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SHARES OF WORLD OUTPUT, ECONOMIES OF SCALE, AND REGIONS FILLED
WITH EQUILIBRIA

Ralph E. Gomory™ and William J. Baumol™

I. Imtroduction

Ricardian models of international trade traditionally employ production functions that
exhibit decreasing returns to scale. This paper will use a Ricardian model with scale economies
and substantial startup costs. Their inherent non-convexity makes these models technically
difficult to analyze. Models of the same type as ours have already been the basis of an important,
revealing, and varied literature. The progress in Gomory [1994] now enables us to analyze an
important class of problems in a new way. Our model has much in common with the earlier
literature, but it reveals important features that are different from and complementary to the
earlier work, yielding significant consequences for the theory of international trade and for its
policy implications.!

It will be shown that in models with increasing returns or, more generally, with high start
up costs for an industry new to a country there are always vast numbers of locally stable
equilibria arranged not haphazardly but rather in dense groupings or regions of equilibrium points
whose surprisingly simple shape has significant implications for theory and policy. Regions of
equilibria were introduced in Gomory [1991,1994], where their characteristic shape was first

described and some of the economic consequences of that shape were first described. However,
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in those papers the characteristic shape, on which so much of the economic and policy
conclusions depends, was an observation based largely on numerous model simulations. Here we
provide for the first time a rigorous derivation for that shape, and examine its implications much
further.

The study of equilibrium regions reveals that, in contrast with the classical cases of
diminishing or constant returns to scale: (1) A country will do better for itself by taking more
than its "natural” share of world markets; (2) It will usually damage its trading partner by so
doing; (3) It is possible for a country to take too large a share of world markets and damage
itself as well as others. (4) In contrast to the classical case, a country can gain at the expense of
others by acquiring some of their industries.

Gains from trade for both countries remain a dominant feature of the model. Yet, if one
country, either through historical accident or through an aggressive and successful policy of
industry promotion, should succeed in obtaining something close to the share of markets that
maximizes its own utility, it will certainly obtain a very high level of prosperity and very large
gains from trade. But it is likely by so doing to deprive its trading partner of most, and
sometimes all of the gains from trade. In fact, groups of equilibria that are worse than autarky
for one of the countries will be present in any reasonably large model. Such equilibria represent
outcomes where one of the countries has only a small share of world markets. The key role of
market share in all these conclusions shows the significant possibility of direct conflict in the
interests of trading partners with all the policy implications that entails.

The results we obtain here, together with the important characteristics of scale economies

equilibria already well known in the literature? -- the tendency toward specialization and multiple
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equilibria, many Pareto dominated by others -- depict a world very different from the Ricardian
world with its unique and mutually beneficial trading equilibrium. The world we describe is one
with an enormous range of possible outcomes differing widely in the benefits they offer. This.
suggests that a policy of extreme laissez-faire, which recommends itself in a Ricardian world,
at least requires reexamination in the presence of scale economies.

The discussion in this paper is expressed, because of its familiarity, in terms of the
traditional concept of scale economies In fact, our main results hold for any industry of a type
we have elsewhere called retainable (Gomory and Baumol [1992b]). A retainable industry is one
that, because of high startup costs, can be held on to by a country despite lower wage costs in
other countries. The industry can be retained because its success requires a large amount and
variety of non-tradable support services, or because knowledge gained by experience in the
operation of such an industry offers the country a strong competitive edge, or because other sorts
of substantial sunk costs must be incurred in order for the industry to be replicated in another
country. Because of this, a retainable industry will generally not be contestable. Retainable

industries may well produce a very considerable share of the world's traded goods.

II. The Basic Diagram and The Equilibrium Region.

We plot equilibria as points in a diagram whose horizontal axis measures income share
and whose vertical axis measures utility. The horizontal axis measures Z,=Y,/(Y,+Y,) where
Y; is any measure of national income in Country 1. Z, is the share of the total income of the two
countries that accrues to Country 1. Country 2's share, Z,=1-Z,, is measured by the distance

from Z,to 1. As one moves rightward from Z,=0 toward Z,=1, Z, increases, Z, decreases and
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Country 1 acquires an ever-larger share of the world's income. The vertical axes indicate the
utility® offered to each country by an equilibrium. The utility U, of Country 1 is plotted on the
right vertical axis and the utility U, of Country 2 is plotted on the left vertical axis. Each each
equilibrium is represented by two points S,=(Z, ,U,) which show the utility of the equilibrium
for Country 1, and S,=(Z,,U,)which show the utility of the same utility point for Country 2.
Both points lie on the same vertical line which represents the partition of world income at that
equilibrium (Figure 1).

The equilibria for each country lie between two curves that are the upper and lower
boundaries of the equilibrium region for that country. As the number of goods increases the
equilibrium points tend to "fill up” these regions. In Figure 2 we show the regions for a model
with 13 traded goods. For Country 1 we show the S; points and the boundary curves B; and
BL, . For Country 2 the S, points (not shown) would lie between the curves B, and BL, . The
horizontal bars labelled AUT, and AUT, represent the utility that each country achieves when
in a state of autarky. The vertical bar marked Z. marks the "Classical Level" of relative income
which we will describe in Section VI.

In Figure 2 we have plotted only the perfectly specialized equilibria, that is, the equilibria
in which no commodity is produced at the same time by more than one country. Later we will
in fact see (Theorem 9.6) that the specialized equilibria determine the shape of the region of
equilibria to a very considerable extent even for non-specialized equilibria.

Before proceeding with a more detailed analysis we will summarize the main features

of that shape and their economic consequences.
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III. Properties of the Regional Boundaries and their Economic Implications

Country 1's upper utility frontier is described by three properties which we will establish
rigorously in Sections VII and VIII, and which are critical for the economic interpretation of the
model: The three properties are: (P1) Country 1's upper boundary rises steadily from a height
of zero as Country 1's world income share Z, increases from 0. (P2) Somewhere to the right
of the Classical Level, Z., the boundary peaks and then turns and descends. Then, as Z,
approaches 1, the height of the boundary approaches U',, the utility level achieved by Country
1 when it is in a state of autarky. (P3) At all points between Z. and Z,=1 the boundary lies
above U!,.

The lower boundary also rises to the left of Z. (P1) and then peaks and descends to the
autarky level as Z, approaches 1 (P2), so that both curves come together at Z,=0 and at Z,=1.
Both curves are convex except for some barely discernable wobbles, and therefore, except for
the wobbles, each is hill shaped, with a single peak. The equilibrium region has roughly the
shape of a crescent, as shown in Figure 2. All these properties hold for Country 2 with Z,=1-Z,
replacing Z,.

Economic Implications: P1 indicates that there is always a range of values of Z,, around
Z., over which Country 1's upper utility frontier is rising, while Country 2's is falling. This
means, roughly, that in this range Country 1 can gain utility as its share Z, is rising, but it does
so only at Country 2's expense. P2 indicates that this gain for Country 1 with increasing share
will continue until it reaches the utility peak. This is the type of conflict in the interests of the
trading countries, mentioned in Conclusions 1 and 2 of the introduction, that has no counterpart

in a world of diminishing returns. Near Z,=1 both countries’ frontiers slope down. This means
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that close to Z,=1, where one country is much richer than the other, further increase in share
of wealth by the wealthier country is harmful to both countries (Conclusion 3 of the
introduction), thus providing the opportunity for mutually beneficial change. Finally, since both
boundaries of Country 1's region start at zero utility at Z, =0, there is inevitably a section of the
region that lies below Country 1's autarky level. The equilibria in this part of the region will give
results worse than autarky for Country 1.

We now describe the formal model that permits rigorous proofs of these conclusions.

IV. Equilibria in the Formal Model*

We start the rigorous development of the ideas of region, boundary, and regional shape
with a discussion of equilibria.

We will assume that each country has a single wage w; and a well defined utility. The
utility is of Cobb-Douglas form, U;=my; d;; with y; ;, the quantity of good i consumed in Country
Jand Xd;;=1. As is well known, the demand-determined expenditure for the ith good in Country
j is independent of price and equals d;;Y; for each of the n goods.

