrium, agent effort in tournaments should remain
constant as the size of the tournament increases through replication or, alterna-
tively, as the size is held constant and the distribution of prizes is varied. (In fact,
both n and An can be varied simultaneously with e* remaining constant). The
second result seems counter intuitive, at least to the untrained, who might tend
to think in terms of total and not marginal probabilities. For example, a common
mistake might be to think that, ceteris paribus, as the number of large prizes in a
tournament is increased, equilibrium effort levels should fall since the probability
of winning one of those prizes has increased and hence high effort levels would be
a costly waste. The trick to seeing that effort levels should remain constant, how-
ever, is seeing that while the total probability of winning increases, the marginal
probability remains constant. This is the main intuition of the proof.

Theorem 1 is constructed under the assumption that a symmetric interior
equilibrium exists. To prove such a result we offer the following theorem.



Theorem 2. Any Fully Symmetric or Prize Asymmetric Tournament with our
experimental specification has a unique symumetric interior pure strategy equilib-
rium if [M-mje < 4¢-100.2
Proof. : See Appendix 1.

Our next result deals with unfair tournaments and the impact that size has
on effort levels in such tournaments.

Theorem 3. Consider a fully symmetric tournament of size n with 3 large prizes
and with a symmetric equilibrium e*. From this fully symmetric tournament
create an unfair tournament again with 7 large prizes and with % agents receiving
k>0 0<k < 2q Let é be the symmetric equilibrium associated with this
unfair tournament. Then as n increases from 2, to 4, and eventually to 6, é
increases monotonically toward e*. (Remember, from Theorem 1, e* is invariant
- to increases in the size of the tournament).

Proof. : See Appendix 1.

This theorem answers the third question posed in the Introduction since it
proves that as n becomes large, the efficiency effects of discrimination get small
since equilibrium effort levels rise to their non-discriminatory levels.

Remark:

Without going through a full induction, it should be obvious from the proof of
Theorem 3 that this result can be generalized to demonstrate that when random
shocks are uniform, as n — oo, & — e*. The strategy to prove this result is
simple. As we know from the first order condition (2.8), whenever the marginal

probability of winning is equal to 515 for all agents, the equilibrium effort level for

agents in a symmetric equilibrium is e* = (M=m)e Hence, if we can show that as n

gets large the marginal probability of winning in an unfair tournament converges
to zi for all agents, we would have proven our result. However, as we see in the
proof of Theorem 3, the marginal probability of winning in an unfair tournament

with % large prizes and 3 favored agents (receiving a k > 0) can be written as
w =5~ (2;;% for all agents. With k < 2q, this term converges to 5,
as n— oo.

2While this condition does guarantee the existence of an interior equilbrium, one still has
to check a global condition to guarantee that , for each agent, the payoff at e* is sufficent to
induce him or her to participate in the tournament as opposed to setting e; = 0 and receiving
a payment of m for sure. This condition is satisfied if \/eA[M —m] > e*.
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Theorem 4. :Assuming the appropriate second order conditions are satisfied,
all unfair tournaments satisfying our experimental specification have a unique
symmetric pure strategy equilibrium.

2.3. Hypotheses To Be Tested

Theorems 1 and 3 define a set of three null hypotheses which serve as the basis
for the discussion of our experimental results. Stated in terms of the experiments
actually performed, these hypotheses are stated as follows:

Hypothesis 1: The effort levels observed in fully symmetric 2, 4, and 6 person
tournaments are identical. |

Hypothesis 2: The effort levels observed in 6-person tournaments with 2
large, 3 large, and 4 large prizes, respectively, are identical.

Hypothesis 3: The effort levels observed in unfair tournaments increase
monotonically as we move from 2 to 4 and eventually to 6 person tournaments
and approach the fully symmetric equilibrium effort levels.

Note the consequences of these hypotheses for organizational design and ef-
ficiency issues. If Hypothesis 1 is correct, the output observed in organizations
whose incentive programs define fully symmetric tournaments should not vary as
the size of the organization increases. Hence, if you have a firm with 100 work-
ers, you can get as much output from your workers by organizing them into ten
10-person tournaments each with five large and five small prizes as you can by
creating one large 100-person tournament with 50 large and 50 small prizes. Obvi-
ously, which you do will simply depend on which type of organization is cheaper to
administer. Hypothesis 2 goes even further. It claims that not only does the size
of the organization make no difference, but the composition of the prizes doesn’t
matter either. This means that, subject to retaining the interior equilibrium of the
tournament, equilibrium effort by workers should be invariant to the composition
of large and small prizes. Clearly, a profit maximizing manager would, given this
result, always opt for as few large prizes as possible since the labor cost to the
firm is defined as the sum of the prizes. Finally, Hypothesis 3 indicates a strong
preference for large organizations when it is suspected that discrimination is being
practiced within the organization. The reason is that if Hypothesis 3 is correct, in
the face of discrimination output actually increases as the size of the organization
increases. Coupled with Hypothesis 2, these two Hypotheses indicate that large
organizations with few large prizes should define the profit maximizing structure
for orgaﬁizations suspected of having discrimination within their ranks.

11



3. The Experiments Performed and the Experimental De-
sign

Eight experiments examined the effects of organizational size and incentive struc-
ture on players effort in tournaments. Experimental parameters are shown in Ta-
ble 1. The decision and random number range, cost function, and fixed payment
structure (M and m) were identical across all eight experiments. Experiments 1
- 3 utilized fully symmetric tournaments to test Hypothesis 1. All experimental
tournaments were identical except for the number of participants with Experiment
1 testing 2-person, Experiment 2, 4-person, and Experiment 3, 6-person tourna-
ments. Experiments 3 - 5 tested Hypothesis 2. All three experiments were identi-
cal 6-person tournaments except for a change in the tournaments prize structure.
In Experiment 3, there were 3 large- and 3 small-fixed payments; Experiment 4
used 4 large- and 2 small-fixed payments; and Experiment 5 used 2 large- and
4-small fixed payments. We tested Hypothesis 3 using Experiments 6 - 8. All
these experiments were unfair (asymmetric) tournaments, with k = 25. They
were identical in all experimental parameters except for tournament size. Exper-
iment 6 used 2-person, Experiment 7, 4 person tournaments, and Experiment 8,
6-person tournaments. All had A = 1.

