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Abstract

The Ultimatum Game and the experiments surrounding it, have pre-
sented economists with a puzzle that they have struggled to explain. But
as Robert Aumann has pointed out, while there may be only one sub-game
perfect equilibrium to the Ultimatum Game, there are an in¯nite number
of Nash equilibria. All that is needed to maintain a non-sub-game perfect
equilibrium is a set of Sender beliefs that the o®er contemplated is the min-
imum that would be accepted and behavior on the part of the Receivers
that con¯rms these beliefs. The only puzzle is how such a set of mutually
consistent beliefs developed in the ¯rst place and how they are passed on
from one generation of player to the next. Using an inter-generational
game experimental setting, this paper investigates how "culture" serves
as the selection mechanism which solves this puzzle. Culture is then sim-
ply a system of beliefs and self-con¯rming actions which support any one
of these non-sub-game perfect Nash equilibria as the accepted solution to
the game being played. The outcome is, as Robert Aumann has called it
a "perfectly good" Nash equilibrium convention which is just not perfect.
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1 Introduction

The Ultimatum Game 1and the experiments surrounding it, have presented
economists with a puzzle that they have struggled to explain .(See Thaler (1988),
Camerer and Thaler (1995), and Roth (1995) for surveys.) More precisely, given
a theory that assumes that people are rational and that such rationality is com-
monly or at least mutually known, the puzzle of explaining why sub-game perfect
equilibria do not appear experimentally has opened the door to a variety of ex-
planations including inequality aversion, (Bolton (1991), Bolton and Ockenfels
(1998, 2000 forthcoming), and Fehr and Schmidt (1999)), reciprocal fairness Ra-
bin (1993), Dufwenberg and Kirchsteiger (1998), Blount (1995), "quasi-maximin
preferences" (Charness and Rabin (2000)), etc. But as Robert Aumann (see,
van Damme (1998) ) has pointed out, while there may be only one sub-game
perfect equilibrium to the Ultimatum Game, there are an in¯nite number of
Nash equilibria. All that is needed to maintain a non-sub-game perfect equilib-
rium is a set of beliefs on the part of the Sender that the o®er contemplated is
the minimum that would be accepted and behavior on the part of the Receivers
that con¯rms these beliefs. Hence nothing strange is occurring if we observe one
of these non-subgame-perfect equilibrium outcomes at the end of an experiment.
We would simply be observing "perfectly good" Nash equilibria that are just
not 'perfect' "2. The only puzzle is how such a set of mutually consistent beliefs
developed in the ¯rst place and how they are passed on from one generation of
player to the next.

We consider "culture" to be the selection mechanism which solves this puzzle.
More precisely, if the same Ultimatum Game were played by di®erent sets of
social agents, these players may create di®erent conventions of behavior for the
play of the game because di®erent communities of agents are capable of creating
di®erent "cultures" which select di®erent Nash equilibria as the solution to the
Ultimatum Game. Culture is then simply a system of beliefs and self-con¯rming
actions which support any one of these non-sub-game perfect Nash equilibria as
the accepted solution to the game being played.

This idea of culturally supported Nash conventions is illustrated in an article
by Alvin Roth, Vesna Prasnikar, Masahiro Okuna-Fujiwara and Shumuel Zamir
(1991) who compare the behavior of sub jects engaged in an Ultimatum Game
across four countries: the United States, Japan, Israel, and Yugoslavia. At the
end of their paper they conclude that the di®erence in the behavior they observe

1In an Ultimatum Game, there are two types of players: Senders and Receivers. The
Sender is initially allocated a certain amount of money, say $10, that he or she has to divide
into two amounts, $x and $10-$x. The amount $x is proposed to the Receiver as his portion
which the Receiver could either accept or reject. If the Receiver accepts the proposal, the
payo®s would be $x for the Receiver and $10-$x for the Sender. If the Receiver rejects the
proposal, each subject's payo® would be zero.
Hence the Ultimatum Game is a two stage game. In Stage 1 the Sender makes an o®er and

in Stage 2 the Receiver either accepts or rejects.
The sub-game perfect equilibrium requires that the Sender o®er the Receiver " and that the

Receiver accepts this small o®er. Experimental evidence strongly contradicts this prediction
with Senders o®ering amounts between $4 and $5 as their modal o®er.

2Comment by Robert Aumann. (See, van Damme (1998) interview of Robert Aumann).
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is not the result of di®erences in the type of people inhabiting these countries
(i.e. Israelis are not more aggressive than Americans) as much as a cultural
di®erence that has emerged in these countries which leads them to a di®erent
set of mutual expectations about what o®ers are acceptable.

"This suggests that what varied between sub ject pools is not a prop-
erty like aggressiveness or toughness, but rather the perception of
what constitutes a reasonable o®er under the circumstances"

(Roth et al., (1991, p. 1092).

The question of interest is to try to explain how such culturally determined
outcomes ("reasonable o®ers") or conventions come about, how they are passed
on from generation to generation of players in an intergenerational game, and
how they change when circumstances dictate. It is our belief that we can observe
such a culture in the laboratory with paid human subjects and observe the
creation of such conventions ¯rst hand. This is what we attempt here.

In our experiments, the evolution of conventions is Lamarckian in the sense
that conventions created during one generation can be passed on to the next
through a process of socialization just as Lamarck incorrectly thought that
physical characteristics, once acquired, could be passed on in a non-genetic
manner. We are interested in these transitions and the evolutionary dynamics
they imply from an experimental perspective.3

This paper is the second of a series of papers on what we call "Inter-
generational Games". (See Schotter and Sopher (2000)) for an analysis of
Inter-generational Coordination Games.) In these games a sequence of non-
overlapping "generations" of players play a stage game for a ¯nite number of
periods and are then replaced by other agents who continue the game in their
role for a similar length of time. Players in generation t are allowed to com-
municate with their successors in generation t+1 and advise them on how they
should behave. In addition, they care about the succeeding generation in the
sense that each generation's payo® is a function not only of the payo®s achieved
during their generation but also of the payo®s achieved by each of their chil-
dren in the game that is played after they retire. These types of games have
proven to be very useful in describing the evolution of conventions of behavior
in coordination games (see Schotter and Sopher (2000) and also provide many
insights into how the terms of trade or sharing contracts emerge endogenously
in the Ultimatum Game.

What we ¯nd (as summarized in the form of 10 Observations) is that advice is
a key ingredient in explaining the behavior of subjects in our Inter-generational
Ultimatum games. More precisely, when advice exists it tends to be followed in
that it serves as the key variable explaining the o®ers sent by Senders . In addi-
tion, from examining the written advice o®ered from one generation of Sender

3Our research program is not very di®erent from that studied by Peyton Young (1998),
(1993) who investigates an evolutionary model to explain the emergence of contractual con-
ventions in which, over time, one conventional rate of compensation or sharing contract gets
established to regulate the interaction of economic agents.
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to the next, we conclude that arguments of fairness or backward induction are
infrequently relied on by sub jects in rationalizing the o®ers they suggest to their
successors. What is relied on are arguments of expected payo® maximization.
In fact, even when 50-50 splits, the hallmark of equity o®ers, are proposed,
they are mostly proposed because the Sender perceives the probability of hav-
ing lesser o®ers accepted to be unacceptably low. The advice of Receivers is
di®erent, however, more often relying on fairness and spite arguments to justify
behavior. Third, behavior is "more conventional" when advice is allowed in that
the data of those experiments allowing advice is more easily organized if one
posits that subjects were following conventions. Fourth, in our Intergenerational
Ultimatum games Senders appear to "leave money on the table" in that they
consistently make o®ers to their Receivers which are greater than the Receivers
minimum acceptable o®ers. While this may appear to contradict the claim that
the conventions we observe are equilibrium conventions, we demonstrate that
our observed Sender behavior can be rationalized as being part of a Bayes-Nash
equilibrium to a game with incomplete information played over time by Senders
and Receivers. It can also be explained by observing the pessimistic nature of
Sender beliefs which tends to lead them to o®er more than they, in fact, need
to have their o®ers accepted.

We will proceed as follows. In Section 2 we will describe our experiment and
experimental design. Section 3 reports our results, and Section 4 presents some
conclusions.

2 The Experiment: Design and Procedures

2.1 General Features

Given our discussion above, it should be clear that any experiment on inter-
generational games would have to contain certain salient features. For example,
subjects once recruited should be ordered into generations in which each gen-
eration will play a pre-speci¯ed game repeatedly with the same opponent for a
pre-speci¯ed length of time, T. After their participation in the game, subjects
in any generation t should be replaced by a next generation, t+1, who will be
able to view some or all of the history of what has transpired before them.
Subjects in generation t will be able to give advice to their successors either
in the form of suggesting a strategy, if the strategy space is small enough, or
writing down a suggestion as to what to do and explaining why such advice is
being given. This feature obviously permits socialization. The payo®s to any
subject should be equal to the payo®s earned by that generation during their
lifetime plus a discounted payo® which depends on the payo®s achieved by their
successors (either immediate or more distant future). Finally, during their par-
ticipation in the game, subjects should be asked to predict the actions taken by
their opponent (using a mechanism which makes telling the truth a dominant
strategy). This is done in an e®ort to gain insight into the beliefs existing at
any time during the evolution of our experimental society since the objects of
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societal evolution are both beliefs (social norms) and actions (social conventions
based on norms).

The experiment was run either at the Experimental Laboratory of the C.V.
Starr Center for Applied Economics at New York University or at the Exper-
imental Lab in the Department of Economics at Rutgers University. Subjects
were recruited, typically in groups of 12, from undergraduate economics courses
and divided into two groups of six with which they stayed for the entire ex-
periment. During their time in the lab, for which they earned approximately
an average of $26.10 for about 11

2
hours, they engaged in three separate inter-

generational games, a Battle of the Sexes Game (BOSG) (see Schotter and So-
pher (1999) for a discussion of this game), an Ultimatum Game(UG) in which
they were asked to divide 100 francs, and a Trust Game (TG) as de¯ned by Berg,
Dickhaut, and McCabe (1995). All instructions were presented on the computer
screens and questions were answered as they arose. (There were relatively few
questions so it appeared that the sub jects had no problems understanding the
games being played which purposefully were quite simple). All subjects were
inexperienced in this experiment.

The experiment had three periods. In each period a subject would play
one of the three games with a di®erent opponent. For example, consider the
following table:

Table 1:Rotation Scheme For Subjects
Player Game

Period Battle of Sexes Ultimatum Trust
Period 1 Row 1 2 3

Column 6 5 4
Period 2 Row 2 3 1

Column 4 6 5
Period 3 Row 3 1 2

Column 5 4 6

In this table we see six players performing our experiment in three periods.
In period 1, Players 1 and 6 play the Battle of the Sexes Game while Players
2 and 5 play the Ultimatum Game and Players 3 and 4 play the Trust game.
When they have ¯nished their respective games, we rotate them in the next
period so that in period 2 Players 2 and 4 play the Battle of the Sexes Game
while Players 3 and 6 play the Ultimatum Game and Players 1 and 5 play the
Trust game. The same type of rotation is carried out in period 3 so that at
the end of the experiment each subject has played each game against a di®erent
opponent who has not played with any sub ject he has played with before. Each
generation played the game once and only once and their payo® was equal to
the payo® they received during their generation plus an amount equal to 1/2 of
the payo® of their successor in the generation t+1 that followed them. (Payo®s
were denominated in terms of experimental francs which were converted into
U.S. dollars rates which varied according to the game played.) The design was
common knowledge among the subjects except for the fact that the subjects did
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not know the precise rotation formula used. They did know they would face a
di®erent opponent in each period, however.

