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National Trade Conflicts Caused By Productivity Changes:
The Analysis With Full Proofs

by Ralph E. Gomory' and William J. Baumol’

Many practical issues require an understanding of the circumstances in which a country
gains and in which it loses through improvements in productivity of its trading partner. Does the
U.S. gain or lose when U.S. companies make major investments in plants in South East Asia?
Does the U.S. gain or lose when it trains students in the latest technology and they return to their
home countries. Does it matter whether that home country is relatively undeveloped or is a fully
developed industrial country like Japan?

This paper will deal with these and related subjects, and in the process will make
contributions in two areas, first theory, much of it with policy implications, and second the
introduction of new and powerful analytic tools.

First, the theory pertinent to policy includes the conclusion that the gains from trade that a
country can capture from a partly developed trading partner can substantially exceed the gains it
can obtain by trading either with a fully developed country or one that is extremely
underdeveloped. We also determine what characteristics of a nation’s trading partner allow it to
serve the interests of the home country most effectively. To be such an “ideal trading partner” the
partner’s economy must have low productivity in most industries so that it cannot compete
effectively with the home country in those industries, even at its relatively low wage. Butit
should be very productive in a small proportion of industries so that in these industries it can
produce more cheaply than the home country can.

We will show that if the trading partner is below this state of development, for example if
it is an almost entirely undeveloped country trading with a well developed one, there is a natural
symbiosis: improvements in the undeveloped trading partner usually benefit both countries. But
once the ideal trading partner stage of development is reached, further improvements in the
trading partner’s productivity usually decrease the welfare of the home country. From that point
on we no longer have symbiosis, but rather an inherent conflict in the interests of the two
countries. The nature of this conflict is fundamentally different from conflicts that result from the
trade restrictions and protectionist policies more commonly noted as sources of conflicting
national interests in international trade.

The second contribution of this paper is to provide analytic tools that are new to the study
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of linear trade models.®> These tools enable us to display as points of a graph each of the equilibria
that can emerge from a linear trade model as a result of different values of the productivity
parameters in the various industries of two trading countries. We can obtain these equilibria and
this graph not only for two industry models but for models with n industries as well. We show

that the set of these possible equilibria has robust attributes with the clear economic implications
described above. We can obtain these equilibria and this graph not only for two industry models
but for models with n industries as well, anda we find that models with large numbers of industries
behave fundamentally differently from the more familiar two industry models.

These methods also allow us to quantify the qualitative conclusions we reach. We can
compute the magnitude of the gains and losses to the two countries when a country goes from
being underdeveloped to being the ideal trading partner, or from the ideal trading partner to being
fully developed. This enables us to assert for example, that, for the home country, the difference
between having an ideal trading partner and having a fully developed one is often as large as the
difference between trading with a fully developed partner and being in a state of autarky.

Many of the comparative statics results of general equilibrium trade theory have been

inherently local in character, providing partial derivatives of an endogenous variable with respect
to an infinitesimal change in the value of one of the parameters. OQur analysis is quite different in
that it yields results for all possible parameter values. There is no distinguished starting point or
infinitesimal variation. Consequently for any arbitrary starting point our analysis yields
comparative statics results for changes in the relevant parameters of any magnitude within the
ranges consistent with the constraints of the model. These larger changes in parameter values
can, of course, have effects upon the endogenous variables that can be very different from the
results of local changes in the parameter values. The non-local character of our results explains
why they also enable us to connect linear models with those having economies of scale.
Roots in the Previous Literature: In conducting our analysis we touch on a subject long
discussed by specialists in international trade, the circumstances under which improvements in
productivity in a trading partner are beneficial to the home country. A significant part of the
economic literature on this subject has been based on the analysis of Ricardian models whose
trade equilibrium is shifted by improvements in productivity in one country or the other. In his
noted inaugural lecture Professor Hicks [1953] sketched out an intuitive Ricardian model of the
effect of improved productivity in Country A on its own welfare and that of its trading partner
Country B. He concluded first that uniform improvements in productivity in a trading partner
benefitted both countries, and then went on to distinguish two other cases. In the first the
improvements in Country B are concentrated in its export industries, and he concluded that this
improvement is beneficial to both Countries. In the second case the improvements are
concentrated in Country B’s import industries and he showed that although this is good for
Country A, Country B is worse off.

This fruitful line of thought was taken up again by Dornbush, Fischer, and Samuelson

30One of us, Gomory [1994], has used similar methods for the study of trade models with
economies of scale.
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[1977] in an explicit Ricardian model using a ground breaking approach to deal with an infinity of
goods. Their conclusion was, like that of Hicks, that technological change spread uniformly
among the products of the improving country was good for both countries. They aiso pointed
out, however, that the international transfer of technology from a high-wage country to a less
advanced low-wage country can be harmful to the welfare of the transferring country. In an
illuminating paper that builds on the ideas of both these articles, Krugman [1986] considered the
subject of trade between a technologically advanced country and its less advanced partner trading
partner using some new and realistic premises. He assumed that the technologically advanced
country was likely to make progress more rapidly in its more technologically advanced sectors
and traced out the effect of this progress on both countries using a method of analysis similar to
that of Dornbush, Fischer, and Samuelson. He found an interesting asymmetry. Progress in the
advanced country was always beneficial to both countries, while progress in the less advanced
country, while always beneficial to it, could, depending on circumstances, either be harmful or
beneficial to the more advanced country. He pointed out that these results can be interpreted in
terms of the tendency of the advanced country to make export biased improvements and of the
less advanced country to make improvements that were more import biased.

More recently Johnson, Hyman and Stafford [1993,1995] have analyzed the effect of the
improvement in a single industry in one of the countries. They found, consistent with the earlier
work, that if the industry starts from a very low level of productivity and improves to a
competitive level, the initial effects benefit the improving country but harm the trading partner,
but later, when the industry is entirely shifted to the improving country, further improvements
(which can now be regarded as export biased) are beneficial to both. Whether this is a net gain or
net loss for the other country depends on the balance of the two phases.

All this work indicates that productivity improvements in one country are always good for
it, but that the effect on its trading partner depends on the balance between the damaging effect
on importing industries and the beneficial effect on exporting industries.

Approach of this Paper: In this paper we discuss a different but related issue. Instead of looking
at the effect of changes in productivity around an existing equilibrium, we investigate what
characteristics of a country best serve the interests of its trading partner. Is Country 1 better off if
Country 2, the Country with which it trades, has a high income and its productivity levels in many
of its industries are high? Or is Country 1 better off if Country 2 is relatively poor and in many of
its industries has low productivity?

To answer these questions we consider the full range of productivity parameters that do
not exceed some natural or technological limit. Specifically, for each industry i in each Country j
we consider all levels of productivities e;;<e™;;. We then ask which values of these productivity
parameters yield the best results for one country or the other, or possibly simuitaneously for both.
Using integer and linear programming methods we give sharp answers 1o these questions.

Limits on productivity play an important role in our analysis as they do in real economic
activity. We know that plants will shift to a low labor cost country when it is no longer possible
to increase productivity in the home country to compensate for the cheapness of labor abroad.

Or, at the analytical level, we know that in the last phase of the Johnson, Hyman, Stafford
analysis, limits on productivity will determine the overall balance of beneficial and detrimental
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effects. Our methods allow us to deal systematically with the effects of limits on productivity.

Analysis of the full range of possible parameters, and explicit inclusion of the limits of
productivity, reveals an inherent conflict in international trade. Generally, productivity parameter
sets that are good for one country are poor for the other. The productivity parameters sets that
produce the most beneficial outcomes for one country usually require its trading partner to be
relatively undeveloped, meaning that the trading partner has not attained its maximal productivity
in many of its industries. These productivity parameter values, while good for Country 1, are
usually poor for Country 2. In fact we show that the very best trading partner for a developed
Country 1, is always one that is only developed in a small proportion of the traded industries.
This state of development in Country 2, while good for Country 1, is always a poor outcome for
Country 2 itself.

