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ABSTRACT. An algorithm is given that provides an envy-
free division of a cake among n people, each of whom may
have a different way of measuring the value of fractional parts
of the cake. Previous results were (1) non-constructive, (2)
produced a division based on the weaker notion of fairness in
which each person believed he or she received at least 1/nth of
the cake, but not necessarily the largest piece, or (3) worked
only for the casen = 3.
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1. INTRODUCTION

The general cake division problem dates back almost fifty
years to Knaster (1946) and Steinhaus (1948, 1949) and can be
roughly phrased as follows: Suppose we have a cake C and n
people who may value different parts of the cake differently.
Can one find a way to divide C among the n people so that each
is satisfied with his share? OQOver the years, a number of
expository treatments of this problem have appeared, including
those of Gamow and Stern (1958), Dubins and Spanier (1961),
Kuhn (1967), Gardner {(1978), Rebman (1979), Bennet et al
(1987), Hill (1991), and Olivastro (1992a).

A consideration of the cake division problem requires
addressing the following three issues: (1)} a choice of the
mathematical framework in which to formalize the problem,
(2) a definition of "satisfaction,” and (3) a decision as to
whether a "division process” is to be an algorithm or an
existence proof. We briefly discuss each of these in turn.

The mathematical framework we choose to work with is
quite general. We assume that Cis a set and 4y, ..., Hp are
finitely additive measures defined on some common algebra A
of subsets of C. We assume that p;(C) = 1 for every i and that,

if X € A and k is finite, then X can be partitioned into k
pairwise disjoint sets of equal pyj-measure. Finally, we assume

that the following Trimming Postulate (TP) is satisfied for
every i:

TP: If X, Y € A and p;(X) < ui{Y), then there exists
aset ZC Y sothat Z€ A and u;(X) = w;(2).

Intuitively, TP corresponds to the ability of each person
("player”) to trim a piece of cake Y to a size determined by X.



Another framework for the cake-division problem is to
assume the measures are non-atomic and countably additive,
although non-measure theoretic interpretations have also been
considered (e.g., Stromquist, 1980). Our formulation is quite
close to the original one of Steinhaus (1948).

In discussing whether or not a player will be satisfied with
the share of cake he receives, there are two fundamental
notions that have been the center of investigation. Let us call
an ordered partition Xy, ... ,X, of C fair if Hi(X;) 2 1/n for
every i, and envy-free if u;(X;) 2 u;(X;) for every i and .
Thus, a partition is fair if it corresponds to a division of the
cake into pieces such that each player thinks he received at
least 1/n'P of the cake. A partition is envy-free if it
corresponds to a division of the cake in which no player would
desire to swap the piece he received for the piece another
player received. It is easy to see that every envy-free
partition is fair, but not every fair partition is envy-free.

There is a stronger version of fairness found in the
literature. Steinhaus (1948) attributed the following
observation to Knaster: if the n measures are not all identical,
then C can be divided so that each player thinks he is receiving
more than 1/ntP of the cake. Proofs were independently
provided by Urbanik (1955) and Dubins and Spanier (1961).
These proofs are non-constructive, but an algorithmic proof
was later found by Woodall (1986), based on an idea of Fink
(1964). '

We strengthen Woodall's result in the present paper by
producing a division of the cake that is not only strongly fair,
but also strongly envy-free. That is, not only does each player
think his piece is as large as everyone else’s piece, but each
- player thinks his piece is sirictly larger than the pieces of those
players who have a measure that is different from his own. It
is again easy to see that a partition that is envy-free in this



stronger sense is also fair in the stronger sense considered by
Knaster, Urbanik, Dubins and Spanier, and Woodall.

The primary distinction in the cake-division literature that
has been made over the past half century is between
algorithmic procedures (like those of Banach and Knaster,
Conway, Selfridge, Guy, Fink, and Woodall discussed in section
2) and existence proofs (like those of Neyman, Steinhaus,
Urbanik, Dubins and Spanier, and Stromgquist, also discussed in
section 2). Typically, algorithms provide divisions that are fair,
whereas existence proofs provide divisions with the stronger
property of envy-freeness. "Moving knife" solutions - some of
which are described in section 2 - seem to lie somewhere
between the two, being on the one hand quite constructive, at
least as long as one sticks with a framework quite true to the
cake metaphor but, on the other hand, not really the kind of
finite, discrete process one associates with the term algorithm.

In what follows we provide a finite and discrete algorithm
for obtaining an envy-free partition of a cake among n players.
The lack of such an algorithm for n > 3 has been explicitly
mentioned by Gamow and Stern (1958}, Gardner (1978),
Rebman (1979), Woodall (1980), Austin (1982), Woodall (1986),
Bennett et al. (1987), Webb (1992), Hill (1991, 1992), and
Olivastro (1992a). More precisely, we prove the following:

THEOREM. Suppose Cis a set and My, ..., My are finitely
additive measures defined on some common algebra A of
subsets of C so that p;(C) = 1 for every i and so that TP is
satisfied. Then there exists a finite algorithm for producing an
ordered partition X1, ... ,Xn, of C that is envy-free.
Moreover, if we have available triples (X, Mi(Xjj), 1;(X;;)) so
that if u; = u;, then w;(X;;) = p;(X;;), then there exists a finite
algorithm for producing an ordered partition Xq,...,X, of C
that is strongly envy-free.



The rest of the paper is organized as follows. In section 2
we present a brief history of the mathematical problem of fair
division organized around five main themes: fairness, strong
fairness, envy-freeness, Pareto-optimality, and entitlements.

In section 3 we present an infinite constructive procedure
for obtaining an envy-free division of a cake. This serves as an
easy warm-up for the results in the next three sections.
However, it also does more than this. The infinite scheme can
be truncated to give a rather simple finite algorithm for
obtaining a division that is "within €" of being envy-free. For
real-world applications, of course, this is often enough. We will
say more about such applications elsewhere.

In section 4 we present the finite algorithm for obtaining
an envy-free division of a cake.

In section 5, we show how the algorithm from section 4
can be cast as a game with "rules” and "methods” of the kind
mentioned in Steinhaus (1948, p. 102). The importance of this
game-theoretic framework is that one can then see that each
player has a strategy that will, in the words of Austin (1962, p.
212), "ensure justice for an honest person even when there is
dishonest collusion by the other people.”

Section 6 contains the generalization of Woodall's strongly
fair algorithm to the context of strongly envy-free divisions.
Section 7 contains an entitlement result in the context of no
envy. In section 8 we show how the methods of the present
paper can be adapted to the situation where one wants a small
piece of cake rather than a large piece. Gardner (1978)
discussed this in the context of dividing up "chores.” Finally,
section 9 offers a framework for relating present results to a
number of open questions.



We owe thanks to many people. Our interest in fair
division was sparked by Olivastro (1992a). Valuable
mathematical contributions were made by Fred Galvin and
William Zwicker, and will be pointed out at the appropriate
places. Specific observations by Sergiu Hart, Douglas Woodall,
and William Webb also proved helpful. In addition, we have
benefitted from conversations and correspondence with the
following people: Ethan Akins, Julius Barbanel, Morton Davis,
Karl Dunz, David Gale, Martin Gardner, Theodore Hill, D. Marc
Kilgour, Jerzy Legut, Herve Moulin, Barry O'Neill, Philip
Reynolds, Williammn Thomson, Hal Varian, and Charles Wilson.

2. SOME HISTORY OF THE PROBLEM

In this section we identify five themes in the
mathematical history of fair division that are relevant to the
considerations of the present paper. For each of these five
themes, we will briefly trace the sequence of results that
unfolded over the past half century.