As a result of this design, when we were ¯nished running one group of six
subjects through the lab we generated three generations of data on each of our
three games since, through rotation, each player played each game once and was
therefore a member of some generation in each game. Thus for the set-up cost of
one experiment we generated three generations worth of data on three di®erent
inter-generational games at once. Still, our experimental design is extremely
time and labor intensive requiring 152 hours in the lab to generate the data we
report on here. 4

In this paper we will report the results of only the Ultimatum Game played.
In our Ultimatum Game, subjects were randomly assigned to role of Sender or
Receiver. The Sender was initially allocated 100 units of a ¯ctitious laboratory
currency called francs, which were later converted into dollars at the rate of
1 franc equals $.10. The task of the sender was to divide this 100 francs into
two amounts, x and 100-x. The amount x was proposed to the Receiver as his
portion which the receiver could either accept or reject. If the receiver accepted
the proposal, the payo®s would be x for the Receiver and 100-x for the Sender.
If the receiver rejected the proposal, each subject's payo® would be zero.

The procedures used in playing all games were basically the same. When
subjects started to play any of the three games, after reading the specī c in-
structions for that game, they would see on the screen the advice given to them
from the previous generation. In the Ultimatum Game Sender advice was in
the form of a suggested amount that the previous Sender advised his or her suc-
cessor to o®er. For the Receiver it was a suggested minimal accepted o®er that
the previous Receiver suggested as the cut o® point for rejection. In addition,
subjects were allowed to write free-form messages to their successors o®ering
an explanation of why they suggested what they did. No subjects could see
the advice given to their opponent, but it was known that each side was given
advice. It was also known that each generational subject could scroll through
some subset of the previous history of the generations (perhaps all depending on
the treatment) before it and see what each generational Sender o®ered and its
acceptance or rejection. They could not see, however, any of the previous advice
given to their predecessors. Finally, before they made their strategy choice they
were asked to state their beliefs about what they thought their generational
opponent was likely to do. A Receiver was also asked to state the minimum
acceptable o®er that he or she agreed to accept if it were o®ered. To elicit be-
liefs we used a proper scoring rule which made truthful revelation optimal. The
minimal acceptable o®er was not elicited in an incentive compatible manner,
yet we are able to check if they are meaningful by observing if they are violated
by the Receivers in their acceptance behavior. Our belief elicitation procedure
worked as follows:

For the Receiver, we asked what they thought the probability was of receiving
any amounts in the intervals 0-10, 10-20, 20-30, 30-40, 40-50, 50-60, 60-7-,

4As far as we know, this is the record for economic experiments.
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70-80, 80-90, 90-100. In other words, we asked them to enter a vector r =
(r1;r2;r3;r4;r5;r6;r7;r8;r9;r10), with

P10
k=1 rk = 100, indicating the probabilities

de¯ned above.5. 6 Receivers were rewarded for their predictions in experimental
points which were converted into dollars at the end of the experiment as follows:

Let r = (r1;r2;r3;r4;r5;r6;r7;r8;r9;r10) indicate the reported beliefs of the Re-
ceiver. Remember that these are the Receiver's belief that the amount sent
will be contained in one of ten disjoint intervals. Since only one such amount
will actually be sent, the payo® to player i (the Receiver) when an amount in
interval l is chosen will be:

¼l = 20;000 ¡

8
<
:((100 ¡ rl )

2 +
X

k 6=l
(rk)

2

9
=
; : (1)

The payo®s from the prediction task were all received at the end of the experi-
ment.

Note what this function says. A subject starts out with 20,000 points and
states a belief vector r = (r1;r2;r3;r4;r5;r6;r7;r8;r9;r10). If their opponent chooses
to send an amount in interval l, then the sub ject would have been best o® if he or
she had put all of their probability weight on l. The fact that he or she assigned
it only rl means that he or she has made a mistake. To penalize this mistake we
subtract (100 ¡ rl)

2 from the subject's 20,000 point endowment. Further, the
subject is also penalized for the amount he or she allocated to the other nine
intervals , by subtracting (rk )2 from his or her 20,000 point endowment as well.
The worst possible guess, i.e. putting all your probability mass on one interval
only to have your opponent choose another, yields a payo® of 0 . It can easily
be demonstrated that this reward function provides an incentive for sub jects to
reveal their true beliefs about the actions of their opponents. 7Telling the truth
is optimal.

To elicit truthful beliefs from the Sender we do an equivalent procedure. The
Sender is going to o®er an amount to the Receiver who is going to either accept
or reject. hence, we ask the Sender to assign probabilities to the acceptance or
rejection of any o®er in our ten intervals. For example, the Sender must enter
10 probability vectors describing the probability that he thinks the Receiver
will accept or reject any o®er in this interval.. For example, let us index the
intervals by k = 1,2,..., 10. Then the Sender would type ten probability vectors
into the computer of the following form: rk = (¼k

a ; ¼k
r): Here ¼k

a is the probability
that if an amount in the kth interval is sent it will be accepted while ¼k

r is the
complementary probability that the o®er will be rejected. From this point on the
payo®s are identical to the ones de¯ned above but they are de¯ned conditional

5In the instructions rj is expressed as numbers in [0,100], so are divided by 100 to get
probabilities.

6See Appendix 1 for the instructions concerning this part of the experiment.
7An identical elicitation procedure was used successfully by Nyarko and Schotter (1999)

in their analysis of zero sum games and Schotter and Sopher (2000) in their investigation of
inter-generational Battle of the Sexes games.
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on the amount sent. For example, say that an amount in the kth interval was
sent, the Sender predicted that if he or she sent that amount it would be accepted
with probability ¼k

a , and it turns out that the o®er was accepted. Then that
Sender's prediction payo® would be de¯ned as follows:

¦k = 20; 000 ¡
©
((100 ¡ ¼k

a)2 + (¼k
r )2

ª
: (2)

In other words, if the o®er was accepted but the Sender only predicted that
it would be accepted with probability ¼k

a;the payo® function penalizes him or
her by subtracting (100 ¡ ¼k

a)2 from his or her 20,000 point endowment. It
also subtracts (¼k

r )2 since that is the probability predicting that the o®er would
be rejected which it was not. An analogous payo® can be de¯ned if the o®er
was rejected. Note that since the Sender knows how much he or she will send
before he makes his prediction, his reported probabilities are meaningful only for
that interval since all the others have zero probability of being relevant. Hence,
nothing guarantees that these reports are truthful for amounts in intervals not
sent yet, the scoring function should be incentive compatible for the beliefs in
the interval of actual amount sent. With this proviso, we will still refer to
these "out of equilibrium beliefs" at various points and use them as truthful
reports.8 As you will see, however, none of our more important claims rely on
this information.

We made sure that the amount of money that could potentially be earned
in the prediction part of the experiment was not large in comparison to the
game being played. (In fact, the maximum earnings that could be earned in
the prediction part of the Ultimatum Game was only $2.00 as opposed to the
maximum payo® in the game itslef of $10.00). The fear here was that if more
money could be earned by predicting well rather than playing well, then a Sender
might want to o®er the full 100 points to the Receiver knowing that it will be
accepted for sure and predict that outcome. This actually happened only once.

It is interesting to note that our experiment provides a whole host of data
and information that is missing in most if not all other studies of the ultimatum
game. For example, since we elicit beliefs we are able to track the beliefs of
generational agents over time. This is important since a convention of behavior
depends very much on the underlying beliefs that people have about each other
(what Schotter (1981) calls the "norms of society"). In addition, we are able
to observe what the subjects report as their true willingnesses to accept. By
observing and coding the advice that is o®ered, we are able get another insight
into the thinking of our sub jects that is not typically available. Hence, our data
set involves actions, beliefs, and advice all of which we keep track of as our
laboratory society evolves.

8Obviously, there is no positive incentive to misrepresents beliefs in these intervals.
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2.2 Parameter Speci¯cation

The experiments performed can be characterized by a set of parameters P =
f¡; Lht; ±; l, ag, where ¡ is the stage game to be played over time, Lht is
the length of the history ht that the generation t player is allowed to see, with
Lht= t-1 being the full history up until generation t, and Lht= 1, being only
the last generation's history, ± is the degree of inter-generational caring or the
discount rate, l is the number of periods generation t lives before retiring, i.e.,
how many times they repeat the stage game with each other, and ¯nally a is a 0-
1 variable which takes a value of 1 when advice is allowed to be o®ered between
any generation t and t+1 and 0 when it is not. In our Baseline Ultimatum
Game experiment we set Lht = t-1, ± = 1/2, l = 1, and a = 1 so subjects
could pass advice to their successor, see the full history of all generations before
them, live for only one period before retiring They received a payo® which was
equal to what they received in their one play of the game plus 1/2 of what
their successors received. This Baseline experiment was run for 81 generations.
However, at period 52 we took the history of play and started two separate new
treatments at that point which generated a pair of new independent histories. In
Treatment I we set Lht

= 1 so that before any generation made its move it could
see only the last generation's history and nothing else. (All other parameters
we kept the same). This treatment isolated the e®ect of history on the play of
the inter-generational game. Treatment II was identical to the Baseline except
for the fact that no generation was able to pass advice onto their successors.
They could see the entire history, however, so that this treatment isolated the
impact of advice. Treatment I was run for an 81 generations while Treatment II
was run for an additional 66 generations, each starting after generation 52 was
completed in the Baseline.. Hence, our Baseline was of length 81, our Treatment
I of length 779 and our Treatment II of length 66. Our experimental design can
be represented by Figure 1:

[Figure 1 here]

3 Results:

In presenting our results we will proceed by presenting a set of observations
which we hope to substantiate using the data generated. When we are ¯nished
with this exercise, we will turn our attention to the search for conventions
of behavior in our Inter-generational Ultimatum Games and present evidence
concerning the existence of what we call Weak and Strong (or Bayes-Nash)
conventions.

9Due to a computer problem we lost one observation from Treatment I so there are only
77 observations instead of 78. .
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3.1 Observations

In this section we will present a set of observations about our data and test
a set of implied hypotheses which statistically substantiate these observations.
We organize our presentation of the results by proceeding systemically and
presenting a set of observations about the o®ers of Sender subjects, the advice
they were given, their beliefs, and the advice they o®er their successors. We
then proceed to look at the analogous behavior of Receivers.

3.2 Sender Behavior

3.2.1 O®ers:

Observation 1:Advice Alone Makes O®ers Less Variable and Lowers
O®ers Over Time.