Relative national income plays a large role in our analysis. We find that there is a range of
relative national incomes in which the countries’ incomes are linked in a way that permits mutual
gains. In this range productivity parameter changes that increase utility in one country usually
increase utility in the other as well. In this range even import biased improvement in the trading
partner is usually good for the home country. But there is another range of relative national
incomes where the utilities of the two countries move in opposite directions as productivity
parameters change. Here there is inherent conflict in the interests of the countries.

We distinguish in our work between models with only a few industries and those with
many. The number of industries matters. The results we have just described are valid for models
with a larger number of industries, usually six or more. These models are different from small
models, such as the familiar England-Portugal wine-textile example, which we discuss in detail
below. In this famous example the outcome at which Portugal specializes in wine and attains its
maximal productivity, and England specializes in textiles and attains its maximal productivity, is
best for both countries. It remains the best even when we consider, as we do, all models with
lower productivities, i.c. ¢ ;<e™; However, we will see that this single best outcome is a
property of some small models, with two, three, or perhaps four industries, that does not carry
over to large ones.

Our methods work well for large models. However, it is possible to go a step further and
follow Dornbush, Fischer, and Samuelson [1977] in assuming symmetric demands and developing
a continuous model. This is a model in which individual industries make up only an infinitesimal
part of the national income. Use of a continuous model enables us to analyze the effect that both
different country sizes and different profiles of maximal productivities, €™ ;; have on the
economic outcomes. In fact we are able to obtain explicit formulas linking a county’s utility to
the production parameter sets of the two countries. We find that (1) in many cases knowledge of
country size alone enables us to predict the exchange rate that gives a country its best possible
outcome (2) the modern tendency of industries to depend more on acquirable skills and less on
natural resource advantages tends to exacerbate the conflict between countries and generally
lessen the gains from trade.

Finally we show that the use of regions of equilibria allows us to connect linear models
with those having economies of scale such as those in Gomory [1994]. We introduce what we
call the correspondence principle to explain this remarkably close connection. The use of the
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correspondence principle explains the similarity of many of the results that we obtain here for
linear models with those that can be obtained with economies of scale.
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I. Bounded Productivity Families, Equilibria, and the Basic Graph
Families of Linear Models In our linear model, the quantities g;; produced of each good i in
Country j are determined by linear production functions ¢; j/;;. Each of the two countries
participating in trade bas a given utility function of Cobb-Douglas form* with demand parameters
d;;. We fix the labor-force sizes L; of the two countries as well as n, the number of industries. A
single model is then completely specified by the vector of productivity coefficients e={e; }.
However, instead of dealing with just one model we will discuss the equilibrium outcomes of the
family of models obtained by considering all productivity coefficients € subject only to a maximal
productivity condition e; < €™; and holding everything else constant. This will enable us to
analyze the effect of different productivity levels on the welfare of the two countries. We will
refer to these as bounded productivity families or “BP families.”

Each equilibrium of a BP family of linear models is represented as a point in a graph of
utility versus relative national income, described below. The region of that graph that contains
all the stable equilibrium points for a BP family of linear models has a definite and characteristic
shape for large models. It is this shape that leads to the economic implications of this article.
The Basic Graph: For any given vector of productivity parameters €={e;;} of a BP family,
satisfying e;;<e; ™, there is a stable equilibrium giving a national income Y; and a utility U; for
each country. From the Y; we can compute relative national income Z=Y/(Y,+Y,). We can
then plot this equilibrium as a point r,(€) in a (Z,,U,) diagram, which displays Country 1's utility,
or as a point r,(€) in a (Z,,U,) diagram which displays Country 2's utility.

Each € gives us one point in each diagram. The 14 dots in Figure 1.1a represent 14 such
r,(€) from one of our models. Z, 1s measured horizontally from 0 to 1. Utility is measured
vertically with the scale chosen so that unity represents Country 1's utility in autarky using the
maximal productivities €™;,. In Figure 1.1b we have the 1,(€). They have the same Z, values as
the r,(€) but describe Country 2's utility. The unit value of utility now represents Country 2's
utility in autarky using the €™ ,.

By combining the two diagrams we can see when equilibria that are good for one country
are, or are not, good for the other. We do this in Figure 1.1c. The equitibrium of each € is now
represented by both r,(€) and r,(€). The blackr, points represent Country 1's utility in Country 1
autarky units, and the gray r, points represent Country 2's utility in Country 2 autarky units. In
the (randomly chosen) example in Figure 1.1c, we sce that the equilibria that yield the most
utility for Country 1 tend to yield a low utility for Country 2 and vice versa.

Stable Equilibria: Next we describe the equilibrium conditions that yield these equilibria. For
this we need some notation. Z; just defined, is Country j' s (relative) national income (Country
i’s share). We normalize analogously all our pecuniary expressions, so p; the price of good I,

and w;, the wage in Country j, are also divided by total income Y,.+Y,. Country 1’s

“Using the Cobb-Douglas demand function enables us to carry out explicit computations and
therefore provide quantitative results about the effects we describe. However, as we will see in
Section 7, many of our qualitative results do not require restrictive assumptions of this type.
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consumption of good i is denoted by y,; and its production of good i by q;;. Country i's
production share or market share of world output of good i is represented by x;;=q;; / (d;;+Q:2)
so that the vector x={x;;} describes the pattern of production.

We can now describe our equilibrium conditions, noting that, henceforth, the term
“equilibrium” will mean stable equilibrium. First, (relative) national income of Country j must
equal the total revenue from domestic and foreign sales of that country’s products. Since with a
Cobb-Douglas utility function Country 1’s expenditure on good i will be d;;Z; this condition is:

ij
(1.1) E,' xi,r(di,lzl +d;,2,) = Z;

for each country. However only one of the two equations (1.1) is needed.® Second, we have a
zero-profit condition. World expenditure on Country j's output of good i all goes into the wages
of the labor /;;employed in that industry, so:

(1.2) w; L, = xd,\Z, +d; o 2s)-

Third, is the full-employment requirement for each country. This is expressed as the condition
that the wage rate times the country's total labor force equals national income:

(1.3) w, L; = Z;

Fourth, we have the requirement that, for each good, quantity supplied equals quantity demanded,
or equivalently, that the value of the output of good i at the equilibrium price equals the amount
consumers are willing to spend on it

1.4) P41+, = 4,22y O PAy; TV L

where the second form of (1.4) follows directly from the first by multiplying through by x;; and
using (1.2). Finally we have the stability conditions that make entry by non-producers
unprofitable. These require producers not to have higher unit costs than non-producers For
example if Country 1 is the producer in industry i and Country 2 is a non-producer, we must have
e;,/W; = €,/w,. More generally:

if x>0 and x;,=0 then e, /w, 2€;,/W,

(1.5) if x,,>0 and x;,=0 then e\ /w, <e;,/w,
if x,,>0 and x;,>0 then e, /w, =€, ,/w,.

The conditions (1.5) are, of course, a form of the familiar comparative-advantage criterion.

In our model then, equilibrium is determined by the relative national income relation,
supply-demand equality for each good, zero profit in each industry, full employment in each
country, and the stability conditions.

Two Remarks: (1) It is easily shown that at equilibrium trade must also be in balance and that
the exchange rate is w,/w,. (2) Ifanx and Z, satisfy the revenue balance condition (1.1), and the

5 Since Z,+Z,=1 and x;,+x;,=1 the two equations (1.1) are dependent.
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stability conditions (1.5) using the wage w;=Z;/L; from (1.3), then that x,Z, is already an
equilibrium. This is because for any x,Z; (1.2) uniquely determines the labor quantities /;;, and
with these known, prices are uniquely determined by (1.4} so the two remaining equilibrium
conditions are automatically satisfied.

I1. Preliminaries: Utility and Linearized Utility
We adopt the notation (x,Z,,€) for the equilibrium determined by the productivity

parameters €={e;;} and having market shares x={x;;}, and relative national income Z, for
Country 1.