Theme 1. Fairness

Within this theme we are concerned only with the basic
issue of obtaining an ordered partition Ay, ..., A, so that
Hi(A;) 2 1/n for i = 1, ..., n. The first result here, of course,
is the "one cuts and the other chooses” algorithm for n = 2. Its
origin is apparently unknown. The modern era of cake cutting
began with Steinhaus' observation "during the war" (Steinhaus,
1948, P. 102) that the cut-and-choose scheme easily extends to
n = 3. This is discussed in Knaster (1946). The following
description of Steinhaus' procedure is based on the presentation
in Kuhn (1967).

Let us call a piece of cake acceptable to a player if that
player thinks the piece is of size at least 1/3. One player (say



A) divides the cake into 3 pieces that he considers acceptable.
If either of the other two players (say, B) thinks that two or
more of the pieces are acceptable, then we let player C take
any one of the three pieces he considers acceptable. Player B
then has available at least one of the pieces he considered to be
acceptable, and of course player A considers the remaining
piece to be acceptable.

On the other hand, if player B thinks at most one piece is
acceptable, and player C thinks at most one piece is acceptable,
then there is a single piece that players B and C agree i1s not
acceptable. But now we can give this piece to player A and let
players B and C redivide what remains according to cut-and-
choose. This yields a division that each player finds acceptable.

Having found this solution for n = 3, Steinhaus asked
whether a procedure could be found for n > 3. This was
answered by Banach and Knaster and reported in Steinhaus
(1949, pp. 315-316), and again in Steinhaus (1948, p. 102) as
follows:

The partners being ranged A, B, C, . .., N, A cuts from the
cake an arbitrary part. B has now the right, but is not
obliged, to diminish the slice cut off. Whatever he does, C has
the right (without obligation) to diminish still the already
diminished (or not diminished) slice, and so on up to N. The
rule obliges the “last diminisher” to take as his part the slice
he was the last to touch. This partner thus disposed of, the
remaining n-1 persons start the same game with the remainder
of the cake. After the number of participants has been reduced
to two, they apply the classical rule for halving the remainder.

A more well-known version of the Banach-Knaster solution
is the "moving-knife" scheme, which is apparently due to
Dubins and Spanier (1961, p. 2). They present it as follows:



A knife is slowly moved at constant speed parallel to itself over
the top of the cake. At each instant the knife is poised so that it
could cut a unique slice of the cake. As time goes by the potential
slice increases monotonically from nothing until it becomes the
whole cake. The first person to indicate satisfaction with the
slice then determined by the position of the knife receives that
slice and is eliminated from further distribution of the cake. (If
two or more participants simultaneously indicate satisfaction
with the slice, it is given to any one of them.) The process is
repeated with the other n-1 participants and with what remains
of the cake.

They also point out that it is an easy matter to verify
that if each of the players adheres to the strategy of calling
"cut” any time such an action would yield him a piece of size
1/n, then "independently of the strategies of the other
participants, even allowing for coalitions and duplicity, it is
assured that . . . [each] possesses a strategy which ultimately
yields him at least 1/nth of the original cake according to his
own evaluation” (Dubins and Spanier, 1961, p. 2).

Two other algorithms were presented in the 1960s, one by
Fink (1964) and one by Kuhn (1967). The one by Fink, in
particular, led to later results of some importance (Even and
Paz, 1984; Woodall, 1986). Hill (1991, p. 4) describes Fink's
algorithm as follows.

In Fink's algorithm, the first person bisects the cake C according
to his own measure. The second person arriving chooses between
the two pieces cut by the first player, and if a third person
arrives then each of these first two players trisects his own
portion, and the third person selects one portion from each. The
algorithm continues in this manner (e.g.,, quadrisection at the
next stage) until no new arrivals appear and the algorithm

terminates.



Theme 2. Strong Fairness

One of the most influential works on fair division is Dubins
and Spanier (1961), and one of the most oft-quoted results
from that paper concerns the question of whether everyone
can get more than his fair share. Dubins and Spanier give an
existence proof that, except in the obviously prohibitive case
where all the measures are the same, there exists an ordered
partition A4, ..., A, of C such that p;(A;) > 1/n for each i. We
will call such an ordered partition gtrongly fair (although
"superfair” is used by Hill, 1991 and, in a different sense, by
Baumal, 1985). However, this result had already been
discovered and rediscovered. Thus, for example, Steinhaus
(1948, pp. 102-103) reports:

It may be stated incidentally that if there are two (or more)
partners with different estimations, there exists a division giving
to everybody more than his due part (Knaster); this fact
disproves the common opinion that differences in estimations

make fair division difficult.

Moreover, Urbanik (1955) first provided a proof of the strong
fair-division result, but in the more narrow context of
measures that are absolutely continuous with respect to
Lebesgue measure. (Dubins and Spanier assume only countable
additivity of the measures.) What exactly Knaster assumed
can not be gleaned from Steinhaus (1948).

The next contribution to strong fair division seems to be
the observation of Rebman (1979) that one can, in fact,
algorithmically get a strongly fair division if one postulates
there to be no {proper) slice of the cake on which any two
people agree. This assumption, however, is highly restrictive
and leaves open the question of whether one can
algorithmically get a strongly fair division assuming only that
two of the measures are distinct. After showing the existence



of such a strongly fair division, Rebman (1979, p. 33) wistfully
remarks that it provides "no clue as to how to accomplish such
a wonderful partition.”

This problem was solved by Woodall (1986) in the following
sense. Assuming there is a set X to which two players, say A
and B, assign different measures o« > p, Woodall provides a
finite algorithm, based on that of Fink (1964), which produces a
strongly fair division of the cake.

Finally, more recent investigations have been concerned
with the problem of obtaining quantified versions of strongly
fair divisions. For example, Elton, Hill, and Kertz (1986) showed
(via an existence proof) that one can always get a division in
which p(A;) 2 1/(n - M + 1), where M is the total mass of Vp;.
Hill (1987) obtained a similar result using Ap;. The Elton-Hill-

Kertz result was strengthened by Legut (1988).
Theme 3. Envy-Freeness

The earliest existence proofs for envy-free division go back
to the 1940's. The first appears to be Neyman's (1946) proof
that if one has n measures HUy, ..., Uy, then for every k there
exists a partition Aq, ..., Ax so that ;(Aj) = 1/k for every i
and j. The fact that his result allows k = n yields a solution to
Fisher's (1938) "problem of the Nile,” which is discussed in
Dubins and Spanier (1961). Steinhaus, himself, announced in
his 1949 paper that, using methods similar to Stone and Tukey
(1942), it is possible to prove the following: if ;> 0 for every i
and 2oy = 1, then there exists a partition Ay, ..., A, of the
cake so that y;(Ay) = o for every i and .

Existence proofs for both these results can be found in
Dubins and Spanier (1961). An additional existence result of
some significance is the one obtained independently by
Stromaquist (1980) and Woodall (1980). In the case where the

10



cake is an interval on the real line, they showed the existence
of a partition that is both envy-free and connected. The
results of Weller (1985) and Berliant, Dunz, and Thomson
(1992) are also relevant here, but they will be discussed under
theme 4.

The first algorithmic results for envy-free division all
appeared around 1980 and worked only for the case n = 3.
Selfridge, Conway, and Guy have schemes attributed to them
by Gardner (1978), Woodall (1980), Stromgquist (1980), and
Austin (1982), but the problem seems to have first been posed
in Gamow and Stern (1958, pp. 117-119). Austin (1982, p. 214)
describes the scheme he attributes to Conway (and others) as
follows:

Person 1 cuts the cake into 3 pieces.

Person 2 cuts a bit off at most 1 of the 3 pieces.

Person 3 takes one of the 3 pieces.

Person 2 takes one of the 2 remaining pieces but he must not
leave the piece he cut a bit off, if in fact he did cut a bit off.
Person 1 takes the remaining piece.

If person 2 did not cut any off then the procedure is finished.
Suppose person 2 did cut a bit off.