The production functions f; ;(/; ;) in the single input, labor, are assumed to have economies
of scale in the sense of declining average costs, i.e., I;; > I’%; implies f;(1;)/];; >
f,{1/1%;. We also assume a zero derivative at the origin, meaning intuitively that some
minimum level of activity is required before any output can be produced. It is this important
startup cost assumption that stabilizes our many specialized equilibria.

The Equilibrium Conditions: We now introduce the key variables x which we will call the

"market share" variables, that we use to describe the various equilibria. x; ; is defined to be the
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fraction of world outlay on the ith good that is spent for ith goods made in Country j. In a
specialized equilibrium x;;=1 if Country j is the producing country; and x;;=0 if Country j is
the non producing country.

Definition: By a zero-profit equilibrium point we will, as usual, mean an assignment of

market shares between the two countries (that is, a set of non-negative x;;, x;, + x;,=1), a price
vector p;, a set of wage rates w;, and an allocation ;; of each country's labor supply L; among
the industries in which that country is a producer, in which (E1) the supply of each good from
each country equals the demand for it, (E2) each industry earns zero profit, (E3) the demand for
labor in each country equals L;, the total quantity of labor supplied.’
Theorem 4.1 (Specialized Equilibrium Existence). Any set of integer (i.e., 0,1) market share
variables x;; must yield an equilibrium. That is, any such perfectly specialized assignment of
market share (or, equivalently, of production) between countries will satisfy the three
requirements for an equilibrium at suitable prices, and wage rates. We except the two
assignments that give the entire world market for ail products to one of the two countries.

This means, perhaps somewhat surprisingly, that there always exist equilibria in which
a country is exclusive producer of only a few goods, say, 10 percent of the world's goods, and
others where it produces 50 or even 90 percent of the total.

Proof-Preliminaries: Since Country j's income is given by the sum of world expenditures

X;{(d; Y, +d;,Y;) for each of its products we have:

@0,@2 Y=Y x,@d Y+ d,Y) and Y=Y x.,@d. Y+ d,Y,

i2 2) !

It is a consequence of Walras' law that either (4.1) or (4.2) alone implies both®. If we put any
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market share values x;; into (4.1) or (4.2) we can find the corresponding national incomes by
solving the resulting simple linear equation in Y, and Y,. Since there is only one equation and
two unknowns Y, and Y,, (we have excluded the degenerate case by not allowing one country
to produce everything) there is not one solution, but rather a ray of solutions. If (Y,,Y,) is a
solution so is (kY,,kY,), which, as we will see below, changes the scale of wages and prices but
represents the same equilibrium point.

Proving (E2) - Zero Profit: Having determined an (Y,,Y,) from X;;, we next find wage
rates w; from wl,=Y,. Then we determine the labor quantities /; in each industry in each

country by equating the expenditure on good i from country j with the wage bill:

(4.3) wjl,'j = (dj,lyl +di,2YZ)xiJ"

These wage rates and labor quantities certainly fulfill the zero profit equilibrium requirement
(E2).

Proving (E3) - Zero Excess Demand for Labor: Next we show that the /; ; use up no more
and no less than the quantity of labor supplied in each country. Using (4.3) we substitute w;/;;

for (d,,Y,+d,,Y,) x;; in (4.1) and (4.2) and w, L, for Y; to obtain:

E,- wl, =wlL, E,- Wyl ,=w,L,.

On cancelling out the wage rates we have (E3).
Proving (E1) - Supply Demand Equality: Since the /;;, and Y;, are now determined, the
only possible prices that can equilibrate supply and demand for the ith industry in each country,

condition (El), are the two prices p;, and p;, determined from:
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pi,lf;,l(li.l) = (df,IYI +di,2Y2)xi,l and Pi,]f;,z(li,Z) = (di,llll +dt',2Y2 i2°

Since equilibrium requires a single world price p;, we will only have equilibrium if p,; = p;.,
i.e., if both countries produce goods at the same price. For integer x this condition is always met
because there is only one producer. For example if x;,=1 and x;,=0, then choosing p;=p;,
satisfies the first equation and with x;,=0, [,,=0, f;,(};,)=0 it also satisfies the second. So
condition (E1) holds and this establishes the theorem.

Normalization: If we had chosen (kY,,kY,) instead of (Y,,Y,) we would have had essentially

the same equilibrium point. We would have had a wage kw; and a price kp;, but the wage ratio
w,/w,, the ratios of prices to wages p;/w;, the labor quantities /;; and the quantities produced y;;
would all be the same. We will normalize by always choosing k=1/(Y,+Y,). This means that
we use relative national incomes (or share of world income) Z,=Y,/(Y,+Y,) and
Z,=Y,/(Y,+Y,).

Using Z=(Z,,Z,) in place of (Y,,Y,) in (4.1,2) gives.

@.4),4.5) Eixi,l(di,lzl+ d2)=Z, and E,-xi,i!(di,121+ d,,2)=2,.

(4.4) (or equivalently (4.5)) now determines, by the steps given above, for any market shares
X, first a unique relative national income or world income share Z(x) and then the uniquely
determined wage rates w;, labor quantities /;, and quantities produced f,;(/; ). For integer x we
also have a unique price p; for each good. With this normalization we have well determined

wages and prices at all the equilibria of Theorem 4.1.
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We can easily count these equilibria:

Theorem 4.2 Number of Specialized Equilibria. With two countries and n goods there are 2°-2
specialized equilibria.

Proof. By the specialized equilibrium Theorem 4.1, each and every specialized assignment of
outputs among countries yields an equilibrium. Because in each specialized assignment there are
two choices of producer country for each of the n goods, this yields 2" possible assignments.
Since we have excluded the two extreme cases in which no commodity production at all is
assigned to one or the other country, this yields 2°-2 equilibria, the vast number of equilibria
mentioned earlier.

Stability: The properties of the production functions f;; were not used in this proof of the
Specialized Equilibrium Theorem so the equilibrium existence result, surprisingly, holds for a
diseconomies model as well as for an economies one. However with scale diseconomies, any
perfectly specialized assignment will be extremely unstable unless the producing country is the
cheaper producer at all output levels. The reason is easy to see. For if, say, only Country 1
produces good i and Country 2 is the cheaper producer at some output level then, a fortiori,
Country 2 can enter successfully on a small scale because of the even lower costs this small size
entails.

In contrast, every specialized equilibrium will be stable locally in a world of substantial
startup costs or scale economies with f;;'(0)=0.7 From the assumption that the function has a
zero derivative at the origin, it follows that a non-producer of a commodity (quantity =zero), who
attempts its production, will always have, for sufficiently low levels of output, an arbitrarily large

average cost. Therefore the non-producer would have a higher average cost than the producer
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with a positive output of that good. Consequently, the former non-producer must earn a negative
profit at current prices if it undertakes sufficiently low quantities of production. On the
Marshallian dynamics premise, this will lead to a fall in output of i in that country. More
formally, we have:

Theorem 4.3 (Stability Theorem): Under scale economies with production functions f,;()
having f'(0)=0, perfectly specialized assignments will be locally stable equilibria in the
Marshallian sense.?

Of course, none of these equilibria will be stable globally since a suitable change in the
values of the variables will move the economy from one locally stable equilibrium to another.
Acquiring Industries: If one country acquires an industry from its trading partner it simply
moves from one locally stable equilibrium to another without any inherent need to lose any of
the industries it had before. There is no mechanism leading to an offsetting loss of some or all
of another industry as in the linear or diseconomies case. There is no requirement that the
assignment of industries to countries at any of these equilibria satisfy comparative advantage.’

This permits a country to gain by acquiring more industries.®

V. Obtaining the Regional Boundaries by Linear Programming:

We next determine the boundaries of the region in which all these equilibria lie by using
linear programming to find the largest and smallest possible values of the utility for each value
of Z,, To do this we need an explicit expression for utility.

Utility: Utility, of course, depends on the amounts consumed in the country. From Section IV,

given an equilibrium, X, the amount of the ith good produced is q;;(x,Z), where g; JX.Z) is
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defined by:

5.1 g, x2D=f() with Lw=d, Z+d,Z), and wlL=Z,.