3.1. Experimental procedures

9286 subjects were recruited both from New York University and University of
Pennsylvania undergraduate classes. They were randomly assigned to a time slot,
and instructed to meet at the behavioral laboratory. The behavioral laboratory
consisted of cubicles that made it difficult to see others during the experiment.
Subjects were randomly assigned to a cubicle, given instructions (See Appendix),
and the instructions were publicly read. The instructions basically said the follow-
ing: For this experiment, subjects would be randomly assigned with a specified
number of other subjects (either 1, 3, or 5 depending on the tournament size).
These subjects would be their ” group member(s)”. Group members remained the
same during the entire experiment, and their physical identities were not revealed.
Subjects were told the amount of money they earned was a function of their de-
cisions, their group members’ decisions, and the realization of a random variable
as described by the rules of the tournament. They were then given cost-of-effort
tables and told that all subjects had identical tables and instructions. In each
round, their task was to chose an effort level (to which a random component was

12



added by the computer or by pulling a chip from a bag of chips, if the experiment
was a 2-person experiment and hence performed by hand). After each round,
they were shown their effort, their random realization, and whether they earned
a large or a small fixed payment. They learned nothing about the effort levels or
the random realizations of their cohorts. All parameters were cormmon knowledge
except the identity of pair member(s).

All 2-person tournaments were conducted manually while 4 and 6 person tour-
naments were run using computer terminals. A more detailed set of experimental
procedures for our 2-person experiments can be found in Bull et al. (1987). Ap-
pendix 2 presents the instructions for one of our 6 person experiment—experiment

5.

4. Results

To organize our data we present experimental results to test of our three hy-
potheses. Experimental results are shown in FIGURES 1-4, and TABLES 2-5.
FIGURES 1, 2 and 4 show the round-by-round subject mean effort choices across
experiments. FIGURE 3 shows the organizational cost per unit of effort in 6-
person symmetric tournaments. TABLE 2 presents suminary statistics of ob-
served behavior in experiments 1-3. TABLE 3 and 4 do the same for experiments
3.5. TABLE 5 shows summary statistics of observed behavior in experiments 6-8.

4.1. Hypothesis 1 - Organizational replication of symmetric tourna-
ments

Hypothesis 1 states that observed behavior in fully symmetric tournaments should
be invariant to tournament size. Hence, we expect observed effort levels in Exper-
iments 1, 2, and 3 to be identical and equal to 73.75. FIGURE 1 and TABLE 2
compare subject behavior across 3 organizational replications — 2-person, 1 large
prize; 4-person, 2 large prizes; and 6-person, 3 large prizes. To test Hypothesis 1
we investigate whether observed behavior deviates from predicted.

First we test whether mean subject choices in each organization significantly
differ from that predicted (73.75). A round-by-round Wilcoxon signed rank test
does not reject the hypothesis that observed effort levels in each organizational
setting came from a population with a mean of 73.75.3 As shown in TABLE 2,

3The Wilcoxon signed-rank test requires a symmetric distribution of data. Using a
Kolmogorov-Smirnov test, we could not reject the hypothesis that the data were drawn from a
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the highest observed deviation from predicted effort level in rounds 1-10 is 9.44
(in all three experiments, the highest deviation occurs in round 1), and in rounds
11-20, 9.40. Across all symmetric tournaments (i.e., across all fully symmetric
tournaments of size 2, 4 and 6) , the mean deviation from the predicted effort
level in rounds 11-20 is 4.6.

We then test whether mean subject choices in each experiment were signifi-
cantly different from each other. Using pair-wise round-by-round Mann-Whitney
tests we cannot reject the hypothesis that observed effort levels in each setting
came from identical populations.

Symmetric tournament theory (and Hypothesis 1) states that agents should
not care about organizational size in choosing effort levels, as long as the pro-
portion of large payments remains constant. Qur results support this prediction.
Subjects exhibited similar behavior in our 2, 4, and 6 person tournaments; tour-
nament size did not significantly impact behavior.

For tournament organizers (i.e., managers), the results imply the cost per
unit of output does not significantly differ across fully symmetric tournaments of
different sizes. If managers need to efficiently use resources, then one important
design issue is tournament size — should one use several small tournaments, or
a single large one? If the fixed costs associated with setting up tournaments do
not significantly vary as tournament size increases, then managers should prefer
larger tournaments to smaller ones since they would economize on these fixed
costs. This is especially true if the presence of fixed costs implied economies of
scale in using large tournaments. Our results indicate that since effort levels are
invariant to tournament size, larger tournaments are more cost effective than a
series of small ones. In addition, (as we will see in the test of Hypothesis 3, when
discrimination exists in the organization, there is an additional reason why larger
tournaments migth dominate - they raise output per worker at the equilibrium

4.2. Hypothesis 2: Effort and compensation design

Hypothesis 2 states that effort levels in experiments 3, 4, and 5 (three 6-person
tournaments with different prize distributions, 3M-3m, 4M-2m, 2M-4m) should be
identical and equal to 73.75. Compensation designs of 4M-2m, 3M-3m, and 2M-
4rm should elicit identical effort levels. FIGURE 2 and TABLE 3 show observed
results. We test for similarity using a pair-wise round-by-round Mann-Whitney
test. While the test confirms similar behavior using designs of 3M-3m and 2M-4m

normal, hence symmetric, distribution. All statistical tests used a significance level of percent.
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— we cannot reject the hypothesis that observed effort levels in any round came
from identical populations, this is not true in comparing the design of 4M-2m
with 3M-3m and 2M-4m. Observed effort levels in tournaments with 4M-2m are
significantly below those with either 3M-3m or 2M-4m as Figure 2 implies. A
Mann-Whitney test confirms this for every round.

We next test whether observed behavior differs from that predicted. As pre-
viously discussed, a round-by-round Wilcoxon test shows observed behavior in a
3M-3m tournament is as predicted. A similar test confirms that observed effort
in a ?2M-4m tournament is as predicted?, while effort choices in a 4M-2m design
are significantly lower than predicted. :

Although theory predicts agents should exert equal effort under any of our
3 designs, results indicate subjects exert significantly less effort with a relatively
large number of high payments (4M).