The one of persons 2 and 3 who did not get the cut piece above,
takes the bit cut off and divides it into 3 pieces.

The other of persons 2 and 3 takes one of the three pieces.
Person 1 takes one of the 2 remaining pieces.

The person who divided the bit into 3 takes the remaining piece.

The strategy for each person is as follows. Person 1 divides
the cake into 3 equal pieces. Person 2 cuts the largest piece so as
to make it equal to the larger of the other 2 pieces (he may not
actually have to make a cut if there is the appropriate eguality
already). The divider of the bit cuts that bit into 3 equal pieces.
The reader is left to show that the strategy works. He should let
himself be persons 1, 2, 3 in turn and show that in each case he

11



can ensure the reguired .aim for himself, whatever the other 2

persons get up to.

Woodall (1980) presents the same scheme and attributes it to
Selfridge.

Stromaquist (1980, p. 641) has a moving-knife version of an
envy-free algorithm for n = 3. He describes it as follows.

A referee moves a sword from left to right over the cake,
hypothetically dividing it into a small left piece and a large right
piece. Each player holds a knife over what he considers to be the
midpoint of the right piece. As the referee moves his sword, the
players continually adjust their knives, always keeping them
parallel to the sword. When any player shouts "cut,” the cake is
cut by the sword and by whichever of the players’ knives
happens to be in the middle of the three,

The player who shouted “"cut” receives the left piece. He
must be satisfied, because he knew what all three pieces would
be when he said the word. Then the player whose knife ended
nearest to the sword, if he didn't shout "cut,” takes the center
piece. The player whose knife was farthest from the sword, if
he didn't shout "cut,” takes the right piece. The player whose
knife was used to cut the cake, if he hasn't already taken the left
piece, will be satisfied with whichever piece is left over. If ties
must be broken - either because two or three players shout
simultaneously or because two or three knives coincide - they

may be broken arbitrarily.

Notice that the correct strategy is not to call "cut” when
you think the referee's knife is at the one-third point, but only
when you will be non-envious by the resulting distribution.
This point has caused confusion and required clarification at
different times (Stromgquist, 1981; Austin and Stromgquist,
1983; Olivastro, 1992a, 1992b).

12



Finally, there is another procedure for producing an envy-
free division among three people. It is due to Levmore and
Cook (1982) and seems to have been largely overlooked. It is
essentially a moving knife algorithm (although they describe it
as a process with "infinitely small shavings”). It can be
described as follows:

Player 1 divides the cake into three pieces P, Q, R that he
considers equal. Each of the other two players selects the
pieces he considers largest. If they choose different pieces, we
are done. Otherwise, we can assume they both choose P. Now
player 1 starts a moving knife as in the Banach-Knaster
scheme, but at the same time he places a second knife
perpendicular to the first and over the portion of the cake that
the first knife has already swept over. Notice that if the
knives were to make a cut from such a positioning, the cake
would be cut into three pieces, exactly two of which would
involve both knives. Let S denote the leftmost of these two and
let T denote the rightmost. The second knife is moved back and
forth in such a manner that player 1 thinks Q U S is the same
size as R U T. In Figure 1 below, the pieces are drawn from
player 2's point of view.

Figure 1

13



When the process begins, both S and T are the empty set,
so player 2 and player 3 both think P-(SUT) is larger than both
QUS and RUT. Now let either player 2 or player 3 yell when
the first of these four inequalities reverses. Without loss of
generality, assume that player 2 is the one to yell and that it
is because he now thinks P-{SUT) is no longer larger than RUT.
At this point we can obtain an envy-free division by giving to
player 2 the piece RUT, player 3 the piece P-(SUT), and player
1 the piece QUS.

Levmore and Cook (1981, p. 53) also assert that:

"The most interesting aspect of shaving is that it does the trick
for three and four people. In fact, it looks useful for any
number of claimants, subject to the “"objection” that we might
need infinitely small shavings until we can declare with
confidence that people are equally happy (indifferent, in

economics) with any two or more packages.

There description for n = 4 is phrased in terms of four
daughters dividing up land. It goes as follows.

The four daughters are A, B, C, and D. Have A divide the land
into four plots such that she would be happy with any of them.
Call the plots 1, 2, 3, and 4. The other three daughters indicate
their preferences. Needless to say we are stuck with somewhat
similar tastes for the purpose of this problem. Perhaps B and C
settle into plot 1 and D chooses 2. Now A must shave from 1 into
2, 3, and 4. (We might have had the shaving done into 3 and 4,
figuring that we can leave well enough alone in plot 2. However,
as we increase 3 and 4 we can count on D's increasing jealousy
and her reentry, soc we take this into account at the outset.) A
continues the shaving until B or C moves into a new plot.
Whenever two daughters are in the same plot (or three in the
same plot), as when B moves into 2 in competition with D, A

14



turns her attention to that plot and shaves from it into all the

others (from 2 into 1, 3, and 4).

This, however, does not seermm to work. For example,
suppose that daughter C thinks that plot 1 has measure one
and that daughter D thinks plot 2 has measure one. Assume
daughter B thinks plots 1 and 2 have measures 5/8 and 3/8
respectively. Suppose that on the first trimming, daughter A
chooses subsets X, Y, and Z of plot 1 that A, C, and D think are
of measure zero and transfers these to plots 2, 3, and 4.
Assume daughter B thinks X has measure 1/4 and Y and Z
have measure zero. The result is that daughter B will jump to
plot 2. Now daughter A still thinks all four plots are the same
size, daughter C still thinks plot 1 has measure one, and
daughter D still thinks plot 2 has measure one. Daughter B
now thinks plots 2 and 1 have measures 5/8 and 3/8
respectively. Thus, the situation is exactly as when we started
(except that the roles of plots 1 and 2 have been reversed).
Thus, the Levmore-Cook scheme (at least as described above)
could have daughter B jumping back and forth between plot 1
and plot 2 with no sense of convergence except the transfer of
sets of reasure zero from plots 1 and 2 to plots 3 and 4.
Whether or not a moving knife version of this procedure can
be made to work remains to be seen. At any rate, the
Levmore-Cook ideas deserve more attention than they have
received.

Theme 4. Pareto-Optimality

Given measures {1, ..., Hp, an ordered partition Aq, ...,
A, is said to be Pareto optimal if there is no other ordered
partition By, ..., B, such that ;(B;) 2 u;(A;) for every i with
strict inequality holding for at least one i. Economists consider
Pareto optimality to be of considerable importance, as pointed
out in Berliant-Dunz-Thomson (1992).

15



The first result having implications for the question of
Pareto optimality seems to be Urbanik's 1955 existence proof of
a partition that maximizes (among all partitions) the fraction
of the cake that the person who fares the worst will get. That
is, it maximizes min{(;(Ag): i=1, . . . n) over all partitions
(Legut, 1988). This immediately implies the division is fair,
since the existence of a fair division shows this minimum must
be at least 1/n. Moreover, it is Pareto optimal in the context of
measures that are absolutely continuous with respect to each
other. (If you could make one person slightly better off
without making anyone else worse off, you could transfer a bit
of that person’'s gain to whomever fared the worst.) Dubins
and Spanier (1961) also obtained partitions that are fair and
Pareto-optimal.

The existence of partitions that are envy-free and Pareto-
optimal was first established by Weller (1985) in the context of
measures that are countably additive. A similar result,
yielding a stronger notion of no envy but requiring absolute
continuity of the measures involved, was found by Berliant,
Dunz and Thomson (1992). As far as we know, there are no
algorithmic results concerning Pareto optimality in the context
of either fair or envy-free divisions.

