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Chaos theory has all the earwarks of yet another fad in economics. The
scarcity of enduring research tollowing up the early postwar spate of
construction of dynamxc‘models and more recent work on catastrophe theory may
well feed skepticism abput the prospects of chaos models, with their
deterministic 1ntertempbral structure. There wmay, however, be substance to
the subject, We will stiow how wide a variety of important econowmit phenomena
can "easily" fall within the domain of chaotic relationships. We will also
describe the rich and sdrprising variety of the time paths that may
consequently emerge. We will stress what may be considered the negative
implications of the analysis -- that apparently random behavior patterns can
in fact prove ta be fulﬂy deterministic and that these may emerge 1n
unexpected places, that forecasting of particular variables may face enurwous
difticulties and that such problems may arise in regimes that obey extremely
simple relationships.

We will also describe the mechanism that underlies chaotic regimes and
the intriguing pattern of their structural response to changes in the
parameter values of the generating models. In much of this we will rely on a
compelling heuristic exglanation that writers in other disciplines have

provided four the chaos ghenowmenaon.

I. Roots in the Earlier Dynamic Madels

To understand the sort of deterministic economic madel that can generate

chaotic behavior we must return to the literature of the three or so decades
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tollowing 1930. Until tairly recently, economists were very much concerned
with business tycles ahd the literature had accumulated a vast variety of
nonmathematical models each undertaking to provide a set of canditians
sufficient to generate tyclical behavior in the economy. There was no
necessary conflict among these models since ane ot them might very well have
provided a better explanation of the crisis of 18-- while another might more
closely approximate the depression af 19--, However, many of these models
Were vague and their lugic difficult to vertfy,

All this changed in the 1930's with the work of Frisch le.g., 1933),
Lundberg (1937), and Samuelson {(1939), who used difference equations,
differential equatianc and mixed models ta generate deterministic time paths.
These nodels readily demonstrated (as was already known in ecalogy and
engineering) that it is extremely "easy" for such deterministic dynamic
relationships to generate cyclical behavior. For any such model, any
parameter values chosen within broad ranges that can easily be predetermined
are sure to yield a time path that exhibits cyclical behavior,

For example, the simplest sort of difference equatian is the first arder
(one-period lag) linear equation

Yieg = Y4
where Yy 18 the value at time t of the variable in which we are interested.

It 15 obvious, given the initial value, Yoo that this generates the time path

2 t
Yy = Y Yo = ay, = a Yoo Yy = @ Yiye

A moment ‘s thought confirms that for any negative value of parameter a the
time path will be oscilletory, as atyﬂ successively goes from positive to

negative and vice-versa.



W.J. Baumol and J. Benhabib

..3_.

Ot course, such an equatian is much too simple for most plausible
economic models (though it is very close to that which emerges from the cobweb
thearem). A more suggestive equation 1s provided by Samuelsan‘s Justly famous
multiplier-accelerator model which is made up ot the three standard

relationships

Yo = 0+ Ly
Lt = th_l t
Ly = by | = vy

where Y i1s national income (output), C is consumption, and I 1s investment.
Here ¢ is the marginal prapensity to consume, so that the equation for € is an
obvious linear consumption tunction with & one-period lag. The investment
tunction is a linear 16@ged accelerataor in which investment is assumed to be
propurtiovnate to the préceding period‘s rate of growth of output.

Substitution af the two latter equations 1nto the first yields at once

Y, = (ctb)Y

t t-1

which was Samuelson’s second-order linear difference equation. It is nat
difficult to show that for broad ranges of values of ¢ and b this equatian,
too, generates cycles. ‘It is also not too difficult to provide an intuitive
explanation of the econamics of the cyclical mechanism, but that 1s not our
concern here.

These models indicated that the presence of cycliral behavior 1s not hard
to explain. Indeed, it almost suggests that what requires explanation is why
cycles are not mure pervasive in economic reality. The appearance of these
models was at first greefed with enthusiasm and generated a considerable bady

of writings along similar lines, many by leading economists.
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Still, it was not long befgre disappointment seemed to set in and

Publication 1n the arend began to dry up. There were two basijc reasons

F M . " - .
lrst, it sgon became clear that the behavior of the time path generated by

such a linear dynamic system cap be extremely sensitive to thanges in the
values af the Parameters, as well ag the structure of the model. That
undercut the prospects for tormulation of g model (and econometr)c estimation
af 1ts parameter values) that would constitute a rabust and reliable
representation of ecunomlc'reality. Second, it was recognized early that,
qualitatively Speaking, such linear models were capable ot generating only
tour types of tipe path: (i) cyclical and stable {(1.e., one canverging with
gscillatione gf decreasing amplitude taward some fixed equilibrium valuei;
(11) cyclical and explosive (cycles of Ever-increasing amplitude); i(i11)

noncyclical and stable and (tv) noncyclical and explosive. Jhis 1g

tllustrated by the case Yt = atYO derived above, whose time path 1s obviously

cyclical and stable for -1 ¢ a ¢ O (for example, if a = ~U.%, then az = 4,25,
3 e . . .

a~ = -U.123, etc., thus g0ing successively upward and downward, and canverging

taward zera). similarly, [the time path 1is cyclical and explosive for a ¢ -1
tt e noncyelical and stablle tor 0 ¢ a < I5 and 1t 15 noncyclical and
explosive for a » 1. It was soan recagnized that linear equations even mure

complex than Samuelson’s would not generate any time paths basically different

tram these four. This range of possible time path configurations s1mply was

not sufficiently rich for the economists’ purposes,
The solution to the problem, brought to our attentxon‘by Hicks and
Goodwin, was the use of nenlinear models, perhaps ot the general furm

Yt = f(Yt_l, ey Yt-h)' These authors, for example, showed that such a
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nonlinear model can yield a stable limit cycle toward which all passible time
paths of the variable Yt converge. That is, rather than converging to a fixed
equilibrium value, Y*, with {he cycles dampening out toward zero amplitude,
the nanlinear models coild instead yield a stable equilibrium cycle, with Yy
farever wandering from peak to trough along the equilibrium cyclical path.

This is pretty much where matters were left, with a little bit of
nontinearity having been injected into the systems. bBut the work stopped
short of introducing explicitly a degree of nounlinearity just sufficiently
higher to generate chaotic behavior.

Work in constructidan of such dynamic models, then, flagged until the new
burst of activity stimulated by chaos analysis in the past few years. Yet,
even though the earlier product perhaps did not guite live up to its promise,
it must naot be misjudged to have been arid. On the cantrary, it added
considerably to our understanding of the pertinent issues. Three brief
examples will suffice to illustrate the point.

The first is the observation already cited, which tlowed even from the
earliest of the farmal dynamic models. This is recognition of how easy it 1s
tor any deterministic time path to produce ascillation, a fact well recognized
by control theory engineers. The analysis simply demonstrated that the
construction of a model sufficient to imply the presence of cycles requires
neither convoluted reasoning nor premises that are implausible oar
pathological.

In addition, despite their sensitivity, the dynamic models proved to be
effective instruments far disproof of the universal validity of propositians

that had previously been accepted too readily, and for corresponding warnings



W.J. Baumol and J. Benhabib

-6..

to policy designers. ‘The very flexibility of the dynamic wmodels made it easy
to use them to provide the required counterexamples. For instance, such a
model was used to disprove the allegation that profitable speculatiaon isg
always and necessarily stabilizing (see Baumol, 1957). That is, even if
speculataors buy when price is low and sell when price i1s high they can
conceivably 1ncrease the amplitude of any fluctuations in the price of the
good 1n which they are speculating, if its price happens to be rising at the
time they buy and declining at the time they sell. Similarly, 1t was shown
that sliyht lags in response can undermine apparently rational contracyclical
policy (Baumol, 1961). A government which spends more whenever the economy's
output 1s below some target level and which reduces its expenditure when
output is above target can increase the amplitude of fluctuations even if the
lag in 1ts cantracyclical measures is unrealistically small., The same can
happen 1f the government uses similar means to offset the trend in income by
running a budget deficit (surplus) i1nversely related to the‘tlme derivative of
aggregate income,.

Chaos theory, as we will indicate, has at least equal power in providing
caveats for both the economic analyst and the policy designer. It warns us
that apparently randam behavior may n0£ be random at all. It demanstrates
dramatically the dangers of extrapolation and the difficulties that can beset
ecanomic forecasting generally. It shows that negotiation processes may
elrcit erratic behavior patterns which no one intended and which can occur
even it the'positions taken by both parties are inherently simple and
straightforward. The moral may be that only extreme patience may be able to

prevent breakdown of such a negotation process through mutual misunderstanding
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of the chautic course the process can take. Thus, it 1s our belief that chaos
analysis does have much to offer economic analysis and that there 15 a
reasonable chance that it will produce a substantial and enduring flow ot

research,

[1. What is Chaos?