Let MB ; MT I, and MT II be the mean o®er in the Baseline, Treat-
ment I (No History) and Treatment II (No Advice) experiments and
let VB ; VT I, and VTII be their associated variances. Then VT I <
VB < VTII . In addition, in the Treatment I experiment, o®ers de-
crease as time progresses but this is not true in the Baseline or Treat-
ment II. Finally, if we look at the mean o®ers made during the last
40 generations, MTI < MT II < MB :

Substantiation
What Observation 1 says is that the variance of o®ers is least in Treatment

I, where only advice is present, and greatest in Treatment II where there is no
advice. This leads to the conclusion that advice is a key ingredient into making
economic behavior in our experiments more orderly.

To explore o®er behavior more systematically, consider Table 2 which present
some descriptive statistics about the o®er behavior of our sub jects and Figures
2a-2c which presents a set of histograms of the o®ers in each experiment.

Table 2: O®ers of Subjects
All Generations Last 40 Generations
Mean Variance Mean Variance

Experiment
Baseline 44.70 223.58 45.66 252.98
Treatment I 37.16 166.35 33.68 183.22
Treatment II 42.45 482.28 43.90 386.59

[Figures 2a-2c Here]

There are some things to note. First note how variable o®ers are in Treat-
ment II, the experiment without advice. In fact, the variance of o®ers is almost
three times as great in Treatment II than in Treatment I where subjects have
access exclusively to advice (except for a one period history). A series of one-
tailed F-tests supports this observation for binary comparisons between with
Treatment II and the Baseline (F(65;80) = 2.16, p = .00) and Treatment II and
Treatment I (F(65;76) = 2.90, p = .00) . The same test found a di®erence be-
tween the variances of Treatments I and the Baseline at only the 10% level.
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What this indicates is that history does not seem to supply a su±cient lesson
for subjects to guide their behavior in a smooth and consistent manner. Advice
seems to be needed.

With respect to time, it appears that only in Treatment I do o®ers change
over time in a statistically signī cant (and negative) manner. To illustrate this
point we ran a simple OLS regression of o®ers made on time. In all regressions,
except the one run on Treatment I data, time was insigni¯cant at the 5% level.
In the Treatment I regression, the coe±cient was negative and signi¯cant at
the .003% level. 10 Looking at the mean o®ers in the last 40 generations we
see that there is a statistically signi¯cant di®erence in the mean o®ers made
between Treatments I and II using a Wilcoxon test ate the 2% level (z = -2.295,
p = .02.). No such di®erence exists in the comparison between the Baseline and
Treatment II.

It appears then that the inclusion of advice leads subjects to learn from
advice that sending lower o®ers is a bene¯cial thing to do. Interestingly, this
lesson seems to be a function of advice and disappears when subjects are allowed
to view history even when advice is also allowed, as in the Baseline.

Our discussion of o®ers in Observation 1 suggests that we should investigate
what factors are important in generating these o®ers. To pursue this question,
we o®er the following Observation.

Observation 2: Advice Determines O®ers
Advice is the key determinant in deciding upon o®ers. In fact,

subjects tend to follow the advice of their generational predecessor
even when their own beliefs suggest that they would maximize their
expected payo® by o®ering something else.

Substantiation
Before we present any statistical analysis to back up this observation, con-

sider Figures 3a-3b which plot the times series of o®ers in each of our treat-
ments involving advice against the advice the Sender received (in the Baseline
and Treatment I ) and also against their subjective payo® maximizing o®er. By
subjective payo® maximizing o®er we mean that o®er which, given the elicited
beliefs of the subjects, would maximize their expected payo® if sent. Remem-

10

Regressions of O®er on Time:
Baseline

Coef. Std. Err t P>jt
time .0267615 .0714438 0.375 0.709
cons 43.60648 3.372018 12.932 0.000
F1;79 = :14; p = 0:71
Treatment I

Coef. Std. Err t P>jt
time -.1954361 .0626288 -3.121 0.003
cons 44.79084 2.81133 15.932 0.000
F1;75 = 9:74; p = 0:00
Treatment II

Coef. Std. Err t P>jt
time .0710156 .1427262 0.498 0.620
cons 40.07552 5.500362 7.286 0.000
F1;64 = :25; p = 0:62
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ber, for each potential o®er in intervals 0-10, 10-20,....., 90-100, we have elicited
the beliefs of the Sender subject as to the likelihood that such an o®er would
be accepted. Hence, we can take an expected value by assuming an o®er at
the midpoint of these intervals was sent and multiplying these o®ers by their
elicited probabilities. This yields ten distinct values, each representing the ex-
pected payo® from sending an o®er in each interval where the expectation is
taken over the subjects sub jective elicited beliefs. We take the maximum of
these ten values whose argmax can take one of the values 5, 15, 25, ...,or 95.

Figure 3a and 3b here

Note from Figures 3a and 3b the absolutely remarkable ¯t between the advice
that Senders receive from their predecessors and the o®ers they make. This is
true for both the Baseline experiment and Treatment I. Note also, however, that
despite the fact that our payo®-maximizing o®er can only take on ten discrete
values, they seem to ¯t the pattern of o®ers made reasonably well, though there
are many exceptions.

To discriminate between these two variables, we ran a simple linear regression
in which our dependent variable was the amount sent and the independent vari-
ables were the advice subjects were given and their subjective payo®-maximizing
o®er. We ran this for both the Baseline and Treatment I experiments. (Obvi-
ously Treatment II did not have advice). These results are presented in Table
3.

Table 3: O®er Behavior in the Baseline and Treatment I
Baseline
coe® std. er. t P>j t j

maxexpec .11 .11 1.05 0.30
adv sent .26 .10 2.62 0.01
cons 27.42 6.64 4.13 0.00
R2 = :11 F(2,77) = 4.64, Prob>F=.01
obs = 81

Treatment I
coe® std. er. t P>j t j

maxexpec .08 .07 1.08 0.29
adv sent .53 .10 5.11 0.00
cons 13.05 5.63 2.32 0.02
R2 = :27 F(2,73) = 13.22, Prob>F = .00
obs = 77

These results once again indicate how important advice is for behavior in
our experiments. Most striking is that fact that it seems to weigh more heavily
in the minds of Senders than do their own beliefs in the sense that when the
advice they get contradicts their best response predictions, they seem to opt for
following advice rather than best responding to their beliefs.
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The question that is raised by these results is how would subjects behave
when no advice is given as was true in Treatment II. Would, under these cir-
cumstances, subjects concentrate on their best response o®er? Table 4 o®ers
the answer to this question since it reports the results of a regression run on
Treatment II data in which we regress the o®er made simply on the subjects
subjective payo®-maximizing o®er.

Table 4: O®er Behavior in Treatment II
coe® std. er. t P>j t j

maxexpec .16 .15 1.08 0.28
cons 34.56 7.78 4.44 0.00
R2 = :02 F(1,64) = 1.17, Prob>F = .28
obs = 66

As Table 4 indicates, subjects do not appear to focus on their best response
o®ers even in that experiment where they are not distracted by advice. If advice
is so important, however, then it would be interesting to see how this advice
varies across experiments which o®er subjects di®erent access to history of the
generations before them.

Observation 3: Advice Alone Lowers Advice
The advice given by subjects to their successors is greater in the

Baseline than in Treatment I.
Substantiation:
We substantiate this observation by presenting Table 5 which simply presents

the mean, median and variance of advice o®ered by subjects in these two ex-
periments along with the results of a simple Wilcoxon test run to test the null
hypothesis that these two samples were drawn from the same population.

Table 5: Advice in the Baseline and Treatment I Experiments
Experiment Mean Median Variance Std. Dev.
Baseline 44.48 47 270.97 16.46
Treatment I 38.25 40 158.71 12.59
Wilcoxon Test: z = 3.12, p=.00

As we see, advice is lower in Treatment I and signi¯cantly so.
Observation 4: Pessimistic Beliefs
Beliefs of Senders tend to be overly pessimistic.
Substantiation
When we call beliefs overly pessimistic we mean the following. For each

sub-interval 0-10, 10-20, 20-30, etc. we have elicited the belief of each of our
generational Senders as to what they think the chances are that an o®er in this
interval would be accepted. Hence, each Sender reports a vector of 10 such be-
liefs. Call these the subject's Stated Beliefs. At each generation we can also look
at the history of play of the game and actually count the fraction of times o®ers
in these intervals were accepted (assuming we have some observations in that
interval). Call these fractions the subject's Historical Beliefs. By pessimistic we
mean that the Stated beliefs of subjects are consistently below their Historical
Beliefs.
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To substantiate this observation we present Table 6 which provides a set of
descriptive statistics to support our claim.

Table 6: Pessimistic Beliefs

Baseline
Interval¡

0
10

¢ ¡
11
20

¢ ¡
21
30

¢ ¡
31
40

¢ ¡
41
50

¢ ¡
51
60

¢ ¡
61
70

¢ ¡
71
80

¢ ¡
81
90

¢ ¡
911
100

¢

Stated .10 .18 .28 .40 .55 .74 .78 .83 .82 .89
Historical .28 .85 .41 .50 .94 1.0 1.0 - - 1.0
N 3 4 5 13 42 11 1 0 0 2

Treatment I
Interval

0
10

11
20

21
30

31
40

41
50

51
60

61
70

71
80

81
90

91
100

Stated .18 .24 .38 .52 .69 .83 .84 .86 .87 .88
Historical 0 .35 .34 .94 .96 1.0 - - - -
N 5 5 10 26 30 1 0 0 0 0

Treatment II
Interval

0
10

11
20

21
30

31
40

41
50

51
60

61
70

71
80

81
90

91
100

Stated .12 .18 .30 .44 .55 .70 .76 .82 .86 .91
Historical .27 .42 .54 .51 .62 .85 - 1.0 .75 .89
N 4 4 16 12 18 4 0 3 2 3

What you see in this table is, for each treatment, the 10 intervals over
which beliefs were elicited along with the average Stated and Historical beliefs
of Senders for amounts in that interval. For example, take the interval 41-50 in
the Baseline. In the row entitled Stated we have the average over all generations
of the subjects' Stated Beliefs for that interval. As you see, on average, subjects
felt that an o®er in the 41-50 interval would be accepted with probability .55. In
fact, if one looks historically at what actually happened when such o®ers were
made (see the row entitled Historical) we ¯nd that on average, such o®ers were
accepted with a probability of .94.(There were 42 such generations in which
o®ers in the 41-50 interval were made).11 Hence, subjects seemed, on average,

11A note of clari¯cation here. This Historical beliefs probability is calculated by taking
an average of the moving averages de¯ning these historical belief. For example, assume that
our experiment had only ¯ve periods and say that over those ¯ve periods there were four
instances where o®ers in the interval 41-50 were sent (generations 1, 2, 3,and 5) and the
Receivers decisions were Accept, Accept, Reject, and Accept. Then the historical beliefs at
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to greatly under estimate the willingness of their opponents to accept o®ers in
this interval.. The same pattern exists for all intervals and all treatments except
in the intervals 81-90 and 91-100 for Treatment II where the opposite is true.
Note the small number of observations here, however.12

There are some further aspects of Table 6 worth noting. First, note that
all mean Stated beliefs are monotonically increasing in the interval so that,
on average, subjects did feel that higher o®ers did have a higher probability
of being accepted. This was not true for Historical beliefs, however. Also
note that when we compare Stated beliefs across treatments, beliefs are always,
(except for the comparison of beliefs in interval 91-100 between the Baseline and
Treatment I) highest in Treatment I where no history is allowed. This leads to
the impression that history tends to make people more pessimistic despite the
fact that objectively it should make them more optimistic.