Theme 5. Entitlements

In many real-world situations, one seeks a mutually
satisfactory distribution in which some people - by law,
mutual agreement, or otherwise ~ are entitled to more of a
good than others. This immediately suggests a version of fair
division where one starts with a sequence oy, ..., a of
positive reals (or rationals) whose sum is 1, and then seeks an
ordered partition A3, ..., A, so that ui{A;) 2 «;. Dubins and
Spanier (1961) point out that that Neyman's (1946) result
immediately gives such a division in the case where each «; is
rational.

16



However, the earliest explicit reference to an entitlement
version of fair division again goes back to Steinhaus (1948, p.
103). Referring to the Banach-Knaster scheme, he says: “The
procedure described above applies also, under slight
modifications, to the case of different (but rational) ideal
shares.” Steinhaus (1948, p. 103) actually states his envy-free
existence theorem in the context of entitlements. Legut (1985)
goes a step further and shows that if we have an jnfinite
sequence <o ;> of positive reals whose sum is one, then there
exists an (infinite) ordered partition <X;> so that u;(X;) = «; for
all 1. A final paper of interest in this context is that of
McAvaney, Robertson, and Webb (1992), in which an
entitlement question is nicely settled in the context of what
they call Ramsey partitions.

We have restricted ourselves to the above five themes
because they are the ones most relevant to the considerations
of the present paper. Nevertheless, there are at least two
others that should not go unmentioned.

The first concerns the minimum number of cuts required
for fair and envy-free divisions. Once again, Steinhaus (1948,
p. 103) first raised the issue: “Interesting mathematical
problems arise if we are to determine the minimal number of
‘cuts’ necessary for fair division.” The two most direct
responses to Steinhaus' question seem to be the O(nlogn)-cut
versions of Fink's algorithm found by Even and Paz (1984) and
Webb (1991). Robertson and Webb (1992) also consider the
problem of approximating fair division with a limited number
of cuts,

The second theme concerns partitioning a piece of land.

Early work here included Hill's (1983) existence proof of a
suitable partition in this context. Beck (1987) provided a
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moving-knife solution for the same problem, and Webb (1950)
provided a finite algorithm.

3. THE INFINITE ALGORITHM

In the proofs that follow, one may think of the players
actually going through a step-by-step process of dividing a cake
among themselves. Thus, if we use a phrase like, "player i
thinks Xj is at least as large as any Xj for j = i,” it may be
interpreted as: "For all j = i, ui(X;) 2 pi(X;).” Whenever we use
the phrase "piece of cake,” we shall mean a set X in the
commeon algebra A. Finally, a collection Xy, ... ,X, of pairwise
disjoint pieces of cake will be called an gnvy-{free partition if
each player thinks his piece (X; always goes to player i) is at
least as large as everyone else's. (The union of the Xj's after
any finite number of steps in the procedure described next will
typically not be all of C.)

Our starting point is the following:

LEMMA 3.1. Suppose P is a piece of cake. Then there
exists a pairwise disjoint partition X1, ...,X,, L of P into n+1
pieces so that:

(1) X4,....,X,is an envy-free partition; and
(ii) Player n thinks the size of the "leftover” piece L is at
most (2771-1)/27"1 that of P.

PROOF. Player n begins the process by dividing P into
on-1 pieces that he considers equal and among which,
therefore, he is therefore indifferent. Players n-1, n-2, ..., 2
now go in order (n-1 next, then n-2, etc.), with player k
proceeding as follows. Given the collection of 2n~1 pieces (now
perhaps altered, as discussed next), he first arranges them
according to size, with ties grouped together, and then
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identifies the 2k-1%t piece in the list, counting from largest to
smallest. He then trims all the strictly larger pieces down to

the size of this 2k-1%t piece; the trimmings are set aside. The
result, minus the trimmings, is a collection of size at least 2k~
1 that he considers tied for largest. Player k now passes this
collection of 2n~1 pieces on to player k-1. This continues until
there is only one player remaining (i.e., player 1).

Once 2ll the trimming by players n-1, ..., 2 is done, the
players proceed in the order 1, 2, ..., n to choose one of the
(perhaps trimmed) pieces. Player 1, who gets to make the first
choice, obviously will not envy any other piece. Notice that for
k = 2, ..., n, player k will have, among the 2k-1 or more
pieces he considers tied for largest, at least one that has
neither been trimmed nor chosen because

1+2+4+ .. +2k2 o gk-1_4 ( ok-1
Let X; be the piece chosen by player i and let
L=P-(X1U- " -UX),).

Notice that player i thinks X; is large as any X since
player i is choosing one of the pieces he considered tied for
largest, while everyone else is choosing - from his point of view
- a piece that was the same or smaller (possibly because it was
later trimmed). This shows that (i) holds. For (ii), simply
notice that p,(X,) = puu(P)/(27"1) and L ¢ P-X,,. This completes
the proof of Lemma 3.1.

A variant of the above process allows one to begin with
fewer than the 2n-1 pieces used in the above proof. For
example, if one demands that a player take a piece he actually
trimmed if one is available, then the number of pieces that
player n must cut initially is 22 + 1. This essentially halves
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the number of initial pieces and could be significant in
applications that will be described in subsequent work.

For future reference, it is worth noting that if player n-1
picks a piece he trimmed, then it is possible to ensure that
player n thinks the (untrimmed) piece he receives is strictly
larger than the (trimmed) piece received by player n-1. This is
possible because player n-1 can trim a portion of piece p so
that each player who regards P as being of positive measure
also views the trimmed portion to be of positive measure.
Thus, suppose player i wants to trim a portion with p;-
“measure p from P. Then he can simply partition P into enough
equal-size subpieces (according to his measure) so that he
thinks each subpiece is of size at most p/n. Each player j, with
Hj(P) > 0, can now choose and delete one of the subpieces that
he (player j) thinks is of positive measure. Because a set of size
at most p has been deleted from P, we get a trimming with the
desired property. -

The next lemma simply says that if we iterate the scheme
from Lemma 3.1, we arrive at an envy-free partition of part
of the cake, with a leftover piece L that player n thinks is
arbitrarily small.

LEMMA 3.2. Suppose P is a piece of cake and £ > 0. Then
there exists a pairwise disjoint partition Xy, ...,X,, L of P into
n+1l pieces so that:

(i) Xi1,...,Xnis an envy free-partition; and
(ii) Player n thinks the size of the "leftover" piece L is less
than €.

PROOF. Let X334,..., X{n, L1 be the partition of P
guaranteed to exist by Lemma 3.1, and let p = (2P~1-1)/2n"1
Now, apply Lemma 3.1 again, but with L4 playing the role of P.
This yields a partition X21,..., X2, Lo of Ly that is envy-free

20



and has the property that p,(Ly) < pup(Ly) = p2up,(P).
Continue this until k is large enough so that fsk < g, and let X; =
X1i U " UXg;. (That is, collect together player i's pieces from
each step in the iteration.) Let L = Lg. Since each player is
non-envious at each stage of the iteration, he is non-envious
when the pieces are collected together. Moreover,

(L) = u (Lg) < pRu,(P) s pk e,

This completes the proof of Lemma 3.2

If we now iterate the previous lemma n times (with the
kth application being applied to the piece leftover after the k-
1st application), and give each player a chance to play the role
of player n for exactly one of the iterations, then we
immediately obtain the following:

THEOREM 3.3. Suppose P is a piece of cake and ¢ > 0.
Then there exists a pairwise disjoint partition Xq, ..., X, L of
P into n+1 pieces so that:

(i} X4,...,X,is an envy-free partition; and
(ii) everyone thinks the size of the leftover piece L is less
than €.

4. THE FINITE ALGORITHM

In this section we show how the infinite procedure can be
made finite. The basic idea is the following. Recall that the
infinite procedure began with player n's dividing the cake into
on-1 pieces that he considered to be the same size; then player
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n-1 (and the others) trim some of the pieces, if necessary, to
create ties among the ones each considers to be largest.