Since x is an equilibrium point, there is a single world price p; for each good. Country 1, which
spends d;,Z,, on good i, will obtain a fraction F, ,(Z)=d; ,Z,/(d; ,Z, +d;,Z,) of world production

of that good. Therefore u,(x,Z), the natural log of its Cobb-Douglas utility is:

u,(x,2)=InU,(x,Z)= 2,- dny;,= Z,- di,llnFi,l(Z){qi,l(xi,l L)+ q:'.Z(xi,z’Z)}'

This expression is extremely complicated in its dependence on the x;;, even for fixed Z.
Fortunately we are able to simplify it in a way that decisively facilitates both theory and
calculation.

The Linearized Utility: For integer x only, and therefore for perfectly specialized equilibria,
the Cobb-Douglas utility always has the same values as the linearized utility Lu,(x,Z) which we

define by:

G.2) Lu,(x,Z)= E,- {xi,ldi.llnFi,l(Z)qi.l(l Z)* x:’,zdi,llnFi,l(Z)qi.Z(l !Zz)}'

This extremely useful result can be proved immediately by comparing the ith term in the sum for
w,(x,Z) with the ith term in Lu,(x,Z) for the perfect specialization values x;;=1, x;,=0, and
x;;=0, X;,=1. We call Lu, the linearized utility because for a fixed Z it is linear in x.

Linear Programs for the Upper and Lower Boundary Curves: We can now define two curves
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in the Z-U plane which will turn out to be the upper and lower boundaries of the region of
equilibria. We first define B,(Z), which will be the upper boundary for Country 1, by the

maximizing linear program using equation (4.4) as its constraint:

In B,(Z)=Max, Lu,(x,Z)

5.3
69 subject to Y Ad, Z,+d Zx,, = Z, and O<x, <1

and then define a lower boundary BL,(Z) by minimizing the same objective function:

These programs lead to:

Theorem 5.1 (The Boundaries): All specialized equilibria lie between the curves U= B(Z) and
U= BL,(Z).

Proof: Let x be any specialized equilibrium. From (4.4) we compute its income share Z(x)=2'.
This means that in the (Z,U) plane x lies on a vertical line running through Z’. For Z=7Z’, x
is a feasible solution to both the maximizing and minimizing variants of (5.3). Therefore its
linearized utility Lu(x,Z’) lies between InB,(Z') and InBL,(Z'). Since x is a specialized
equilibrium, utility u,(x,Z’) equals linearized utility Lu,(x,Z"), so BL{(Z') < Uy(x,Z")sB,(Z"),
and the equilibrium point corresponding to x lies between the two curves. (QED).

Properties of the Linear Programs; The linear program (5.3) is remarkably simple. It is a one
equation linear programs with upper bounds.!! We will exploit this simplicity both for actuai
numerical computation, and to provide a theory of the regional shape.™

Form of the Solution - at most one non-integer variable: Ina one equation linear program

with no upper bounds it is well known that there is always an optimizing solution with no more

than one non-zero variable. In a one equation linear program with upper bounds there is at most
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one variable that is both non-zero and not at its upper bound. Since our upper bounds are all 1's,
this means that the optimizing solution to (5.3) has at most one non-integer variable. All the
others are 0's or 1's.

Numerical Computation: Both B,(Z) and BL,(Z) can be computed by any standard linear
programming method for each fixed Z, value. The calculations that gave us the boundaries of
the various figures used a grid of Z, values extending from Z,=.05 to Z,=.95 at intervals of
.02. The complete boundary for a 27-industry model required about one minute of calculation
on a personal computer, and the required computations grow rather slowly with problem size.
We can contrast this ease of calculating the boundaries with the enormous difficulty of trying to
deal individually with, e.g., the more than 100,000,000 specialized equilibria in such a 27-good

model.

VI. The Classical Level

The Classical Assignment and the Classical Level are, roughly, our counterpart to the
unique Ricardian solution, and play a key role in the economic interpretation of the shape of the
equilibrium region.
Definition: The classical assignment is the assignment x°(Z) that allocates, at each Z, the market
for the ith good entirely to Country 1 if Country 1 is the larger potential producer of the ith
good, (q;,(1,Z)>q;,(1,Z)), otherwise it allocates the market entirely to Country 2.

Country 1 being the larger potential producer of good i means that the amount of the
ith good County 1 produces as sole producer is larger than the amount Country 2's would

produce as sole producer for that Z. Since with Cobb-Douglas utility the amount spent
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worldwide is the same no matter which country produces, it follows that Country 1 is also the
cheaper (lower average cost) producer.

For each Z the classical assignment produces a total excess demand E,(Z) defined by

(6.1) E (@)= Ei @, Z,+d,Z,)x €12y

E,(Z) is monotone decreasing as Z, increases This decrease has two sources. (1) If as Z,;
increases the classical assignment does not change, then, using Z,=1-Z,, the derivative dE,/dZ,
is d; ;-d; -1 which is negative. (2) If x© does change, the change is always that Country 1 loses
an industry from its assignment. This is because as Z, increases the Country 1 wage, w,=Z,/L,,
rises and by (5.1), with w, rising and (d; ,Z, +d,;,Z,) falling, /;, and g;, must fall. Similarly g;,
must rise. Thus as Z, increases Country 1 changes from being the larger potential producer to
being the smaller producer in industry after industry. We refer to these points of change (where
both countries are equally large potential producers) as switching points and we will make use
of them in Section VIII.

E,(Z) is clearly positive near Z,=0, where Country 1 is the larger potential producer of
everything, and negative near Z,=1. Therefore there is a unique transition value of Z, that
separates the Z, for which E,(Z) is positive from the Z, where E,(Z) is negative. We call this
transition value the Classical Level, Z.."

The Classical Level separates two rather different regimes. To the left of Z; Country 1
is a relatively low wage country and is the larger potential producer in more industries than
match its national income. To the right of Z. industries in which it is the larger producer are

insufficient to provide its high national income and high wage.
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The Classical Level and the Maximization Problem: We can now prove the theorem that

underlies the analysis of the regional shape. The theorem asserts that, to the left of Z, all
Country 1 industries that have positive market share in the maximizing solution x*(Z) to (5.3)
are ones in which Country 1 is the larger potential producer. Thus the maximizing solution
assigns Country 1 only industries in which it contributes more than would Country 2 to world
output. More precisely:

Theorem 6.1 (Maximization). If x* is the maximizing solution to (5.3), then for Z,<Z,
x*, >0 implies q; ;(1,Z)>q; ,(1,Z). Similarly, if Z, > Zc, then x*; , >0 implies q; ,(1,Z)2q; ,(1,2).
Proof: If we are below the Classical Level, in accord with (6.1), x“ does not satisfy the equation
in (5.3). There are more industries in which Country 1 is the larger producer than can appear
with x;; =1 in x*, Therefore, at least one of these industries, say the pth, has x*,; <1 in x*.
Now suppose x* gave positive market share to some industry, say the kth, in which Country 1
is not the larger producer. Then using a small parameter A we can form a new feasible market
share vector x’ that will increase Country 1 utility by decreasing x’, ; and increasing x',; as

follows:

1 /

! 1 / /
_—), X' ,=1-x
dp,lzl + dp,ZZZ p2

=x* “Mo-ou-—), x/ ,=1-x' x! =xx
k1 k1 ’ k2 L1 2l
d.Z,+d,.Z,

/

x Al

+A(

p-l

All other components of x’ are the same as those of x*. (1) Checking Feasibility: Clearly,
0<x', ;<1 and 0sx’,,<1 for sufficiently small A. We can also immediately verify by substituting
these expressions into the equation that x’ satisfies the equation in (5.3). (2) Checking Increased

Utility: The effect of increasing A from zero is to decrease x’,, and increase x',, thus
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increasing the coefficients of the larger output, q, ,, at the expense of the smaller output, g, ;, and
doing the same in the p® term of (5.2). This increases both the kth and pth termsof the
linearized utility function (5.2) Therefore x’' has larger linearized utility than x*. This
contradicts the hypothesis that x* is the maximizing solution and proves the first part of the
theorem. The proof of the second half is identical.

We will use this theorem in next two sections to provide for the first time rigorous proofs

of the three properties that characterize the critical hill-shape of the utility frontiers.