Let us, next, offer an intuitive description ot what chaos theory 1%
about, A simple deterministic relationship such as that provided by a first
order linear difference equation can yleld an extremely complex time path. By
superimposition of a large number of cycles that differ in periodicity and
other attributes, intertemporal behavior can acquire an appearance of
disturbance by random shocks and can undergo violent, abrupt qualitative
changes, either with the passage of time or with small changes in the values
of the paranmters, Among others, chaotic time paths can have the following
attributes: a) a trajectory (time path) can sometimes display sharp
qualitative changes in behaviar af a sort one wauld expect in a wodel subject
to large random disturbances (for example, very sudden changes from cycles ot
small amplitude to cygles of much larger ampltiude, and vice-versal, and at
least some of the standard tests of randomness are incapable of distinguishing
such chaotic patterns of change from “truly random® behaviaor; b) the time path
0f a variable in a chaos model is sometimes extremely sensitive to microscapic
changes in the values df the parameters -- a change in, say, the fifth decimal
place of one parameter Egn completely transform the qualitative character of
the path; c) chaatic or éperiodic trajectaries can include superiwmpased

periodic components of every periodicity (i.e., cycles two periods long, plus
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cycles three periods long, ...) sa that the net result is a time path sao
convoluted that it cannot in practice be distinguished from an aperiodic one.
Where chaos cccurs econawmic forecasting becomes extremely difficult. The
two basic forecasting devices -- extrapolation {of various degrees of
sophistication) and estimation of a structural forecasting model -- bath
become extremely questionable. Extrapolation is hardly appropriate for a time
path that may, for ezanple, exhibit two period cycles of considerable and
steadily incressing amplitude for 950 periods, suddenly to have the cycles all
but disappear for the pext 20 periods, with still another pattern abruptly
emerging thereatter. Forecasting carried out with the aid of estimates of the
parameters of a structural model also runs into difficulties in a chaotic
regime if an error in calculation of the third decimal place ot a parameter

can change the gqualitative character pf the forecast beyond recognition.

111. How Chaps Arises

Before we can see how chaotic relationships can arise 1n ecanomics wWe
must first provide a description of their characteristics., Since much of the
discussion that follows relates to cyclical and oscillatory behavior it 1s
important to define precisely what we mean by those terms. A time path, Yio
will be taken to be characterized by a cycle whose duratian is p periods (a p
period cycle) 1f it always replicates itself precisely every p periods from
any initial point in its trajectory, and does not always repeat itself
precisely in any smaller number of periods.

In contrast, an oscillatory time path is defined more vaguely as one

which is not monatonic, involves "frequent" rises and declines in the values
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of its variables, but in which the time path may rarely ar never replicate an
earlier portion of its trajectory.l
The simplest and most common chaos model invelves a nonlinear one-

variable difference equation of first order, i.e., one of the form

(1a) Yiep = g

where the graph (the phase diagram) of f(yt) is hill-shaped and “tunable®,

i.e., the height, steepness and location of the hill can be adjusted as

desired by a suitable modification in the values of the parameters of f(yt;.

This phase diagram is the geametric instrument used tao analyze the time path

generated by a difference equation model, and it is employed extensively in
)

chaos analysis.”

The function most commonly used to illustrate the chaos phenomenon 15 the

quadratic

{1b) Yeer = wyt(1~yt),

Wwith the single parameter, w. The hill-shaped curve in Figure 1 represents
this function when w = 3.45, The figure also shows the generation of a time
path via the graphic procedure made familiar in the cobweb theorem literature,
using the phase curve to find Yy from yo, Yo from Y etc., and the 45 degree
ray to transfer each value of y from the vertical to the horizontal axis.

We see immediately from (1b) that whatever the value of w, the graph (the
phase curve) for that equation always must reach its maximum at Yy 7 0.5,

where
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(2} dy“l/‘dyt = w(l—Zyt) = U,

At that potnt 1ts height must be w(0.5) (1-0.9) = w/4, which cledarly 1ncreases
proportionately with w,

Now, for w less than | the phase curve will lie entirely below the 45¢
ray in the pasitive quadrant {(Figure 2a).3 Far values of w that exceed |
there will be a positive valued tyy 7 0) intersection (equilibrium) point, E,

satisfying

(3) Yo = tw—1)/w (see preceding footnotel,

between the pliase curve and the a5° ray. For I < w < 2, the phase curve’s

L2

slope at the i1ntersection point will be positive4 tFigure 2b). For 2 < w ¢
that slape will be negative but less than unity in absolute value (Figure 2c),
while for w + 3 the slope will be less than -1 (Figure 2d).

It 15 this last case, w 7 3, that i1s of i1nterest to us here. We knaw
from the elementary theory of difference equations that since the slope of the
phase curve te then negative at the equilibrium point the time path must
involve oscillations., These cobweb-like oscillations will be two periods in
length, with the high point of one period, Yio tollowed by the low point,
Yiggo of the next, just as in Yy ® atyo when a < 0. HMoreover, since the slope
is greater than unity 1n absclute value, the oscillations will be explasive
{of ever-growing awmplitude), moving ever further away from the eguilibrium

value, Yar 10 the neighborhood ot that value ot vy,
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It the graph were not hill-shaped that would be the end of the staory,
with the cobweb cycles moving ever further away from the equilibrium point.
However, with a hill-shaped phase curve, eventually, as the cobweb expands it
Wwill encounter the positively sloping side of the hill and "bounce off it" at
3 Vi value closer to the equilibrium level that some earlier Yied (thus, 1in
Figure 3 the height of point B is closer to that of equilibrium point £ than
ts earlier point A‘s). This must happen eventually, since as the cobweb
expands further to the left during its explosive stage its height 1n the next
move that follows must be reduced because the slope of the pertinent portion
of the graph 1s positive., MWhen this happens, the cycles will begin canverging
toward £ once more, but that can only bhe temporary since E 1s an unstable
equilibrium that generates an explosive time path, as we have seen.

The analogy with a billiard ball bouncing off the sides of the table 1n a
camplicated pattern is suggestive here. It is easy to imagine why, in such
circumstances, the time path can turn out to be complex, as chaos requires.
What is rather more surprising is that the pattern of chaotic behavior will

then follow some very simple and orderly rules.

IV, The Orderly Structure of Chaotic Behavior”

lLet us turn now ta a more careful description of chaotic behavior. HWhile
the discussion that follows will be based almost exclusively on our
illustrative chaos equation Yeeg = wyt(l*yt) it must be emphasized that
exactly the same sart of behavior holds for a very wide set aof relationships
Yigg = f(yt) whose graph is hill-shaped and "tunable" by adjustment of the

parameter values.
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Let us ftirst offer a preview of what will be shown in this section and
the next, summarizing results, initially without explanation. We will see
that as the value of w increases, in addition to the two periad cycles which
the time path initially contained, it will incorporate successively f(and at
known values of w) first, cycles of four periad length, then i1t will add §
period cycles, then i1t will superimpose 1é period cycles, etc.

Let us begin the story just at the point where the tuning (ar
controlling) parameter attains a value (w = 3 in our case) at which the bacic
two periad cycle, Yiv ¥p (with yz = yl) becomes unstable because the slope of
its graph at equilibrium point £ exceeds unity in absolute value. At exactly
that value of w we will see that a stable four period cycle,

£ % ¥ + ' * * ' ‘
Yiv You Yya Vg {(with e = yl) makes 1ts appearance. Two of these four

points, y:, y;, of the four period cycle are generated via a process called
“bifurcation” (which will be explained presently) from one of the points,
Say Yy, ot the period-two cycle, while the other two points y;, y:
“bifurcate” from the ather point of the period-two cycle. Along such a four

%
period cycle, a trajectory that starts at one of the two high paints, say, Yo

of the four period cycle, first moves ta ane of the two low paints say y;),
then back to the other high point, y; and tinally completes the cycle at the
remaining low point, y;. Trajectories in the vicinity of this cycle follow a
pattern that is very similar, eventually converging to the stable four period
cycle. As was stated, the period-doubling bifurcation just described takes
place just when the controlling parameter attains a value at which the two

period cycle laoses its Qtability, when the parameter w exceeds the value 3 in

our illustrative equatian.
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As the value of the parameter w is increased turther, the four periad

cycle itself becomes unstable in its turn, and from each of the four values

# * * *
Yi aYo, Y31 Yy that constitute the period-four cycle, two additional points
emerge via a new bifurcation. These new eight points now canstitute a stable
period-eight cycle. fAs w is increased, the period-doubling bifurcation tale
Wwill repeat itself, thereby ushering in new stahle cycles which any trajectory
in its neighborhood will gradually approach,

At first, all of these will involve cycles that aonly have even periods
but, eventually, cycles whose length involves an odd number of periods will
appear, The first such odd-periad cycles to enter the time path will be very
long, but they will be joined by odd period cycles of shorter and shorter
duratian. Finally, at some value of the controlling parameter, w, even three-
period cycles will occur. At such values of the parameter the time path must
invalve an infinite number of equilibrium points, stable and unstable, and an
infinite number of cycle lengths. There will also be an uncountable number of
tnitial values yielding time paths which, while, bounded, will yield a pattern
that never repeats iself, no matter how long a set of time periods one permits
the calculation to encompass. When this set of conditiaons holds, true chaos
1s said to have occurred.

Let us begin to consider, now, why chaos should be approached by such an
orderly progression -- fram one stable two period cycle, to an unstable two
period cycle perturbed by two stable four period ascillations, then (when
these all have become unstable) with the addition of four 8 period
disturbances, etc. We will use two related procedures to provide an intuitive

view af the matter.
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To see how the four period disturbances enter, let us, first, quickly
review the analagous properties of the two period case. The time path of a
two period cycle is studied with the aid of a difference equation (la) or {th)

relating the values of the endogenous variable, Yy in twa successive periads.