The explanation for this failure, we suspect, involves an inability on the part of
subjects, and perhaps people in general, to sufficiently understand the difference
between total and marginal quantities.® In this case, we feel subjects confuse the
total probability of winning in these tournaments with their associated marginal
quantities. In many instances such a mistake may not lead one too far astray, but
here it seems to. For example, with a 3M-3m design, the expected equilibrium
probability of winning is .5; this increases to .666 with 4M-2m, and decreases to
33 with 2M-4m. However, at the equilibrium the marginal probability remains
constant at 2iq = 135 (given our parameters — see Theorem 1).

If subjects look at total probabilities rather than marginal, what are the in-
centives in the 4M-2m and 2M-4m designs? In the former, there is an incentive
to reduce effort levels since, at the equilibrium, you are expecting to receive a

‘large fixed payment with what might appear to be an excessively high probabil-
ity, 66.6%. By lowering your effort level you reduce the probability of winning to
a still acceptable lower levels but, in the process, increase your payoff conditional
on winning since lowering your effort level reduces your cost. This marginal cost
saving in effort is substantial when the equilibrium calls for an effort level of 73.75.

To illustrate this point, imagine you are an assistant professor competing with
5 others of identical ability for tenure, and are told 4 of you will receive it, i.e., the
tenure rate in your department is 80%. With such odds you might logically reduce

1Using a round-by-round Wilcoxon test this finding is not supported for round 12 only, where
results are marginally significant at the .10 level.

5 Actually, even trained economists can, at first glance, miss the intuition here and think that
effort levels shoutd decline aas the proportion of large prizes is increased.
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your effort level. Intuitively, one thinks, while I have to work very hard to be the
first or second best, I don’t have to work that hard to be fourth best. Subjects in
4M-2m tournaments appear to have used this line of reasoning. Clearly, they were
willing to trade off lower probabilities of winning (reducing them toward 50%) for
reductions in effort costs.

Incentives in the 2M-4m tournament aren’t so clear — if one wants to increase
the probability of winning here one must increase effort, but this leads to higher,
not lower, costs. In addition, since the cost function is relatively steep at 73.75, any
increase in effort is associated with significantly higher marginal costs. Subjects
may get discouraged because of their low probability of winning and reduce effort
levels in order to lower costs. To a minor extent this is not what appears to
have happened. Though effort levels are not significantly different between the
3M-3m and 2M-4m designs, they are still higher in the 3M-3m design in 18 of the
20 rounds. And, mean effort in the 2M-4m design is lower than predicted in 14
rounds. :

So in both prize asymmetric tournaments (4M-2m, 2M-4m) we see similar
effects for opposite reasons. In the 4M-2m subjects may believe it is easier to win,
so they reduce effort levels; in the 2M-4m design they think it is more difficult to
win so they slightly reduce effort levels.

4.3. Organizational Costs

Managers who design compensation schemes that elicit similar effort for lower
costs are obviously using their managerial resources more efficiently. One measure
of organizational efficiency is organizational cost per unit of effort. Holding effort
constant, organizations want to economize on the payments they need to make to
achieve that effort level. Payment design (changing the prize distribution) is one of
many variables that managers use to modify behavior. In theory, while the three
tested prize distributions all elicit effort of 73.75, the equilibrium organizational
cost per unit of effort differs — for 4M-2m, $.0223, for 3M-3m, $.0197, and for
2M-4m, $.0170.

If observed behavior (and hence organizational costs) differ from that predicted
at the equilibrium, an interesting empirical question is how do they differ and do
they do so in a systematic manner. Realized organizational costs are presented
in FIGURE 3 and TABLE 4. Obviously, from looking at Figure 3 we see that
the 4M-2m design leads to the highest cost per unit of effort, both because of the
large number of large fixed payments and (as can be seen in Figure 2), because
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of the lower effort levels exerted. Further, as shown in TABLE 4, in all of the
last ten rounds, the actual cost per effort unit was higher than predicted in the
4M-2m design.

The comparison of actual costs between the 3M-3m and 2M-4m design is in-
teresting. We previously discussed how subjects exerted slightly more effort in the
3M-3m relative to the 2M-4m design. This would seem to imply that managers
are better off using a symmetric (equal number of high and low payments) com-
pensation design. However, there is obviously an inherent advantage in offering
a smaller number of high payments, since this design reduces the tournament’s
cost. We see the predicted difference between the two designs is .0027 per unit of
effort. TABLE 4 shows that although the actual cost difference is smaller than
that predicted (since the 3M-3m design elicits slightly higher effort), the 2M-4m
design still results in lower costs. That is, while the cost differential between the
two designs is reduced, the 2M-4m design still produces a lower cost per unit of
effort — an average of .0179 over the last ten rounds compared to .0187 for the
3M-3m design.

4.4. Hypothesis 3: Organizational replications of unfair tournaments

We test the effect of discrimination on subject behavior by fixing the discrimina-
tion level (k = 25) across three different size organizations — 2, 4, and 6 person.
Hypothesis 3 states that the effort levels in the 6-person tournament are higher
than in the 4-person tournament, which, in turn, is higher than n the 2-person
tournament, i.e. the loss in efficiency is due to discrimination monotonically de-
creasing as organization size increases. The predicted effort level in organizations
of size 2 is 58.39, of size 4, 70.55, and of size 6, 73.08. The theory also predicts
identical effort choices for advantaged and disadvantaged subjects. FIGURE 4
and TABLE 5 compare subject behavior across these unfair tournaments.

A round-by-round Mann Whitney test for rounds 11 - 20 confirms no significant
differences in choice levels of advantaged and disadvantaged subjects in the 6-
person tournament. Further, a Wilcoxon test cannot reject the hypothesis that
choices in these rounds came from a population with a mean of 73.08. Tests for
the 4-person tournament show similar results (using a mean of 70.55). However,
behavior in the 2-person tournaments is different from that predicted. Effort
levels of disadvantaged and advantaged subjects significantly differ in 7 of the
last 10 rounds, and we can reject the hypothesis effort levels were drawn from a
populatibn with a mean of 58.39 in every one of the last 10 rounds. In fact, as
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we can see in Figure 4, in 13 of their 20 rounds effort levels were higher in the
2-person experiment than in the 4 or 6 person experiment which is counter to the
theoretical predictions.