VII. Proof of Property P1-The Monotone Rise of the Upper Boundary Below Z.

To simplify the proof of P1 as much as possible we will assume symmetric demand, i.e.,
d;;=d;,. A proof for a much wider class of problems is available', but the concepts are the
same, while the complexity of the terms tends to obscure what is going on. This analysis will
also enable us, at the end of this section, to give an intuitive explanation of the hill shape of the
entire region.
The Zero Starting Point: Both the upper and lower boundaries start at (Z,,U,)=(0,0) since the
only way to satisfy (5.3) at Z,=0 is to have all x;,=0. To prove the monotonicity of the rise of
the upper boundary from there, we must show that the slope of the upper boundary is positive
to the left of Z..

The Siope of B,{(z): The slope of the boundary curve, B,(Z) defined in (5.3), will be positive if

the slope of b,(Z)=InB,(Z) is positive. Since b,(Z)=u,(x*(Z),Z) where x*(Z) is the x that solves
the maximizing problem for each Z, we differentiate this expression (see Appendix). The result

is that the derivative b, is the sum of three terms (b,'=T,+T,+T,;) each calculated in the
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Appendix. The three terms are:

ob, dF,, 1 ob, dus,,
hie i '8F,, dZ, Z, L= T = Ing,,(1,2)-1ng, ,(1,2)
(7.1)
o YL TR Yt hld;-.uz it
3 i 0g,; dZ, Sl 1) Z, Z,

Each term has a distinct economic meaning which will be explained below. We will also show
that the first term is positive everywhere, and that the second is positive to the left of the
classical level Z. and negative to the right of it, and that under relatively weak assumptions the
third term does not have a very large effect.

T,, The Consumption Share Term: This first term in the derivative shows the effect on utility
of the change in the Country 1 consumption shares F;, as Z, changes. Since the consumption
share F;,=d,,Z,/(d;,Z,+d;,Z,) of Country 1 increases with increasing Z,, T,, which is 1/Z,,
should be and is always positive.

T,. The Market Shares Term: This term results from the change in the x*;;, the share of

Country j in the world market for good i. For sufficiently small changes in Z only x*, , the non-
integer variable, will be changed in value, the other x*; will remain O or 1 as before."
Therefore as Z, rises, part of exactly one industry, the kth, shifts from Country 2 to Country 1.
Since from (7.1) T,=Inq, ;-Inq, ,, the effect of this shift will be positive if Country 1 is the larger
potential producer of the kth good (qy ; > g, »), and negative if Country 2 is. By Theorem 7.1, any
industry assigned to Country 1 by x*(Z) to the left of Z. is an industry in which Country 1 is
the larger producer. Therefore this term will be positive to the left of Z,. From the same

theorem, T, will be negative to the right of Z...
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T,. The Labor Shift Term: The two sums in term T, reflect (1) the loss in County 1's utility as
some of Country 1's labor moves from other Country 1 industries into the industry that is being
acquired, thus reducing the quantities produced in those other industries, and (2) the gain in
Country 1's utility as Country 2's labor is released from the industry being lost, and is shifted
into increased output of Country 2's remaining industries. This term can be either positive or
negative, as intuition suggests. We will, however, offer very plausible assumptions ensuring that
T, is close to zero.

Each term within the sums consists of two parts. The first part, f';,(; )], ;/f(l;), is the
ratio of marginal to average productivity in the ith industry when Country j is the sole producer
of the world's supply. With scale economies the marginal product of labor, the sole input,
exceeds average product, so these fractions all exceed unity. The second part of a term in T; is
x*; d;;/Z;. Since we have symmetric demands, Z,=23.(d;,Z,+d;,Z,))x* ;=3.d;; x*;so these
expressions add up to 1. Consequently, the x*;; d; /Z, are weights adding up to 1, and each sum

in T, produces a weighted average ratio of marginal to average productivity f; for each country.

(7.2) i l(ll 1) _ 2(l 2) i2 ,-!2 _
R e SR L raas

Both P, and B, are greater than or equal to unity because each is a weighted sum of ratios of
marginal over average products, each of which is greater than unity because of scale economies.
If, on average, scale economies are about equally strong in the two countries, these two averages

will approximately cancel out.'® This occurred in our many numerical examples. However, by
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restricting the B; we will have a more definitive theorem.
Adding the Three Terms: If we add up the three terms of the boundary's derivative we obtain:

blf(Z)=T1+T2+T3=Zi+lnqi‘1—lnq‘.,z+(—ﬁl+[32)Zzi+[32_31_

1 1

since Ing; ,-Ing;, >0 for Z<Z.. If we restrict B,-B; by |B,(Z)-B\(Z)| <1/Z,, meaning that, on
the average, scale economies in the two countries are not very dissimilar, this sum will be
positive to the left of Z., and the upper boundary will have positive slope. So we have derived
the following theorem:
Theorem 7.1 (Monotone Rise). If d;,=d;,, B,(Z,) will be monotone increasing for 0<Z, <7,
provided that B,(Z)-B,(Z), the difference in average ratio of marginal to average productivity of
the two countries' industries as sole suppliers always satisfies |B,(Z)-B,(Z)| <1/Z for Z<Z,.
Note that the bound 1/Z, is very large when Z, is near 0, and is always greater than 1/Z.
which in turn is always > 1. The reasoning that led to the Monotone Rise Theorem can easily
be shown to apply equally well to the lower boundary, so it too is monotone increasing below
Z..
Intuitive Explanation of the Regional Shape: The reasoning that led to the Monotone Rise
Theorem 7.1 also suggests an economic explanation of the characteristic hill shape of the entire
upper boundary.
Let us simply ignore the effect of the labor shift term, T, since it is likely to be small.

Then we have:
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(7.3) bI’(Z)=T1+T2=?l-+1nqk’1—1nqk’2_

1

As we remarked above, the share term T, indicates that as Country 1 produces a larger
and larger percent of the world's goods, it gets a larger and larger share of what is produced
both for Z, < Z and for Z,>7.. However the market shares term T, is positive for Z,<Z. and
then becomes negative to the right of Z.. Country 1's acquisition of industries increases their
output at first, when these are industries in which Country 1 is the larger potential producer
while, later, to the right of Z., Country 1's further acquisition of industries from the low wage
Country 2 results in a loss in production in the acquired industry. That loss is produced by the
excess of q,, over q,,, and as the wage in Country 2 sinks toward O this quantity becomes
unboundedly large so b,’ becomes negative. So, while at first Country 1 gets more and more
of a growing world output pie, and its utility rises sharply, it eventually gets more and more of
a rapidly shrinking pie, so that eventually its utility turns down.

This reasoning can be put in a more direct mathematical form. Recalling that

b,(Z)=InB,(Z), if we integrate (7.3) we get an expression for the boundary of the form:

o " (lnqk.l_]nqk,l)ﬂl _
B,(Z) =KIZIeJ =K.Z (Z).
Z, represents Country 1's output share, and Q(Z) (which can be regarded as a measure of output)

clearly increases with Z, up to Z. and then decreases. "
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VIII. The Upper Boundary to the Right of Z - Properties P3 and P2.

To prove that the boundary is above the autarky level to the right of Z. (Property P3),
we need two theorems about the circumstances in which trade in a commodity must increase its
consumption in a particular country. The first of these somewhat surprising theorems asserts that
if Country 1 is the sole producer of the ith good, for both countries, whether or not it is the
larger potential producer, then it always gets more of that good to consume domestically than the
amount, f;;(l; ), it would obtain in autarky. More precisely:

Theorem 8.1 (Producer's Trade Gains). The amount Country 1 receives as sole producer of
the ith good equals p; ,(/; )f; 1/, ,*) where p; ()= & )Y E 00D/ and pg( )21,

Remarks: (1) Note that p is the ratio of labor productivity at the labor quantity /;, to the labor

VR IO, 0 A P O 0 Y o

supply is greater than the amount used by Country 1 in autarky since / ,=(1/w)(d; ,Z, +d;,Z,)
=di,lL] + (w:lwl)diyzqudi-]Ll = i’la.
Proof: When Country 1 is the producer, the amount Country 1 retains for consumption is

F,; q.,(1,Z)=F, {,,(/;;). So:

d Z L) 1o
Fufu(lu)= 1 fa)= —f;l( 1)‘.]:11( "l)f s )
il Jih g

222 Uz‘l( atl)

since we have economies of scale and / ;>F, ,, the bracket, which is p, is >1, QED.
Note that the gains from trade in Theorem 8.1 are due to economies of scale above the autarky
labor quantities.