The equilibrium value can then be calculated fraom the requirement
Yeey = Yo = Yer

Now, in examining whether a four period cycle 1s present we are not
concerned with the relationship between two successive values, Vi and Yigpr @5
we were in the two period case, but rather with that between Yi and Yisoe
That i1s, suppose we are given the value ot Yy Then, information about the
value af Vit does not permit us to infgr anything about the presence or
absence of a tour period cycle. But if we find that a relatively luw Yy 18
tallowed by a relatively high value of Yi4o (which 1n turn is followed by a
relatively low value ot Yiego etc.) we can infer that a four period
oscillation is present, For analagous reasons, for such a cycle eventually to

converge to an equilibirum point, that equilibrium must satisty

(4) Ye2 = Yy = Yyso:

Thus, to investigate the genesis of four period cycles we need a
relationship between Yi42 and Yio not one between Yiet and Yi- By (la) and
(1b) such a two period relationship is obtained via a second iteration of the
relationship Yier = f(yt). That is, we first find Yiey from f(yt) and then we

find Yieoo in turn, from f(yt+1). Combining them, this process gives us
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{9a) Vi f(yt+l) = f[f(yt)l

(5b) yt§2‘= wyt+l(1-uyt+l) = w[wyt(l—yt)(1~wyt(1"yt))L

(Hencefarth, we will use f 3

to represent f[f(yt)] = Yeeo f to represent
FUELECy, VDY =y g, ete.).

To tell the story of the introduction of the four period cycles we must
first consider some properities of the graph of the general ftour period
relationship (5a). This may be considered the equation of a tour pericd phase
curve in the graph which has Yi+2 rather than Yipy OD its vertical axis. In
Figure 4a such a phase curve [labelled y{t+2)1, with its typical double hump,
is superimposed on the hill-shaped two period phase curve {labelled y(t+t)1].

Let us examine the relations between the two phase curves, y(t+Z) and
ylt+1), First we note that the two phase curves in Figure 4a cross the
horizantal axis at the same points, that is, at the points Yy ® 0 and Y¢ ° 1.

This is generalized in

Proposition 1, 1f the graph of f goes through the origin, then all roots of f

[i.e, points at which y, , = flyy) = 0} must also be roots of f(2).

* *
Proaf: Let y* be a root of f. Then, since fly,) = 0, fli(y )1 = £(0) =

Next, we note that the two phase curves cross the 45° ray at a common
equilibrium point, E. This is generalized in

Proposition 2. Any equilibrium point of f must also be an equilibrium point

of f(2)
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Proof: Let y, be an equilibrium point of f. Then, by definttion,

fly,) = v, so that 2y = fTEy ) = ) =y,
We also have

Proposition 3. The slope of f(Z) at an equilibrium point ot f must be the

square of the slope of f.b That 15, at any Yo = V¢ = Viep WE must have

o)

at Pay = wtidyt
That is why in Figure 4a at point E, where the slupe ot the Yiry graph 1s

negative but less thah -1 in absolute value, the slope of Yi4py SinCe 1t o1s

the square of the other slope, is positive but quite small.

Comment: Proposition 3 must hold, in particular, at the origin, where y,

Yo © 0. Note also that corresponding propositions also hold for any f(ﬁn)

where n is any positive integer.

)

The final key abservation linking the graphs of f(z and f 15 that where

las in the case of (2b)1 the basic relationship, t(yt) is quadratic (it
includes a term with yi in it), and consequently has one peak, the tour period
cycle relatianship G«Q)(yt) = f[f(yt)] will be of fourth degree [1t has & term
1nvalving y:, as is illustrated in equation (5b)] and so can be expected to
have either two maxima and one minimum, or the reverse. fhat 15 why the f(g)
graph, as is shown in the figure, typically has a double hump.

Figures 4a-4c iﬁlustrate the behavior of the preceding relationships as
the value of w incredses. Each graph is derived from our basic illustrative
equation for a difterent value of w, as will now be explained, and we will see
precisely why two new equilibrium paints must appear just at the value of the

tuning parameter {(w # 3 in our example) where the initial equilibrium point,

E, becomes unstahle.
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In Figure 4a w = 2.8 so that at equilibrium point E the slope, dytH/dyt
= 2 - w (see footnote 2) must be negative and less than unity (in fact, it
must equal -0.8). Therefare, by proposition 3 the derivative of +(2)(yt) at &
must be (~0.8)2 = 0,64, i.e., it must be positive and less than unity. Hence,
with 2 ¢ w ¢ 3 the curve f(Z)(yt) must cut the 45° ray at E trom above as wWe
move from left tao right.

We now can see just what sort of shape the f(Z)(yt) locus must assume.

As we have noted, like f(t), by proposition 1, it must cut the harizaontal axis
at the same points (yt = 0 and y, = 1). Then, since where w » 2 1t is easy to
show that the slope of f(yt) is greater than unity near the origin, the slope

of f(2)

(yt), by proposition 3, must be greater still and so 1t must lie above
the 45° ray. Ultimately, f(z)(yt) must meet the a45¢ ray at E, cutting it from
above, as we have just seen. Hence, with w 1n the range naw being cansidered,
f(z)(yt) need never meet the 45¢ ray anywhere to the left of E {except at the
origin). Tao the right ot £ the situation is similar, with f(Z)(yt) leaving
that ray from below, finally descending to zero at Yy © . In short, in this
2 < w ¢ 3 case f(2)(yt) need intersect the a5° ray only at the origin and at
E, Just as fily,) doesy.

Next, in Figure 4b we consider the case w = 3 so that at E df/dyt = -1
exactly; and so by propasition 3 df ‘“'/dy, = (df/dy )% = +1. Then £
will be tangent ta the a5¢ ray at £, as the figure shows,

Finally, the tull story emerges in Figure 4c where w = 3.43 so that

46/dt = ~1.43 at E and therefare df (%) 2

/dt = (-1.43)° = 2 (approximately).
Since that slope exceeds unity, for w 3, f(z)(yt) wust cut the 43° ray traom

below at E as we move from left to right. This means that as f(2)(yt) leaves
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the origin, tnitially lying above the 45° ray, at some point G, to the lett of
E, it must cross that ray tor it to be possible for that curve to cut the ray

at point E frow below. Similarly, to the right of €, §'2!

(yt) must tirst lie
abave the ray, and so must cross it again at sowme point, H, in order to
reattain the hori1:zontal axis again at Vi * . We see that )just at that value
of w &t which the slope of the f(yt) graph begins to exceed unity 1n absolute
value, so that its equilibrium becowes unstable, there appear two new
intersection points 6 and H, which have no counterparts in Figure 4a, These
are the two new equilibrium points that constitute the biturcation ot

equilibriom E. That 1s, each new intersection point is the equilibrium point

tar a four period oscillatory cobweb perturbation generated by any 1nitial

point in 1ts vicimity, as i1llustrated in the graph for initial point y(o) and

equitibrium peint G. This must be so because for the value of the slape of
(2) . . .

f at G and H 1s negative and greater than -1.

That is the basic story of the bifurcation process. We can also use a
slightly different way to examine its proliferation of equilibrium points wmore

directly with the aid of equilibrium caondition (4) and our 1llustrative

relationship (8b) for +(2). By substituting equilibrium condition (4) 1nto

the two period relationship (5a) we obtain the equatian Yoo f(z)(yeg) trom
which the two-period equilibrium values, Yeoo €an be deduced. But as we will
see now hy example this is an equatian of higher degree than the analagous two
period equation Yo = f(ye), and so the former will yield more equilibrium
points. An illustratidn is obtained from our specific equation (Jb). After

we substitute equilibrium requirement (4) into 1t, we obtain atter a bit of

manipulation,
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“»
“ 2
ye7("ye2 - u+l)[w2y82 - (w® + w)ye2 tw+ 1] =0,
Obviously, this is an equatiaon of fourth degree, in contrast to the
quadratic form of the analagous equilibrium equatian Ye = WYg (1~ye) for the
two period case. The fourth degree equation clearly has the trivial roat Yao

= 0, as before. The first parenthetic expression indicates that a root is

also given by
WYgo — W + 1 =0 OF Yo = (1 - w)/w,

which, by (3) 15 our two period cycle equilibrium point. This shows that (3)
(point E in Figures 4a-4c) continues to be an equilibrium value even after w
exceeds 5, when this equilibrium becomes unstable.

Finally, the expression in the square brackets, being quadratic, yields
two roots. If we use the standard tformula to find those twa roots it 1s egasy
(but somewhat tedious) to show that for any w < 3 those roots will be complex
numbers (i.e., they will not take real values). Hawever, for any w 7 I these
roots become real and, consequently, constitute two additional equilibrium
values. That is the second way of seeing how the tirst bifurcation arises.

The key point is that, as seen fraon (4), (5a) and (5b), an increase in
the length, s, of the rycle under study automatically brings an increase in
the degree of the equilibrium value equation Yo = t

(ye), yielding &

Correspondingly increased number of roots.
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V. How Eight Period Oscillations and Their Equilibrium Foints Arise

We can now quickly indicate by analagy haw the faur period cobweb
oscillations at G anﬂ H in Figure 4c beconme unstable and how thisg leads to the
appearance of faur new equilibrium paoints, The story is a precise replication
of what wasy described 1n the previous section, with a second biturcation step
succeeeding the first., As the value of w increases, the absplute slopes of
f(g)(yt) at G and H Will increase monotonically.7 Ultimately, these sloupes
must exceed unity in absaolute value and then their surrounding cobwebs must

become unstable, as before. In addition, if we form the function Yirg =

f(4)(yt) = f(f(f(f(yt)))), for precisely the same reasons as before the curve
representing f(4)(') Will become tangent to the 459 ray at 6 just when the
slope aof f(z)(-) = -1, and the same will be true at H. Thus, for w slightly

larger than this, 6 and H will each be surrounded by two new equilibrium
points for 8 period Cobweb oscillations., Each such oscillatory disturbance
will initially bhe stable but will 9raow unstable as w increases still turther.