We also tested whether observed behavior is significantly different across these
unfair tournaments. Although the spread in predicted effort is small (58.39, 70.55,
73.08), we still find some differences in observed behavior. In comparing the 2-
person tournament with the 4, we observe significant differences in 8 of the last
ten rounds. In comparing the 4-person tournament with the 6, we find significant
behavioral differences in 5 of the last ten rounds (12, 14, 15, 18, 19). Finally, we
find no significant differences in behavior in the 2- and 6-person tournaments.

In summary, our results are partially counter to the predictions of theory.
While theory predicts an increase in effort levels as the size of the organization
increases, our results support this prediction only when going from a 4- to a 6-
person tournament; they do not support it when moving from a 2- to 4-person
tournament or even from a 2-to-6 person tournament; effort levels in a 2-person
tournament were significantly higher than predicted.

We do not find this result discouraging, however, since the theory fails to pre-
dict well only in the two-person case, a case we fecl may be special. This is because
a two-person tournament, especially one where one agent is discriminated against,
has many of the characteristics of a game of status where part of a subject’s pay-
off is derived from winning (”beating” one’s opponent).® While this phenomenon
may exist in 4 and 6 person tournaments as well, we feel they are sufficiently
impersonal to allow subjects to treat their competition more parametrically and
avoid this effort matching behavior. Since the results for the 4 and 6 person tour-
naments were consistent with the theory, we consider this interpretation a viable
explanation.

Results also indicate a wider choice of effort levels in unfair 6-person tourna-
ments than in their symmetric counter-part. Comparing TABLES 2 and 5, we
see the mean standard deviations are much higher in the unfair tournament.

5. Section 5: .Discussion and Conclusion

This paper develops basic properties and tests the descriptive validity of multi-
person tournaments using laboratory experimental techniques. Overall, observed

GSimila; results, of disadvantaged subjects trying too hard in two-person tournarments, were
seen by Bull Schotter and Weigelt (1987) . Hence, our results here are consistent with those
previously recorded.
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behavior is similar to that predicted by the theory. This supports the conclu-
sions of earlier two-person tournament experimental studies (Bull, Schotter, and
Weigelt, 1987; Schotter and Weigelt, 1992).

We focus on individual tournament behavior and its associated impact on
organizational cost. Our results show that tournament design does affect both
concerns. What we find is that with respect to Hypothesis 1, behavior is indeed
invariant to organizational replication, i.e. effort levels remain constant as the
size of the organization grows. With regard to Hypothesis 2, behavior was not
always found to be invariant to the prize structure. More specifically, as predicted,
behavior was invariant in the 3M-3m and 2M-4m designs, but not in the 4M-2m
design, where effort levels were significantly lower than predicted. Tournament
size, as stipulated in Hypothesis 3, does seem to reduce inefficiency eflects of
discrimination, thereby reducing its opportunity costs. This was particularly true
in the move from 4 to 6 person tournaments, but not substantiated in comparisons
to 2-person tournaments..

While it is hard to extrapolate from small laboratory experiments to large
corporations, our results have implications for public as well as corporate policy.
With respect to public policy there is empirical evidence showing discrimination
rates are high in large organizations. One study finds men constitute 95% of senior
managers in the top 500 service and 1000 industrial companies; and 97% of them
are white (Redwood, 1996). Another, finds only 1 Fortune 1000 company without
a white male CEQ (Leinster, 1988). Others find significant discrimination across
a variety of large organizations ranging from Fortune 500 firms, (sece Greenhaus et
al. (1990) and Tokunga and Tracy (1996) to the U.S. Army (see Baldwin, 1996).

Public policies against discrimination already focus on large organizations as
our results suggest they should. For example, small firms are exempt from filing
EEOC reports if they have less than 25 employees. This policy is consistent with
the theory of tournaments and Becker’s (1957) theory of discrimination. These
theories imply that if the efficiency loss of output due to discrimination is great
when firms are small, a small firm with a taste for discrimination will be forced
out of existence by less discriminatory rivals. On the other hand, if the efficiency
loss of discrimination is small for large firms, as tournament theory suggests, a
firm with a taste for discrimination may easily survive. Medoff (1985) provides
evidence that this emphasis on large firm enforcement has been properly directed.
He reports that the rate of discrimination has significantly decreased since equal
opportunity policies were enacted since the 1960.

With respect to corporate policy, our results have implications for the proper
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design of organizational incentives. One crucial determinant of a good manager
is his/her ability to design effective incentive structures. Such structures should
modify agent behavior in the desired way, and minimize the associated labor costs.
Qur theoretical results indicate that since equilibrium effort levels are invariant
to the prize structure (for interior equilibria) the optimal prize structure is one
which minimizes the number of prizes consistent with maintaining an individual
participation constraint. Our empirical results go even further since they indicate
that when too many large prizes are dangled above the noses of agents, they tend
to ease off in their effort. Since it is costly to provide such a large number of
large prizes, on a behavioral level it again appears as if the steeper organizational
pyramids are better for worker motivation (at least up until the point where the
probability of promotion becomes so low that agents "drop out” and provide no
effort at all). We hope our results can aid managers in better understanding the
properties of tournament design and help them construct more efficient tourna-
ments. ‘

Finally, larger tournaments have several advantages. They reduce the decrease
in output due to discriminaton while economize on the fixed costs invlved in
setting up a number of small tournaments.
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7. Appendix

7.1. Appendix 1: Proofs

Theorem 1:Proof.