Next we find that where Country 1 is not the producer of good i it still gains from trade
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in good i provided Country 2 is the larger potential producer of i.
Theorem 8.2 (Non-Producer Trade Gains). The amount Country 1 receives as non-producer
of the ith good is p’;1(4,) fi1(5,® where p'; () ={f; ,(} ) )/F; 1 (4 D }pi (). If Country 2 is the
larger producer p’; (£ )=1.
Proof: Since Country 2 is the producer, an amount q; ,(1,Z) =1 ,(%; ,) = {f,,(5; )/ (£ 1(&; )} 1) is
produced. Country 1 obtains {f ,(f)/(f; (; )}Fifi(li;), which from Theorem 8.1 is
{f.2( /G DYes ) £ ,®). IE Country 2 is the larger producer, then f;,/f;, > 1, consequently
p'i1> P21 so County 1 obtains more than it would have obtained in autarky and also more than
it would have obtained if it were the producer of that good. QED.

We can now easily prove P3, the next important property of the upper boundary. Using
U,A for Country 1's utility in autarky, we assert:
Theorem 8.3 (Gains From Trade). B,(Z)>U,” for all Z,>Z_. That is, the upper boundary
is always above autarky to the right of Z..
Proof. By Theorem 6.1, to the right of Z., any positive x;, chosen by the algorithm will
represent a good for which Country 2 is the larger producer. So if x;, is positive, the Non-
Producer Trade Gains Theorem 8.2 applies to the ith term of the linearized utility (5.2) with a
p’i1 2 1, while if x;,=0, x;, is positive so the Producer Trade Gains Theorem 8.1 applies. In
either case, Country 1 consumes more of every good, i, and the ith term in the linearized utility
(5.2) is larger than it would be in autarky; so the total linearized utility must also exceed autarky
utility. Q.E.D.
The Lower Boundary to the Right of Z .: The lower boundary need not lie entirely above

autarky to the right of Z_but the last part of it always does. Recalling the definition of switching
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point from Section VI as a point where production quantity advantage shifts from Country 1 to
Country 2 we have:

Theorem 8.4: The lower boundary is always above autarky to the right of the last switching
point.

Proof: This can be shown by applying Theorems 8.1 and 8.2 to the terms of the lower
boundary's utility function. Theorem 8.2 applies to every term in which Country 2 is a producer,
because to the right of the last switching point Country 2 (by virtue of its low relative wage
w,o/w, =(Z,/Z,)(L,/L,)) has become the larger producer of everything. QED.

It is now easy to prove the third and last property of the shapes of the utility frontiers- -
their convergence to autarky as Z, approaches unity. (Property P2).
Theorem 8.5 (Autarky Neighborhood). Both the upper and lower utility boundaries of the
region of specialized equilibria slope down to Country 1's autarky value at Z,=1.
Proof: For Z,=1 the only possible solution to the equation in (5.3) clearly is x; ;=1 for all i. So
for Z, near 1 both the minimizing and maximizing x must be near x;,=1 for ali i . Since Z, is
near 1 and Z, is near 0, F,;=d,,Z,/(d; ,Z, +d;,Z,) is near 1. Also since w,l;; =(d,,Z,+dyZ,), ;;
is near d; L, so the quantity of the ith good produced is near f; ,(d; ; L,). Therefore, by (5.2) the
linearized utility for both the minimizing and maximizing x is near Xd;,In(d;,L,) which is
Country 1's utility in autarky. Since by Theorems 8.3 and 8.4 both the upper and lower
boundaries are above autarky near Z,=1, we must have a downward sloping region near Z,.
QED. So we have shown the last of our three major properties.

Near Z,=1 a rise in Z, reduces utility for both countries. While generally speaking Z.

separates a region which is rewarding (relative to autarky) for Country 1 from one which is
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generally rewarding for Country 2, it is possible to go too far to the right, i.e., Z,— 1 and wind
up in a region where increasing Country 1's share generally makes thing worse for both
countries.

IX. Equilibria in the Region.

Now that we have the regional boundaries, we can discuss the rather illuminating
connection between them and actual equilibria. The most fundamental relation is that the entire
region tends to fill with equilibria. We see this in Figure 2, our 13-good model, where the
equilibrium points nearly blacken the region.

Filling In: We offer a rough statement of a fill-in theorem and describe the idea of the proof.
Gomory [1994 ] provides a full statement and proof.

Let {P,} be a sequence of n commodity models P, with bounded parameters.'® Let B,"
and BL,"be the upper and lower boundary curves in the nth model. Let distance in the (Z,U)
plane mean |Z-Z'| +|U-U’]. Then:

Theorem 9.1 (Equilibrium Region Fill-In). For any fixed Z, and any ¢, for all n sufficiently
large any point p lying on the vertical line segment between B,*(Z) and BL,*(Z) has a specialized
equilibrium point x within distance €.

Idea of the Proof. In Section V we showed that any optimizing solution x to (5.3) determines
a point on the upper boundary curve, and will have at most one non-integer variable. If we
round that non-integer variable either up or down it will produce a specialized equilibrium point
(Theorem 4.1). That point should be close to x in large models, and therefore close to the
boundary. A similar observation can be made about the lower boundary, BL,(Z). This suggests

that there are always equilibria close to both boundaries. A somewhat less obvious extension of
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this reasoning shows that there are equilibria near any point within the region as well.
Equilibria and the Regional Shape. Since in the limit the region fills in solidly with equilibria,
all the properties of the region itself are reflected in the equilibria. There are equilibria near the
top of Country 1's hill that give Country 1 very large gains from trade, there are equilibria in
the low parts of Country 1's region that give Country 1 little or no benefit, etc.

Sources of Gains from Trade. Equilibria differ in the sources of any gains from trade they offer.

In our model a country's gains from trade derive from three sources: (1) Appropriate patterns
of specialization, for example if the larger potential producer of i produces i. (2) Share of world
income -- if Country j gets a large share of world income it gets a large share of whatever is
produced. (3) Economies of scale -- if there are further scale economies from producing for the
world market rather than a single domestic market. These further economies are measured by
the p;; of Theorem 8.1. Next, we examine how different groups of equilibria differ in their
reliance on these sources of trade gains.
Appropriately Specialized Equilibria: We say that an equilibrium is appropriately specialized
for Country 1 if Country 2 only produces goods of which it is the larger potential producer. For
appropriately specialized equilibria we have:
Theorem 9.2 (Appropriate Specialization--Autarky Dominance). At an appropriately
specialized equilibrium point Country 1 receive more of every single good than it does in autarky.
Proof: Theorem 8.1 gives the result for the goods that Country 1 produces, and Theorem
8.2 does so for the goods that Country 2 produces.
Corollary 9.2.1. The appropriately specialized equilibria for Country 1 all lie to the right of Z,..

Proof: At an appropriately specialized x, Country 2's whole labor supply produces goods of
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which it is the larger potential producer, so Z,(x) must be to the right of the Classical Level by
Theorem 6.1.

Two Remarks about Theorem 9.2: (1) These gains from trade derive from specialization and

share. They occur even when the production functions do not provide further economies at
employment exceeding the autarky level, or equivalently even when the p;; of Theorem 8.1 is
1. (2) Since Country 1 gets more of every single good than in autarky, everyone in Country 1
benefits from the resulting lower real prices, even those with preferences very different from
those of the country overall.

There are many Appropriately Specialized Equilibria in almost every model. They are

easily constructed, as we see from:
Theorem 9.3 (Construction of Appropriately Specialized Equilibria). Choose any Z, on or
to the right of Z., let x*(Z) be the optimizing solution to (5.3) for that Z. Construct an
equilibrium point by (1) rounding the one non-integer component (if any) x*;; of x* up. (2) If
the rounding has not made Country 1 the sole producer of every good, move any proper subset
of the remaining Country 2 industries to Country 1. The resulting x' will always be an
appropriately specialized equilibrium point.