The process obviously can repeat itself ad infinitum thus giving ri;e tao
an infinite set of superimposed oscillations, each of an even number of
periods in duration.

Later, we will pause briefly to see how tycles of oudd periods uf length
can arise. Byt tirst, we show some actual superimposed oscillatians of

periods 2 and 4 tg give concreteness to the abstractions discussed sp far.



W.J. Baumal and J. Benhabib

_21..

VI. §gperimposition‘0f Two Sets of Oscillations: Example

While it ig cledr from the Preceding discussion that the initial two
period cycles will at some point be joined by a pair of four period perturbing
oscillations, the tangible form their conjunction assumes stil]} needs tg be
made clear. Figure 1, in additian to showing f(yt), also includes the tipge
path of the first 14 periods, starting with Yo = 0.999.  The resulting cubweb
obviously invalves cyclical behavior ahbout point E, but the pattern is nat
obvious, However,8 Filgure Sa represents the time path for periods 47 to 50,
We see here that the time path has settled daown into ap (approximately)
recurrent pattern (w Has not yet entered into the region of true chaotic
behavior). We seen tu have two nested cycles with the time path alternating
between them. The cyclical path ABCD does not return to starting point A but
instead goes tg neighboring point K; then it follows the cycle KFGH and then,
apparently as something of a miracle, returns to starting point A of the other
cycle, However, this is ng great coincidence, but a normal part of the
process, for reasons the analysis of the Preceding sections has indicated., [t
is just in this wWay that oscillations of tour periad &ength are superimposed
on cycles of two period length., Both types of oscillatian are shown in Figure
3b which is the time path generated by the phase diagram in Figure Sa.

At first glance we see only a persistent (but imperfectly replicated)
oscillation exactly two periods in length, which clearly dominates behaviar,
Where are the superimposed four period oscillations hidden? They are
toncealed here by the larger two periad oscillatians. Tg see them one must
first loogk exclusively at the upper horizontal segments a, c, e, g and i of
the time path, and then by looking in turn only at the lawer segments, b, d,

t, h and j.
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The upper segments describe the first of the faur period oscillations,

Starting from a, and skipping one period, Y¢ talls to c¢. Then, after a gap of

another periad, Yy riees again to e. Continuing in this way we see that one
has an oscillatory disturbance whose high points are a, e, 1, ... and whose
low points are c, g, +vxy With four periods elapsing between, say, one high
point and the next. This oscillatian carresponds to the difference in height
between horizontal segments GH and CD in the time path of the phase diagram
Ja. The reader will now readily recognize the other faur period oscillatory
disturbance in Figure Sb by looking at the lower horizantal segments b, d, f,
hy, and j.

We can see now where we are left by the superimposition of four periaod
uscillatory disturbances upon aur initial two period oscillation. The net
result, i1n the limit, is a single four period cycle, that 16, & cycle that
repeats itself precisely every four periads, as is confirmed by careful
examination of the right hand end of the time path in Figure 5b.

We can also usefully return to Figure 5a to tie together the various
strands of our ekplanatory discussion.8 In Figure 5a suppose we were to

superimpose the four period phase graph given by Yieg © f(4)

(yt), drawing it
in just as 6(2) was drawn into Figures 4a-4c. Then, 1t is not difficult to
canfirm that f(4) contains four points af negatively sloping intersection with
the 45° line. While f‘4) is not actually drawn into Figure Sa it turns out,
tor reasons about to be suggested, that these intersection (equilibrium)
points are B, F, D and'H -- the intersection points of the 459 line with the

path ABCDKFGH. Why must the equilibrium path go through those intersectian

points? Consider the dase where the negative slopes of g (8) at 1ts four
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intersectian points, B, F, D and Hy with the 459 )ipe are all very small.

Then each af these points, e.g., B, will be surrounded by cobweb paths each ot
which canverges rapidly to the intersection point in its interior (point B),
Very rapidly all maovement of Y¢ Wwill therefore take it to points very close to
ane or anather of the four paints B, F, D ar H. Moreover, should Yy attain
one of these fgur points, say B, then Yy cannot return to B unti) precisely
tour periads later sifice B is an equilibrium point of ALY but not of f(z) or
f. That is, if we let Yp represent the value of y at B, then if for some t =
t¥ Yt# = ¥y, we must also have Yiteg = Yp but not Ye¥ey =y, or Yeten = V-
A similar abservatiaon holds for the other three intersectian points, £, D and
H. It follows (in the limit) since Y has only four pPlaces where it can goa,
and can go to any particular ane of them anly once in four periaods, that Y
must divide its tinpe equally among all four points, and since Yieq 15
determined uniquely hy Yo it must repeat its circuit every four periods.
Thus, for any value of w at which f(q) has four stable intersection points
with the 459 line, those four intersection points will constitute a stngle,
rather messy, linmit cycle four periods in length, like that in Figure Sa,
Similarly, at values of W where f(a) has eight stable intersections, the time
path will be characterized by a single even messier Limit cycle eight periaods

in length, and so on, ad infipitum,

VIT. How Three Feriod Gycles Arise

S0 far we have dealt only with cycles whose duration is an even number of
periods, However, it is now easy to show how odd period cycles arise, using
essentially the sane approach as hefore. Tg find the three period cycles, for

example, we plot the phase diagram for
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(3)

= f (yt) = f(f(f(yt))).

Yies

L #lyy) has a single hill, % (y.) will normally exhibit four hills
when the tuning parameters have made the f(yt) hill sufficiently steep, The
graph is shown in Fidures éa and &b. In ba, with w relatively small, the
phase curve only crosses the 45° ray once, at a location, E, which is also the
nontrivial equilibrium point of f(yt). However, as w increases i1n value the
hilltops of f(3) will rise and the valleys will deepen, and eventually the
450 ray will be crossed seven times. Initially the corresponding six new
trossings will correspond to points on two cycles of three periods, ane of
which is stable and the other unstable. Unlike the bifurcations of tycles of
even Grder which derive fron cycles of lower period as their equilibrium
points undergo a loss of stability, odd period cycles do not bifurcate from
lower order cycles, but emerge or disappear in pairs, with a stable and

unstable cycle constituting each pair,

VIIT. Chaos and Strange Attractors

Despite its aura of erotic kinkiness, "strange attractor" is a technical
term which offers yet anather insight inta the Workings of the chaaos
phenomenon. An attractor is what most of us might describe as the equilibrium
or limit time path of a stable dynamic system, whether or not that system is
chaotic. Far example, the difference equatian Yegp © O.Syt clearly converges

toward the equiltbrium value Yo = 0 so that any time path of the equation,

whatever the initial point, will converge in the limit ta the origin in the
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phase diagram. The origin is then said to be the attractor for this
relationship; and in this case the attractaor 1s clearly a single point,

In other cases, the attractor is more complex. For example, all tinme
paths of the system may be cobwebs which converge toward a siwmple rectangle in
the phase diagram. This means that the time path will settle dawn 1n the
limit to a two period oscillation -- a repeated traversing of that rectangle,
going endlessly back énd forth from its upper to its lower edge and then back
up again. Here the attractor is the rectangle, that is, it is a two period
limit cycle, toward which all time paths of the system converge.

Attractors can grow more complex still, as illustrated in Figures | and
Sa. In the former we see a complicated cobweb path which converges to the
attractor shown in Figure S5a, an attractor which can perhaps be described as a
pair of intertwined rectangles., The result is an equilibrium tiwme path
involving somewhat messy oscillations approximating those in Figure 3b (that
have already been disjcussed).,

Now, intuition suggests, correctly, that in the stable case, as the
attractor aof the system is made increasingly cawmplex by changes in the
pertinent parameter values, the time path will increasingly take on chaotic
attributes. Indeed, when the parameter values of a stable system enter the
true chaotic region the limit path will achieve the degree of complexity that
leads it to he referred to as a “"strange attractor."

It is possible to provide pictures of strange attractors, but they are
sufficiently convoluted that it is fairly difficult to do so without recourse
to three dimensional colored diagrams (for nice examples, see Crutchfield,

Farmer, Packard and Shaw, 1987, pp. 50*51).9
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IX. Sensitivity of the Time Path

Next, let us deal‘nith the extreme sensitivity of a chaotic time path and
its qualitative properties to very small changes in initial conditions. This
property has attracted a great deal of attention in disciplines outside of
economics which have also utilized chaos theory. For example, meteorologists
have dubbed this sensitivity the "buttertly’s wing phenomenon." They refer to
the possibility that a butterfly fortuitously flapping its wings 1n Hung Kong
can cause tornados in bklahoma if weather is controlled by chaotic
relationships.

A few graphs will illustrate this degree of sensitivity. In Figures 7a,
7b and 7c there is no difterence in initial conditians ar anything else,
except that in 7a w = 3.935, in 7b w = 3.94, while in 7c w = 3.945. We see
that changes in the third decimal place in the parameter value can transfarm
the entire picture unrecognizably. It is also easy to demonstrate that far
smaller changes in the value of the parameter can cause very similar
upheavals., Not only that. If we hold the parameter value constant and change
the initial condition by micrascopic amounts in a chaotic regime equally
startling gualitative ghanges in the time path will follow. (We provide no
graphic example because when one changes the initial conditions, leaving w
constant, the resulting graphs differ from one another very much like figures
7a, 70 and 7c do.)