We will prove that ﬂng‘—") = 515 at the symmetric interior equilibrium of
all prize-asymmetric tournaments. - Hence, from the first order condition (2.8)
we know that e* = W—Iqmlf and is independent of n and A as asserted in the
statement of the Theorem. Consider a prize-asymmetric tournament with An

large prizes (of course when A= 1/2 we are in a fully symmetric tournament). At
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the symmetric equilibrium of this tournament (which we prove exists in ‘Theorem
2) all agents choose the same effort level e*. Hence who wins the An large prizes,
M, is determined strictly by the sample of realization of uniform random draws
from [-q, +q]. Hence, let = (£,65, .-, ¢,) be the sample of random realizations
and w = (wy,ws,...., W, ) be the transformation of these random variables into
order statistics with wy, > Wa_1 > ...., > w;. Consider now an agent contemplating
a "small” increase in his effort level above e*.” We want to calculate the marginal
probability of winning a large prize associated with such an increase. Obviously
if the agent contemplating the effort increase received one of the top An order
statistics, he will win a large prize with probability 1 and hence an increase in
effort will have no marginal impact. The same is true for agents contemplating
such an increase and receiving order statistic wn.2) Or Worse, since they are sure
losers even after such a contemplated increase. It is then only that agent who has
received wp,—1) that can actually change his probability of winning by increasing
his effort above e*. Consequently, the marginal probability of winning for any
agent contemplating an increase in his effort is equal to the probability that that
agent draws wy,—1 times the marginal increase in the probability of winning for
that particular agent. Let us call the agent receiving wxn-1 agent i and the agent
who has received w, agent j. To derive i's marginal probability of winning define
z = (wxn) - (Wrn—1) e.g. z is the difference between the nt* and the n-1% order
statistic. When each &; is drawn independently from a uniform distribution, it
can be shown (See Reiss (1989) that z is distributed as

fla) = 5 x (20 =277 26 0,2 (7.1)

When (e; - €;) < 2q, the probability that agent i wins a large prize is

PT([’UJ)m —_ w,\n_l] < [6,— — ej]) X PI‘(E,; = w,\n_l). (72)

Recognizing that Pr(e; = wa_1) = = We get,

l eime ﬂ. _Ll{n—1) z = —1 - —zy? (ei—ei): l_. {2q _ (6,,', . ej)]n
n/O R x [2g—2]\"""d (nx(iZq)“ (2¢-2)" lo n n- (2q)ﬂ(7 3)’

TWith a continuous underlying density function the possibility of a tie in the value of any
two consequtive order statistics is zero
8When (e; — e;) > 2g, the probability of winning is, of course, zero.

22



Taking the derivative with respect to e;, we find

O(Pr iwins)  (2q—e;+¢;)"!
e; - (29} ,

(7.4)

which when evaluated at e; = e; = €* equals 1/2q. Since this expression is
independent of both n and A{n), we have proven Theorem 1. B

Theorem 2:Proof.

From the proof of Theorem 1 we know that given a uniform distribution for
shocks, whenever agents all choose the same effort level, the common marginal

probability of winning is %. If a unique equilibrium is to exist the first order

condition must be satisfied for each agent at the same e;. Substituting -qu- for

—#aﬁ(ea‘;f“) in (2.8) we see that for each agent i

BEzi 1 261'
= —[M-m]- == :
5o, 2q[ m] . 0 (7.5)
> 2e; (M - m]
€; o — I
= (7.6)

The left hand side of this equation is a linear increasing function of e; which is
identical for all agents since they have identical cost of effort functions. The right
hand side is a constant. Hence the existence of an e; = e* for 1 = 1,2,....,n, that
satisfies this condition is guaranteed . In addition, from the description above it is
clear that this e* must be unique and is an interior solution if [M-m]c < 4q-100. B

Theorem 3:Proof.

Case 1: n = 2

Consider a two-person unfair tournament with two agents i = 1,2, where k =
ky ks >0. Given the linear nature of production, output for iis y; = e; +k; 45, 1
=1, 2. Agent 1 beats agent 2 if y; >ys.0orer+k1+e1 2 ex+ ko +£4. Without loss
of generality assume that e; + k1 > ez + ky so that 1 is the agent with the highest
potential output. Given 1’s random realization &1,whether 1 wins depends upon
whether 2’s random realization £, is such that ey < (e1 + k1 — €2 — ka2) + €31

The probability that e, is this small determines the conditional probability of
e1-+k1 —(eatka) +er
-q

Pr(1 wins| £1) = q+(e1+k1)_w2~£§ez+kz)+51 = h;?sl,where 19 = qg+{e1+k1)— (ea+k2).
Note that with uniform distributions over the ¢'s, Q+(el+k1);§e2+k2)+sl = % +

Lﬂiﬂ;}w + %;,which says that the conditional probability of winning given

winning for 1 given a realization of £, : Pr(1 wins| &;) = s5dez.or
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Pr(]_ WiIlSI 51) _ at{eatki)—(eatka)ter _ lZ;TELJWhere 1y = q+(81+k1)""(€2+k2).

2
Note that with uniform distributions over the €'s, q*'(el“‘"kl);éeﬁkz)“‘ =14+

(= —ie - -y - ey - . .
(erths) ~(eatha) 1+k1)2q atha) %,Whl(}h says that the conditional probability of winning given

any £ is equal to % plus a term proportional to the difference in the effort levels
modified by the discrimination terms, plus another term proportional to £1,where
the factor of proportionality is o-.

To find the unconditional probability of winning we must integrate over all
possible realizations of ;. However, since we have assumed that (e; + k1) >
(ea + k2), we know that for all realizations of &1 > (eg + k2) + g — (&1 + k1) =24
agent 1 can not lose, i.e. the probability of winning is equal to 1. Call the region
of random realizations &; €{(es + ko) + ¢ — (s + k1), g] the Sure Win Interval
(SWI). To find the full or unconditional probability of winning we now integrate
over two regions, ,

Pr(tvine)— J3 ey + 7 Cots = 3 + (el (osmlgpaenl

In a similar fashion,

Pr(2wins)= [7, G2lde, = & — [Crthllerthal] . [tk ot bl
These formula yield expressions for the marginal probability of winning which

are,
8(Pr(lwins} __ 1 _ {e1-tk1)—(eg+hko)
deq T 29 (29)? '
H(Pr(2 wing) _ 1 _ (eitka)—(ez+ka)
= 5 .

des 2q (2
Note that these marginal probability of winning functions are identical so that

if we evaluate them at e; = e, ky > 0, ko =0, we ﬁnd@%%inﬂ == ﬁ — (2’;")2, i=
1,2. ,

Using this as the expression for the marginal probability of winning in (2.8)
yields e¥* = 58.39 when k = 25.