Generally a large € means high productivity and high utility, and therefore yields points
high up in either diagram. When the ¢;, are large relative to the e;,, Country 1 is the producer in
most industries so Country 1's income share is large. The equilibrium (x,Z,,€) will have a large
Z,, and the equilibrium point p,(€) will be near the right edge in both diagrams. Similarly, a
large e, , relative to the e;, yields points near the left edges.®

Cobb-Douglas Utility: Cobb-Douglas Utility bz.:HI. yi,ld‘?" is a function of y;;, the

consumption of good i in Country j. Atany equilibrium (x,Z,,€) the consumption y;; can be
found by multiplying world output of good i, which is q; (x,Z,,€)+q; (X, Z,€), by the fraction F
that County j obtains, so the (log) utility is:

@1 UZ,.8)= wxZ,8)=), d,n , 3 djn Fi g, (3,206,505, 25.€)-
With Cobb-Douglas utility, the fraction Country j obtains is F; = d;; Z)/(d; /Z,+d;,Z,),-while the
quantities produced in each country are can be expressed in terms of x, Z,, and € by:

x, (d 2y +d; ) Zy) o 'xi,v(di,lzl +d )L,

w, W Z.
J .I

(2.2) q,/x 2 .€)=e ;e

(2.2) and (2.1) then give us the utility value for any equilibrium (x,Z,,€), and in fact
assign a utility value for any triple (x,Z,,€) whether or not it is an equilibrium.

We will often need to compare the utilities of different non-equilibrium production
assignments x, and (2.1) with (2.2) enables us to do that. The simplest comparison is when we
simply shift production in one industry from one country to another keeping Z, and € fixed. As
one would expect, such a shift increases utility when the shift is to the country with lower unit
cost. More precisely:

One point in a (Z,;,U;) plane can correspond to many quite different equilibria. The following
definition reduces this duplication somewhat. Two equilibria (x,Z,,€) and (x,Z,€") are equivalent
if they differ only in the productivities of industries in which the country is not a producer.
Equivalent equilibria have the same quantities of labor employed in each industry and have the
same outputs, the same Z, the same X, and the same utility. They correspond to the same point in
the (Z,,U;) plane.
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Lemma 2.1 - Production Shift Lemma: If in a triple (x,Z,,€) County 1 has higher (lower) unit
cost than Country 2 in industry i, then increasing X; | and correspondingly decreasing X, , increases
(decreases) utility.

Proof: The marginal effect of such a shift on the (g;,+q;,) term in (2.1) is, from (2.2),

(eeI.J/w1 —ei,szl)(di,lZ1 +d; 5 2,)- This also shows, as one would expect, that when unit costs

are equal, shifting production between countries has no effect on utility.

Shifting production also leads us to the concept of linearized utility whose use will
simplify both computation and theory.
Linearized Utility: To obtain the linearized utility we first compute the utility that would be
contributed to Country j by the ith industry if all production were shifted to Country 1,(x;, =1},
and then compute the utility as if all production were in Country 2 (x;,=1). We then weight both
contributions by the actual shares of world production x;;. So, as in Gomory [1994], we have
defined lincarized utility Lu,(x,Z,,€) by:

2.3) Lu(xZ,.€) = X, %, @0F (Z)q,,(1LZ e x d, InF, (Z))g,,(1.Z,€)) -

Maximizing the linearized utility (2.3) for different assignments x , while keeping relative
income Z, and produciivities € fixed, is maximizing a linear expression in x with constant
coefficients; a very simple thing to do. In what follows we will want to maximize in just this
way using Cobb-Douglas utility. Fortunately, linearized utility and Cobb-Douglas utility are the
same where it matters, as is shown by the Linearized Utility Theorem:

Theorem 2.1 - Linearized Utility Theorem: Utility u(x,Z,,€) and linearized utility Lu,(x,Z,,€) are
equal (a) at every equilibrium (x,Z,,€), and (b) whenever all the x;; are all either 0 or 1, whether
or not (x,Z,,€) is an equilibrium.”

World Utility: In addition to country utility, we will often refer to world utility, the total utility
of all goods produced. This is most useful when both countries have the same utility functions
but we will use it to some extent when they are different as well. We define world utility as

7 Proof: If at an equilibrium the ith industry is shared, then both countries must produce at
equal unit cost in that industry. It then follows from Lemma 2.1 that the contribution to utility is
the same whether Country 1 produces everything, in which case the contribution to utility

is d jn F (Z D g,(,Z 1s€), or Country 2 produces everything , in which case the
contribution to utility is d!.Jln F I.J.(Z]) qi,z(l,Zz,e), or if both produce. In every case the

contribution to utility is  d, in,!ln F r',i(Zl) qf.’l(l,Z],e) +d, in,zln F i,;'(Zl) qr.,z(l,Zz,e). Similarty if

we look at an industry that is assigned entirely to one couniry, the contribution to utility is given
by this same expression whether we look at x;,=1 and x;,=0 or X;,=0 and x;,=1.
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U, =1L (g;, +qi’2)‘“”. This means we are measuring the utility of total world utility using

Country 1's preferences. The expression for world utility in terms of (x,Z,,€) is obtained
immediately from (2.1 )and (2.2) by putting j=1 and all the fractions F; =1.

II1. Basic Structure of the Region

The regions we plot are composed of all the equilibrium points of a BP family. Fora
given BP family we can plot R, the region of all points r,(€) representing Country 1 utility, and
R, the region of all points r(€) representing Country 2 utility. We will also plot the world utility
region R,, , which is composed of the points representing world utility. The general regional
structure is the same for all three regions and for all families. Each region always consists of an
upper boundary curve C,(Z,) and all the points below it. Figures 3.1a,b.c, 3.2, and 3.3 show
some regions for small models.

The boundary curve C,(Z,) completely determines the shape of each region, and it is from
that shape that the economic consequences flow. We will eventually see that, remarkably
enough, C,(Z,) can be determined by solving a very simple one equation (linear) integer
programming problem. But before we show that we will discuss the general structure of the
region and of its boundary.

Theorem 3.1 - General Regional Structure Theorem: R; consists of a boundary curve C,(Z,) and
all the points on or below it.

The assertion of the theorem is certainly plausible. Given any equilibrium (x,Z,,€),
varying all its productivity parameters up and down around e should give us equilibria all around
the point corresponding to (X,Z,,€) in our diagram. This should happen unless at (x,Z,,€) most of
the productivity parameters are ¢;; = €";; 80 that the parameter variation is restricted. Since the
larger e;; give higher points in the diagram, a completely filled out region of equilibria, topped by
a boundary curve involving equilibria with many ¢; e, seems at least intuitively plausible.
That this is actually the case is shown in Appendix A.

We also make some plausibility remarks about the shape of the world boundary region.
At the extreme left of the region Z,=0, so Country 1 contributes nothing to world output. The
largest world output there is obtained when Country 2 is at its maximal productivity in every
industry and that largest world utility is simply Country 2's largest possible autarky value.
Similarly at the right hand edge of the diagram, the largest world utility is simply Country 1's
largest utility in autarky. However in between, when both countries can contribute we would
expect to obtain greater world utility than in autarky (for a simple proof see Dixit and Norman
1980 p711f). This means that we should expect a world utility boundary curve that is high in the
middle of the diagram and lower at the two ends.

We will see that this is so, we will describe the boundary shape of the individual
countries in greater detail, we will show how to calculate the boundaries exactly and analyze the
equilibria that lie on them, and we will draw its economic consequences.

The Boundary Curve and the Classical Assignment: Because of the general structure of the
region, it is the boundary curve that shapes the region and is critical for our analysis. So we now
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discuss the structure of the boundary curve itself. The equilibria on the boundary curve at Z,
have the highest utility possible for each given Z,. The natural way to get the highest possible
utility is to assign cach industry to the country that has the lowest unit cost at the wage implied
by Z,. This leads to a consideration of what we will call the classical assignment.