Proof: Since Z, is to the right of Z; and x* is optimizing, Country 2 is the larger potential
producer in every industry in which it produces (Theorem 6.1). Since Country 2 only loses
industries to get from x* to x', its share of world income (and its wage) goes down so it is still
the larger producer in its remaining industries.'® So the new x’ is an appropriately specialized
equilibrium.

The construction is unworkable only if x*(Z) assigns Country 2 market share in only
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part of one industry and no market share in any other. Therefore:
Corollary 9.3.1 If Country 2 is the larger producer in any industry at Z; , the region must
contain appropriately specialized equilibria for Country 1.

Proof: x*(Z), by definition of Z. will assign that industry to Country 2, so the procedure
of the Construction Theorem can be carried out directly at Z.

The Construction Theorem produces many different x’ for a given Z,, so appropriately
specialized equilibria are usually numerous. In Figure 3, which is an 11 good model, the
appropriately specialized equilibria are the small dots to the right of Z. in the Country 1 region.
In this model 512 of the 2046 specialized equilibria are appropriately specialized for Country 1.

Inappropriately Specialized Equilibria We define an inappropriately specialized equilibrium

for Country 1 to be one where Country 2 is the smaller potential producer of everything it
produces.

An analysis like that for appropriately specialized equilibria can be carried out for
inappropriately specialized equilibria. By Theorem 6.1, inappropriately specialized equilibria can
exist only to the left of Z.. At all inappropriately specialized equilibria Country 1 gets less of
each good produced by Country 2 than it would if it were the producer at that same Z.
Inappropriately specialized equilibria are present in almost all models and are numerous. The
small dots to the left of Z;in Figure 3 are the 690 inappropriately specialized equilibria for
Country 1.

However, unlike appropriately specialized equilibria, the outcome relative to autarky at
inappropriately specialized equilibria depends on the properties of the production functions.

Inappropriately specialized equilibria suffer both from poor specialization patterns and a low
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income share for Country 1, since Z, < Z.. Their gains from trade, if any, derive only from scale
economies. They can be good (poor) relative to autarky if economies of scale are strong (weak)
beyond the autarky labor quantity.

When there are no economies of scale above the autarky labor quantities, it is plausible
that inappropriately specialized equilibria will yield no gains at all from trade.? This is confirmed
by:

Theorem 9.4 (Inappropriate Specialization). If there are no further economies of scale above
the autarky labor quantities, then all inappropriately specialized equilibria for Country 1 give
Country 1 less utility than autarky.

Proof: At each inappropriately specialized equilibrium Country 1 will receive exactly the

autarky quantities of goods of which it is the producer, (Theorem 8.1 with p,;=1 because of the
assumed absence of scale economies) and less in all others (Non-Producer Theorem 8.2 with
pi;=1 and £, ,{J;))/f; (1)) <1). Its total utility is then less than in autarky.
Almost Classical Equilibria: It is natural to look for equilibria that are appropriately specialized
from the point of view of both countries. This would require each producing industry in each
country to be the larger potential producer, and by definition this can occur only at Z.. As we
mentioned in Section VI, footnote 13, there may or may not be an equilibrium point at Z .
However it is plausible that there are equilibria near Z. that are almost appropriately specialized
from the point of view of both countries. These could make up for their slight deficiency in
specialization with gains from economies of scale above the autarky labor quantity. This suggests
the following autarky-dominance theorem:

Theorem 9.5 (Almost Classical Equilibria--Universal Trade Gains). Given any k> 1, there
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is an n such that any model with more than n industries, and with p;;(Zo)>k>1 for all i and j,
contains a specialized equilibrium point near Z. at which both countries get more of every good
than they do in autarky.

While the thought behind this theorem is relatively simple, the rigorous proof is long and
is available on request. However there is generally more than one Almost Classical Equilibrium.
In Figure 3 the dark dots show the 32 Almost Classical Equilibria of our 11 industry model.
These equilibria are good for both countries. They do not, however, provide as much utility to
any one country as do the equilibria near the peak of that county's upper utility frontier.
Non-Specialized Equilibria: Our utility frontiers have been obtained from the perfectly
specialized equilibria alone. But where do the nonspecialized equilibria lie? Here we merely
report the following theorem from Gomory [1994].

Theorem 9.6 (Non-Specialized Equilibria). Let x be any equilibrium solution, whether
specialized or not. Let Z(x) be the corresponding Z, and U,(x,Z) the utility of x to Country 1,
then U,(x,Z)<B,(Z).

So all equilibria, not just the specialized ones, lie under the upper boundary curve. Non-
specialized equilibria can, however, lie below the lower boundary curve. In the example plotted
in Figure 4, the light gray dots are the non-specialized equilibria, the darker dots are the
specialized equilibria.”*

X. Mixed Scale Economies and Diseconomies

The two ends of Figure 2 depict extreme situations. Near either vertical axis one of the
countries has been shut out of most trade activities, with the other nation having coopted almost

every product for itself. At least two features of reality modify this outcome. (1) Nontraded
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goods: each country produces many commodities such as personal services and housing that are
rarely exported. When a country has lost all of its traded products it can and will continue to
produce nontraded goods excluded from the model. This is easily dealt with by considering the
zero level of utility in our diagrams actually to represent the utility obtained by each country
from non-traded goods; (2) Scale diseconomies industries: there are a number of industries that
reach the stage of diminishing returns at a relatively low level of output. Because such products
invite the simultaneous activity of a multiplicity of small suppliers, the country that is driven out
of all activities with scale economies will continue to find a market for its export of goods
produced under conditions of diseconomies of scale. Those countries will be driven to specialize
in the export of agricultural products, primary materials, textile manufactures and the like -- all
the products that the LDCs offer in reality. Because of the nature of diseconomies of scale, this
will not drive the industrialized economies out of such fields altogether. Instead, countries of
both types may continue indefinitely to be sources of both sorts of products.

We have extended our analysis to the case where some industries have economies of scale
while others have diseconomies. Very roughly our procedure is to separate out the scale
economies and scale diseconomies industries. The former are studied as before. However, the
scale diseconomies industries, since they generally entail production by both countries, are
constrained by the requirement that in equilibrium the marginal cost of producing any good must
be the same in Country 1 as in Country 2.

The general results of this analysis® are illustrated in Figures 5a-5d. These figures show
a steady contraction from a large region of equilibria toward a single point. While in Figure 2,

which we have already discussed, all products are characterized by scale economies, in Figure
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5a the share of diminishing returns products is 25 percent. In the following graphs this proportion
rises successively to 50, 75 and, finally, 95 percent of the total. In every figure but the last the
utility frontiers retain their characteristic hill shape, and in every figure, in the central areas, the
gains of one country tend to come at the expense of the other. But as scale diseconomies
dominate the world economy increasingly, the range over which the frontiers extend grows
increasingly narrow” and the range around Z. over which utility values extend also diminishes.
Finally, when the world is exclusively devoted to the production of items with scale diseconomies
the frontiers of the two economies degenerate into a single and common point. This is the
familiar and classical single Ricardian equilibrium point toward which market forces drive all
producers.

XI. Relation to Other Scale Economies Models

The previous trade literature has emphasized three different variants of industry scale
economies. While each corresponds to real and probably significant phenomena, they require
markedly different analytic methods and yield very different conclusions (see, e.g., Krugman
[1984, 109-110]).

One set of widely-used models of scale economies assume them to be internal to the
firm. As is well known, this leads us to expect markets to be monopolistic or subject to
monopolistic competition, and unless the markets are perfectly contestable, it is likely to entail
non-zero profits.** Helpman and Krugman [1985] have been the leading users of this approach,
and have produced extremely valuable results with its aid (see also, e.g., Krugman [1979],
Helpman [1984]), and Gressman and Helpman [1991]).

The second of the previously studied scale economies models entails world-wide scale
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economies. Though investigated by eminent scholars including Viner [194 ], Ethier [1979], and
Helpman and Krugman [1985] no more need be said about it here because it goes in a direction
so very different from ours.