Case 2: n = 4

The analysis for n = 4 follows identically from the n = 2 case except it is more
tedious. Assume that there are four agents, 1, 2, 3, 4 in a tournament with two
large and two small prizes and with k = (k1,ko,ka,ks ). Assume, again without
loss of generality, that e; + ky>es+ky>es+ks=eqtky and let us calculate
the unconditional probability that any agent i will win.

Looking at agent 1 first we find,

- 3 a4 £ 4 £
Pr(l WlIlS)=f;1 Q%Idgl +J"411 _21_q[(1..r(123q-;-261)_(12+s(12)q()123+ ﬂ]d&j—l—f_é %[§12+E(12);)123+ 1)

(1a4e1)(lat (1s+e1)(later) _ o (La+er)(later)(later)
R 12!q§)4 51!+ 3 5(12q24 -1 2( 2tel ((32(1)5?1 ate1 ]ds.l. .

Here the first term on the right is the sure win area while the other intervals of
integration represent the probability of winning if the random realization &,falls
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into other intervals which requires beating competitors in various combinations.
For agents 2, 3, and 4, a similar analysis yields the following probability of
winning formulas:
21+23+2€
Pr(2wins)=: f; ){ng )‘i'f4(22 [( 1+(23;)r 2) _ (21+s(22)q()223+ezl]d&-2
(21+e2)(2a+= 2+s)(‘2 +e2) 23+ea}{24+22)
+f(%1-EQ[)(21 +(2231(): L (22 )224 2 (_2|_ ( 3)((22{1)24) 2
1te2){231e2 4+62 -4 1 +e2)(2a4¢€ .
—2( ar +d) +({i zq[ﬁ)é—?])d, ,
£ £ + +
o WmS(3 f4)3(3 | )EZQ)Q( )?(QQ)S) ) Wb )2( L
+e +& 314+e3)(344€ (32-+€3)(3a+23)
+f(?§lfq[)(3l+3}(:+a) G J(; 2 )((:2@4 |
£z )(da+eg1{241€3 —d1 1 +& +€
2" o) g (4 fs)(j-l-f )32 2%4 2 )((3?: )3 =
£ 2TE. +e 13
Pr(4 wins) f412q S+ 1(42)23 44
§42+s(;);43+54 (41+E4)(42+E4)(43+54))]dE +f_ 1 42+64)!43+€4 deg
Since we are interested in tﬁe marginal probab1ht1es og winning we must dif-
ferentiate these terms with respect to the relevant effort levels. Letting ez =
e1+ k1 ,ek2 = €3 -{* ko epy = e3 + kgg exa = €4 + k ,this vields:
@%;‘lm_sn % ﬁ%}?[(ekl — exa)(er1 — exa) + (ex1 — ex)(ex1 — exa)

+(6k1 - eks)(ekl _ ek4)] + (ekl—€k2)(ek1'ek3)(5k1—f‘—k4}

. {2¢)*
: Pr%Le:1ns_ ) — 5 — e lerz — exs)(en2 — exa),
6(Pr6!3e:\’1ns) — ﬁ — '(-2—:]1"‘)3[(6]53 —_ ekl)(ek3 —_ 6k2)’
’ Pr(ge:’m)) = 21_.; - (2;)3 [(exs — ex1)(ers — exa) + (exs — ex1)(€kan — €x3)

(et — exz) (ens — exa)] — Cremmlrpaliacanl

Evaluating these expressions at e; = e; = e3 = e; = €*, and, without loss
of generality, letting k; = ky > 0 (favored agents) and k3 = k4 = (,(non-favored
agents), we find that these expressions collapse tomg—em 2q (Zk:)

The trick to understanding why our marginal pr obab1hty of winning expres-
sions take this form is realizing that {ex; - ex;) is positive and equal to k only when
iis a favored agent and j is non-favored since in that case (eri = ei-t+ ki ex; = e;)
and therefore (ex; — €xj) = k, whereas if i and j were both favored or non-favored
then (ex; — ex;) = 0. Hence, the marginal probability of winning equals the mar-
ginal increase in the sure win interval that results from an increase in effort minus
the marginal probability of winning that results from an agent’s ability to beat
all agents of the other type (a marginal increase in effort has no impact on your
ability to beat members of your own type). All terms involving mixtures of types
are zero and drop out of the expression. Again, using the marginal probability of
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winning expression in (2.8) we find e* = 70.55 when k = 25.

Case 3: n—6

For the case where n = 6, we will simply write down the expressions for the
marginal probability of winning deriving them in an analogous fashion as we have
before.

Take the case Where we have six players indexed i = 1,2 ,3 4, 5, 6, assume
k; = ko = kg = k, kg = ks = kg == 0, and, without loss of generality , e; + k1 2
eo+ ko 2 es+ks 2estky = es+ ks = e+ ks Using the same method as in
cases 1 and 2, and setting e; = (e; + k;) - (e; + k;), we can derive the marginal
probability of Winning functions for these agents as:

8(Pr(§e\:fms)) (zq)ﬁ [(29)° — (29)%(e12e13€14 + 12613815

+ez€e13€15 + €12€14€15 + €12€14€16 T €12€15€16 + €13€14€15 T €13€14€15 T €13€15€16

+epsersers) + 3(2g)(erne13e14€15 + €12€13€14€16 + €12€13€15€16 T €12€14€15€16

+ezerqeisels) — S(erze1zeise1ses)].