The Classical Assignment: If we choose any value of Z, we can determine the wages w,=Z,/L,
and w,=Z,/L, at Z , and therefore, for each industry, we can find which country would be the
cheaper producer if both were at their maximal productivities. As in Gomory [1994 ] we define
the classical assignment at Z,, x(Z,), to be the assignment of industries to countries at Z, that
assigns production entirely to the country that would be the cheaper producer at maximal
productivity. This assignment is usually not an equilibrium. However there is one important
exception.

Consider the equilibrium that results when e=e™={e"™;}, i.e. when each country is at its
maximal productivity in every industry. We call this equilibrium the classical equilibrium. The
level of relative income Z, at this equilibrium we call the classical level Z.. . Since (1.5) tells us
that at any equilibrium only the cheaper producer produces in each industry, at the classical
equilibrium, each country produces in the industries in which it is the cheaper producer using its
full productivity potential. Therefore at Z the classical assignment produces the classical
equilibrium.

However, the classical assignment is never an equilibrium except at Z =Z.. For example,
for relative income Z, sufficiently small, Country 1's wage is extremely low. Therefore the
classical assignment would give Country 1 the entire production of almost all industries. But the
large resulting fraction of world revenue Country 1 would obtain would not match the small
relative income Z,, and (1.1) would not hold. Generalizing this thought gives us a theorem we
will use repeatedly.

Theorem 3.2 - Classical Assignment Theorem: The classical assignment gives Country 1 a
revenue greater than Z, for Z,<Z and a revenue less than Z, for Z,>Z. The classical assignment
gives Country 2 a revenue greater than Z, for Z,>Z, and a revenue less than Z, for Z,<Z..°
Strategy of theAnalysis: Now we are going to work out the structure of boundary equilibria.
We will see that boundary equilibria are made up from an initial non-equilibrium assignment of
industries to countries, closely related to the classical assignment. This assignment is then

8Given the intuitive background we have just discussed, this theorem may hardly seem to
require a proof. It would seem that in the Z,<Z. case the lower wage must lead to larger relative
national income. The only point not covered by that reasoning is the possible effect of the change
in demand with different Z, However, that change does not affect the outcome. Proof:

Zf. X CI. (d,+d, ,Z,/Z))  represents the revenue to Country 1 from the classical assignment

divided by Z,. Each parenthesis increases as Z, decreases from Z.. The x%,, also only increase
because, as Z, and Country 1 wage decrease, Country 1 can only gain industries in the classical
assignment. Since the revenue to Z, ratio is 1 at Z, it is >1, for Z,<Z. The other parts of the
theorem are proved similarly.
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modified, without changing its utility, to satisfy the equilibrium requirements (1.1)-(1.5).
Knowing this structure will enable us to understand small models and to find their boundary
curves.

Next the boundary structure will lead us to a simple integer programming problem which
enables us to obtain the boundary shape for any BP family, large or small, rapidly and
automatically.

The Assignments x°: Let us assume Z,<Z and work to obtain the Country 1 boundary at Z,.
Since we want as much output and utility as is possible we initially choose ;= €™ for all
industries. Also, as much as possible, we want to assign to Country 1 the industries i which it is
the cheaper producer. So we will assign to Country | a subset S of the industries S€ it would get
from the classical assignment, assigning all other industries to Country 2. We will denote this
assignment by x° and we will choose S small enough that Country 1 has foo litrle revenue, Le.
that we have:

3.1) DINCAVALT VAL STV

Next we make the assignment x° into an equilibrium. In the industries in S-S Country 1 is the
cheaper producer but x° has nevertheless assigned their production to Country 2. We now revise
downward the productivity of Country 1 in all the S°-S industries until their unit costs match
those of Country 2. This change does not affect utility as we have only changed the productivity
of non-producers. Then, if we have strict inequality in (3.1), we shift entire industries or parts of
the S-S industries from Country 2 to Country 1 to produce equality in (3.1). With equal unit
costs in these countries the Production Shift Lemma tells us this change does not affect utility,
and the Classical Assignment Theorem tells us that the there is more than enough revenue in S-
S€ to produce equality. In fact there is often a choice of what industries or parts of industries to
shift. But whatever the choice we end up with equilibrium conditions (1.1), and (1.5) satisfied.
Then Remark 2 of Section 1 assures us that we have created an equilibrium.
Describing the Equilibria : We will call the set of equilibria resulting from the set S, E(S).
Since none of the changes we made changed utility from the original assignment x5, each
equilibrium has the utility value that (2.1)-(2.2) would compute for x*, i.e. for the triple
(x5,Z,,€™). Each equilibrium also has e;;= €™; for all industries not in SC.S. For the industries
in S¢-S productivity is still €™, in Country 2, but Country 1's productivity has been lowered to
e; =(w,/w,)e™ , . The market shares are x,;=1 for industries in S, x;,=1 for those not in 8¢, and
for the industries SC-S any choices of x;, and x;, that produce equality in (3.1).
The Maximizing Equilibrium: Since we are looking for the boundary equilibrium, we are
particularly interested in the subset S of S¢ that satisfies (3.1), and whose assignment x° has the
greatest utility. The equilibrium or equilibria resulting from this S must in fact be the boundary
equilibrium unless there are still other equilibria that are higher than any of those constructed by
our process from any S. We rule out this possibility in Appendix B. Therefore, we have proved:
Theorem 3.3 - Boundary Structure Theorem: If x%(Z,) maximizes utility over the subsets S of S
that satisfy (3.1), its equilibria E(S) are the boundary equilibria at Z,

This theorem helps us in three ways. (1) It leads immediately to a first general result
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about the shape of the region, (2) it enables us to study in detail the boundaries of small models,

and (3) it leads directly to methods of calculation that enable us to compute the boundaries of

large problems. We will give examples of these three effects now.

The Monotone Increase Theorem: The first general result about the regional shape is

Theorem 3.4 - Monotone Increase Theorem: The Country 1 boundary curve C,(Z,) is monotone

increasing with Z, for Z,<Z.. The Country 2 boundary is monotone increasing with Z, for Z,>Z.
Both behaviors can be seen in Figures 3.1b, 3.1c, 3.2 and 3.3. Proof* The Country 1

utility of any x® is given from (2.1),(2.2), and (2.3) by:

Lu,(x 5,Z,,£™)= u)(x S,Zpﬁ“’a")zzf X Si,l (dln d,e;,L) + x %2 (@In di,ief,szg_l)'
2

We can see by inspection that for any fixed S (and therefore fixed x%;; ) all the terms are either
constant or increase with Z,. Therefore the utility of any fixed x® increases with Z, . Also we can
easily see that if x° satisfies (3.1} for Z, it continues to satisfy it for all larger Z,. Therefore the
collection of sets S we maximize over only gets larger as Z, increases. This means that utility
increases steadily with Z, with an occasional upward jump if a new set joins in the maximization
and provides the new maximum. This gives us monotone increase and proves the theorem.

Next we discuss a specific small model.
The Ricardo Example and the Outcome Best for Both Countries: Figures 3.1a, 3.1b, and
3.1c show the regions for a particular Ricardian textile-wine model. There are only two
industries and two equal sized countries. Country 1 (England) is assumed to excel in the first of
them (textiles) with €™, ;=1 while its wine production is characterized by e™ ,=0.55. The other
country (Portugal) excels in the other industry (wine), with €™,,= 1 and e™,,=0.45. The
demand parameters for textiles and for wine are the same in both countries, d; ;=.55 for textiles,
d;,=.45 for wine.

The boundaries and the region below them include all equilibria with e;;< ™. In
Figure 3.1a we have plotted world output as measured by Country 1's utility function. In Figure
3.1b, we show Country 1's utility, and in Figure 3.1c we show Country 2's utility measured in
Country 2 utility units. We will discuss Figure 3.1 and its boundary points for different values of
Z,.