If beliefs are too pessimistic then o®ers would tend to be too high in the
sense that Senders could in actuality lower their o®ers and increase their ex-
pected payo®s. This raises the question as to whether a signī cant portion of
the Ultimatum Game puzzle, that subject do not send their sub-game perfect
equilibrium o®er and tend to make o®ers in the middle of the allowable range
(around 50) , is merely the result of misperceived probabilities. We are able to
suggest that this may be true because we have elicited the beliefs of our sub-
jects and are in a position to know what o®er was subjective payo® maximizing
given Sender beliefs whereas such information was not available to previous in-
vestigators. In the last section of this paper we o®er an alternative equilibrium
explanation for the puzzle along with qualitative evidence from the texts of ad-
vice indicating that equity can not explain the tendency for subjects to o®er
"too much".

3.2.2 Receivers:

These ¯rst four observations explain the behavior of the Senders. The Re-
ceivers, however, also exhibited di®erences in their behavior depending upon
which treatment they engaged in. The following two observations discuss some
of these di®erences.

Observation 5: Advice Makes Receivers Tougher
De¯ning a low o®er as one below 25 and a "tough" Receiver as one

who rejects low o®ers, the probability of having a low o®er accepted
is lowest in Treatment I, second lowest in the Baseline and highest in
Treatment II. In other words, the bigger the role allowed for advice
(as in Treatment I where there is no history) the tougher are the
Receivers.

these generations would be 1, 1, 2/3, 3/4 and the average of these would be .85 which is what
we would report in this table.
12If we had time to present the full time series of these two belief series, the reader would

see that this pattern is persistent over all generations and intervals and does not diminish
toward the end of the experiment when there are relatively more observations, at least in
some intervals.
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Substantiation:
There are more conceptual di±culties involved in analyzing Receiver behav-

ior than Sender behavior. For example, in analyzing the acceptance or rejection
behavior of Receivers across treatments, we would ideally like to condition on
the o®er made and see if, when identical o®ers are made, they are rejected or
accepted with identical frequency across experiments. Unfortunately, the set of
o®ers actually made may vary across experimental treatments and hence such
a controlled comparison can not always be made.

We can, however, estimate a conditional acceptance function by simply
running a logit regression of the dichotomous acceptance variable against the
amount o®ered in each of our three experiments and comparing the resulting
acceptance functions.. We estimate the logistic relationship,

Pr(x accepted) =
ea+bx

1 + ea+bx
;

where x is the amount o®ered and the left hand variable is a f0,1g variable
taking a value of 1 if x is accepted and 0 otherwise. This would present us
with an estimate of the conditional rejection behavior of subjects in our three
experiments and we can use this as a basis of comparison.

The results of these estimations are presented in Figure 4 which plots the
resulting estimated acceptance functions and superimposes them on the same
graph.13

Figure 4 here

13

Table 6: Acceptance Behavior (Logit)
Table 6a: Baseline
Variable coe±cient (Std. Err.) (z P>j z j
accept
sent .10(.03) 3.62 0:00
constant -2.39 (1.07) -2.24 0.03
obs = 81
Pseudo R2 = :24 LL =-29.62

Table 6b: Treatment I
Varibale coe±cient (Std. Err.) (z P>j z j
accept
sent .16 (.04) 4.10 0:00
constant -4.20 (1.32) -3.18 0.00
obs = 77
Pseudo R2 = :41 LL = 24.71

Table 6c: Treatment II
Varibale coe±cient (Std. Err.) (z P>j z j
accept
sent .022 (.01) 1.52 0:13
constant {.048 (.61) -0.08 0.94
obs = 66
Pseudo R2 = :03 LL = -39.16
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What we see in Figure 4 is that for low o®ers, the probability of acceptance is
ordered in the manner described by the observation, i.e., they are least likely to
be accepted when only advice exists (Treatment I) and most likely to be accepted
when no advice is present but access to history is unlimited (Treatment II). The
Baseline, in which both treatments exist simultaneously, is in between.

While Figure 4 presents a relationship between the likelihood of acceptance
and the amount sent, it does not dig deeply into what motivates acceptance
behavior. To investigate this, we ran a more elaborate logit estimation in which
we tried to explain the dichotomous accept/reject behavior of subjects as a
function of their stated minimum acceptable o®er, their expected o®er given
their stated beliefs, the advice they received from their predecessors ( in the
Baseline and Treatment I), the o®er they received and appropriate di®erences
among these variables. What we ¯nd is summarized in Observation 6 and
substantiated below:

Observation 6: Unful¯lled Expectations Cause Rejection
While unful¯lled expectations about o®ers helps explains rejection

behavior, they do not do well in explaining acceptance behavior. Just
the opposite is true about a Receiver's stated minimum acceptable
o®er, it does a good job at explaining acceptance but not rejection
behavior. The advice a Receiver receives from his or her predecessor
seems to o®er a compromise explaining both acceptance and rejection
behavior fairly well.

Substantiation:
In our experiments we have elicited a great deal of information about Re-

ceivers which can be of great help in describing and explaining their rejection
behavior. For example, we know what they stated as their ex ante minimum
acceptable o®er, and we can calculate the o®er they expect to receive from the
Sender using the beliefs elicited beliefs. In addition, we know what they have
been advised to accept by their predecessor. By comparing the o®er received to
these variables and observing rejection and acceptance behavior, we should be
able to learn a great deal about how subjects decide to accept or reject an o®er.

In this section we will ¯rst present a table which records just these results
and then explore this acceptance/rejection behavior more formally through a
set of models all of which use these variables as inputs.

Table 7 describes the rejection and acceptance behavior of subjects on the
basis of the di®erence between the o®er they receive and either their minimal
acceptable, expected, or advised acceptable o®er .

Table 7: Rejection and Acceptance Behavior
Di®erence of O®er and Variable

O®er-Exp.O®er O®er - Min. Acc. O®er - Advice
Treatment B I II Total B I II Total B I Total¡
Di®erence > 0
&Acceptance

¢
33 29 19 81 62 59 43 164 50 41 91¡Di®erence < 0

& Rejection

¢
14 17 15 46 4 3 4 11 10 13 23¡

Di®erence < 0
& Accep tan ce

¢
33 30 27 90 4 0 3 7 16 18 34¡

Di®erence > 0
& Rejection

¢
1 1 5 7 11 15 16 42 5 5 10
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A number of things are notable in this table. First, the di®erence between
what a Receiver was o®ered and what they expected to receive is very good
at correctly classifying rejections, but is terrible at classifying acceptances. For
example, of the 15 rejections in the Baseline experiment, 14 occurred when
the Receiver was not o®ered at least his expected amount. However, of the 66
acceptances in the Baseline, 33 occurred in instances where the amount o®ered
was less than a Receiver's expectations. Similar patterns exist in the other
treatments as well. This seems to imply that rejection behavior is a "hot"
phenomenon perhaps triggered by a de°ation of expectations while stating a
minimal acceptable o®er is more a more detached "cold" phenomenon.(See,
Brandts J. and Charness, G., (2000)).

The di®erence between a Sender's o®er and a Receiver's stated minimum
acceptable o®er has just the opposite e®ect; very good at classifying acceptances
but bad at classifying rejections. For example, in the Baseline again, of the 66
acceptances 62 occurred when the o®er was greater than the stated minimum
acceptable. (It is not surprising that the result here is stronger than that for the
expected o®er since it is almost always the case that a Receivers expected o®er
is greater than his or her stated minimum acceptable o®er). However, of the 15
rejections in the Baseline, 11 occurred when the o®er received was greater than
the stated minimum.

The di®erence between the o®er and advice received variable is, perhaps, a
good compromise, doing a reasonable, though not outstanding, job of classifying
both acceptances and rejections. Hence one could state that advice is important
for Receivers since it avoids the extremes exhibited by those other variables.

To delve deeper into the relationships of these variables, we consider four
models containing four main explanatory variables in logistic regressions of the
accept variable (1 if an o®er was accepted, 0 if it was rejected). The variables
are, the o®er sent, the minimum acceptable o®er (which we elicited from sub-
jects) the advice received from the previous generation, and ¯nally, Receiver's
expected o®er. We estimated di®erent equations, each containing the o®er sent
and one of the three variable mentioned: expected o®er, minimum acceptable
o®er, and receiver's advice.

Tables 8a-8c contain logistic regression results for each of our three treat-
ments. Two equations are estimated for each of the three explanatory variables
noted above. While all models contain the o®er variable on the right hand
side, for each treatment one equation contains it alone while another looks at
the di®erence of the o®er and each of our three variables. Thus, there are a
total of six estimated equations for the Baseline and Treatment I, (two equa-
tions for each of three explanatory variables, and four estimated equations for
Treatment II (since there is no advice variable in that treatment). For each
equation the estimated coe±cient is shown with the standard error of the es-
timate in parentheses. Signi¯cance levels of the coe±cients are indicated by *
(1% level), # (5% level) and & (10% level), respectively. Also shown are a vari-
ety of measures of goodness of ¯t, including the log likelihood (LL), the Akaike
Information Criterion (AIC) and the percentage of cases correctly classī ed by
the model (%CC). A case is "correctly classi¯ed" if the predicted probability is

18



>=.5 (for an acceptance) or <.5 (for a rejection). Four additional diagnostic
measures which give a more detailed picture of the performance of the model
are also reported: "sensitivity" (probability that a true acceptance is classi¯ed
as such by the model), "speci¯city" (probability that a true rejection is classi-
¯ed as such by the model), "positive predictive value" (probability that a case
classi¯ed as an acceptance is a true acceptance), and "negative predictive value"
(probability that a case classi¯ed as a rejection is a true rejection).

[Tables 8a-8c here]

For the Baseline game, the model with the o®er and the receiver's advice
(column (3) of Table 8a) performs best according to the LL and the AIC. The
model with the di®erence in the o®er and expected o®er (column (4)), does a
bit better in 3 of the 4 diagnostic measures. In particular, it does a bit better at
explaining rejection behavior as seen in Table 8a. For Treatment I, the model
with the o®er and expected o®er separately (column (1) of Table 8b) is the best
according to LL, AIC, and %CC, and it is also the overall best with respect to
the diagnostic measures (two other models, in columns 5 and 6, do better in
terms of sensitivity, but only at the expense of specī city-they do a very poor
job at explaining rejections). For Treatment II, none of the models do very well,
but the model with the di®erence in the o®er and the expected o®er (column
(4), Table 8c) can be singled out as best. First, it is the only model which is
not rejected by the chi-square test for the overall model. It also performs best
according to the AIC. The models for Treatment II all do a very poor job of
capturing rejection behavior accurately.