Note that the only e;; term in this expression that is nonzero is the one in bold
S0,

8(Pr(1 wins)) (2q 6 [(Zq) _ ( )ng] _ 1 13

Bey 2¢ ~ (29
a(pr(aze:'ms)) = (2q)5 [(2q) — (29)(e23ease25 + e23€24€06 + €23€25€96 I €24€25€26)
+3eg3eaqe25026)-
Again, noting that only bold expressmns are non-zero and equal to k, we find,
{:)(Pr(ge‘zmILL (2q)5 [(zq) (gq)k?’] =9 (Qk;-i'
G(Prgi: ) — (gq)4[(2q) — e34€35€36) = %1 — (T%I'
6(Pr§;‘e: i) 2z (2q)4[ (2q)° — enespes] = 5, — {—2‘-‘:)—4
B(Pr(ase:rins)) o )5 [(2q) (29)(es1es2€s3 + 3150654 + €51€53€54 + €52€53€54)

ka
+3es1€52853€54) = q — Goy

a(Pr(6 wins 5
( 5(3366 D~ (gq)ﬁ[ (2a)° — (29)%(es1e62€63 + 5162664 + €51€62€65 + €61€63€64

+eg1e63€65 + €61€64€65 T €62€63€64 T €52863€65 + €62€64E65 T €63€64€65)

+3(2q) (es1€52€63€64 + 61262863865 T €61€62€64€55 -+ €61€63€64C05 + €62€63€64€65)
—3(es1e62€53864€65)] = %q - (gkw- u

Theorem 4:Proof.

Note that the marginal probability of winning function is identical for all

agents in these unfair tournaments and equal to 6—(?%"’& %‘ — F;;zrﬁ. This

fact allows us to proceed as we did in the proof of Theorem 2. Substituting
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2%1 — (2;;?5“ for Bw(g:f“) in (2.8) we see that for each agent i
OFz; 1 % 2¢;
(- M —m] - 2 =0, 7.
de; (Zq (2g)z*! )l ™) c (7.7)

For any fixed n this condition can be written as

2e; k3
—?:B[M—m], wherel’;’:(i i

The left hand side of this equation is a linear increasing function of e; that 1s
identical for all agents since they have identical cost of effort functions. The right
hand side is a constant. Hence the existence of an e; = €* for i = 1,2,....,n, that
satisfies this condition is guaranteed . Second order conditions and conditions
guaranteeing an interior equilibrium must, of course, also be checked.
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7.2. Appendix 2: Instructions

Instructions for =2, k=0, n = 4 Experiment

Introduction

This is an experiment in decision making. The instructions are simple; if you
follow them carefully and make good decisions, you could earn a considerable
amount of money, which will be paid to you in cash.

As you read these instructions you will be in a room with a number of other
subjects. Fach subject has been randomly assigned an 1D number.

The experiment consists of 20 decision rounds. In each decision round you will
be grouped with three other subjects by a random drawing of ID numbers. These
three subjects will be called your ”group members.” Your group members will
remain the same throughout the entire experiment. The identity of your group
members will not be revealed to you.

Your group members are of two different types: ”Blue” and "Green.” Out of
the 4 people in your group, 2 are Blue and 2 are Green. When the experiment
begins, the computer will randomly assign you to be either a "Blue” or ”Green”
type, and one of the people running the experiments will tell you what type you
have been assigned. Each individual will remain the same type throughout all
rounds of the experiment.

Experimental Procedure

In the experiment you will perform a simple task. Attached to these instruc-
tions is a sheet called your ” Decision Costs Table.” This sheet shows 101 numbers
from 0 to 100 in the first column. These are your Decision Numbers. All subjects
have the same” Decision Costs Table.” :

Associated with each Decision Number on the Decision Costs Table are Deci-
sion Costs for the Blue and Green. Note that for each type, Blue and Green, the
higher the Decision Number chosen, the greater is the associated cost.

Note also, however, that these costs differ by type. If your type is Blue, take
your Decision Costs from the second (middle) column. If your type is Green, your
Decision Costs come from the third column. Green Decision Costs are higher than
Decision Costs from type Blue individuals.

Your computer screen should look like the following:

GAME: TOURNAMENTS

PLAYER ID# :

ROUND DECISION # RANDOM # TOTAL # COST EARNINGS
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In each decision round the computer will ask each subject to choose a Decision
Number. Therefore, you and your group members will each separately choose one
Decision Number. Using the number keys at the top of the keyboard, you will
enter your selected number and then hit the Return (Enter) key. To verify your
selection, the computer will then ask you the following question:

Is Your number? [Y/N]

If you want to select the number shown as your Decision Number, hit the Y
key. If not, hit the N key and the computer will ask you to select a number again.
You do not need to hit the Return Key after entering Y or N. After you have
selected and verified the Decision Number, this number will be recorded on the
screen in Column 2, and its associated cost will be recorded in Column 5.

After you have selected your Decision Number, the computer will ask you to
generate a random number. You do this by hitting the space bar (the long key at
the bottom of the keyboard). Hitting the bar causes the computer to select one
of the 121 numbers that fall between -60 and +60 (including 0). Each of these
121 nmumbers has an equally likely chance of being chosen when you hit the space
bar. Hence, the probability that the computer selects, say, -+60, is the same as
the probability that it selects -60, 0, -15 or +23.

Each subject will follow the same procedure, so that each subject generates his
or her random separately. After you hit the space bar, the computer will record
your random number on the screen in Column 3.

Calculation of Payoffs

Your payment in each decision round will be computed as follows. After you
select a Decision Number and generate a random number, the computer will add
these two numbers and record the sum on the screen in Column 4. We will call
the number in column 4 your ”"Total Number.” After every members of your
group has had his or her Total Number recorded, the computer will compare all
of the Total Numbers. On the basis of this comparison, the computer will tell you
whether you receive the "Fixed Payment” 2.04 or the Fixed Payment 0.86.

Recall that there are 4 members in your group. If your Total Number is one
of the 2 highest in your group, then you will receive the Fixed Payment 2.04.
If it is one of the two lowest, you will receive the Fixed Payment 0.86. If any
group members have the same Total Number and it makes a difference in the
Fixed Payment allocatéd, then the computer will randomly determine which of
these "tied” members receives the high Fixed Payment. For example, if both you
and another group member have the same Total Number, and that Total Number
places you on the "borderline” of receiving the high Fixed Payment or the low one,
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the computer will randomly decide which group member gets the Fixed Payment
and which group member receives the lower one. Think of this procedure as
though the computer is assigning ”heads” to one group member, "tails” to the
other, and then flipping a coin. If "heads” turn up, the group member assigned
"heads” receives the high Fixed Payment.

Whether you receive the high Fixed Payment or the low Fixed Payment de-
pends only on whether your Total Number if greater than the Total Numbers of
at least 2 other group members. IT DOES NOT DEPEND ON HOW MUCH
GREATER IT IS.