For very small Z, the classical assignment assigns both industries to the very low wage
England, so S® contains both industries. But since both textiles and wine have a relative income
share of .45 or more, either one alone provides t00 much relative income for the given Z, and
violates the constraint (3.1). The only subset S with revenue not exceeding income share is the
empty set, so the only and therefore maximizing S is the empty set. That is, neither industry can
be assigned exclusively to England. Both industries therefore belong in S°-S and equilibrium
requires e; ;=(W,/w,)e"™;; and e,,=¢™™;, for both industries. England, with both low wage and
low productivity competes with Portugal in both textiles and wine, getting a small share of the
market for each. Then, as Z, increases, England’s wage increases and its productivity rises to
keep it competitive in both industries.

The first assignment change occurs at 7,=.3548. To the right of Z,=.3548 the classical
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assignment now gives textiles to England and wine to Portugal. The increases in England’s
wages and productivity have brought England to its maximal wine productivity, but despite that,
its higher wages make it no longer competitive with Portugal in wine. S© assigns only textiles to
England and assigns wine to Portugal. However, the only subset of S that does not violate (3.1)
is still the empty set. So Portugal takes the entire wine market, England shifts to taking a larger
slice of the textile industry which is the one industry left in S.S. The next possible change is at
Z,=.45 where for the first time there is a possible subset S other than the empty set. Assigning
the wine industry to England is now possible without violating (3.1). Direct evaluation of the
two possibilities would show us that the greater utility is still associated with the empty set, so
we go on as before, with England increasing both wage and productivity and taking an ever
larger slice of the textile market. Finally, at Z,=.55, which is the classical level Z, it is possible
for the first time to assign the textile industry to England alone. This assignment turns out to be
the maximizing S. Therefore, textiles move from S€-S into S itself, and the boundary point now
has the productivity parameter €™ ;=1 in textiles rather than (w /w,) €™ | ,= (.55/.45).55=.672.
Consequently, the boundary curve jumps up discontinuously. This reflects the fact that England
is capable of improving its textile productivity even after capturing the entire world market from
Portugal with less than its maximal productivity. Since both SC and S only contain the textile
industry, S¢-8 is empty and there are no industries to share. England has all of textiles and
Portugal all of wine. Both are fully developed. Tt is the classical point.

The classical point is so high that the best outcome for ecach country is attained there, as
Figures 3.1b and 3.1c show. So in this two-product case the classical specialized outcome is the
best possible result for both countries. But this result is far from typical as we will see when our
methods of computation allow us to deal with larger problems
A Method of Computation: The Boundary Structure Theorem next gives us a method of
computation.

Theorem 3.5 - Exact Boundary Theorem: The utility of each point of the boundary curve C,(Z,)
for Z,<Z is obtained by solving the maximization problem in integer x:

C(Z) = Max, u(x,Z,,€" ) = Max, Lu(x,Z,,€™ ")
3-2) Zi x,(d,\Z, +di2)<Z), X TR 1

There are similar statements for Z,>Z and for C,(Z,) and C (Z,).

Proof: This is very close to a restatement of what we already know. The integer x;; select the
industries that make up the set S. The use in (3.2) of the inequality (3.1) makes sure that revenue
from this set of industries does not exceed Z,. The maximization criterion causes the selection of
the maximizing S.” We can use either utility or linearized utility as the objective function as we

To complete the proof we would have to verify one point. Our method of constructing an
equilibrium from S, required S to be a subset of the industries that the classical assignment would
assign to Country 1. We need to show that the S given by (3.2) meets that criterion. However,
this is straightforward. If the S selected by (3.2) contained any industry in which Country 1 was
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are dealing with specialized assignments and the Linearized Utility Theorem applies.

Solving (3.2) is a straightforward dynamic programming calculation which yields the
utility of the boundary equilibrium for each Z,. The resulting boundary curves are those of
Figures 3.1a,b,c, 3.2, and 3.3.

Larger Examples and an Emerging Shape: The Exact Boundary Theorem enables us to look at
larger models. Figure 3.2 is the region for a 4-industry model. In it Country 1 is more
productive in two industries and Country 2 is more productive in two industries. In Figure 3.2
we have combined all the boundaries in a single figure. Country 1 utility is read from the right
vertical axis and Country 2 utility from the lefi. In contrast with the two industry model, in this 4
industry model the equilibria best for the individual countries are not the same - they are point P,
for Country 1 and point P, for Country 2. Figure 3.3 depicts a 6-industry model. Again, different
widely separated equilibria are best for the two countries.

These larger models have show that an increase in the number of traded commodities can
change entirely change the implications of the model. We have seen that two industries is not
enough. It takes more than a pair of goods to bring out the trade conflicts that, as we will see,
always play a significant role in larger models. This can be contrasted with, for example, the
early indifference map analysis of consumer purchase behavior, where it was shown that two or
three good models reveal a great deal that single good analysis cannot show, but that larger
numbers of goods offer no additional major insights.

In addition something else is happening. The boundary curves are becoming smoother
and a definite shape is emerging. We will capture that underlying shape by a simple
approximation.

Consider a modification of (3.2) in which we replace the inequality by equality and,
importantly, allow continuous rather than only integer x. We again use the linearized utility.
This gives us instead of (3.2):

In B(Z)=Max_ Lu,(x,Z,,€™ )

3.3) . B B
subject to Y., \d, Z\+d;, 7)) x, = Z, and x,;+x;5=1.

We will show below that the curve B (Z,) that emerges from (3.3) lies above and very close to
the exact regional boundary C,(Z,), and that it gets closer and closer as n, the number of
industries, increases. First we will show that B,(Z,) is very easily obtained.
Calculating B (Z,): (3.3) represents the problem of assigning industries to Country linsucha
way that Country 1 maximizes its utility for a given national income Z,. With continuous
variables x and linearized utility this is done very easily. First assign all industries to Country 2.
Then order the industries by calculating for each industry the amount that shifting it to Country 1
would increase Country 1's utility (this is a coefficient in the objective function) divided by the

the higher unit cost producer, then we could shift that industry to Country 2. This decreases
Country 1's revenue so (3.1) still holds, but it increases utility by the Production Shift Lemma.
This contradicts the optimality of the set S.
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increase that shift would make in Country 1's national income (this is a coefficient in the
equation). Then move industries to Country 1 in this order, the largest first, until the national
income Z, is exactly obtained.' Entire industries are shifted by this process until the last one.
This last industry, which we will refer to as the special industry or the shared industry, is usually
only partly moved in order to produce a national income that is exactly Z,. The identity of the
special industry varies with Z,.

The result depends strongly on the ordering. When both countries have the same demand
structure the ordering turns out to depend on comparative advantage alone. If the demand
structures are not the same the ordering still takes into account comparative advantage, but also
gives weight to the relative importance of the industry to the two countries. Country I may do
better to acquire an industry in which it has a small comparative advantage and a strong
domestic demand, and therefore a strong interest in a lower price for the good, than to acquire
an industry in which it has a large comparative advantage but, due to low domestic demand, is
relatively indifferent to the price of that good.

The first result about the B,(Z,) calculated in this way is:

Theorem 3.6 - Approximate Boundary Theorem: B,(Z,) lies above all the equilibria of the linear
BP family.

Proof: Every equilibrium (x, Z,,€) must satisfy (1.1) which is the same as the equality in
(3.3). Therefore, every equilibrium x is considered in the maximization with €™ instead of €, a
change that only increases its utility.

However, B,(Z,) is not only above the equilibria, it is close to them. We show this by
producing from the optimizing X an equilibrium that has the sane Z, and almost the same utility.
Converting the x to an Equilibrium: We convert the optimizing X to an equilibrium using the
same basic approach as before. If in the ith industry the assignment x matches the classical
assignment, we leave the e;; at their maximal productivity values. If the assignment is the
opposite of the classical assignment so that the cheaper potential producer does not produce, we
lower the productivity of this non-producer to stabilize production in that industry. This change
in a non-producer has no effect on utility. Finally in the one shared industry we lower the
productivity of the cheaper producer to match the cost of the other producing country. This step
does affect uiility, it reduces it, but it also stabilizes this last industry and gives us an equilibrium.