The third group of models with which the analysis in this paper can be associated,
assumes that firms are perfectly competitive, and operate under constant or diminishing returns
to scale,” but that industry scale economies are produced by externalities that depend on the
proximity of the firms in question, and that they therefore benefit the firms within an industry
only in a given country. Then, competition will, of course, drive profits to zero. Examples of
the many writings using this approach include Kemp [1969] and Ethier [1982]. The concept goes
back to Marshall's Principles. (For a good 1eview of the history see Chipman [1965 p.740ff]).
Our model is associated with this third group because we, too, assume that profits are zero
despite the presence of scale economies.

Though this is probably the most widely used of the scale economies constructs, it has
always aroused controversy. It is sometimes suggested that this case rarely arises except where
specialized labor is most effectively trained by experience on the job and the labor force is
immobile internationally. There are many more cases, however, in which proximity generates
economies external to the firm because the activities of one firm lend support to those of others.
The modern semiconductor industry or, indeed, any complex manufacturing industry, is
dependent on a host of specialized and experienced suppliers, especially of services, whose
absence greatly complicates the start-up of an industry and whose presence contributes greatly
to efficiency. In all such cases, we can indeed have a range of scale economies for the industry,

yet constant returns for the firm, perfect competition and, hence, zero profits.
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XII. Conclusions
Implications For Policy: We have shown that there is a very wide range of outcomes in a free
trade environment. These outcomes depend on market share and range from those that are worse
than autarky for one country, to outcomes for that country that are far better than any equilibrium
based on the classical market share Our analysis suggests that a policy designed to increase share
by acquisition of industries, when applied to trade between two developed countries, can benefit
a country that can make it work. The industries to acquire are not necessarily those that seem
to promise high growth, but rather those that are retainable, because high startup costs impede
competitive entry by other nations. Here it should be noted that a retainable industry is far easier
to identify than an industry with a brilliant growth future.

The analysis also suggests that under some circumstances it can serve the interests of a
very dominant country to lose industries to an less developed trading partner.

We do not take any of this as an argument for protectionism. We believe that gains from
trade for both trading partners are the most likely outcome in a free trade environment. However
within that framework there is considerable scope for actions enabling one country to improve
its position markedly at the expense of the other. In our view what this indicates is the enormous
value of efficiency and high product quality in industries that engage substantially in international
trade. This will then almost certainly spill over and benefit the rest of the economy as well.

Implications For Technique: The analysis also indicates that it is useful to employ integer

variables in analyses entailing scale economies. Economies of scale are likely to produce local
maxima, but the traditional economic variables such as price and marginal cost are tools for the

analysis of local behavior only. While these tools work effectively in the presence of convexity,
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where a local maximum is always a global one, they cannot cope with global problems in the
presence of non-convexity. Integer variables, on the other hand, encapsulate the non-local nature
of things, x;; is either 0 or 1, either Country 1 or Country 2 is the sole producer. These are two
different and widely separated solutions. Use of integer variables does not make these
fundamental difficulties go away, but it does enable us to use what is known about integer
programming or asymptotic linear programming, and start to separate what are inherent
mathematical problems of maximization from the description of economic medels. For that
reason we think that the techniques introduced in Gomory [1994] and described here are likely

to be useful in analysis of other issues entailing economies of scale.
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Appendix A - The Derivative of the Upper Utility Frontier

Symmetric Demand: Assuming d; , =d;, offers the useful simplification (d;,Z, +d; ,Z,)=d; ;. This

leads to:
(A.1) I, (d Z, +d, Z)x =2, de.=Zj and Fs,;zdi,1le(ds,1zl+d:,zzz) =Z,.

The Expression for the Derivative of b (Z)--The Slope of the Upper Utility Frontier:

by (Z)=u(x*(Z),Z), so using the expression for the linearized utility from (5.2):

(A.2) b @)=Y, d,,{x * , (DInF, (D)q, (1,2)+x *  (D)InF, (2)g;,(1,2)}.

To get the slope we differentiate this expression. The derivative b,'{Z) will consist of three terms:

(A.3) b/ @)=Y — 0b, 4, _EEL_&Jf 60, dq"’ =T,+T,+T,.
'aF dZ Vax*,. dZ, W 8q dz,

These, then, are the three terms in this derivative: T, related to F,;, Country 1’s changing share
of the world output of i, T, , related to x*; indicating the changing market shares, and T,
related to the changing output of industry i in Country j in response to the changing quantity of
labor allocated to that industry. |

T, - The Share Term: If we differentiate the expression for b, (Z) with respect to Z, and use
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F,,=Z, from (A.1) we obtain:

ob (Z) 1 1 d Ob(D) dF,y  d;, 2, _ 1

VT ad (k. — 4y )=_t="4 &5 T = ———
6FI~.1 :,l(x :,lF_ x, ) F Z1 0 1 Ex‘ aF‘i,l dzl

i1l

T, The Market Share Term: As noted in Section VI, with the exception of a finite number of
transition points, as Z, increases, x*(Z) will have only one term that changes. All variables will
remain 1 or 0 as before except x* ; which increases steadily. At these general points

dx*;/dZ,=0 for izk. For i=k, since x*(Z,) satisfies Zd;,x* =27, by (A.1), we have on

differentiating:
(A.4)
drx,, 1 . i, 1, B@D
1= , and using x*_ + x*,,= 1, 2 = - Since = d {InF. g}
le dk'l g i1 i2 dZ] dk'l ax * y T l,lql,]

we can now sum over all i and j to get:

ob(Z) dxx .
A. T,= T _N=InF, -InF, =1 ~lng, ,.
(A.5) 2 Ei.;’ xx,, Z, k19, T Gy = I0G) =G,

Which is the desired result.
There are also a finite number of transition points. For example after reaching a Z, value

Z', where x, =1, we start to increase the next variable. Thus, at Z’, the k in (A.4) changes
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so that the boundary has a left hand derivative from one value of k and a right hand derivative

with another. Since both the derivatives are positive this produces a kink in the curve but does

not affect the monotonicity argument. The same thing occurs when some other variable overtakes

the current X, , in utility density; there is just a transition to

variable x*, ,.%°

T,-The ILabor Shift Term: To find T, we need

dq,__]/dzl =f'1d(lu)dl,,_]/dzl. We obtain dl,J/dZI by usmg Wllu =

d.,, -Ld  dZ l..dZ,
we get L= __J=
Z, ~ 7' &,

Ld,,

From |

if

Since

a different choice of the non-integer

dqg;;/dZ,. Since q,(1,Z)=f;;{}),

di, 1 Zl + di,ZZZ = di.l or eqUivalenﬂy .

da, ' fi)h, 4%
dz, Z,  dz,

}

So

B@_, 1 _dgr, L B@d, f G, dxr,

X ¥

oq; " Mgy fA) 0q,

For j=1 dZj/dZ;=1 and for j=2 dZj/dZ,=-1. Therefore

ob, dg,; _ Sl Dby

z, —fG) % dZ

/i /2(1 2Dis ) x*,d,,

R Jie s i

+E(f2( Dz

Thus, we have obtained all three terms used in Section VII.
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I In three invaluable papers [1983, 1984 and 1987] Professor Krugman has explored the policy
implications of the scale economies literature. Other recent writings, e.g., Chichilnisky and Heal
[1986, especially chapters 3, 11 and 12] contribute valuable insights about such applications. The

foci of most of these contributions are, however, very different from ours.

2 Section X offers some remarks on the relation of our model and our substantial debt, to the
very valuable earlier discussions of trade equilibrium under scale economies.

3'We assume that for each country it is possible to combine the preferences of its inhabitants into
an {ordinal) social utility function that does not, however, permit comparison with the magnitude
of total utility in the other country. For this reason we can normalize these utilities so that at
their maxima their value is unity. Our social utility premise takes us only a small step beyond

the common use of community indifference curves in international trade models.

4 Sections IV-VII are a clearer and simpler version of those results of Gomory [1994] that are

needed to prove the new results on regional shape, on the various types of equilibrium points,
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and on their economic meaning.

5 Usually in an international trade model there is also a fourth equilibrium condition -- the
requirement that trade between the two countries be in balance. In our model, it is easy to show,
this is necessarily always satisfied as a result of the assumption that the utility function is such

that all income is always spent. This is certainly true with our Cobb-Douglas utility functions.
¢ The dependence of the two equations can also be shown by simply adding them up.