The computer will record (on screen in Column 6) which Fixed Payment you
receive. If you receive the high Fixed Payment (2.04), then "M"” will appear on
Column 6. If you receive the low Fixed Payment (0.86), "m” will appear.

After indicating which Fixed Payment you receive, the computer will subtract
your associated Decision Cost (Column 5) from this Fixed Payment. This differ-
ence represents your earnings for the round. The amount of your earnings will be
recorded on the screen in Column 6, right next to the letter ("M” or "m”) showing
your Fixed Payment. The earnings of your group members will be calculated in
exactly the same way.

Continuing Rounds

After Round 1 is over, you will perform the same procedures for Round 2, and
so on for 20 rounds. In each round you will choose a Decision Number (though, of
course, you may choose the same one}, you will again generate a random number
by pressing the space bar, your Total Number will be compared to the Total
Numbers of the other members of your group, and the computer will calculate
your earnings for the round. |

Example of Payoff Calculations

In a 4-person group with 2 large and 2 small fixed payments, suppose that
group member A2 is Green and Group members Al , A3, and A4 are Blue. Then
the following might occur:

Group member Al (Blue) chooses Decision Number G0 and generates random
number 10.

A 1s Total Number is therefore equal to 70.

Group member A2 (Green) chooses Decision Number 53 and generates random
number 2. )

A2’s Total Number is therefore equal to 59.

Group member A3 (Blue) chooses Decision Number 79 and generates random
number -28.
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A3s Total Number is therefore equal to 51.

Group member A4 (Blue) chooses Decision Number 31 and generates random
number 33.

A4’s Total Number is therefore equal to 64.

Since there are two high Fixed Payments, group members Al and A4 would
each receive 2.04. From these Fixed Payments, Al would subtract 0.24 (the cost of
Decision Number 60 for Blue) and A4 would subtract 0.06407 (for Decision Num-
ber 31). Group members A2 and A3 would each receive the low Fixed Payment,
0.86; A2 would subtract 0.37454 (the cost of Decision Number 53 for Green); A3
would subtract 0.41607. :

Note that the Decision Cost subtracted in Column 5 is a function only of the
Decision Number selected; i.e., your random number does not affect the amount,
subtracted. Also, note that your earnings depend on the following: the Decision
Number you select (both because it contributes to your Total Number and because
it determines the amount to be subtracted from your Fixed Payment), the Decision
Numbers your group members select, your generated random number, and your
group members’ generated random numbers.

When Round 20 is completed, the computer will ask you to press any key on
its keyboard. After you do this, the computer will add your earnings from each
of the 20 rounds, multiply the total by 0.5 and subtract a fixed cost of $2.00 from
this sum. We will then pay you this amount. You are free to make as much money
as possible.
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DECISION COST TABLE?

Decision Blue Green Decision Blue Green
Number Cost Cost Number Cost Cost
0 0.00000 0.00000 50 0.16667 0.33333
1 0.00007 0.00013 51 0.17340 0.34680
2 0.00027 0.00053 52 0.18027 0.36053
3 0.00060 0.00120 53 0.18727 0.37453
4 0.00107 0.00213 54 0.19440 0.38880
5 0.00167 0.00333 55 0.20167 0.40333
6 0.00240 0.00480 56 0.20907 0.41813
7 0.00327 0.00653 57 0.21660 0.43320
8 0.00427 0.00853 58 0.22427 0.44853
9 0.00540 0.01080 59 0.23207 0.46413
10 0.00667 0.01333 60 0.24000 0.48000
11 0.00807 0.01513 61 0.24807 0.49613
12 0.00960 0.01920 62 0.25627 0.51253
13 0.01127 0.02253 63 0.26460 0.52920
14  0.01307 0.02613 ' 64  0.27307 0.54613
15 0.01500 0.03000 65 0.28167 0.56333
16 0.01707 0.03413 66 0.29040 0.58080

17 0.01927 0.03853 67 0.29927 0.59853




DECISION COST TABLE (CONTINUED)

Decision Blue  Green Decision Blue  Green
Number Cost Cost Number Cost Cost
18 0.02160 0.04320 68 0.30827 0.61653
19 0.02407 0.04813 69 0.31740 0.63480
20 0.02667 0.05333 70 0.32667 0.65333
21 0.02940 0.05880 71 0.33607 0.67213
22 0.03227 0.06453 72 0.34560 0.69120
23 0.03527 0.07053 73 0.35527 0.71053
24 0.03840 0.07680 74 0.36507 0.73013
25 0.04167 0.08333 75 0.37500 0.75000
26 0.04507 0.09013 76 0.38507 0.77013
27 0.04860 0.09720 77 0.39527 0.79053
28 0.05227 0.10453 78 0.40560 0.81120
29 0.05607 0.11213 79 0.41607 0.83213
30 0.06000 0.12000 80 0.42667 0.85333
31 0.06407 0.12813 81 0.43740 0.87480
32 0.06817 0.13653 82 0.44827 0.89653
33 0.07260 0.14520 83 0.45927 0.91853
34 0.07707 0.15413 g4 0.48040 0.94080
.-35 0.08167 0.16333 85 0.48167 0.96333
36 0.08640 0.17280 86 0.49307 0.98612
37 0.09127 0.18253 87 0.50460 1.0092C
38 0.09627 0.19253 88 0.51627 1.03252
.39 0.10140 0.20280 89 0.52807

1.05613



DECISION COST TABLE (CONTINUED)

Decision Blue Green Decision Blue Green

Number Cost Cost Number Cost Cost
40 0.10667 0.21333 90 0.54000 1.08000
41 0.11207 0.22413 91 0.55207 1.10413
42 0.11760 0.23520 52 0.56127 1.12853
43 0.12327 0.24653 33 0.57660 1.15320
44 0.12907 0.25813 94 0.58907 1.17813
45 0.13500 0.27000 395 0.60467 1.20333
46 0.14107 0.28213 96 0.61440 1.22880
47 0.14727 0.29453 37 0.62727 1.25453
48 0.15360 0.30720 98 0.64027 1.28052
49 0.16007 0.32013 39 0.65340 1.3068C

100 0.66667 1.3333:
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