Now suppose that we can arrange the division so that
player n-1 definitely trims some piece and definitely chooses
one of the pieces he has trimmed. Then player n will think
that his piece is strictly larger (say by ¢) than the piece
received by player n-1. Theorem 3.3 can now be applied to
extend this division to an envy-free partition of all of the cake,
except for a leftover piece L that everyone thinks is of size less
than €. But then player n will be perfectly content to have the
leftover piece L given to player n-1. Of course, others might
object, so we have to proceed a little more carefully than this.
Nevertheless, this is roughly the plan of attack.

The proof itself requires the following four lemmas. Our
original proof of Lemma 4.3 below was based on an idea
suggested to us by William Zwicker (1992). The version of that
proof given below is somewhat simpler and is due to Fred
Galvin (1992). The proofs of the other lemmas have also

benefitted from a reworking of our original proof by Galvin
(1992).

LEMMA 4.1. Letk = 2"°2 and let P be a piece of cake.

Suppose we have disjoint subsets Yq, ..., Yx, 24, ..., 2K of P
such that wu(Yy) > Wp(Zg) and pu-9(Y;) s pu(Zy) for alli, j =
1, ...k. Then there exists a pairwise disjoint partition X1s o0 vy

Xn, L of P into n+l pieces so that:

(i} X4,..., X, is an envy-free partition; and
(i) Hp(Xp) > wp(Xp-q).

PROOF. First, player n trims the sets Yy, ..., Y, to the
size of the smallest one, and player n-1 does the same with 21,
..., Zkx. Players n-2, n-3, ..., 2 now go in order (n-2 next,
then n-3, etc.) and trim the sets down exactly as in the proof
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of Lemma 3.1. The selection then begins with player 1, as in
the proof of Lemma 3.1 again, except that player n-1 now
takes an untouched piece from (Zy, ..., Zx) and player n takes
an untouched piece from {Yy1, ..., Yy}

LEMMA 4.2. Let k = 2"~2, and let P be a piece of cake.

Suppose we have disjoint subsets Yy, ..., Yk, 21, ..., 2k of P
such that Wa(Y;)) > ua(Z)) and u,-q(Y) s pp(Zy) for alli, j =
1, ... k. Then there exists a pairwise disjoint partition X¢, ...,

Xn, L of P into n+1 pieces so that:

(i) X4,...,Xp,is an envy-free partition; and

PROOF. Use Lemma 4.1 and then use Theorem 3.3 with
£=un(Xn) - un(xn—I)

LEMMA 4.3. Suppose k is a positive integer, and assume
we have sets A and B so that up(A) > pp(B) and p,-1(A) =
Hn-1(B). Then we can find disjoint sets Yy, ..., Yk, Z¢, ...,
Zy C AUB such that up(Y;) > up(Zj) and wy-1(Y;) < up(Z;) for
alli, j=1,...k.

PROOF. We can assume A and B are disjoint. Let m be a
positive integer such that

(1) pu(A) > (1 + k2/mduy(B).
Let player n-1 divide each of A and B into m+k equal pieces,
which we index so that uy{Aq) 2 ... 2 Up(Ap+k) and uu(By) 2
e e . 2 un(Bm+k). Let {21, . e ey Zk] = (Bm...i, . e ey Bm+k}. Notice
that:

(2) up(A) s mup(Agsq) + kua(Aq); and
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(3) Hp(B) 2 mpu(By,).
Substituting (2) and (3) into (1), we see that
(4) mup(Ags1) + kitn(Ag) > mup(B) + k2ua(By,).

Thus, either Wp(Ak+1) > Hp(Bm), in which case we let {Yyg, ...,
Yy} = (Aq, ..., A}, or else uu(Ag) > kup(Bp,), in which case we
let player n divide Ay into k equal pieces and call these Yy, ...
Yk,

LEMMA 4.4, Suppose P is a piece of cake, and assume we
have sets AB ¢ P so that p,(A) > pa(B) while p,-1(A) =
Hn-1(B). Then there exists a pairwise disjoint partition X1, ...,
Xn, L of P into n+1 pieces so that:

(i) X4,..., X, is an envy-free partition; and
i) Mp(Xp) > Mp(Xpog U L)

PROOF. Use Lemma 4.3 with k = 27"2 and then use
Lemma 4.2.

THEOREM 4.5. Suppose C is a set and uy, ..., Uy are
finitely additive measures defined on some common algebra A
of subsets of C so that 1;{(C} = 1 for every i and so that TP is

satisfied. Then there exists a finite algorithm for producing an
ordered partition Xi,...,X,; of C thatis envy-free.

PROOF. Player 1 splits C into n! sets he considers to be the
same size. Let A be the collection of players who agree these
sets are the same size, and let D be the collection of players
who disagree. If D = &, we are done, since player 1 can simply
give nl/n pieces to each of the other players. Otherwise, choose
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i € Dand j € A and apply Lemma 4.4 to get a partition Xy, .
, Xpn, L so that Xq, ..., Xy is envy-free and u;(X;) 2 p;(X; U L).
In this case we say that "player i has an jrrevocable advantage

over player J}."

We now turn to the “crumb” L and repeat the procedure,
again with player 1 splitting L into n! sets that he considers to
be the same size. Let A and D be as before. If there is some i €
D and j € A so that player i does not yet have an irrevocable
advantage over player j, then we apply Lemma 4.4 as above.
Since there are only finitely many pairs i, j, we eventually
reach a point where there are no such pairsi, j. We can now
give n!/|A| pieces to each player in A. This preserves envy-
freeness as far as everyone in A is concerned, and it cannot
make anyone in D envious, because each player in D already
had an advantage (in his view)} over everyone in A that
exceeded the size of the crumb being distributed. This
completes the proof.

Fred Galvin (1992) William Webb (1992b) and Douglas
Woodall (1992) have pointed out to us that one can complete
the proof using partitions into n pieces instead of the n! we
used. Galvin (1992) describes the procedure as follows:

Suppose we've reached a state (X1, ..., X, L) where X; has

been allocated to Player i and L is the unallocated portion; we
assume that (X} 2 4(X;) for all i and j. Construct a digraph on

{1, . . ., n} by drawing an arc from j to i if Player i "envies”
Player j, meaning that u(X;) < pj(X; U L). Let € be the set of nodes
(i.e. players) accessible from 1, and let m = ¥#(E). Let Player 1
divide L into m equal pieces. If all the players in E agree that the
m pieces are equal, we finish the job by giving one of them to
each player in E, since no player outside £ envies anybody in E.
Otherwise, we have two players i, j € E such that j agrees with

the division, i disagrees, and i envies j. In this case we use
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[Lemma 4.4 with i and j replacing n and n-1] to allocate part of L
so that i no longer envies j, and our digraph loses an arc. The

procedure can't go on forever, since we will run out of arcs.

5. GAME-THEORETIC CONSIDERATIONS

A game entails the notion of free and independent choices
by players who are constrained by rules that define legal play,
but whose specific choices at every stage are not prescribed. A
variety of solution concepts in game theory, including that of
Nash equilibrium and the core, have been applied to cake-
cutting by Legut (1986, 1987, 1988, 1990).

Our interest in a game-theoretic treatment of cake-cutting
is inspired by Steinhaus (1948, 1969), Austin (1962), Kuhn
(1967), and the above-cited work of Legut. Indeed, cake-
cutting algorithms naturally correspond to, and are often
explicitly described as, n-person non-cooperative games in
which each player has a strategy that will guarantee him -
regardless of what the other players collectively or individually
know or do - an outcome that is satisfactory in some
prescribed sense (e.g., ensures a piece of cake that is of size at
least 1/n, or a piece that is at least as large as that of anyone
else).