The sensitivity of the time path of a variable governed by a chaotic time
path can he hrought out in another way. In a calculation by Richard Quandt,

the time path of our illustrative equation Yieg © wyt(l~yt) was determined
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twice, each time for 640 periods. The first calculation was carried aout by a
pProcess that rounded after 7 decimal places while, in the second, rounding
occurred after 14 decimal places. With w sufficiently low so that the
equation had not yet actually entered the chaotic region the two calculated
time paths remained virtually identical even after 400 iterations. In
contrast, with a w value sufficiently large to produce chaos, after anly 30
iterations the two series lost virtually any resemblance to ane anather,

To be specific, tetting, e.qg., y(14)640 represent the 440th observation

with a calcuation accurate tg 14 decimal places, for a nanchaotic w = 3.5

Quandt obtained
y(14)640 = 0,3828196830, y(7)640 = 0,3828207254,

But for a chaoticiw = 3.9, the two series laost all resemblance after anly
a few periods, and gave, for example

y(14) = 0.8823060155, yi7) = 0.4794570208.

31 31

These figures dramatize the extreme sensitivity of trajectories to
inttial conditions. Sensitive dependence to initial conditions will not be
ohserved if there exist stable periodic time paths that attract trajectories
trom almost atl initial points. For the quadratic case there will be many
values of w between 3 ahd % tor which stable arbits exist but there will alsao
be a large set of w's for which trajectories will be sensitive to initial
canditions. The studies of Shaw [1981) also confirm that faor the quadratic

tase sensitive dependente will be prevalent for values of w between 3.5 and 4.
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These fiqures indicate the difficulties that are apt to beset forecasting
in the presence of chaos. Even a forecasting procedure of unprecedented
accuracy is likely in such a case ta yield results that differ vastly from the

actual course of future developments.

X. Sudden Qualitative Breaks in the Time Path

Figure 7b also dramatizes anather of the characterizing attributes of
chaotic trajectories -- their propensity to introduce sharp and unheralded
qualitative breaks in time path. Fram the initial point, A, of the time path
until point B, some 25 periods later, there is a fairly homogeneous regime of
(somewhat lopsided) c¢ycles which seem to exhibit no clear trend in amplitude.
Then, suddenly, the time path becomes almost horizontal, and for 10 periods
(from B to C) cyclical behavior all but disappears. At that point, just as
unexpectably, several tairly sharp oscillations arise, apparently out of
nowhere, abruptly becoming very moderate again to the right of point D.

It is ditficult to imagine how any forecasting technique that relies upon
extrapolation, direc{ or indirect, could have correctly predicted events
dguring the period encompassed between points B and C from even the most
accurate and tullesti set of data about the 25 period interval that
preceded it,

This graph suggests that chaotic behavior does not generally mimic pure
randomness in the performance of its basic variable. Rather, the time path
can resemble one that might be expected of a moderately orderly deterministic
model, but which is at the same time subject to very large random disturbances

occurring at randomly determined intervals.10
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XI. Soume Basic Mathematical Results

Modern methods of Qualitative analysis of dynamical systems qgo back tao
Puincaré (18801, 018991, Since the classic wark of Smale [1%471, it has
become clear that very tomplicated trajectories (time paths) can easily arise
in certain dynamical syétems and that such camplicated trajectories can
persist when swall perturbations of the underlying system occur. (For a clear
exposition see Guckenhelmer and Holwes [19831.) The papers of Li and Yarte
{1975} and others and tﬁe work of S&rkovskii [19641 which has recently hbeen
rediccovered (see Steph4n [19771) have greatly facilitated exploration of the
pertinence of stch compﬁicated dynamics, arising in simple first order dynamic
systems, to a variety of fields, such as physics, biology or econamics,

Let us now describe two of the basic mathewatical theorems of chaos
analysis, translating them into terms that econamists can follow more easily.
The theorems describe the superimposition of cycles of periads of different
length and the resulting chaotic behaviar of the time path when cycles of
every integer periodicigy are included. We will also note a few pitfalls
besetting interpetatiaon of the basic theorems, pitfalls that have led to some
debate in the literature.

We begin, chronologically with the theorem of Sarkovskii [19641 which has
recently reemerged.

Consider the sequence of all odd integers, followed by twice that

sequence, then three times that sequence, etc., finally followed by the

descending sequence 2", where n is positive and integer (e.g., ... 26 = b4,
")5 - T f)4 - 3 “y S — ) o i - - o " - -
27 = §2, 27 = 1bh, 27 =8, ...}, Let aPb mean "a precedes b"; then we are

considering the ardering
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(6)  3PSE7.. . P(23)F(2:8)P(2:7) . . P(3-3)PL3-51P(3:7)...64P32PBP4PZ,

Also, let f be a continuous difference equation. Then we have

The Sarkavskii Theorem. If the function f gives rise to a time path with

cycles ot period m, then this time path generated by § will also cantain

cycles of each and every period m* such that mFm* 1n sequence (&),

Far example, since the numbers 8, 4 and 2 follow the number 16 in
sequence (&), the theorem tells us that if a difference equation’s Lime path
happens ta cantain cytles of period 14, that time path must, i1n addition,
contain cycles of perjod 8, of period 4, and of period 2. It follows as a
carallary of the preceding theorem, since 3 is the first number in sequence
(), that when a time path of the sort under discussion contains cycles three
periods in length 1t must also contain cycles of every other possible
(integer) length' This is, essentially, what is meant by "chaas" and
underlies the expression in the literature that “perlod three implies chaos.,"”

We now turn to the Li-Yorke Theorem which contains some of the results of
Sarkokvekii.

The Li-Yorke Theorem. Let f be a difference equation that 1s continuous, and

for which there exist two numbers, a and b, such that if & gAyt « b, then a ¢
Yo &b Now, 1f one can find a y, such that when y, rises for two

successive periods it will fall back to below its initial value in the next

period, 1.e.,

. . 3 :
(7) Yieg = f(ytb 7 Yy and Yigp © f yt) 7Yy hut Yipy = f( )(yt) <Yy
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major consequences follow:

For any 1nteger & » | there is at least one i1nmitial point Y between
a and b such that the subsequent time path, Yio 1% characterized by
cycles aof period k.

There exists an uncountable set, S, oif initial poxntsll 1 the

interval between a and b such that 1t 1nitial points x, and y, both

0
lie tn 5, then (i) ultimately the difterence (xt - yt) between their
respective time paths will approach zera, that i1s, the two paths
witl (tempararily) move as close to one anotlier as may be desired;
(11} however, after some interval of close groximity the two tiame
paths must always diverge again; (111) moreover, no such time path
will ever converge asymptotically to any stable periodic time path;
(1vl indeed, 1¢ L 1s any 1nitial point either outside or 1nside of
S and W, 1s 1te subsequent time path (which may ar may not be
periadic) Yy {for any Yo in 8) will never converge asymptotically to
W

£

of this means that if the Li-Yorke conditions (7} are satisfied for a

given difference equation there will exist an uncountable set of initial

values which generate a time path that is sensitive to the choice ot 1nitial

value and which never approximates any simple and regular path faor an

indetinite period. It 1s these two features that are the formal attributes of

chaotic regimes,
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There are a number of issues that require care in use of the preceding
theorems. As has been noted already, the aperiodic (chaotic) trajectories,
whose existence is shiown in the Li-Yorke theorem, will normally be generated
by an uncountable infinity of different initial conditions. Speaking very

roughly, this may wake it appear that the chaotic region in the realm of

1

LA

initial condition is “very large.” Yet, the Lebesque measure {a standard
measure of the area aor velume occupied by a set of paints) of these intitial
points may be zero, that is, for some chaotic models their behavior may be
nonchaaotic "almost evErywheré." Here it should be noted that the Lebesque
measure is defined so that the measure of any interval is equal to its length,
while & set of "isolated" points, even if there is a nondenumerable infinity
af them, has Lebesque measure zero (that is, these points can be covered with
a countable set of intervals whose total length is arbitrarily small). Under

certain conditions it has been shown that13

the time paths will have at most
ane stable periodic orbit which will attract all intitial points except for a
set of Lebesque measure zero., On the other hand, there may be no stable
arbits at all and almost all initial conditions will then lead to some
aperiodic trajectory. This, for instance, will be true of first order
ditference equation systems whose phase graphs look roughly like inverted Vis,
and the derivatives of whose phase graphs are everywhere larger than unity in
absolute value except at the peak of the graph, where the map will nat be

differentiable14

(see for example Li and Yorke [1975), Thearem 3, or lLasota
and Yorke [19771), It is observatiaons such as this that constitute the core
of discussions about a priori grounds for belief in the prevalence and

significance of chaotic relationships.
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An impartant matter, especially for tarecasting purposes, is whether
intial points that are close together give rise to trajectories that stay
close together or divérge (move apart by a distance larger than a preselected
€ » 0 for periods beyond some date, t*)., Such divergence 1s called “sensitive
dependence on 1nitial conditions, " Ubviously, if a map (difference equation}
has a periodic time path attracting almost all initial points, sensitive
dependence cannot arise. For certain classes of parametrized families of
equations, 1t has been shown (Jacobson (19811, Collet and Eckman [19803) that
sensitive dependence arises for a set of parameter values that i1s large, that
1sy 1t is of positive Lebesque measure. Jacobson [19811 has also shown that
for the quadratic family of difference equations Yieg © wyt(l-yt) where 0 ¢
fo 1, 0 < w ¢ 4, the time paths ot Y; constitute a set of points whose
asymptotic distribution is independent ot the initial value aof yy for a large
set of values of w (a gset whose Lebesque measure is not zero). The behavior
of the determinate time path, then, can have this in common with the paths
generated by certain stochastic systems: the limiting behavior of these paths
can be described with the aid af a trequency distribution. However, while the
distributions for the deterministic and the stochastic systems may seem
similiar, they differ critically because in the deterministic system the
location of the current point by 1tself must obviously indicate completely

where the next point will lie.