7- Stability could be further enhanced by requiring an interval of zero output. A more significant
and quite feasible extension is to allow the production functions to depend on the relative national

income Z as well as on the labor input. See Appendix B.

¥ A similar dynamic argument has been employed by others to show this sort of result, e.g.,
Ethier [1979 p.14]. The argument in the text can be formalized via a differential or difference
equation yielding for any equilibrium vector x* and any nonequilibrium x sufficiently close to
X* a trajectory for x that converges to x*.

It is necessary to show also that as x approaches x* the quantity of labor assigned to each
industry approaches its magnitude at x* and that the same is true for the wage rate given an x
that has approached x*. It is, indeed, possible to demonstrate that the wage and labor quantities
will behave in this way. For this we employ the following three very plausible assumptions:

(Al) If at point p, w,L,, the total wage income in Country j, wL.

L, is greater than (less

than)(equal to) the total income from the sale of the goods it produces in all industries, then w;
will be strictly decreasing (increasing) (stationary), i.e., dwy/dt < 0 ( dwi/dt > 0), (dwydt =
0). (A2) If at point p the amount of labor /;, in the ith industry is such that the wage bill in the
industry /; ;w; is greater than (less than)(equal to) the income into that industry from the sale of

goods, then [, will be strictly decreasing d/; ,/dt < 0 (d[; ,/dt > 0)(d}; | /dt=0). (A3) If at point
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p with market share x;; Country j makes the ith good at lower unit cost than Country 2 its market
share x;; will increase (or if it equals 1 it will stay at 1) and if makes the goods at larger unit
cost X;; will decrease (or if it is O it will stay at 0).

When put explicitly in the form of a dynamic model satisfying these three premises we
can show that with w* the equilibrium wage and /*;, the equilibrium quantity of labor in
industry i in Country 1, any vector w; ;,,...,4,; will approach the Country 1 equilibrium vector
w*, L*,...,1,*. Of course the same holds for Country 2. A full formal proof is available from

the authors on request.

® Most of the equilibria will not satisfy comparative advantage. This and their efficiency is

discussed in Baumol and Gomory[1994].

10.1n common with much of the literature we do not deal here with foreign ownership of a another

county's industry. Tthis could be developed as an extension of this model.

1. Exactly as written both x;, and x;, appear in the expression for Lu,(x,Z) in (5.2), so we also
have the n additional equations x; ;+x;,=1. But if we use Xx;,=x;;-1 to eliminate the x;, we do
then have a linear program in the x;, with only one equation and upper bounds.

12 Here we describe only one of the two boundary approaches methods introduced in Gomory
[1993]. The advantages of the linear programming approach described here is the ease with
which it produces a relatively smooth boundary, and one that seems to be theoretically tractable.
The integer programming approach, not described here, produces a boundary that is slightly
tighter but is harder to analyze. The integer approach, however, is much better at finding the
equilibria near the boundary. In fact integer programming of some sort (even if it is only

rounding of a linear programming solution) is needed to deal with actual equilibrium points,
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while both methods will produce a boundary. Both approaches have provided distinct and useful
ways of thinking about the problem.

B In a linear or diseconomies model the classical assignment would be the Z, of the unique
equilibrium point. It is also true (see Section X) that in a model in which some industries have
scale economies and others have diseconomies, as the share of the latter approaches 100 percent
x¢ will approach that of the classical trade equilibrium. In our model there may or not be an
equilibrium point at Z.. For a discussion of xX%(Z.) and the concept of Classical Point see
Gomory [1992].

14 In Gomory and Baumol [1994] .

13- This is a property of linear programming. For almost all changes in the right hand side the
linear programming basis does not change, the non-basic variables remain zero, and the basic
variables change value to satisfy the slightly changed equations. Here we have only one basic
variable, the non-integer one. See Appendix for a discussion of the exceptional cases.

15 If the values of the f'//f were drawn from a random distribution the law of large numbers
would produce this effect.

17.Since we will see in the next section that B,(1)=U,* so K,=U,*/Q(1).

13- The key bounding assumption is that the individual industry sizes d; L, are kept between some

L]

fixed upper and lower bounds as n increases.
1This is the same reasoning as in the beginning of Section VI.

2. For an early example of recognition that under scale economies it is possible to experience
losses from trade see Graham [1923].

2 There is also an argument in Gomory [1992] suggesting that the least unstable non-specialized

equilibria either lie in or very close to the region defined by the specialized equilibria.
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2 The analysis is given in some detail in Gomory and Baumol [1992a].

3 This is because at some Z the diseconomies industries alone consume the entire labor force
of one country or the other, and for Z beyond that no solution is possible.

- This was not so in earlier models of trade in differentiated products because they assumed
entry to be unrestricted and firms to be symmetrical.

BTt is also adequate to assume that the production functions of the firms entail economies up to
some intermediate scale of operation, after which average costs either remain approximately
constant or gradually rise. Empirical evidence suggests that this may be a common case.

2. For more details see Gomory [ ] Appendix.






Appendix B - Production Functions f(/,Z)

Introduction: Production functions f; (/,Z) allow production to reflect not only the "labor” input
but also other factors such as the general state of development of the country. Since the
dependence on Z could be result in functions of almost any form, these functions will have to
be restricted in some way to get the results we have already obtained for production functions
f. () with economies of scale. An appropriate restriction will be given below.

Theorems

The formula [;=(L/Z)(d,;Z, +d;;Z,) sets up a one to one correspondence between Z
values (Z,,Z,) and [;; values for /; values [, ;>d; .. We will refer to this correspondence as ¢,
50 [;;=,;(Z) and Z=¢", ().

If we have production functions f; (I,Z) we define the related production function f*;;,
which is a function of  only, by f* (D=f; (1,¢"" (D).

If we have a model M with demands d,;. country sizes L;, and production functions
f.{(1,Z) we define the related model M* as the model with the same demands and country sizes
but with the related production functions f*; (/).

Theorem 1: M and M* have (1) the same specialized equilibria and (2) the same regional
boundaries.

Proof of (1): The specialized equilibrium x of M produces a Z(x) and an /, ; » and the same

Z(x) and an /;; are produced by x in M*. The production amounts are given by:



£, (,2)f (¢, (Z),Z) in M, while in M* they are

% (=% (0, (D) £, (0,(D),07, (0, (DN % (0,(2).2),

so these are the same. Since x, Z, the [ ; and the amounts produced are the same, these are the
same equilibria.
Proof of (2): The boundaries of the two models are produced from equations (5.3) which differ

(if at all) only in the q,;(1,Z) that appear in the linearized utility. For M these are:

6.1,2)%,(0,,Z) and for Mx they are % (1,2)€%0,(Z))%,(9,(2),2)

so the equations are the same and therefore produce the same boundaries. QED.

However we have said nothing so far about restricting the f; (/,Z), and therefore we know
nothing about the regional shape that would be produced by the specialized equilibria produced
by the f;; ({,Z). However , now that we have Theorem 1, a plausible restriction suggests itself.
Theorem 2. The region of equilibria resulting from productions functions f; (I,Z) will have the
properties P1, P2, and P3 provided that the related production functions f*;; have economies of
scale.

Because of Theorem 1, the proof is immediate. Since the model M* has these properties, so does
the model M. However the degree of stability of each equilibrium point, as well as the properties
of non-specialized equilibria, can be very different in M and M*,

An Example. The intuitive concept behind this example is that an industry has to pay (in labor))

a fraction of the world market in order to have non-zero production. We obtain this effect by



taking for the f, (1,Z), f,;(I,Z)=h, ((1+a, ;}I-(a; L;/Z))(d, ;,+d, ;,)) where the h, ({) have economies
of scale, zero derivatives at the origin, and h, ())=0 for /<0. With these f, (/,Z), for any fixed
Z, there is no positive production until the wage bill exceeds the fraction a,;/(1+a,;) of the world
market for the ith good. Since under the mapping ¢; (L/Z)(d;;,+d,;,) corresponds to I, the
related production function f*(J) is h, (J).

In figure Bl we show one h;; which we have chosen to be h;;=I'*. The horizontal axis
measures the input [, the vertical axis measures output. h;(J) is the dashed line in the figure.

The four solid lines are, from left to right, the related f, ({,Z) for Z,=.8,.6,.3, and .2.



Figure Bl