Such a guarantee does not rule out the possibility that a
player could do even better by (unilaterally) abandoning this
strategy in favor of another, and so we are not talking about a
Nash equilibrium (Nash, 1951). On the other hand, even if
“satisfaction” means only “fair,” any such strategy will be what
is called a maximin strategy: it maximizes the minimum one
can get in the worse possible case. That is, it guarantees a
player a piece of size 1/n, even when all n measures are the
same and the game is therefore zero-sum.
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In this section we indicate how the arguments in section 4
can be put in a game-theoretic framework. Specifically, we
show that each player has a strategy, based on knowledge of
his measure alone, that will guarantee him a piece of cake that
he considers to be as large as that received by anyone else -
even if the others know his measure and conspire to deny him
this level of satisfaction. The presentation of such a game-
theoretic result requires:

(i) a specification of the rules of the game; and
(ii) a description of the strategies with the desired properties.

The rules we propose require that players at various times
make a verbal statement (although the rules cannot compel a
player to tell the truth). The reader uncomfortable with this
framework should realize that such verbal announcements can
be avoided by letting a large fraction of moves be partitions
that serve no purpose except to convey, via the number of sets
in the partitions, such information using any standard coding
of the English language (with names for all integers) as positive
integers.

In fact, the proof of Theorem 4.5 can readily be translated
into a game-theoretic form, given that players can make
declarations as to whether they want to be considered to be in
class A (agreement) or class D (disagreement) and that we
have rules that label players as having an irrevocable
advantage over some other players at certain times. What
requires some elaboration is the subgame corresponding to the
lermmas leading up to this. For example, in the proof of Lemma
4.3, we have player n-1 dividing a set into a number of equal
pieces based on player n's measure of a set. In the game-
theoretic framework, we cannot assume that one player knows
another's measure. Issues such as this arise and are dealt with
in the
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Irrevocable Advantage Subgame

Suppose player 1 and player 2 have at their disposal disjoint
sets A and B so that player 1 has declared A to be larger than

B while player 2 has declared them to be the same size. Let k
= 2n72,

Move 1. Player 1 announces an integer m.

Strategy: Player 1 chooses m so that pi(A) > (1 + k2/m)
H1(B).

Move 2. Player 2 divides each of A and B into m + k pieces.

Strategy: He makes all the pieces the same size.

Move 3. Player 1 orders the pieces as Ay, ..., Am+k and By,

., Bm+k and sets {Zy, ..., Zk} = (Bm41, - - - » Bma+k). He then

either sets (Y3, ..., YK} = {(Ay, ..., Ak}, or he divides Ag into k
pieces and calls these Yy, ..., Yk

Strategy: He orders the pieces so that M(Ag) 2 ... 2

W(Apa+x), and B(By) 2 ... 2 u(Bpyk). If ni(Ags1) > H1(Bm),

he then sets (Yyq; ..., Yk) = {A1, ..., Ak}, Otherwise, he

makes the pieces he is dividing A4 into all the same size.

The proof of Lemma 4.3 shows that the result of this
subgame is a collection of disjoint sets Yq, ..., Yk, 21, ..., Zk
so that if player 1 has followed the aforementioned strategy,
then py(Y;) > ui(ZJ) for all i and j, and if player 2 has followed
the aforementioned strategy, then pa(Y;) s u2(Z;) for all i and

J-
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The next sequence of moves in the subgame corresponds In
the obvious way to the trimming and choosing procedure
described in Lemma 4.1 (and based on the infinite scheme from
section 3). The rules will require player n-1 to take one of the
pieces he trimmed. We leave it to the reader to convince
himself that the obvious strategies are impervious to any
hostile efforts of the others.

There is, however, an issue to be dealt with in going from
the conclusion of Lemmma 4.1 [that is, 11(X1) > n1(X2)] to the
conclusion of Lemma 4.2 {that pq(X1) > p1(X2 U L)]. The first
move here is the declaration by player 1 of a number p. The
correct strategy is for him to choose p large enough that if the
players iterate the trimming and choosing scheme p times,
then he (at least) will think the size of the leftover piece is less
than u1(X4) - n1(X2).

Notice that we cannot dispense with the declaration of p in
favor of simply letting player 1 say "stop” (strategically at the
point when he thinks the leftover piece L is sufficiently small),
because player 1 might keep the game going forever in an
effort to deprive the other players of their due. (Recall that we
are looking for strategies that protect one player from another
even in the event that the other player is willing to inflict
harm upon himself for the sake of harming the first.) The
reader should also note that the convention about trimming
presented in section 3 can be handled easily in a game-
theoretic context.

6. STRONGLY ENVY-FREE DIVISIONS

Recall that a division of the cake among n people is said to
be strongly fair if each player thinks he received strictly more
than 1/ntP of the cake; it is said to be strongly envy-free if it is
envy-free and, whenever two people have different measures,
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each thinks he received strictly more than the other. Our goal
in this section is to generalize Woodall's 1986 strongly fair
division result by proving the following.

THEOREM 6.1. Suppose Cis a set and {4, ..., Uy are

finitely additive measures defined on sorme common algebra A
of subsets of C, so that p;(C) = 1 for every i and so that TP is

satisfied. Suppose we also have available triples
(Xijr ui(Xu), uJ(XU))

so that if pj = pj, then ui()(ij) = Hi(X;;). Then there exists a
finite algorithm for producing an ordered partition Xi,...,X,
of C that is strongly envy-free.

PROOF. Our starting point in the proof is the following
observation of Woodall (1986): Given a set X;j as postulated to
exist, one can algorithmically find disjoint sets A,B C Xj; so
that w;(A) > u;(B) while pj(A) < uy(B). It is now easy to see that
Theorem 6.1 would be a trivial consequence of the basic envy-
free algorithm (Theorem 4.5) if the sets X;; postulated to exist
were pairwise disjoint. That is, if the sets X;; were pairwise
disjoint, we could apply Lemma 4.4 to each one and obtain a
partition X1, ..., X, L of X;;s0 that Xy, ..., X, is envy-free
and wi(X;) > Bi(X; U L). We could then partition the rest of the
cake (including the leftover pieces L in each X;j) in an envy-
free way by Theorem 4.5 to arrive at the desired strongly
envy-free division.

We begin with some terminology. Suppose that X is a piece
of cake and 1 < i,j £ n. Then we shall say that X is £-good for
(i.i) iff there exist A,B € X such that:

(i) ANB-= g,
(i) wi(A) = py(B) > 0.
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(iii) pj(A) + & = pyB).

Thus, X is €-good for (i,j) iff there exist A,B C X so that player i
thinks A and B are the same size, but player J thinks B is ¢
larger than A.

We shall say that X is good for (i.i) iff X is €-good for (i,j)

for some € > 0.

Finally, we shall say that X jis very good for (j.i) iff, for

every positive integer k, there exist pairwise disjoint sets
Yer oo YR 24 - .., 2 € X

such that player i thinks all 2k sets are the same size, but
player j thinks all the Ys are larger than all the Zs. Notice
that, in this case, each set Z, U Y is good for (i, j).

Trivial modifications in the proof of Lemma 4.3 suffice to
establish the following.

LEMMA 6.2. If X is good for (i,j), then X is very good for
(i,J).

The next three lemmas produce the pairwise disjoint
collection of sets referred to above and thus suffice to complete
the proof.

LEMMA 6.3. If X is very good for (i,j) and p > 0, then
there exists a set Y C X so that Y is good for (i,j) and pg(Y) < p

for everys=1,...,n.
PROOF. Suppose X is very good for (i,j), and suppose p > 0

is given. We want to produce a set Y € X such that Y is good
for (i,j) and p (Y) <pfors=1,...,n. Suppose Yi1,..., Yk,
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21, ..., Zk are the sets guaranteed to exist by the fact that X
is very good for (i,j), and assume k > 1/p. Choose r so that if Xy
= Y, U Z,, then p3(X3) < p. Then Xj is good for (i,j) since
player i thinks Y, and Z, are the same size and player j does

not.