Overall, our analysis of receiver behavior shows a less dramatic role for advice
than was true for Senders. Though the model with advice was, in some sense,
the best model for the Baseline game, the alternative model with the di®erence
in o®er and expected o®er seems to perform as well for acceptance behavior
and slightly better for rejection behavior. In fact, the expected o®er is the only
variable, aside from the o®er actually sent, that appears to be important in all
three treatments.

3.3 Advice

While we have concentrated exclusively on the quantitative aspects of our data,
we do have a plethora of qualitative data in the form of written advice from one
generation to the next. These texts are a treasure trove of insight into what
our subjects were thinking not only during their our experiment but, perhaps,
even of what subjects think Ultimatum game experiments are about in general.
Such data is obviously unique to our experiment.

More precisely, in rationalizing advice in our experiments, a subject might
appeal to a number of di®erent motivations. For example, one might advise a
particular split (say 50-50) on equity grounds. On the other hand, one might
just as well rationalize a 50-50 split on payo® maximizing grounds if one thought
that, given your subjective acceptance probabilities, such an o®er is a best re-
sponse. Such a rationalization need not appeal to equity at all. Alternatively,
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one may support o®ering only 1 by appealing to the notion of backward in-
duction as is expected of sub-game perfect equilibrium arguments. Backward
induction arguments, however, need not only be used to support sending 1. One
might advise one's successor that 10 is the best o®er to make because one thinks
that there is a threshold below which one's opponent will reject any o®er but
above which the o®er would be accepted. The argument here is identical to
the sub-game perfect argument but the threshold is not zero. This is how a
non-subgame perfect Nash convention can be established. Finally, one can refer
to history and look for precedent in what to send or advise one's successor how
to make predictions in the experiment since a subject's payo® was also a®ected
by how well they predicted what their opponent would do.

In analyzing our advice data we proceeded as follows. First we read each
Sender and Receiver comment. After doing this we broke down the Senders com-
ments into 7 sub-groups: Best response Advice (BRA) which basically supports
an o®er on the basis of expected payo® maximization, Backward induction ad-
vice with a threshold of zero (BI0), Backward induction advice with a strictly
positive threshold (BI+), Fairness advice (FA), History-based advice (HBA)
which refers to precedent or personal experience in the game, prediction advice
(PA), which is advice informing one successor how to make a good prediction,
and "other" (OA) which is advice that falls into none of the above categories.
We di®erentiate payo® maximizing advice from Backward-Induction advice by
noting that a Backward Induction type argument is one where a sub ject places
himself in the position of the Receiver and asks what the minimum he would
accept is if he were in those circumstances. If one is rational and cared only
about money, the answer would be 0. Backward induction would then suggest
sending ". If, for reasons of equity or justice or interpersonal utility, one would
reject some positive o®ers, then Backward Induction would ask you to locate
your opponents minimal acceptable threshold and make that your o®er. Payo®
maximizing behavior looks at the entire distribution of rejection probability and
o®ers a best response to it. Hence it approaches the problem di®erently.

For any text we simply recorded any and all types of advice it contained.
For example, if a piece of advice contained references to fairness, backward
induction, and payo® maximization, we counted all of them in our coding. Our
point was not to de¯ne each piece of data as belonging to one and only one
category, but rather to count all of the arguments used to bolster the advice
given. Hence, in the Baseline where there were 81 generations there is likely to
be more than 81 advice codings since the same text can be counted in many
di®erent categories. For example, consider the following advice written by the
Sender in generation 46 of Treatment I which includes elements of many di®erent
types of advice in extremely pure form:

"The guy before me thought I should send 50. Although, that would
be fair, it's not going to maximize your payo®. I was greedy and
o®ered 10, thinking that the other guy would accept anything he
got, BUT that wasn't the case. They rejected. So my advice is to
be a little more generous, so about 30 should do it. Good Luck"
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This quote was coded as BRA, BI0, BI+, FA, and HA since it included
elements of all of these.

Examples of a pure Backward Induction advice (BI0) were seen in the advice
given by the Receivers in generations 34, and 35 of Treatment I who all told
their successors to accept anything above 1 if it is o®ered with the following
explanations:

"accept any o®er that is o®ered to u because to reject means that
you get nothing. (Generation 34)

"De¯nitely accept anything, or else you get nothing". (Generation
35).

For the Receiver we proceeded as described above except that we changed
the categories slightly given the di®ering roles of the subjects. We retained
the codings BI0, BI+, FA, HA, PA and OA but dropped BRA since this was
not appropriate to the context. We added a category SP (spite) for all those
references which suggested retribution if the amount sent was too small and in
doing so indicated that relative payo®s were important. Spite and fairness are
very close to each other but we separated them because spite has a much more
mean-spirited objective. You could lump them together if you wished, however.

A spite statement might read as did this one representing subject 45 in the
Treatment I experiment who suggested a minimum acceptable o®er of 40:

"you're pretty much at the mercy of the other person, if they try
to screw you reject it and get them back, otherwise take the money
and be happy"

Finally, we added a category PR for prescription which refers to statement
that simply suggested a cut-o® point without any real justī cation. ( "Don't
take less than 40 { sub ject 47 of the Treatment I experiment). These statements
are in fact close to BI+ statements and one might be tempted to lump them
together, but they did not go all the way and remind their successor that 40 is
better than nothing which is what we expect of backward induction thinking.

The results of this coding are presented in Table 9 which present the results
of our coding for the Baseline and Treatment I.

Table 9: Coded Advice
Senders

Experiment Type of Advice
BRA BI0 BI+ FA HA OA PA

Baseline 17 4 21 8 5 10 19
Treatment I 21 6 18 11 23 6 7

Receivers
PR BI0 BI+ FA HA OA PA Spite

Baseline 7 11 3 15 8 11 13 14
Treatment I 7 10 6 4 5 3 13 8
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We summarize our ¯nding by the following two observations:
Observation 7: Sender and Receiver Advice Di®er
While the advice of Senders appears to be own payo® oriented

and infrequently mentions fairness, Receiver advice re°ects a more
inter-dependent utility orientation.

One of the most striking features of Table 9 is the relatively infrequent use by
Senders of fairness considerations to support their prescriptions. For example,
fairness was not a principle that was invoked often (only 8 times in the Baseline
and 11 times in Treatment I). More interesting, however, is that fact that when
50-50 splits are suggested, they are most often supported by payo® maximizing
arguments and not equity arguments. For example, in the Baseline, of the 24
cases in which a 50-50 split is suggested, only 7 are supported by references to
fairness (a good number leave no written advice, however). In Treatment I, of
the 15 times that a 50-50 split was suggested, only 3 were supported by fairness
arguments. Hence, observing a 50-50 split does not appear to o®er proof of
equity considerations.

Also notable in Table 9 is the infrequent use of pure backward induction
arguments. For example, for Senders in the Baseline only four pieces of advice
relied on sub-game perfect-like arguments while only six such pieces of advice
relied on them in Treatment I. The overwhelming bulk of advice had Senders
suggesting an o®er to their successor which, given their assessment of the prob-
abilities of rejection, either maximized their expected payo® or constituted a
best o®er given their assessment of the minimum acceptable o®er on the parts
of Receivers. For example, there were 38 such pieces of advice in the Baseline
and 39 in Treatment I. When backward induction is used, it is usually used to
support sending a positive amount based on the assumption that anything less
than that amount would be rejected for sure. Hence, backward induction-like
arguments are used, but not to justify sending zero but rather to justify sending
some positive amount.

With respect to Receivers, the situation is di®erent. Here recommendations
for behavior rely much more on fairness and spite-like arguments. For example,
in the Baseline spite and fairness are referred to 29 times to support rejecting
low o®ers while in Treatment I they are used 12 times. Note that pure backward
induction arguments are more prevalent as well used 10 and 11 times for the
Baseline and Treatment I. Here, being in the position of the Receiver probably
makes it easier to see how accepting anything positive makes sense.

Observation 8: Subjects Create Oral History
When subjects do not have access to history but can pass on ad-

vice, they create an oral history through their messages which gets
passed on from generation to generation.

Another interesting feature of the advice texts we read was the fact that
in Treatment I, where subjects were denied access to any history other than
their immediate predecessors, they included references to the meager history
available to them far more often than in the Baseline where all sub jects could
scroll through the history of past generations. What we mean here is while in
Treatment I sub jects could not °ip through the past generations history and
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see what occurred, they were able to pass on their own experiences from one
generation to the next. Hence, a subject could say that his predecessor told
him that his predecessor made o®er x and it was accepted. In fact, it would
be possible in such an experiment for all history to be passed on through the
medium of advice. The problem, of course, is that if ever one generation fails
to pass on a history, it is lost and the historical record must start again from
scratch.

As we see, in Treatment I where no history was provided subjects made
reference to either their own or their predecessors experience 23 times while
they did so only 5 times when a full history was available in the Baseline. This
oral history appeared to be an attempt to compensate for the otherwise meager
historical setting of the experiment.

4 Searching For Conventions

In this section of the paper we commence our search for the existence of con-
ventions of behavior in the data generated by our inter-generational Ultimatum
game. Basically we will be looking for the existence of two di®erent types of
conventions which we will call Weak and Strong Conventions. 14A Weak Con-
vention is an empirical artifact of the data and represents a regularity in the
data in which the same or relatively the same o®er is repeatedly made over an
interval of time in the experiment. We call these conventions Weak since they
need not form a Nash or Bayes-Nash equilibrium to the inter-generational game
being played. They are simply regularities in the data. A Strong Convention,
on the other hand, is a set of o®ers and responses that do form a Bayes-Nash
equilibrium to the game under investigation.

4.0.1 Weak Conventions

In discussing Weak Conventions we are interested in asking what our data would
look like if it were generated by a set of economic agents whose behavior was
"conventional", i.e. agents following a convention of behavior. Ideally, we would
like to construct an index of conventionality for our data sets which would
indicate how conventionally determined the data is and then use this index to
compare data sets on the basis of their conventionality. Since deriving such an
index axiomatically is beyond the scope of this paper, we will proceed here in a
more empirical fashion. Our goal is to substantiate the following observation:

Observation 9 : Advice Fosters Convention Creation
In those experiments where advice was allowed, the data is better

organized by assuming the existence of conventions of behavior.
To give the reader an insight into what we might mean here, remember that

a convention is a regularity in the behavior of a group of subjects in which

14Actually if one considers the rule "do what your parents tell you" as a convention, then
we have already established that such a conevntion existed in our experiments since advice
was shown to be a key ingredient into Sender behavior.
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one action is prescribed for behavior and this prescription is passed on from
generation to generation. In the extreme, therefore, we would expect the time
series of a perfect convention in our experiment to look like the one depicted in
Figure 5.

Figure 5 here

Note that this time series is extreme in the sense that from the beginning
to the end of the experiment the same o®er is prescribed and made in each
generation. Two features of this time series are of note, however. One is the
fact that one o®er, in this case 45, is made often (in this case always) over
the entire course of the experiment. Such an o®er is "recurrent". The other is
the fact that this recurrent o®er is persistent in the sense that the conditional
probability of it being o®ered in period t+1 given that it was o®ered in period
t is equal to 1.