X11. Chaos in Higher Order and Multivariate Systems

A number of economic models use n simultaneous difterence equations of
first order ta relate a vector of n dated variables (xlt’ Xopaeeny Xnt) to

their values (xlt+1' x2£+1,..., Xnt+1) in the subsequent period.
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(ther models employ an nth arder difference equation in a single variable
Yy © f(yt~1""’ yt—n) (see e.g., the justly famed Samuelson (1939] model of
the accelerator-multiplier cycle). Any theorem about chaotic behavior in n
simultaneous first order systems (i.e., about systems whose variables are n
dimensignal) must also apply to a single nth order equation. This is so
since, as 15 well-known, such an nth order equation can easily be rewritten as
the simultanecus first order system tn n variahles

Fre T Yeerd e B Veems ceew Fpp T ¥eepy o Ve T PO cees )

All af the chactic ecanomic models referred to in this paper employ one-
dimensianal (that i1s, single variable first-order) difterence equations. One
eaceptian 1s the paper by Benhabib and Day [19811 which studies the dynamics
ot endogenous chouice and provides conditions on preferences under which
chaotic choice sequencés of n-cammodity vectors arise under stationary
conditions., They use the results of P. Diamond [1976) which generalize the Li
and Yarke [19751 propoéitions to the n dimensional {n variable or n period
lag) case. & turther generalization is alse reported by Llibre [1981]. (See
also Marotto [1%781.,) However, so far the available mathematical theorems
that give suftficient cdnditions tor the presence of chaotic behavior in higher
dimensions are not easy to employ and their use up to naw has been limited.
They only suggest the donjecture that in higher order systems sufficient
conditions for chaos tg arise are "easier" to satisfy than in the case of

tirst order systems; that is, chaos is “more likely"” to occur 1n higher order

systems.
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XI1I11. Economic Modelg with Chaotic Properties

In ecaonamics, the possibility of cyclical and chaotic dynamic behavior
was perhaps first 5ugdested by May and Beddington £1973], and has been shown
to arise in simple ad hoc macroeconomic models (Stutzer [19801, Day and Shafer
{19831), in duopoly models (Rand [19781), in models of growth cycles (Day
{19831, R.A. Dana and‘P. Malgrange [19841), in cobweb models of demand and
supply (K.V. Jensen and H. Urban [19821), in models of the firm subject to
barrawing constraints (Day (19821}, in dynamic models of cholce with
enodgenous tastes (Bernhabib and Day (19811}, in models of productivity growth
(Baumal and Wolff [19€431), in dynamic models of advertising expenditures
{(Baumpl and Buandt [19851), in models analyzing military arms races and
disarmament and negotiations (Baumol [19841), in overlapping generatians
models (Benhabib and llay [19821, [1980al, Benhabib [1980], Grandmont {1985] as
well as graowth models with infinitely lived representative agents (Boldrin and
Montrucchio [198%1, Deéneckre and Pelikan [19841). This is only part of a
grawing list,

Cyclic and chaotic dynamics have been shown to arise in a number of
competitive mudels of ‘intertemporal general equilibrium. These results are of
particular interest since they demonstrate that prices and outputs can
oscillate even under standard competitive assumptions such as market clearing,
perfect intormation ard perfect foresight. For overlapping generations models
of exchange, Benhabib and Day [1981] have praovided sufficent conditions for
cyclic and chaotic dynamics under perfect foresight when the young are net
borrowers (the classical case; see Gale [19731). Grandmont studied the case

where young are net sdvers (the Samuelsonian case; see Gale [19731) and
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correctly learn to forecast periodic equilibria. In equilibrium models with
infinitely lived agenis Benhabib and Nishimura [1979), provided sufficent
conditions for cyclic equilibrium and recently, albeit in a more abstract
setting, Boldrin and ﬁontracchio {19851 and Deneckre and Pelikan [19H84] have

shawn that chaotic trajectaries can accur in such models.

XIV. How Hill-Shaped Phase Diagrams Arise in Economics

The key to construction of a model in which chaotic behavior may arise,
the model 1s built updon a difference equation of first order. We must, then,
indicate how such hill-shaped dynamic relationships can arise in economics.
Let us provide brief intuitive discussions of several models which have this
property. We begin wﬂth an example that is an oversimplification, to say the
least, but in which there is a very clear connection with the shape of phase
curve 1n which we are interested.

Consider the relationship between a firm’s profits and its advertising
budget decision. Suppose that without any expenditure on advertising the firm
rannot sell anything.‘ As advertising outlay rises, total net profit first
increases, then gradually levels off and finally begins to decline, yielding
the traditional hill-ghaped profit curve. If Pt represents total profit in
periaod t and Yy 18 total advertising outlay, Py can, for 1llustration, be
taken to follow the eipression
(8) Py = ayt(l - yt)q
1f, in addition, the {irm devotes a fixed proportion, b, of its current profit

to advertising outlays in the following periaod sa that
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{9) Yisep = bpt,
equation (8) is immediately transformed into our basic chaotic equation (1b),
with w = ab.

The reason the slope of the phase graph turns from positive to negative
I1n this case is clear and widely recognized. Even if an increase in
advertising outlay always raises total revenue, after a point its marginal net
profit yield becames negative and, hence, the phase diagram exhibits a hill-
shaped curve.

A moment ‘s thought also indicates why the time path of Y¢ tan be expected
to be ascillatary, Suppose the initial level of advertising, Yoo is an

intermediate one that yields a high prafit figure, P That will lead to 4

Ol
large (excessive) advertising outlay, Yi{» 1n the next period, thereby bringing

down the value of protit, Pl' That, in its turn, will reduce advertising

again and raise profit and so on ad infinitum.

The thing to be noted about this process is that it gives us good reason
to expect the time paths of profit and advertising expenditure to be

oscillatory. But it does not give us any reason to expect that these time

paths need either be cdnvergent ar perfectly replicatory. E£xactly the sane

logical structure is consistent with "sloppiness" in the cycles, so that past
behavior is reproduced bnly imperfectly in the future., That, then, is how
chaaotic behaviar patterns can arise.

Another exawple has been provided in the theory of productivity growth
(Baumol and Wolff [19831). It invalves the relationship between the rate of
productivity growth, (mt+1 “"t)/“t’ (which we can write as H:) and the level,

Teo of K and D expenditures by private industry. Obviously, a rise in ry can
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be expected to increase H:. However, because research can be interpreted as
a service activity with a more or less fixed labor component, its cost will be
raised by productivity growth in the remainder of the economy and the
resulting stimulus to real wages. This, in turn, will cut back the quantity
of Rk and D demanded. The result, as a formal wmodel easily confirms, will be
analagous to the corn-hog (cobweb) cycle with high productivity grawth rates
leading to high R and D prices which restrict the next period’s productivity
growth, and so reduce;R and D prices, etc. If R and D costs ultimately
increase disproportiorately with increases in productivity growth 1t is clear
that the relatian “:+l s f(ﬂ:) can generate the sort of hill shaped phase
graph that 1s consistent with a chaotic reginme.

Ta make this a bit mare explicit, let r: represent the grawth rate of My
Then it Pt 1s the price level of K and D in period t and P: is its growth

rate, we expect by the negative slope of the demand function

. * o . * . . ) o .
and since P° is a rising function of “t which is, in turn, a rising functian

of Mo this becomes
wrt)/rt = G(rt), G < 0,

* .
rt H (rtfl

that is,

Test = Tt *:rtB(rt), = rt(1+G),
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so that where both Ty and ry are positive we must have 6 > -1. HWe see also
that Tty will be zerd if ry = 0 or if My tan assume a value sufficiently
large ta reduce G(rt)‘to -1. Even if the value of 6 never falls that low, the
graph of the last difference equation is apt to have a negatively slaping
segment and hence assume the hill shape that interests us here,

Another model that can generate cyclic or chaatic dynamics i1s a standard
growth model of Solow type in which the prupengity to save out of wages is
lawer than that for profits (for a more camplex versian of this model see
Akerlot and Stiglitz [19691]). Suppose that at low levels of capital stock, K,
one obtains increasing marginal returns to increased capital and the
elasticity of substitution of labor for capital is initially low; but that
diminishing returns evéntually set in and the elasticity of substitution maves
the other way., Then tatal praotits can rise at first, relative to total Wwages,
but later prafits may fall both relative to wages, and even absolutely, This
can 1mmediately generate a hill shaped relationship between thl and Kt as
rising Kt at tirst elicits rising savings and then eventually depresses then
as profits fall.

Similar results can be obtained for a model in which the propensity to
save out of profits and wages is the same but where this prapensity declines
as the society grows progressively richer. (For a formulation in terms of an
overlapping generations madel in which the discount factar increases with
wealth see Benhabib and Day [19801.)