Since X4 is good for (i,j), Lemma 6.2 guarantees that Xj is,
in fact, very good for (i,j). Thus, we can repeat the above
construction to arrive at a set X € X1 so that X2 is good for
(i,j) and po(X2) < p. Continuing this for s = 3, ..., n yields the
desired set X,,.

LEMMA 6.4. If X is good for (i,j), then there exists a ¥ > 0
such that for every T € X, if u;(T) < ¥ and H; (T) < v, then X-T

is also good for (i,j).

PROOF. We want to show that if X is good for (i,j), then X
remains good for (i,j} when a set that both consider sufficiently
small is deleted. So suppose that X is e-good for (i,j), and let A
and B be witnesses to this fact. Choose p so large that

1;(B)/(p-1) < ¢,
and let Y be given by
¥ = min{e - u;(B)/(p-1), u(B)/p).

Now suppose that T € X and uy(T), u;(T) < y. Let A"= A-T and
letB'=B-T.

The basic idea behind the rest of the proof is as follows.
Player j still thinks B’ is larger than A" However, if most (or
all) of T came out of A, then p layer i may now also think that
B’ is larger than A'. We want to show that there exists a set S
C B’ such that '
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(i) Player i thinks S is as large as T; and

(i) Player j thinks S is small enough so that when it is
deleted from B', the result is still larger than A.

Let player i partition B into p many pieces of size Ki(B)/p
so that a single one of these pieces contains the set T N B. This
is possible since |;(T) ¢ ¥ < W(B)/p. Consider the p-1 pieces that
do not contain T N B. Choose one of these - call it S - so that

wi(S) < uJ(B)/(p-l).
Let B" = B' - S.

We first claim that u;(B”) > pj(A’). To see this, notice that
because

w;(T) < ¥ = e-p;(B)/(p-1),
we have
i;(T) + p(B)/(p-1) < €,
and so
1 (B") > uy(A) 2 py(AY).

On the other hand, we claim that player i thinks A’ is at
least as large as B". To see this, notice that

Hi(AY) = Hi(A-T)
2 ui(A) - 1uy(T)

2 (A - ¥
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1;(A) - ui(B)/p

v

1i(B) - n(B)/p

ui(B").

Thus, player i can now trim A’ to a set A" that he
considers to be the same size as B". Of course, player j thinks
B" is strictly larger than A”. Thus A" and B" show that X-T is
good for (i,j).

LEMMA 6.5. There exists a collection {S(i,j): 1 < i,j s n} of
pairwise disjoint sets such that if p; = y;, then S(i,j) is very

good for (i,J).
PROOF. We want to produce a collection
(SGi,j): 1 s i,j < n}

of pairwise disjoint sets such that if y; = W, then S(i,j) is good
for (i,J).

Enumerate n x n as <py, ... pk>. We shall construct a
sequence <Xjp ..., Xg> of sets and a sequence of positive
numbers <Yy, ..., Yk> so that

(i) If py = (i,)) and W; = Hj, then X, - T is good for (i,4)

whenever nu (T) < Y, foreverys=1,...,n, and
(i) ms(Xy) < minl{yg/k, ..., ¥p-t/k} foralls=1,...,nand
r=2,...,k

We start with X3 = C and note that (i) is satisfied by
Lemma 6.4. Suppose that we have X3 , ..., Xp-1 and ¥1, ...,
Yp-1 for some r with 2 < r < k. Suppose py = (i,j). If Kj = Ky,
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then we take X, = & and y, = 1. If and y; = W; Let p =
min(Yy/k, . . ., ¥pr-1/k}. Since H; = WU, C is good for (i,j).
Lemma 6.3 now guarantees there exists a set X, so that X, is
good for (i,j) and pg(X,) < p for everys=1,...,n, Lemma 6.4
now provides a ¥, so that X, - T is good for (i,j) whenever
ne(T) < ¥, for every s = 1, ..., n. This completes the

construction.

Now, to get the collection (S(i,j): 1 = i,j < n}, suppose (i,§) =
py. Let S(i,j) = Xy - (Xp41 U ... U Xg). Because the sets are
clearly pairwise disjoint, it suffices to show that if y; = Hj,
then S(i,j) is good for (i,j). Let T = X, 4,1 U ... U Xk and let s ¢

{1, ..., n). Then
Hel(T) € Mg(Xpat) + .- -+ Ha(Xi) < K(Yp/K) = Yy

Thus, it follows from (i) above that S(i,j) is good for (i,j) as
desired.

7. ENTITLEMENTS

Recall that there is a natural generalization of fair division
based on the idea of entitlements. That is, if ry, ..., rnare
rational numbers which sum to 1, we can ask if a cake can be
partitioned so that each person thinks he received at least the
corresponding fraction of the cake. Dubins and Spanier (1961)
point out that this entitlement version of fair division easily
follows from the special case where ry = 1/n for each i. That is,

if we get a common denominator q so that r; = pi/q, then we
can simply let player i be replaced in any scheme for the
special case with p; copies of himself.

Of course, the same can be done in the envy-free context,
and it leads to a rather pleasing answer to the following non-
obvious question: Suppose we fix positive rationals summing to
1 as above, and suppose everyone agrees that these rationals
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represent the fractions of cake to which the corresponding
individuals are entitled. What would it then mean to say that
a partition is envy-free? One answer that immediately
suggests itself is to demand that everyone agree that the piece
given to player i has measure exactly rj. This, however, is
easily seen to be sufficient, but it is not necessary. For
example, when r; = 1/n for each i, we can surely have
partitions that one wants to call envy-free, but are such that
some players think others (not themselves) received much less
than 1/n'P of the cake.

The answer suggested by the idea of splitting a player into
several copies of himself is the following: Given a sequence
p1/4q, . . ., Pn/q of positive rationals summing to 1, and
represented so that all have a common denominator, we will
say that a partition Xj, ..., X, is envy-free if for each i there
is a partition of X; into p; pairwise disjoint subpieces so that no
player would desire to trade any one of his subpieces for a
subpiece of any other person.

Thus if p; = 2, this definition says that player i thinks that
each of the two subpieces he received is at least as good as each
of the other subpieces - whatever their number - that all the
other players received; in our opinion, this notion captures the
intuitive idea of envy-freeness in the context of entitlements.
The correspondingly stronger version of our envy-free
algorithm (Theorem 4.5) now follows as did its analogue for
Dubins and Spanier (1961).

Woodall (1992) has pointed out to us that one can also
handle entitlements ry, ..., r, in the envy-free context by
demanding that p;(X;) 2 (ry/rju(Xj). This has the advantage
of applying to irrational rijs as well as to rational ones, but it
has the disadvantage of being so tied to the real numbers that
it does not work in the context of preference relations over
subsets.
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8. CHORES

Gardner (1978) suggests the following variant of the fair
division problem. Suppose one is dividing up chores to be done.
(Economists speak of distributing “bads” instead of “goods.”) One
would then like to obtain a division so that each player is
satisfied that the fraction allocated to him is sufficiently small.
"Sufficiently small” might mean “at most 1/n" or it might
mean “no larger than anyone else’'s share.” Our interest, of
course, is in the latter notion.

It turns out that the same ideas that led to the finite
envy-free division algorithm in section 4 can be used here, but
there are some slight complications. The obvious approach is to
simply replace "trimming” with "adding on." The problem is
the following: where do players get the extra cake to add on,
and how to we guarantee that each has a large enough supply
at his disposal? One way of handling this is illustrated in the
following variant of Lemma 3.1:

THEOREM 8.1. Suppose P is a piece of cake. Then there
exists a pairwise disjoint partition X1, ...,Xpn, L of P into n+l

pieces so that:

(1) p(X;) s wi(X;) for every i and j; and
(ii) Player n thinks the size of the leftover piece L is at
most € times the size of P for some € < 1.