In searching for Weak Conventional behavior, then, we are searching for
o®ers that are recurrent and relatively persistent. However, it is unlikely that
the data we will observe will be as orderly as the time series presented in Figure
5. One reason, obviously is that the variance around a recurrent o®er is unlikely
to be zero as depicted in that time series. Hence let us call an o®er x an "(Â%)¡
recurrent o®er over an interval of time T if it is one for which Â% of the o®ers
are within an "¡ neighborhood of x over that time period. The o®er x is "(')¡
persistent over that time interval if the conditional probability of a generation
t+1 o®er being within " of x is equal to '; given that the o®er in generation t
was also within " of x is . An "(Â; ')¡ convention over a time interval T is an
"(Â%)¡ recurrent o®er that is "(')¡ persistent.

To illustrate the notion of an "(Â; ')-Convention consider the following two
time series.

Figures 6a and 6b Here

In Figure 6a we see a hypothetical scatter of points representing the of-
fers made over time in a ¯ctitious inter-generational game experiment. As
you can see, the data is neatly organized by positing the existence of two
"(Â; ')¡conventions one centered at 45 and one at 33. Note that in the ¯rst
convention " = 2 while in the second " = 6. The break point between these
two "(Â; ') - conventions occurs in generation 44 where there is a clear struc-
tural change in the data. Note that for this particular hypothetical time series
all observations are included within the "-bands of these conventions, hence Â
=100% and ' = 1:

Figure 6b presents another such scatter diagram but this one is more messy
and not as neatly described by "(Â; ')-conventions. In fact, in this Figure
two "(Â; ')¡conventions are depicted but they do not characterize the data as
neatly as the ¯rst. To begin, they exclude many observations and have broader
"¡ bands; the ¯rst band is of width 6 while the second is of width 8. In addition,
' < 1: Hence, because the second time series can only be organized by "(Â; ')-
conventions with broader bands, and ones that, despite these bands, still do not
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include as much data as the ¯rst, we say that the time series in Figure 6a is
more conventional than the time series in Figure 6b.

Restricting ourselves to using at most two "(Â; '){conventions per treatment,
we can say that time series A is unambiguously more conventional than time se-
ries B if there exists a break point in time series A, t*, with "(Â; ')¡conventions
to the right and left, such that these "(Â; ')-conventions contain more obser-
vations and have smaller bands than any comparable break point and "(Â; ')-
conventions that can be found for time series B and have higher persistence.
If we ¯x the number or fraction of the observations we want contained in the
"(Â; ')¡conventions, (and allow at most one break point) then comparing data
according to their conventionality would be equivalent to comparing the area of
the bands (length £ width) along with their persistence. For example, time se-
ries A would be called "more conventional" than time series B, at the 70% level,
if we can ¯nd a break in the data at t* (which may occur at time period 0) and
bands around the "(Â;')-conventional o®ers to the left and right of t*, xl, xr ;
such that we can pack 70% of the observations within the bands of time series
A containing less area than those of time series B and these observation have
greater persistence than do those contained in B. Obviously, the time series in
Figure 5 illustrates the highest type of conventionality since the area contained
in the bands covering 100% of the data is zero and the persistence is 1.

These considerations provide us a method of substantiating Observation 10.
Substantiation:
To substantiate the claim that advice fosters Weak Conventions we will look

at the three time series of o®ers for our three experiments and search, using at
most two "(Â; ')-conventions, for the break point and "(Â; ')-conventions which
best organize the data. We will then compare these decompositions.

To do this we proceed in two steps. First we search over the data in any
experiment for the optimal break-point using a switching regression technique.
More precisely, we ¯t two regressions ol=cl +"l and or=cr +"r on the data to
the left and the right of a "break point" generation t*, where oj, cj and "j ;
j = l ;r; are the o®ers, regression constant, and error terms of the regressions for
the data to the left and right of t*. We then systematically search over all break
points until we ¯nd that t* for which the sum of the squared residuals of the
regressions is minimized. We then test if this break is signi¯cant. Such a break
point would represent a behavioral shift in the o®ers made by our subjects. After
¯nding the break points and constants, we systematically search for optimal
"(Â; ')¡conventions around these o®ers which contain 70%, 80% and 90% of
the observations, respectively.

To illustrate our methods, say in the 70% case, we are searching for a break
point, along with an "(70%; ')-convention to the left and one to the right,
which contains 70% of the observed o®ers within the smallest area. Hence we
are searching for a break point along with those minimum bands around the
xl, xr which minimize the area contained in the bands. The resulting ' is then
recorded and is not the object of maximization. We do the same exercise for
the 80% and 90% cases.

Table 10 and Figures 7a - 9c present the results of this exercise on our three
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experiments.
Table 10:Conventionality Metric

Percentage Baseline Treatment I Treatment II
(Area, (Persistence)) (Area, (Persistence)) (Area, (Persistence))

70% 13.77 (.7142) 13.32 (.6086) 32.06 (.5777)
80% 22.66 (.7903) 20.49 (.8064) 39.45 (.6930)
90% 38.22 (.8750) 22.98 (.8358) 50.36 (.7241)

Table 10 presents our area metric applied to the time series of our three
experiments at the 70%, 80% and 90% levels along with the associated persis-
tence. The numbers in the cells are the actual areas contained in the bands
encompassing di®erent amounts of data (i.e., 70%, 80%, or 90%), the numbers
in parenthesis are persistence measures.

As we can see, according to our measure, behavior is most conventional
when only advice is present in Treatment I as opposed to either just history,
as in Treatment II, or where both advice and history are present, as in the
Baseline. The Baseline and Treatment I are uniformly more conventional than
Treatment II, where no advice was allowed, i.e. at all three levels, 70%, 80%
and 90%, the area containing these amounts of data was smaller in the Baseline
and Treatment I than in Treatment II and the persistence is greater. Hence, as
Observation 10 implies, advice fosters conventionality.

Figures 7a-9c here

Figures 7a-9c illustrate these relationships. Three things are of interest in
these ¯gures. First note generally how scattered are the o®ers in the Treatment
II experiment in comparison to the Baseline and Treatment I experiments. It
appears as if just having history at one's disposal does not provide as clear a
guide to behavior as does having advice. In addition, note that in the Baseline
experiment, over the ¯rst 25 generations, o®ers between 48 and 52 were made
17 times (11 times the o®er was exactly 50). In the 19 generations between
generations 7 and 25 o®ers between 48 and 52 occurred 16 times. Hence over
this time period behavior appeared to be quite neatly conventional. Looking at
the graphs for the 70% bands, Figures 7a-7c, gives an indication of exactly how
conventions help organize the data when advice is present.

4.1 Strong Conventions

While Weak Conventions are empirical constructs, Strong Conventions are more
theory based in that they constitute equilibrium regularities of behavior. The
actual de¯nition of a Strong Convention of behavior in our experiments depends
upon how you model the inter-generational game being played by the subjects.
If one assumes that the game played by our inter-generational agents is a game
of complete information, then one would have to conclude that no equilibrium
convention of behavior was created in any of our experiments.. The reason for
saying this is simple. In order for our subjects to behave in a Nash-like manner
we would have to observe o®ers being made which were equal to the minimum
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stated acceptable o®ers of Receivers. This is true because if the o®ers made were
above the minimal acceptable o®ers of the receivers, then the Sender would be
able to increase their payo® by sending less and they would be accepted. We
have seen in Observation 6, however, that this was not the case since Senders
repeatedly left money on the table in these experiments. Hence, if one models
our inter-generational game in this fashion, one would have to conclude that the
behavior we observed was not equilibrium behavior.

Alternatively, one could think of the game played by our subjects as a game
of incomplete information played by a set of non-overlapping generations of
players. More precisely, let us assume that the game is played as follows. At the
beginning of each generation nature moves and draws a minimum acceptable
o®er for the Receiver in that round. This minimum is private information
known only to the Receiver. However, the Sender of that round knows that all
such minima are drawn independently from an identical distribution F®;¯ (m),
with support [0,100]. Here F®¯(m) is one of a two-parameter family of such
distributions. These minima drawn by generational Receivers are their "types".
For Receivers in generation t, mt de¯nes the true minimum acceptable o®er for
that subject which is determined by a host of factors existing outside of the
game, i.e., the subjects' essential sense of fairness, feelings of altruism, spite,
etc.

After the Receiver draws his minimum, nature moves again and chooses a risk
aversion coe±cient for the Sender which is the exponent in his utility function
U = (y)r ; where y is the ¯nal net payo® of the Sender: In other words; each
Sender will be assumed to be identical except for his exponent r. Each r implies
a di®erent attitude toward risk and r is assumed to be drawn independently from
an identical distribution. r is seen only by the Sender alive in that generation
and is private information. The Receiver knows the distribution from which
these r's are drawn although that will not matter for his strategy in the game.

After the Receiver views his m and the Sender his r, the Sender makes an
o®er, x, to the Receiver who then accepts or rejects. If the Receiver accepts,
the Sender gets 100-x and the Receiver gets x. In payo® terms, the Sender
gets U(100-x) = (100-x)r , while the Receiver gets x. (We can assume that the
Receiver is risk neutral, all that matters is his minimum acceptable o®er).

The Bayes-Nash equilibrium for this game is particularly simple. For any
generation t, the Receiver has a dominant strategy of accepting all o®ers above
mt and rejecting all o®ers below it. (Remember that mt is the Receiver's true
minimal acceptable o®er. Hence, by de¯nition, he has a dominant strategy).
The Sender acts as follows. First he or she will look back at the history of
the game up through generation t-1. This will present the Sender with a time
series of o®ers made along with a reject or accept decision on the part of the
generational Receivers alive at those times. An accept decision by generation
t-k implies mt¡k 5 xt¡k while a reject decision implies mt¡k = xt¡k:Using
this information the Sender must estimate ® and ¯ to generate an estimate of
F®;¯

t (m) (the generation t's best estimate of F®;¯(m)), and then make an o®er
that solves the following maximization problem:
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max
x

E(¦) = (100 ¡ x)rF®;¯
t (x): (3)

If we call x* the argmax of this problem, it satis¯es the following ¯rst order
condition: t

(100 ¡ x¤)

r
=

F
®;¯
t (x¤)

f®;¯
t (x¤)

:; (4)

where f®;¯
t (x¤) is the density function associated with F ®;¯

t (x¤): In any gener-
ation t, if x*t = mt , then the o®er is accepted, if not it is rejected.

Before proceeding, let us pause to make some comments about our approach.
First, we are not placing a great deal of reliance on the particular functional form
assumed for the sub jects' utility function. For example, we only introduced the
random risk aversion coe±cient in the utility function for the seller to allow us
to provide some variability in the predictions of the model. Without a stochastic
element for the preferences of the Senders, period-to-period o®ers would vary
only slightly yet we observe quite a large amount of variability in the o®ers made
from period to period. Other functional forms for the utility function would not
change the qualitative features we care about, but some stochastic variability
in the preferences of the Senders is necessary.