Buestions have beeﬁ raised about the possibility of constructing simple
chaotic macromodels that are consistent with the presence of long lived agents

who optimize intertemporally, have perfect foresight and in which market
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clearing occurs. For it has been suggested that previous models of this type
may generate chaos oniy because they involved agents whose life spans were
less than the duration of many of the cycles, and wha were thereby prevented
from eliminating the ¢ycles through acts of arbitrage.

A model that overcomes this problem can in fact be ccmstructed.15 Full
explanation of the model requires a careful formal analysis. However, we will
try to describe 1t briefly and intuitively. To do so, let us aggregate all
commodities 1nto a sihgle good whase price then constitutes the price level.,
The objective of the hodel is to determine how much woney M (real balance)
will be held by an agént with infinite life, given the expected rate of
inflation, or what is equivalent here, the money stock expected to be held 1n
the next period. There are assumed to be two reasons far holding maney.
First, there is the ocbvious fact that it offers its proprietor future
purchasing power (thak can be increased by deflation). Second, money balances

facilitate transactions and, hence, reduce their real costs. Thus the amount

of money that people are willing to hold today can be expressed as

¢ f[":c»f'r'("iH )]

where Nf+1 is the expected cash balance in period t+}, T(Ni+1) is the expected
value of the rescurces that must be used up in carrying out transactions in
that future periad, and T’ = dT/dM:+l is the expected marginal transactions
cost saving resulting from an increase in money holdings, This relationship
is, as a matter of fact, the first aorder condition for utility maximization by

the agent. Tf expecﬂations turn out to be correct then M$+1 = I‘It and the

+1
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preceding equation clearly becomes a dynamic model, (implicitiy) relating

M and H, .

t+l t

To see intuitivély why the preceding model generates cycles with chaotic
properties we consider the intertemporal equilibrium behavior of its
variables. Along such a time path for money balances in the model the
quanti1ty af money held will incregse only if the return on money 1ncreases.
The return on money has two components: (i) appreciation (positive or
negative) in its purthasing power, (i1} money’s marginal yield in reduced
transactions costs, inen by dT/de+l.

While deflation, which must be associated with an increase in M in the
phase diagram, then contributes a positive amount to the return on maney
holding and, hence, serves to 1ncrease balances, the enlarged balances in turn
lead to a decline i1n marginal liquidity yields (diminishing returns) so that
the transactions savings return to increased balances will also fall. This
eventually can begin to dominate the first companent. Along an equilibrium
path the magnitude of money balances can then reverse direction and start to
fall. {(Rlong an equﬁlibrium path in which expectations may be defined to be
correct, we tan, of kourse, drop the expectation symbol e.) It is easy to
show that all of this is consistent with intertemporal optimization and market
clearing.

We can avoid thie initial deflation element in the story if we permit
money, M, to pay a s@itable naminal interest rate., Then part of the return an

the holding of money%will derive from the interest payment rather than from

deflation and the same argument will hold.
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XV. Empirical Evidence an the Presence of Chaos

The evidence on whether chaos does or does not occur 1n economic
phenomena so far is only suggestive.

Brock (19863 has used some new techniques, (see also Brock and Dechert
[(19861) to test whether a particular time series is most likely to have been
generated by a stochastic system or, instead, by a regime that 1s
(predominantly) chaotic, 1.e., by a deterministic system giving rise to
complicated dynamics (perhaps with minor random influences). Brock and Sayers
{19851 have used these techniques to study a number of macroeconamic ceries.
While the evidence is weak and somewhat inconclusive there seem to be grounds
tor the tentative condlusion that the use in econometric analysis af simple
linear systems with stochastic disturbances may in some particular cases be
inadequate and misleading and that nan-linear systems may be more appraopriate
in sOome cases.

On the other hand, macro variables may not be the most promising place to
look for chaos., Rather, there is reason to expect, from the very nature at
1ts logic, that chaotic dynamics is more likely to affect disaggregated
variables (such as the production of pig iron) rather than an aggregate series
such as GNP, particuldrly when the micro variables are inherently subject to
resource constraints ﬂhat interconnect future values of the variables with
their current levels [as in the case of resource depletion) ALl in all,
then, the evidence foﬁ the existence of chaotic behavior in real economic time
series 1s far from coﬁpelling so far, though what there is does suggest the

value of further reseérch in that direction.
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IVI. Empirical Det¢rminability of the Underlying Structural Model

How does ane test empirically faor the presence of chaos? 0One approach,
based on a very simﬁle and rather naive procedure that seeks to discover the
underlying dynamic system generating a "chaotic" time series will next be
described. To dramatize the simplicity of the procedure, we use the data for
a highly "disnrderl?“ time path, the one shown in Figure 7b, and employ it to
reconstruct the hill-shaped graph of our generating equation
Yigy = 3.94 yt(l-yt}. Here we assume only (or rather, we allow ourselves to
act only on the knowledge) that the underlying relationship is a single
difference equation of first order. This enables us to proceed in the most
direct manner possihle, taking pairs of adjacent observations of y 1in Figure
7b and then merely plotting each Yi+g against the corresponding Yy The
result is shown in Figure B, which indicates that despite the complicated
pattern of the data; we obtain in this way a virtually perfect reconstruction
of our underlying phase curve,

The success oflthis procedure relies, of course, on the fact that there
is absolutely nothihg random in the process. Each generated point in the time
path slavishly follows the dictates of the underlying model and so must
correspand unambiguously to a point an the graph of an equation af the model.
This immediately suggests a naive test to determine whether a time series
involves random or chaotic influences: it a recaonstruction of the underlying
nodel of the sort j@st described can be carried out and yields a highly
regular relationship, the time path can be presumed to be chaotic rather than

random.
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However, the calculatian that has just been described suffers from a
variety of pitfalls, First, the underlying system may have many variables
and/or may have a conplicated lag structure involving an unknown number of
periods. Then this underlying mechanism i€ no longer “"simple"”, and the kind
of "simple" structure to look for 15 never obvious. U0Of course, this problenm
is no ditferent from:that besetting the choice of structure of the model to be
used in an econometric estimation process. Second, the time series or
observations at our disposal may not provide information on the variables of
the underlying system but on some functiaon of those variables. Far example,
1t the system 1e desdribed by a difference equation which 1s & tunction of n
variables which make up the vector L then instead of observing the states of
the system given by the vectar Hy we may only be in a position to observe a
tfunction of Koo Yy =‘h(xt) where Yy is a scalar ta single variable). Thie 1s
osften so when we deai Wwith aggregated time series such as GNF.

Finally, the underlylng system may also 1nvolve some small amount of
random noise, although the deterministic part at the system by 1tself
generates chaotic behavior. The problem of distinguishing essentially
deterwinistic dynamics trom dynamics primarily gaverned by stochastic elements
as a result becomes difficult if not ambiguous. Attempts have been made to
devise more sophisticated methods to deal with such problems. First, means
have been sought to determine whether a given time series is generated by a
stable and stochastic dynamical (difference equation) system or a chaotic but
deterministic system; Here, the "dimension” of the set of points toward which
the time path tends ﬁn the limit has proved a helpful criterion, To explain

the concept and its relevance, we note that i1n the stable stochastic case,



W.J. Baumol and J. Benhabib

given initial conditions tor an initial distribution), the state of the systenm
at a future date, as perceived today, is a random variable. Under appropriate
assumptions this random variable converges to a freguency distribution as the
pertinent date moves toward infinity. Consequently, 1n the case ot randomness
only a continuum may be sufficient to contain all possible limit points aof the
time path., This 15 so because the random variables themselves can assume any
of the set of values in the continuum carresponding to the pertinent trequency
distribution. ln contrast, a trajectory of a deterministic dynamical system
may, as some of the prpceding illustrations show, converge to a finite number
of points (e.g., & stationary point or a cycle). {n addition, 1t may either
follow a chaotic path or converge to a chaotic set (a “strange attractor).

In the last two cases, the trajectory, while not constituted by a finite
number of points, can nevertheless be distinguished from a continuum Lecause,
roughly speaking, the former contains “fewer points". (This will be explained
presently 1n somewhat greater detail).

Methods that seel to distinguish empirically whether the underlying
mechanism is deterministic or not on the basis of finite (but large) and
possibly aggregated séts of time series data are based on this dastinction
between the "dimension” of a "strange attractaor® which, under an appropriate
definition is finite, and the "dimension” of the support of a stationary
distributiaon generate@ by a stable stochastic dynamical systen driven by
shocks that have continuous density functions. The “dimension" of the latter,
suitably defined, can be shown to be infinite. Several definttions of
“dimension", which afe appropriate for use in testing for a finite but large

data set, have Leen provided by lakens tiyd4%), Proccacta and Grassberger
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{1985] and others. F¢r a description and some applicatiaons aof these methods
see Brock [1986), Broﬁk and Dechert [19861, Scheinkman and LeBaron (198641,
Brock and Sayers [1983], and brock, Dechert and Scheinkman [19861.