The only productivity change that affected linearized utility in going from the
maximizing x to the equilibrium was the last step involving industry k. If each industry has only
a small share of the total demand, then this difference in utility will be small and the resulting
equilibrium will be near the original boundary point. We can expect this to happen as the
number of industries increases and demand for any one industry’s products becomes a small part
of national income. In Appendix C we give a precise statement of the very wide range of
conditions under which this convergence of the approximate boundary to the region of equilibria
occurs.

19(3.3) is a special linear programming problem, a knapsack problem, for which the standard
simplex method takes on this simple form.
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The Boundary Shapes: We have used (3.3) to calculate over 100 examples ranging in size from
5 industries to over 40. The calculation is simple and rapid. We always see the same
characteristic shapes, the ones displayed in Figures 3.5 and 4.2 for different 22 industry models.

The Country 1 boundary B,(Z,) always starts from a zero utility level at Z,=0, rises
steadily to a point that is always well to the right of the classical level Z, and then declines to the
unit level which represents Country 1's utility in autarky. By(Z,) has a similar (reversed) shape.

Later we will give more intuitive economic reasons for these characteristic regional
shapes. Here we will state the fundamental theorem, based on (3.3), that gives the regional shape
for B,(Z,) and BAZ,).

Theorem 3.7 - Country Peak Theorem: B,(Z,) increases monotonically from zero at Z=0toa
peak value at Z ,>Z and is monotone decreasing thereafter to the Country 1 autarky value at Z,
=1. There is a similar statement for Country 2.

Proof Qutline: That B,(Z,) is monotone increasing for Z,<Z is certainly what we would
expect since the exact boundary C,(Z,} is. Similarly the zero value at Z,=0 and the autarky value
at Z,=1 are clear from the fact that at Z,=0 Country 1 has, by definition, zero percent of the total
income of the two countries and at Z,=1 it is the sole producer. The difficult part is showing the
monotone increase and to the peak to the right of Z. and the decrease thereafter. We do this by
proving the quasi-concavity of B,(Z,) in Appendix D. That then completes the proof of Theorem
3.7.

The quasi-concavity of B,(Z,) is not easy to prove, there seems to be no useful way to
work with linear combinations of equilibria or of solutions to (3.3) as one would naturally try to
do. In fact, any proof must depend on the difference between (3.3) and (3.2), since, as the figures
show, C,(Z,) the exact regional boundary is clearly not quasi-concave, but B,(Z,) the
approximate boundary is. Also, as we show by an example below, even the approximate world
boundary By/(Z,) is not quasi-concave.

The world boundary always shows up in our computations as very roughly dome shaped.
The shapes of the world and country boundaries are somewhat linked. Atany Z, Country 1 hasa
share Z, of world income and it is plausible that this will give it roughly a Z, share of world
utility. With symmetric Cobb-Douglas demand (d, ,=d, ,) this connection is exact. We see this in
Figures 3.4 and 3.5 which are models with symmetric demand. The linkage is much less clear in
Figures 4.2 and 4.3 which are models with non-symmetric demand. In Figure 4.3 ,an 11-
industry model, the world boundary has a local minimum almost exactly at the classical level
which shows that it is not quasi-concave. Nevertheless, the world boundary gives a useful
intuitive view. If we accept its roughly dome shape, then we can interpret the increase and then
decrease in the Country 1 boundary as Country 1 getting an ever larger share of a world output
' that first increases but eventually, for large Z,, becomes small.

IV. Economic Consequences of the Regional Shape
Inherent Conflict: Clearly, the best outcomes for Country 1 are always to the right of Z, those

at or near the peak of the Country 1 boundary in Figure 3.5. Figure 3.5 also shows the
corresponding region for Country 2, with the best equilibria for Country 2 near its peak to the left
of the classical level. Because of the position of the peaks, the outcomes best for Country 1 are
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always poor for Country 2 and vice versa. A country that is successful in maximizing its utility
does so at the expense of its trading partner. Thus the shape of the region, and the location of the
peaks of the two countries shows that there is inherent conflict in the interests of the trading
partners.

Trading with a Fully Developed Partner: Next we assert that if Country 1 trades with a fully
developed Country 2, (i.e., €,=¢™,), it is confined to the outcomes to the left of Z,..

Theorem 4.1- Fully Developed Partner Theorem: If Country 1 (2) trades with a fully developed
Country 2, the resulting equilibrium will always have Z,<Z. (Z,2Z) .

Proof: Suppose there is an equilibrium with Z,> Z. If County 1 were fully developed
(ie., e ,=e™ ) as Country 2 is, the classical assignment would already give Country 1 less
revenue than its share Z, (Classical Assignment Theorem). If Country 1 is not fully developed, it
will at this equilibrium have even fewer industrics and less revenue than in the classical
assignment of production.. In either case its revenue does not match its share, equilibrium
condition (1.1) does not hold, and there is no equilibrium.

As the figures clearly show all Country 1's best outcomes are to the right of Z., so
trading with a developed partner confines it to relatively poor outcomes. So itis not good tobe a
partly developed country trading with a fully developed partner.
Trading with a Partly Developed Partner: Next we will show that it is good to be fully
developed, especially if the trading partner is only partly developed.
Partly Developed Partner Theorem - Theorem 4.2: If Country 1 is fully developed, then the
possible equilibria all lie to the right of Z; and above the Country 1 autarky level. The area of
possible equilibria is area A in Figure 4.1

Proof : If Country 1 is fully developed, then from Theorem 4.1 the possible equilibria all
have Z,>Z,. Since there is trade, and hence gains from trade, the outcomes will be better than
autarky.

Even within the region A there is a wide range of outcomes depending on the state of
development of Country 2, i.e. its productivity parameters. In Figure 4.1, which is a typical
example, the gains from trade to Country I at its peak P, exceed the gains from trade at the
classical equilibrium C by more than the amount that the gains from trade at the classical
equilibrium exceed autarky.

We know that a fully developed County 2 trading with Country 1 gives us the classical
equilibrium. But what kind of a Country 2 will give us the equilibrium at P,? We will call this
Country 2 “The Ideal Trading Partner” and we will investigate its characteristics.
Characteristics of the Ideal Trading Partner: With what we already know we can find the
ideal trading partner for any given Country 1. Asan example we choose a 22 industry BP
model with non-symmetric Cobb-Douglas utility, and with countries of almost equal in size We
assume that Country 1 is fully developed and look for its ideal trading partner. Using (3.3) we
first calculate the regional frontier By(Z,)and locate the Z, value of its peak. As Figure 4.2 shows,
the peak is at Z,=.74, so at the peak Country 1's wage is roughly 3 times that of Country 2.
Because of its high wage, Country 1 would be the cheaper producer in only 4 of the 22 industries
if Country 2 were fully developed. Next we follow our usual procedure, described in Section 3,
and convert the assignment x of (3.3) into an equilibrium, reducing some of Country 2's
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productivities from their maximum values in the process. At the resulting equilibrium, the fully
developed Country 1 is the sole producer in its 4 industries but, in addition, has almost the entire
market in 13 other industries in which Country 2 is not fully developed. Country 2 is the sole
producer in 5 industries and has a very small sliver of the market represented by the 13 other
industries in which it would be the cheaper producer if fully developed. The incomplete
development of Country 2 permits Country 1 to hold the market in those industries and to have
its large relative national income of .74.

This example is typical, the partly developed productivities of the ideal trading partner
usually allow Country 1 to make most of the world’s goods while Country 2 produces at its
maximum productivity only in the smaller share of industries that it has to itself. A high-
technology country making most things for itself but trading for a few goods with an agricultural
country can be an example.. At the peak outcome any change in Country 2's productivities has a
detrimental effect on Country 1. If Country 2's production parameters increase, this hurts
Country 1, if Country 2's parameters decrease, that too hurts Country 1.

Peak Gains and History: Economic historians have long debated such questions as whether the
U.K_ lost out or benefitied from the relative rise in productivity since the 19th century in
countries like Germany. Our analysis suggests that the effect cannot be determined simply from
the change in German productivity, but requires knowing whether Germany, for example, moved
closer to or further from being an ideal partner for the U.K.