Second, we assumed that the true F®;¯(m) is one of a family of two-parameter
functions since it will allow us to proceed empirically and estimate this model.
More precisely, say that as time progressed in the experiment each sender repeat-
edly estimated the following logit accept/reject function using the time series of
o®ers and acceptance decisions made up until generation t-1:

Pr ob(accept x) =
e®+¯x

1 + e®+¯x
; (5)

where, x is the amount sent and the left hand variable is a f0,1g variable taking
on a value of 1 if the o®er is accepted and zero if it is not. In other words, each
generation learns by running a logit regression of the dichotomous accept/reject
left-hand variable on the amount sent using all the data available. Knowing the
Receiver's equilibrium strategy, the probability of having an o®er of x¤

t accepted
at generation t is equivalent to the probability that the Receiver has a minimum
reservation value less than x¤

t since the two are informationally equivalent given

the Receiver's strategy. Hence, at any time t the best estimate of F®;¯
t (x¤

t ) is

the updated estimate of the parameters in the logistic function e®+¯x

1+e®+¯x :
Given this functional form, in any generation t the optimal o®er can be

de¯ned by solving the following maximization problem:

Max
x

E(¦) = (100)r ¢ (
e®+¯x

1 + e®+¯x
); (6)
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where the associated ¯rst order condition is,

(100 ¡ x)

r
=

1 + e®+¯x

¯
: (7)

Hence, given the generation t estimate of ®t and ¯ t, and knowing r, a gen-
eration t subject can de¯ne his or her optimal bid. Note also that in generation
t we can calculate the rt implied by an o®er of x by solving,

(100 ¡ xt)¯

1 + e®+¯xt
= rt : (8)

This structure will allow us to explain all of the salient features of our data.
For example, a successful explanation for what happened in our experiments
would have to be able to explain how our subjects could be in equilibrium
and still have the o®ers made by the Senders be so much above the minimal
acceptable o®ers of the Receivers. In addition, a successful explanation must
also be able to explain why Sender o®ers varied so much from period to period
despite the fact the information varied so little between adjacent generations.
Such facts are not surprising in our inter-generational game since each generation
involves a new player whose preferences, i.e. risk aversion parameter is di®erent.
Hence, even on the basis of relatively identical information, adjacent generations
may make very di®erent o®ers. In addition, given the incomplete information in
the problem, it is not surprising that the arg max of (6) is above the unknown
minimal acceptable o®er of Receiver.

Observation 10: Behavior is Bayes-Nash Consistent
The behavior of subjects in our Baseline and Treatment II exper-

iments is consistent with a Bayes-Nash equilibrium to the game of
incomplete information described above if the risk aversion parame-
ters of our Senders are drawn from the distributions presented below.

Substantiation:
Looking at the ¯rst order condition presented in (7) we see that if subjects

are risk neutral, i.e., r=1 all t, then using our functional form assumption for
F(x), (7) can be rewritten as

(100 ¡ x) =
Ft(x)

ft(x)
=

1 + e®+¯x

¯
; (9)

and the optimal o®ers for the Baseline and Treatment II are presented in Figures
10a and 10b.

Figures 10a and 10b here

Note that one feature of these ¯gures is that the period-to-period variability
in the optimal risk-neutral o®ers is rather small. This is true because the sub-
jects updated estimates of ® and ¯ in their logit functions can not vary much
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from period to period since they di®er only on the basis of one observation.
Note, however, that the time series of actual o®ers does vary substantially from
period to period. It is to explain this di®erence that we have introduced the
possibility that Senders have utility functions drawn from a one-parameter fam-
ily of such functions characterized by the risk parameter r, i.e. U(y) = yr : For
each o®er xt made in period t, given the updated estimates for ®t and ¯t , we
can solve (8) for that rt which would make the observed o®er optimal. These r's
are presented as histograms in Figures 11a and 11b and completely rationalize
the behavior of our subject Senders.

Figures 11a and 11b here

Note that the overwhelming majority of subjects act as if they were risk
averse with r's less than 1. For example, in the Baseline over 75% of the subjects
acted as if they had r's less than .704 while in Treatment II 75% of the subjects
acted as if they had r's less than 1.073. (The mean and median r's in each
experiment were .73 and .36 for the Baseline and .79 and .58 for Treatment II).
This indicates that they tend to send more than the risk neutral Bayes Nash
optimal o®er.

5 Conclusions:

This paper has attempted to provide an explanation for non-subgame equilib-
rium behavior in an inter-generational ultimatum game experiment. We posit
that what allows such equilibria to exist is a set of conventions of behavior which
are supported by beliefs which lead Senders to make strictly positive o®ers and
Receivers to reject o®ers that are positive but "too low". These conventions
are transmitted from generation to generation through the socializing in°uence
of advice o®ered by one generation to the next. When such advice is absent,
the associated conventions are harder to establish and the data less able to be
organized by conventions.

What our results demonstrate is the overwhelming in°uence of advice on
the behavior of our subjects. As we have seen, advice tends to be followed
closely by Senders and dramatically lowers the variability of o®ers when it is
present. Advice is also important for Receivers a®ecting both their rejection and
acceptance behavior. However, for Receivers it appears as if rejection behavior
is most a®ected by a de°ation of their expectations since most rejections occur
when they receive an o®er that was lower than what they were expecting even
if that o®er is above their stated minimal accepted o®er.

In the process of our analysis, we have presented a model in which a Bayes-
Nash equilibrium convention is established and have estimated the parameters
of one such possible model. While we recognize that all such models are in
some sense arbitrary, we do feel that our model is successful in capturing the
stochastic nature of the data and providing a plausible framework within which
to organize the data generated. Clearly, more work along these lines is needed
until we are able to furnish a complete model of culture creation and evolution.
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Figure 3a.i: Offer and Advice, Baseline
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Figure 6a: An Epsilon Convention
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Figure 6b: A Less Conventional Epsilon Convention
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Figure 7: 70% Conventionality Bands for Offers
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Figure 8: 80% Conventionality Bands for Offers
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Figure 9: 90% Conventionality Bands for Offers
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Figure 10a: Offers vs. Optimal Offer, Baseline
Generation
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APPENDIX : INSTRUCTIONS 
 
The following are the instructions to the Ultimatum Game as they appeared on the computer screen for subjects.  
They are preceded by a set of general instructions, which explain the overall procedures for the three games each 
subject was to play. After a subject finished playing this game he would proceed to another game (unless this was 
the last game he or she played).  

Since these are generic instructions things like conversion rate of experimental currency to dollars have 
been left blank.  
 
General Instructions For the Experiment 
 
Introduction 
 
You are about to participate in an experiment in the economics of decision making.  Various research foundations 
have provided the money to conduct this research.  If you follow the instructions and make careful decisions, you 
might earn a considerable amount of money. 
 
Currency 
 
The currency used in this experiment is francs.  All monetary amounts will be denominated in this currency.  Your 
earnings in francs will be converted into U.S. Dollars at an exchange rate to be described later.  Details of how you 
will make decisions and earn money, and how you will be paid, will be provided below. 
 
The Decision Problem 
 
In this experiment, you will participate in three distinct decision problems.  In each problem, you will be paired with 
another person and you will each make decisions.  The monetary payoff that you receive depends upon the 
decisions that you make and upon the decisions that the person you are paired with makes. 
 
After you have played the first decision problem, you will then be paired with another person, different from the one 
you were first paired with, to play a second game.  Again, your payoff in this second decision problem will depend 
upon the decisions that you make and upon the decisions that the person you are paired with makes. 
 
After you have participated in the second decision problem, you will once more be paired with another person, 
different from either of the people you were paired with in the first two decision problems.  Your payoff in this third 
decision problem will, again, depend upon the decisions that you make and upon the decisions that the person you 
are paired with makes. 
 
You will never be informed of the identity of any of the people you are paired with, nor will any of them be informed 
of your identity. 
 
The details of the three different decision problems that you will participate in will be briefly described to you just 
prior to each decision problem.  What follows here is a general description of the structure of the decision problems 
and of the procedures that will be followed for each decision problem. 
 
General Structure 
 
In general, you and the person you are paired with will not be the first pair who has participated in a particular 
decision problem.  That is, in general, other pairs will have participated  before you, either earlier today, or on 
previous days. Further, you and the person you are paired with will not be the last pair to participate in the decision 
problem.  That is, other pairs will participate in the decision problem after you, either later today or on later days. 
 



Roles 
 
In each decision problem, you will be replacing a person who has participated before you.  In each decision problem 
there are two decision makers, A and B, and you will be assigned the role of either A or  B. 
 
Payoffs 
 
In each decision problem, you will make a decision and the person you are paired with will make a decision, and these 
decisions will determine your payoff from playing the decision problem.  In addition, you will also receive a payment 
equal to a fraction of the earnings made by your replacement when he/she takes your place.  (Your predecessor will 
also be earning a payment equal to a fraction of what you earn). Thus, a player's total payoff from any particular 
decision problem is the sum of the earnings from the decision problem one plays with the person one is paired with, 
plus a payment equal to a fraction of the earnings from the decision problem one's successor plays with the 
successor of the person one is paired with in the decision problem. 
 
Advice 
 
Since, in general, your total payoff depends on your own decision and on the decision of the person who succeeds 
you in your role in a decision problem, you will be allowed to pass on advice on what action to take in the decision 
problem to your successor.  The person you are paired with will also be allowed to pass on advice to his/ her 
successor.  The person who was in your role when the last decision problem was played will be able to leave you 
advice on what action to take in the decision problem. Similarly, the person who was in the role of the person you are 
paired with when the decision problem was last played will have left him/ her advice on what action to take in the 
decision problem. 
 
History 
 
Since others have participated in a decision problem before you, you will be able to see some part of the history of 
the actions taken in the decision problem before you.  Specifically, you and the person you  are paired with will be 
able to see the decisions made by all previous pairs in this decision problem. 
 
Predictions 
 
At various points in the decision problem, prior to making a decision, you will be asked how likely you believe it is 
that your opponent is going to taken any given action in the decision problem.  To give you the incentive to state 
your beliefs as accurately as possible, you will be compensated according to how accurate your stated beliefs are, in 
light of what your opponent ends up doing.  The details of how you will be compensated will depend on which 
decision problem you are participating in.  Details of how you will be compensated will thus be deferred until the 
specific instructions for the different decision problems. 
 
How you get paid 
 
You will receive $5 simply for showing up today and completing the experiment.  You will receive, in addition, a 
payment today based on the outcome of the three decision problems you participate in. A second payment, based on 
the outcome of the three decision problems of your successors, will be available at a later time.  You will be notified 
when your later payment is ready for you to pick up. 
 
 
Specific Instructions For Ultimatum Game are Presented Below: 
 
Introduction 
In this decision problem you will be paired with another person. When your participation in this decision problem is 
over, you will be replaced by another participant who will take your place this decision problem. Your final payoff in 



the entire decision problem will be determined both by  your payoff in the decision problem you participate in and by 
the payoff of your replacement in the decision problem he/she participates in.  