PROOF. Consider the sequence <ajp, a3, ..., a> where
az = 1,
ag = ag +... +ak_1+2k'1for3sksn.
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For k = 2, ..., n-1, we give player k a total of ay colored
tags (with different players getting different colored tags). The
process begins with player n dividing the cake into a, pieces
that he considers equal. Player n-1 now places one of his tags
on each of the a,_1 pieces that he considers largest, and passes
the collection of a,, pieces {many of which are now tagged) to
player n-2. Player n-2 now selects from the aj, pieces the ap-2
pieces he considers largest, and places one of his tags on each of
these, removing tags left by player n-1 if necessary. This
continues for player n-3, ..., player 2. Notice that for k = n-
1, ..., 2, player k still has his tags on at least ok-1 pieces.
These tagged pieces will constitute the surplus for the "adding-
on” that will replace the "trimming” of Lemma 3.1.

With the tags in place, we return to player n-1 for the
adding-on process. Notice that of player n’s original ap pieces,
we can choose a subcollection of size 2h-1 with no tags. We use
this collection to start the process. Player n-1 now takes this
collection of 2P~1 pieces and identifies the 2n-2 smallest pieces.
The largest of these is smaller than each of the on-2 pieces that
still have one of player n-1's tags. Hence, player n-1 can use
his tagged pieces to bring all on-2 pieces in this collection up to
the size of the largest. This creates a collection of at least gn-2
pieces tied for smallest in player n-1's view. The process
continues with player n-2, . .., player n-1 each taking his
turn. Notice that when player k identifies the 2k-1 smallest
pieces in the altered collection he is handed, the largest piece in
this subcollection is still no larger than all the tagged pieces he
has at his disposal. Hence, player k can add-on to create a
collection of at least 281 that he considers tied for smallest.

At this point, the choosing takes place with player 1 going
first, then player 2, and so on up to player n. At each stage,
the player choosing has available one of the pieces he
considered tied for smallest. Notice that player n thinks the size

38



of the leftover piece is at most {a,-1)/a, the size of P. This

proves the lemma.

We leave it to the reader to check that the remaining
arguments in sections 3 and 4 go through to yield:

COROLLARY 8.2. Suppose Cis a set and {4y, ..., Hp are
finitely additive measures defined on some common algebra A
of subsets of C so that p;(C) = 1 for every i and so that TP is
satisfied. Then there exists a finite algorithm for producing an
ordered partition Xji,...,Xnp of C so that p(X;) = p(X;) for
every i and ).

The problem of building up a reserve of cake to be used in
the adding on process can be handled in ways other than what
we did in Theorem 8.1 above. For example, William Webb
(1992) has pointed out to us that a recent result due to Jack
Robertson and himself can be used to facilitate this part of the
proof. Sergiu Hart (1992), on the other hand, noticed that the
basic envy-free algorithm itself can be used to provide such
stockpiles of cake for the adding-on process. And for the case
n = 3, Oskui (1992) gives three algorithms, including two of the
moving-knife variety.

9. A FRAMEWORK FOR QUESTIONS

The variety of theorems that have appeared over the
past half century in the context of fair division suggests that it
might be of some use to a have a framework that would both
serve to display the known results and their relationships to
each other and to suggest new questions based on these results.
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Our attempt at such a framework involves twelve issues and
three choices for each issue, all displayed in the following chart.
The idea is that a typical theorem should correspond to a
sequence of length twelve. For example, Theorem 4.5
corresponds to the sequence <la, 2c, 3a, 4c, 5b, 6a, 7b, 8a, 9b,
10c, 11c, 12c>. Notice that a's are better than b's, and b's are
better than c’s.

Thus, one way of asking if a theorem can be improved is
to ask if any ¢ can be replaced by b or any b by an a (leaving
everything else the same). Notice, for example, that Theorem
45 is not sharp in this sense since the results of section 6 show
that 5b can be replaced by ba.

MATHEMATICAL FRAMEWORK

la. Heterogeneous 1b. Homogeneous 1c. Discrete

2a. Ordinal Prefs 2b. Utility Function  2c. Additive Measure
3a. Finitely Additive 3b. Countably Add.  3c¢. Abs. Continuity
4a. No Assumptions 4b. Splittable 4c. Trimmable

DIVISION METHOD

Sa. Unilateral Game Sb. Algorithm Sc. Existence Proof
6a. No Information  6b. Information u=v 6¢. Witnesses forpu=v

7a. Finite Bounded 7b. Finite Unbounded 7c. Infinite Process
8a. Works for all n 8b. Works only if n=3 8c. Works only if n= 2

SATISFACTION CRITERION

9a ui(Aj) = 1/n 9b. Envy-free (EF) 9c. Fair: yj(Ai)21/n
10a All Measure 1  10b. Strongly F/EF 10c. Weakly F/EF
11a. Parallel Slices 11b. Connected Sets 11c. Disconnected
12a. Maximize Sum 12b. Pareto Optimal 12c. Not Optimal
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Some of the cryptic terms in the chart require
explanation. In line 1, for example, the distinction between the
heterogeneous context and the homogeneous context is the
major point separating virtually all results in the economics
literature from those in the mathematics literature on fair
division. Basically, the homogeneous context corresponds to the
metaphor in which the cake is made up of, say, three layers of
ice cream: chocolate, strawberry, and vanilla. Differences in
perceived value are due to different preferences for the three
flavors. In this context, an envy free allocation is trivial to
achieve since one can simply divide each layer evenly among
the n people. This is the sense in which “homogeneous” lies
between “"discrete” and "heterogeneous.”

In line 2 of the chart, the “additive measure” context is
the one in which mathematicians have primarily worked.
Economists, however, assume that preferences in the real
world are often not additive and thus tend to work either with
utility functions (measures which satisfy a monotonicity
property in place of additivity) or ordinal preference relations
(preorders on some collection of subsets of the cake).

Line 3 really only applies in the measure theoretic
context and asks if one is assuming only finite additivity,
countable additivity, or some kind of absolute continuity either
with respect to Lebesgue measure or among the measures
themselves. Line 4 identifies two relevant properties measures
might have. Call a measure trimmeable if it satisfies the
condition TP used in the main theorems of this paper, and call
it splittable if every piece can be split into an arbitrary finite
number of equal size pieces.

The distinction made in line 5 is the one illustrated in
sections 4 and 6. Unilateral game refers to the existence of a
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strategy for each player that will guarantee him a fair or
envy-free share regardless of what the others collectively

know or do, whereas an algorithm specifies what all the
players must do.

The distinction in line 6 is the one illustrated in sections 4
and 5, in which the stronger conclusion obtained in section 6
required "witnesses” (i.e. sets upon which measures disagreed).

Line 7 raises a question suggested independently by
Douglas Woodall (1992) and Fred Galvin (1992). The algorithm
in section 4 is finite but unbounded. That is, the required
number of steps depends on the measures as opposed to just
depending on the number of people. (Some of the algorithms
for n=3 are finite and bounded.) Woodall and Galvin both asked
if there exists a bounded algorithm for producing an envy-free
division of a cake.

Line 8 needs no explanation. In line 9, the condition
"ii(Aj) = 1/n" could be replaced by the notion of group envy-
freeness used in Berliant-Dunz-Thomson (1992). The distinction
between strongly F/EF (fair/envy-free) and weakly F/EF made
in line 10 is, for example, the question of whether one gets a
piece strictly larger than that received by anyone else (as in
section 6) or simply at least as large (as in section 4). Again,
lines 11 should be clear. Finally, in line 12, the sum we are
talking about maximizing is n1(X1) + -+ up(Xy).

Of particular interest would be results saying that certain
combinations are impossible. We plan to say more on this
elsewhere, as well as discuss various applications of the
‘different procedures to real-life situations.
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