Decreasing Productivities: In discussing departure from peak gains we mentioned the
possibility of production parameters decreasing as well as increasing. It is natural to imagine a
country’s productivities increasing as it learns the latest methods of production or distribution,
however decreases in productivity also have a realistic economic interpretation. We need only
reinterpret the productivities of the BP famnily to allow for industry wide learning. We do this by
allowing the unit of output in cach industry to increases over time, while the ™, remain
constant. A country with fixed real output per labor hour in industry i, i.e. a country that does not
keep up with the new methods, would move to new equilibria with smaller e;;."

Quantifying Peak Gains: Our ability to compute using (3.3) and our ability to work out a rather
complete theory of the symmetric demand case (see Gomory and Baumol [1998]) enable us to
make quantitative statements about the importance of peak gains from trade. On the basis of
both experiment and theory we assert that over a wide range of country sizes and maximal
productivity parameters the peak gains are a very considerable addition to the classical gains
from trade, often exceeding the classical gains by more than the amount that the classical gains
exceed autarky.

The location of the peak also matters. As we will see in the next section, the location of

""More formally: Let the new unit in the ith industry be the old unit multiplied by py(t)=1,
p(0)=1. At any equilibrium (x,Z,,€), at time 1, the productivities in new units are &, and in =0
units, p(t)e;;. Utility has been increased by ILp(t). Since we plot vertical position in autarky
units, which are also multiplied by ILp(t), the (Z,,U,) diagram does not change at all. Buta
country with fixed productivity in old units has productivity in new units of ¢;;/p;{t},a decrease.
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any equilibrium relative to the peak indicates whether the further development of its trading
partner is likely to be helpful or harmful to Country 1.

V. Maximal Productivity Equilibria and the Subregion of Maximal Productivity

The effect of limits on productivity is felt well into the region, not only near the
boundary. These limits have some effect on all equilibria where producers are producing at
maximal productivity. They have the most effect at the equilibria at which the producing
industries in each country are all at their maximal productivities, i.e., x;>0 implies ¢; =", We
call these the maximal productivity equilibria.

If a country is an actual producer in an industry, it will tend to learn how to produce
better. Over time its productivity will tend to approach the limit imposed by its fundamental
capabilities in that industry. That is to say, hat countries will tend to be near maximal
productivity equilibria. For that reason we will focus our attention on the part of the region of
equilibria which contains maximal productivity equilibria.

We might well expect the maximal productivity equilibria to lie in some sort of a band
directly under the upper boundary, and indeed they do. We show this band for Country 1 as the
subregion M, in Figure 5.1. It is not hard to show that this band is the subregion that lies
between the upper boundary B,(Z,) and the lower boundary BL,(Z,) obtained by minimizing
instead of maximizing in (3.3 ).

In BL (Z)=Min, Lu(x,Z,,€" %)
(5-1) subject to Y, id,,Z, vd 2y} %, = Z, and X, +X;,=1
(5.1) is (3.3 ) with the Max replaced by Min.
Conflict and Cooperation: In equilibria below the region of maximal productivity there are
always some producers who can improve their productivity. In most cases they can do this
without changing either x, the pattern of production, or relative national income Z,. Such
changes are quite benign, providing more output with fixed x and Z,, benefitting both countries.

Within the region of maximal productivity, where we generally expect to find the trading
countries, such benign changes are scarcer. At maximal productivity equilibria they are
unavailable. There, increases in productivity are only possible for non-producers. These
increases generally have no effect at first, since they are increasing the productivities of those
who do not produce, but if the increase is sufficiently large a new equilibrium can emerge with
the former non-producer becoming a producer. Then x and Z, must change, entailing migration
of industries and change in relative national income.

The subregion of maximal productivity, then, separates the region of equilibria into two
parts: (1) the part below the subregion, where increases in productivity usually benefits both
countries, and where an analysis that does not consider technological limits can often be used,
and (2) the subregion of maximal productivity itself where increases in productivity are usually
constrained in one country or the other by maximal productivity limits and where industry
productivity increases in one country will tend to cause shifts in industries, utility and relative

national income.
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The effect of these shifts depends strongly on relative income as we sce in Figure 5.2.
Figure 5.2 shows that if Country 1 can increase its share anywhere within the region of maximal
productivity to the left of its peak, it will generally increase its utility and decrease that of its
trading partner. However if its relative national income is sufficiently large, or equivalently if its
trading partner has a relatively small share, so Country 1 is in the region to the right of its peak,
decreases in its share generally increase utility for both countries since the regions of both
countries slope down to the right.

So within the subregion of maximal productivity itself we have a further division (Figure
5.2) into the region of conflict and the regions of cooperation. The region of conflict lies
between the two peaks, where gain in one country usually comes at the expense of the other. The
the regions of cooperation lie outside the two peaks, there shifts in relative national income tend
to either benefit both countries or harm them both.

The effect of loss or gain of industries does not usually depend on the distinction between
import and export oriented industries. In the region to the right of Country 1's peak,
improvements in Country 2's productivities, that enable it to take over industries in which it
formerly imported from Country 1, benefit both countries. The improvement in the cost of those
goods, because they are now made by the low wage Country 2, overwhelms the effect on Country
1 of reduced share or, equivalently, shifting exchange rates. In contrast, between the two peaks
the relationship is reversed. The increases in Country 2's productivity that enable it to export
what it formerly imported still benefit it and still make those newly exported goods cheaper, but
the effects on exchange rate, by making Country 2's other exports more expensive, are such as to
produce a net loss in Country 1's welfare.

In the regions of cooperation, where one country tends to be highly developed while the
other is relatively undeveloped, the development of the relatively undeveloped country helps
both. Between the peaks however, where countries are more similar to each other in their stage of
development, we see the inherent conflict in international trade.

VI. The Effect of Different Maximal Productivities and Country Sizes
on the Shape of the Region.

So far we have confined ourselves to quite general results, results that depend only on the
general regional shape. In this section we take a more detailed approach and consider the effect
on the regional shape and its economic consequences of different sets of maximal productivities
€™ and different country sizes. We have seen that analyzing regional boundaries gets simpler as
we move from examining the exact boundaries of small models to looking at the approximate
boundary for large models. It gets simpler still if we follow Dornbush, Fischer, and Samuelson
[1977] in assuming symmetric demand, d=d; ,=d;,, and going to a continuous model with an
infinity of goods each infinitesimally small.

Under the assumptions of symmetric demand and a continuous model we will give a
remarkably complete characterization of the possible regional shapes. We will obtain explicit
formulas for the boundary curves. We will show simple graphical methods for locating the
regional peaks that allow us to see the effect of different maximal productivities on peak location
and hence on the regions of conflict and cooperation. We will describe the dependence of the
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regional shapes on country size. We will see that the magnitude of peak gains often exceed the
classical gains by more than the amount that the classical gains exceed autarky, and that, to a
good approximation, peak location can be determined from knowledge of the exchange rate
alone.

All this requires some preparation.

Preliminaries - Symmetric Demand and Normalized Productivities: When we described the
method of solution of (3.3) we observed that, for symmetric demand only, the solution X is
obtained by assigning industries to Country 1 in the order of their comparative advantage until
the national income Z, is reached. To exploit this property we (1) normalize maximal
productivities and (2) introduce a new diagram, the e-Z, diagram.

We normalize the maximal productivities in each industry by dividing each ¢™; by
(e™, ,+e™™,). The new normalized productivities cannot exceed 1 and for normalized
productivities €™ +¢™;=1. A normalized productivity of .95 for County 1 in an industry
implies that Country 2 has a normalized productivity of .05, so Country 1 has a 20:1 comparative
advantage in that industry. The advantage of the normalization is that arranging the normalized
™, in order of decreasing size now arranges them in order of decreasing comparative
advantage for Country 1. We no longer have to consider the ™ ;,. Normalization changes the
scale of the utility by a fixed amount and does not affect the shape of the region. In fact, since
we plot utility in autarky units, the regional diagrams are completely unchanged.