The currency in this decision problem is called francs. All payoffs are denominated in this currency. At the 
end of the decision problem your earnings in francs will be converted into real U.S. dollars at a rate of 1 franc = $%e.   

 
Your Decision Problem 

In the decision problem you participate in there will be %r round(s). In each round, every participant will 
engage in the following decision problem where you will either play the role of the Asender@ or Areceiver@. (Which 
type you are will be told to you before your participation in the decision problem begins):  

In this problem the sender must decide how much of a given amount of francs, 100,  to send to the receiver. 
The receiver, after receiving this offer from the sender,  must then decide whether to accept or reject the offer. If the 
receiver accepts the offer, then the receiver gets a payoff equal to the offer and the sender gets a payoff equal to 100 
minus the offer.  If the receiver rejects the offer, then both the sender and the receiver will get a payoff of  zero. For 
example, say the Sender chooses to offer the receiver x francs out of the hundred. Then, if the offer is accepted,  the 
Sender=s payoff will be 100-x and the receiver=s will be x. If it is rejected both the Sender and the Receiver will get 0.  
  To make your decisions you will use a computer. If you are the sender there will be an Offer Box on your 
screen into which you can type your offer for the receiver. To do this simply use the mouse to click in the space 
provided for you in the offer box and type your offer. After you do so, the computer will ask you to confirm your 
choice by stating: 
<<Are you sure you want to want to offer x francs? >> 
If the answer is yes, click on the yes button and your decision will be entered in to the computer. If you would like to 
change the offer you have made, click on the No button . In this case you will be allowed to enter another amount. 

If you are the receiver, the offer from the sender will appear on your screen in the Accept/Reject box. To 
accept the offer, simply click your mouse on the YES button.. If you wish to reject the offer, click  the NO  button. 
You will then be asked to confirm your choice and after you do your payoff will be reported to you in the payoff box.  
Your payoff and your successor 
 
After you have finished your participation in this decision problem, you will  be replaced by another participant who 
will take your place in an identical decision problem with another newly recruited participant. Your final payoff for 
this decision problem will be determined both by  your payoff in the decision problem you participate in and by the 
payoff of your successor in the decision problem that he/she participates in. More specifically, you will earn the sum 
of your payoffs in the decision problem you participate in plus an amount equal to (1/2) of the payoff of  your 
successor in his/her decision problem. 
 
 
Predicitng Other people=s Actions  
 
Before you make your decisions, you will be given an opportunity to earn additional money by predicting the choices 
of your opponent in the decision problem. To make a prediction click on the Prediction button.  At this time, if your 
are a Sender  you will see on the screen a prediction form as follows: 
 
 

 
 

Sender Prediction Form here 
 

 
 

 
 

 
 

 
Offer 

 
Chance of Acceptance 

 
Chance of Rejection = 
100 - Chance of Acceptance 

 
0-10 

 
 

 
 

   



11-20   
 
21-30 

 
 

 
 

 
31-40 

 
 

 
 

 
41-50 

 
 

 
 

 
51-60 

 
 

 
 

 
61-70 

 
 

 
 

 
71-80 

 
 

 
 

 
81-90  

 
 

 
 

 
91-100 

 
 

 
 

 
 If you are a sender, you will be making make  predictions about how likely the receiver is to accept or reject 

an offer from 0 to 10 francs, from 10 to 20 francs, etc.  For example, suppose you are a sender and you think there is a 
40% chance that the receiver will  accept an offer between 0 and 10 francs if you happened to send one ( and hence a 
60% chance of it being rejected),  that there is a 75% chance that the receiver will accept an offer between 11 and 20 
francs, that there is a 80% chance that your opponent will accept any offer between 21 and 30, and that there is a 
100% chance that your opponent will accept any offer from 31 to 100.  If these are your beliefs about the likely 
decision of the receiver, then click in the space next to each possible range of offers that you might make, and type 
the  numbers corresponding to your belief about the chances of an offer in that range being accepted.  Note that 
when you type in the percentage chance of an offer in any given range being accepted, the corresponding 
percentage chance of the offer being rejected automatically appears in the next column.  That is, the sum of the 
chances of an offer in any given range being accepted and the chances of such an offer being rejected must sum to 
100.  

We will then determine your prediction payoff as follows: Suppose you actually decide to send 27 francs 
and you predicted that your opponent will accept with a 60% chance and reject  with a 40% chance. In that case you 
will place 60 next to the accept box of the 21-30 interval and 40 next to the reject box. Suppose now that your pair 
member actually rejects the 27 francs offered. In that case your payoff will be Prediction Payoff = 20,000-(100-40)2 - 
(60)2  = 20,000 -3600 - 3600 = 12,800. In other words, we will give you a fixed amount of 20,000 points from which we 
will subtract an amount which depends on how innacurate your prediction was. To do this when we find out what 
choice your pair member has made (i.e. either accept or reject), take the number you assigned to that choice, in this 
case 40 on reject, subtract it from 100 and square it. We will then take the number you assigned to the choice not 
made by your pair member, in this case the 60 you assigned to accept, and square it also. These two squared 
numbers will then be subtracted from the 20,000 francs we initially gave you to determine your final point payoff.  
Your point payoff will then be converted into francs at the rate of 1 point = %f francs. 

Note that the worst you can do under this payoff scheme is to state that you believe that a certain action is 
going to be taken with a 100% chance and assign 100 to that choice when in fact the other choice is made. Here your 
payoff from prediction would be 0. Similarly, the best you can do is  to guess correctly and assign 100 to that choice 
which turns out to be the actual choice chosen. Here your payoff will be 20,000.  

However since your prediction is made before you know what your pair member actually will choose, the 
best thing you can do to maximize the expected size of your prediction payoff is to simply state your true beliefs 
about what you think you opponent will do for each amount sent to him/her. Any other prediction will decrease the 
amount you can expect to earn as a prediction payoff.. 
 
Receiver=s Predictions 

If you are a Receiver to make a prediction click on the Prediction button.  At this time, if you are a Receiver  
you will see on the screen a prediction form as follows: 
                              Receiver Prediction Form 

  



Offer Chance of Receiving 
 
0-10 

 
 

 
11-20 

 
 

 
21-30 

 
 

 
31-40 

 
 

 
41-50 

 
 

 
51-60 

 
 

 
61-70 

 
 

 
71-80 

 
 

 
81-90 

 
 

 
91-100 

 
 

 
 

      
As a Receiver you will be asked to make  predictions about how likely the receiver is to make you an offer 

from 0 to 10 francs, from 11 to 20 francs, etc.   For example, suppose you are a receiver and your beliefs are as shown 
in the following table: 
                              Receiver Prediction Form 
Offer  Chance of Receiving 
0-10  30 
11-20  5 
21-30  5 
31-40  5 
41-50  5 
51-60  5 
61-70  5 
71-80  5 
81-90  5 
91-100 30 
 
 If these are your beliefs about the likely decision of the sender, then click in the space next to each possible range of 
offers that might be made to you, and type the numbers corresponding to your belief about the chances of an offer in 
that range being sent to you. Note that the total of the chances you type in must sum to 100.   
In addition say that the Sender actually sends you 27 francs. We will then determine your prediction payoff as 
follows:  Prediction Payoff = 20,000 - (100-5)2 - (30)2   -  (5)2  - (5)2  - (5)2  - (5)2 - (5)2   - (5)2  - (5)2  - (30)2   = 20,000 - 
9025 - 900 - 25 - 25 - 25 - 25 - 25 - 25  - 25 - 900 = 9000. In other words, we will give you a fixed amount of 20,000 
points from which we will subtract an amount which depends on how innacurate your prediction was. To do this 
when we find out what choice your pair member has made (i.e. in this case they sent you 27 which is between 21 and 
30 francs), take the number you assigned to that choice, in this case 5, subtract it from 100 and square it. Then take 
the numbers you assigned to the offer ranges that did not contain the actual choice made by your pair member, 
square them, and add them up. . These squared numbers will then be subtracted from the 20,000 points we initially 
gave you to determine your final point payoff.  Your point payoff will be converted into francs at the rate of 1 point = 
%f francs. 

Note that the worst you can do under this payoff scheme is to state that you believe that a certain action is 
going to be taken with a 100% chance and assign 100 to that choice when in fact the other choice is made. Here your 



payoff from prediction would be 0. Similarly, the best you can do is to guess correctly and assign 100 to that choice 
which turns out to be the actual choice chosen. Here your payoff will be 20,000.  

However since your prediction is made before you know what your pair member actually will choose, the 
best thing you can do to maximize the expected size of your prediction payoff  is to simply state your true beliefs 
about what you think you pair member will do for each amount sent to him/her. Any other prediction will decrease 
the amount you can expecte to earn as a prediction payoff. 
 
 

Advice to Your Successor 
Since your payoff depends on how your successor behaves, we will allow you to give advice to your 

successor in private. The form of this advice is simple.  If you are a sender, then you can suggest the amount that 
your successor should send to his/her receiver.  If you are a receiver, then you can suggest the minimum offer that 
your successor should accept.  That is, any offer less than the Aminimum offer@ should be rejected by your 
successor, and any offer at or above the Aminimum offer@ should be accepted.  You are also provided with a space 
where you can write any comments you have for them about the choice they should make. In addtion, in this space, if 
 you like, you can tell your successor the advice given to you by your predecessor and the history of your 
predecessor which you saw and your successor did not see.  

To give advice, click on the Advice button. You will then  see on the screen the following advice form which 
provides you an opportunity to give advice to 
  
Sender   Advice form 

 
Write Specific Advice 
Here 
 
You Should Send 
_______ francs 
 
 
 
 

 
Write General Advice Here 

 
 
 
 
 
 
 
 

History Button 

 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
Receiver Advice Form 
 

 
Write Specifi Advice 

Here 
 
You Should not accept 
any offer less than _____ 
francs. 
 
 
 
 

 
Write General Advice Here 

 
 
 
 
 
 
 
 

History Button 

 
Note that except if you are the first person ever to do this decision problem, when you sit down at your 

computer you will see the advice your predecessor gives you 
 
 
 
History 
  When you sit down at your computer you will also see the history of the previous %k  pairs who have 
participated in this decision problem before. 

 To see this history information click on the History button located at the bottom of the Advice Box.  Note, 
finally,  that all other successors will also see the advice of their predecessors, and the history of the decision 
problem that their %k  predecessors participated in. You will not, however, see the advice given to the person you are 
paired with by his/her predecessor.  
 

      
Summary 

In summation, this decision problem will proceed as follows. When you sit down at the terminal you will be 
able to see the decisions that have been made by the previous %k pairs who have participated in this decision 
problem,  and you will be able to see the advice that your immediate predecessor has given you. You will then be 
asked to  predict what you pair member will do by filling out the prediction form. After you do that, the decision box 
will appear on the screen and you will be prompted to make your decision. You will then be shown the decision made 
by the person you are paired with, and you will be informed of your payoff. Finally, you will fill out the advice form 
for your successor. 
 

 



 
 
 
 
 
 
 
 
 