The loéic of the:dimension approach to empirical testing of whether a
time path is chaotic ar random 1s perhaps more readily explained intuitively
with the aid of Figure 8. We have seen a few paragraphs ago how plotting of
successive values af Yi+y against the corresponding Yi trom the chaotic time
path in Figure 7b gives us a series of points all lying on the parabolic phase
curve ot the system, as shown in Figure 8. Now, even if in the limit these
points were to fill in the entire segment of the parabola in the positive
octant, they would still only constitute a one dimensional set -- a curve in
two dimensional space,

In contrast, had ihe generation of the time path involved substantial
random influences, then the same exercise as that we have just carried out
would obvigusly have yielded a set of points scattered about the parabola: at
best, a grey area, an area that can be covered only by a continuous region in
the diagram and only if that covering region is at least of two dimensions.
This, then, is the sense in which chaotic behavior is associated with a set of
points lower in dimension than is randomness, and this indicates,
consequently, how dimension can be used, at least in principle, to distinguish
the one case from the obther,

However, this leaves us with the difficult problem of distinguishing
empirically any mixed ;ase in which chaotic and random influences are bath
present. Thus, one cohplication that may well beset many economic time series

15 that random noise may well be present in a time series generated by a
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system with a clear 'deterministic" structure, e.g., a structure encompassed
in a difference equation. The problem, as we have seen, is that such a time
series falls into an intermediate category. The deterministic structure of
Yy may involve a time path with a limit of low dimension (possibly
torresponding to a "Qtrange attractor”) and the deterministic part can be
large relative to the magnitude of the variation in the series of
independently distrituted random shocks., The passibility af a “strange
attractor” arising out of the deterministic part of the system, with sone
noise superimposed upon it has been called “noisy chaos". HMethods to detect
such cases 1n which the noise component of the time path is "small" relative
to the autoregressive part are given bleen-Mizrachi (1984) and also Brack and
Dechert [19861.

These approaches are complicated by the fact that the data sets used in
reality are necessarily finite. With finite data, a linear stochastic
difterence equation system can appear to generate a "tinite dimensianal"
attractor if its stoc%astic component 1s small enough, and can therefore
suggest the caonclusion that the underlying dynamic system is strictly
deterministic. (For ia discussion of the difficulties that arise in this
context as a result 0¥ finiteness of the data samples, see Ramsey [19871.)

An additional check that is promising tests whether the underlying system
is, on the average, "stable". Such a test involves methads designed to
ascertain whether trajectories arising out of a given relationship but with
different initial conditions, that are initially close tagether, remain clase,
as they would not do ﬁf they were chaotic.16 Some methods have been designed

to estimate the mean rate of divergence of such trajectories. A pasitive
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divergence rate is then taken as further evidence indicating the presence of a
strange attractor raﬂher than a stable but stochastic dynamical system, whose
stability prevents marked divergence of the trajectories of its variables.
Though necessarily incomplete, this discussion should offer the reader
some r1mpression of the methods now being used in empirical studies of chaotic

phenomena In economics.

iVI1. Concluding Camment

This paper has sought to introcduce the reader to the logic of the chaos
phenamenon, to its implications for economics and to some of the pertinent
economic literature. While not pretending to constitute a systematic survey
af writings in the field we do hope we have pravided the reader with same
sense of the range anﬁ significance of the work it encompasses. At best, the
analysis may offer anjexpanded view of possible qualitative properties of
intertemporal e?onomit processes, At the very least, it is a warning against

simplistic interpretations of complex intertemporal interrelationships.
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In particular, 1f §(t) is a cyclical time path, then for 0 cr <1,
(r)tf(t) is oscillatory in our sense, S1NCE the exponential dampening of
its underlying cycles prevents its trajectory fram canstantly repeating

1tself precisely.

Figure 1 can also be used to remind the reader how one uses a phase
diagram to calchlate the time path. Suppase we start our calculatian
with an initia{ value of vy, indicated by the point labelled y(0) on the
horizontal axig of the graph. Then the next period’s value ot y, that
is, y(1), is given by the height of point A on the phase graph of Yiey ©
f(yt) directly above y(O). Next, we want to repeat the process, this
time starting from y{l), in order to find y(2), the next value ot y,.
Far this purpose we first move horizontally from point A to point B an
the 45 degree line. We do this to move y(1l), i.e., the height of point
&, to the horizontal axis. This is the point directly below B because

the two coordinates of any peint on the 4592 line must be equal. Having



W.J. Baumal and J. Benhabib

2

<

found y{t) on the harizontal axis we now mave directly upward ta paint C

on the phase grdph. Continuing in this way we trace out the time path of

Yio

We nolice that in the leftward region of the diagram, where the phase
graph is upward sloping, the time path ABCDH... does not change direction
(i.e., 1n this case it goes steadily upward). Thus, as in our earlier
example, Yy T aﬂyo with a » 0, the time path has no oscillations.

However toward:the right hand end of the diagram, where the phase graph
has & negative ilope (as where a « 0 in Yy atyo) the time path starts
to ascillate. [t goes up and down in a cobweb pattern (such as HIkLM)
around the equilibrium point E. (E is the equilibrium point since that

is where the phase curve cuts the 45 degree line, so that there Vit

Yi» a5 equilibrium requires.

More qenerally,;the graph contirms why difference equation models tend to
generate the fobr basic time path patterns already described. [If near
the equilibrium point the slope of the phase graph is positive but less
than unity the time path near that point will be nonoscillatory but
stable (e.g., the case Ye aty0 with 0 < a ¢ 1); if that slope is less
than unity then the nearby time path will be nonoscillatary and unstabhle
{("explosive"). ‘If the slope is negative but greater than -1 the time
path near the equilibrium point will be oscillataory but stable
(oscillations o& ever declining amplitude); while if the slope of the
phase graph near equilibrium point E is less than -1 the time path will

be oscillatory and unstable (pscillations of ever greater amplitude).
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For at a crossing ot the phase line with the 450 ray Yeeq = Ve 7 Ve €0

that Yo = wye(l—we) or wy; = (w-l)ye. Hence, vy, {(w-1)/w will not have

"

a positive value for w < I,

Substituting (3) into (2), we obtain dyt”/dyt = Z-woat y, F Yoy trom

which the results ot this paragraph fellow at ance.

The bulk ot the fallowing discussion 1s based on the beauti1ful analysis

in May L9761,

AR (2, ~ , . o
Froot: dt /dy{t = ‘dyt+2/dyt+l)(dyt+1/dyt)’ but at Yi o ® Yy

must have dyt+1.‘dyt = dyy o f0yyyy T df /dy, .

1t can be proved that the slope of the phase curve at equilibrium points
G and H must be the same, and the analagous result holds at any

gequilibrium points that emerge at any subsequent bifurcatian.

The value of w has been changed from 3.45 in Figure 1 to 3.0 1in Figure

S5a, to make the patterns clearer.

We should be cautious not to confuse chaotic sets with attractors. As
has been pointeb out, the chaaotic set may be small so that the
trajectories emanating from most initial points may converge to a
periodic arbit.‘ Only those chaotic sets toward which all nearby

trajectories cohverge qualify as strange attractors.
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While "strange attractors" exist (as they do, for example, far the
quadratic differience equation Yiep = wyt(l-yt)), when they persist under
small'perturbatrons of the equation defining the dynamics 1s still an
open question. It has, however, been shown (Misiurewic: {1980} that some
such relationships possess strange attractors that do not disappear when

the relation isgperturbed.

Frofescor Duandt has carried out a simulation exercise i1n which the
bhehavier of a chaotic time path generated by our basic 1llustrative
difference equagion was contrasted with one that followed an
uncomplicated dqterministic regime that was subject to substantial randonm
disturbance of woderately low probability. Spectral analysis then
yielded very similar results for the chaotic series and the series
subject to random disturbances, properties very different from those that
held tor the time paths of series generated by our equation with w values
not tar from theé chaotic region, The implication is that standard
statistical procedures may fail to determine correctly in any particular
case whether a set of observations has been subject to randonm
disturbances or whether i1t has been generated by a model that 1s
perfectly deterministic but chaotic. For details of the simulations see

Baumal and Quandt [19831.

Thus the number of points in § will, in one sense, be "very large," i.e.,

its cardinal number will exceed the number of integers. Nevertheless,
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the number of those points may be “"very small® in the sense of
constituting a set of measure zero (roughly speaking, § occupiles zero
percent of any caontinuous region that contains S). More will be said

about this later,

The Lebesque meadure of the size of a set 5 on the real line is
technically defirded as the greatest lower bound of the sum of the lengths
ot a uenumerable:set of intervals coverings. When one calculates the
Lebesque measure of a subset of a continuum, it that measure turns out ta
be zero, 1t is t%ken to mean that "almost all" of the points 1n the

continuum lie outside the subset in question.

These conditions are that the map be unimodal, continuous and have a

negative Schwartiian derivative, The Schwartzian derivative of t{x) 1s

given by .
{lll '5 f" ~
D o - .
f! 2 t’

See Singer [1978].

Alwmost all time paths in any such wodel are chaotic.

We should note at this point that similar models can be derived with
money in the utility function, as in Brock [1974) or Calvo [1979]. The
reduced forms of these models are similar to ours. Une can alsao

interpret the tr%nsaction cast function as a generalization of a Clower
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caonstraint whxcﬂ allows trade without costs up to the level permitted by

the available muney balances and prohibits trade beyond that.

The requisite analysis can not be conducted by studying roaots at “the
steady state" since the underlying system is not even known. However, a
procedure that does test whether, an the average, the system is expansive
or contractive ¢an te carried out by studying “Lyapunov exponents” which
generalize the gdea of checking roots at a "steady state.” ‘“Lyapunay
exponents” for én underlying system can be estimated from time ceries
data and give ay 1ndication of whether a system 1s on the average
expansive., If ﬁhe system is expansive (positive Lyapunov exponents) and
the time serxes;qenerates low dimensiaonal surtaces, then there 15 a
presumption thai what 1s 1nvolved is & non-linear deterministic system

which hes given rise to chaotic dynamics.
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