Next we introduce the e-Z, diagram in which we plot productivity vertically against Z,
horizontally. In Figure 6.1a we plot the normalized e™>, values from left to right in descending
order, which is the order of comparative advantage, and give each the horizontal length d, that
represents the demand. Since we have symmetric demand, the d, =(d;,Z,+d;,Z,) also represent
the total revenue for each industry. The maximizing x can be read from the diagram for any Z,
by drawing a vertical line through Z, and giving Country 1 all the industries to the left of that
line. The shared or special industry is the one whose horizontal segment is pierced by the
vertical line at Z, and its revenue is divided between the two countries.

Preliminaries - The Continuous Model and Three Maximal Productivity Curves: Now we
move to a continuous model in which the industries become very fine grained. Instead of the
descending succession of horizontal line segments e™,, of Figure 6.1a, we have a monotone
decreasing curve'? e=e™* (Z,). The three dashed plots, E,, E, and E, of Figure 6.1b, represent
three such maximal productivity curves. Each curve e=e™>* (Z,), like the set of horizontal
segments e™; ; in Figure 6.1a, contains not only the productivity information, but also, in its
slope, the demand information as well. Tnstead of a special or shared industry €™, we have the
e-value e=e™%(Z,) which divides the industries assigned to Country 1 from those assigned to
Country 2 at the boundary point B(Z).

Just as in the n-industries case we can convert this assignment of industries into an
equilibrium by changing some of the productivities to produce stability. The procedure is

12 We will use the general word “curve” since any descending curve is allowed. Our
examples, for simplicity, are made up of connected straight line segments.

LINALN19.WPD



23

virtually the same as in the n-industries case so we will postpone a more detailed description of it
until we can describe the structure of peak equilibria which we will do below.

While we can deal perfectly well with arbitrary functions e™*,(Z,), which produce
arbitrary descending curves in our e-Z, diagram, for concreteness in our analysis we will discuss
the three maximal productivity functions of Figure 6.1b. The first,E, is a straight line of
uniformly decreasing ultimate comparative advantage, Country 1 has an enormous, almost
infinite, comparative advantage near the left edge which decreases to the same overwhelming
advantage for Country 2 near the right edge. E, has a first section where Country 1 has
significant greater productivity potential than Country 2, perhaps attributable to its natural
resources, then there is a middle section where the countries productivity potentials are not very
different from each other. Perhaps this section represents industries like textiles, autos, or
semiconductors which depend on skills and knowledge that can be imported or otherwise
acquired by either country. Then there is a final section where Country 2 has significantly more
potential than Country 1. The third curve, E, is the curve for countries with identical potentials
™ (Z,).=e™AZ,).

The Derivative of the Boundary Curve for the Continuous Model: In Appendix D we
derived a general formula for the derivative of the country boundary curves with non- symmetric
demand. In Appendix E.1 we simplify this result to the present case and extend it to the world
boundary. The resulting derivatives are

d inB|(Z)) L Le™ “(Z)(Z)
dz, Z, L(1-e"*(Z)(-Z)
(6.1)
ilnBz(Zl): 1, Le™ ™ (ZWZ) d inB, (Z) i Le™*(Z(Z)
dZ, 1-Z,  L(1-e™*™(Z)(1-Z) dz, L(1-e™ “*(Z))Y(1-.

(6.1) will help us in two ways. (1) For any given ¢™*(Z,), the derivatives in (6.1) become
functions of Z, only. Therefore, we can integrate them and obtain explicit formulas for the
boundary curves B,(Z,), BxA(Z,), By(Z,). We will see these formulas below. (2) For equal size
countries we will construct from the three equalities in (6.1) three special curves which we will
plot in the e-Z, diagram. The intersection of any maximal productivity curve e™* (Z,) with these
three fixed curves will locate the Country 1, Country 2, and World peaks associated with that
e, (Z,).
Equal Size Countries. Locating Zc and the Country Peaks: To separate the effect of different
maximal productivity functions g™ (Z,) from the very strong effects of country size, we first
assume both countries have the same size ( L,=L,) and then analyze the effect of country size
separately below.

We are now ready to find the classical level and the regional peaks. We can do this in an
interesting way. Consider the expression for the derivative of InB,(Z,) from (6.1) simplified by

L,=L,. Thisis:

LINALN19.WPD



24

d mB(Z e™ 9 (ZW(Z
(6.2) dmBE) 1, EN2) P (e™ " (Z), Z).
dz, Z, (1-e™"(Z)(1-Z)

Let us add to the e-Z, diagram the curve P, determined by ¥ (e, Z,)=0, ,which we will call the
Country 1 Peak Determining Curve. P, appears in Figure 6.2b where we can see its rather special
shape. We assert that:

Theorem 6.1 - Intersection Theorem: If in the e-Z, diagram the intersection of ¥ (e, Z,) with the
maximum productivity curve €™ (Z,) is the point (e,Z,), then that Z, is the peak Z, value of the
boundary curve B\(Z,).

Proof: At the intersection (e,Z,) we have both e=e™ (Z,) since the intersection lies on the
maximum productivity curve, and (e, Z,)=0 because the intersection lies on P,. Therefore, Z,
satisfies ¥, (e (Z,),Z,= 0. But from (6.2) ¥ (€™ (Z,),Z,) is the derivative of InB,(Z,) the
Country 1 boundary curve. Therefore, at Z, the boundary curve B,(Z,) has a zero derivative and,
by the Country Peak Theorem, Z, must be the peak Z, value for Country 1.

We can produce a similar curve P, for the Country 2 peak, and another curve (actually a
straight line) Py, for the world boundary peak. All three peak determining curves are shown in
Figure 6.2b together with E,, E,, and E,. The successive intersections of (for example) E, with
P,, P,, and P, determine the Country 2 peak, the World peak, and the Country 1 peak for the
boundary determined by E,

In Appendix E.1 we also showed that the peak of the world boundary curve occurs at Z.
the classical level. Therefore, the intersection of any maximal productivity curve with the curve
P,, gives usits Z, We illustrate this for E, in Figure 6.2a.

Unit Size Countries,The Effect of Different Maximal Productivities: The regions of
cooperation and of conflict are determined by the location of the Country 1 and Country 2 peaks
which we can now find easily.

As we can see from Figure 6.2b, a rapid drop in Country 1's maximal productivity curve
(and therefore its comparative advantage) between its intersection with P, and its intersection
with P, tends to pull the peaks together. This contracts the range of conflict and increases the
range of cooperation. On the other hand, ranges of large comparative advantage for one country
or the other, separated by a range of industries in which both countries have little natural
advantage, as in curve E,, gives more widely separated peaks. To the extent that modern goods
depend more on skill and knowledge, and less on natural resources, the e™™* (Z,) curves become
flatier and more like E, or E, and produce wider peak separation.

The economic consequences of moving from E, to E, or E, are (1) an enlargement of the
region of conflict between the peaks and a decrease in the region of cooperation outside the
peaks, and (2) a decrease in the gains from trade because of the decreases in possible
comparative advantage. In Figure 6.2¢ we show R; Country 1's region and R,, Country 2's
region for E,, E,, and E,. The black dots indicate the R, and R, peaks and, therefore, the
boundary between the region of conflict and the region of cooperation. The widening of the
region of conflict and the decrease in gains from trade are both apparent.

Although this describes the direction of change with different maximal productivities,
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another point that emerges from looking at the intersections in Figure 6.2b is the relative
insensitivity of the location of the peaks to significant changes in maximal productivities. The e-
Z, diagram suggests that for a wide range of capabilities the peak for Country 1, for example, is
always in the range of Z,=.65 t0 .75. With L =L,=1, the real exchange rate is w/w,=Z,/Z,
=7,/(1-Z,), that is, the exchange rate equals the real relative wage. Then we can say that, for a
wide range of capabilities, a real exchange rate or relative wage of between 2:1 and 3:1 is likely
to give Country 1 its maximal gains from trade. Similarly an exchange rate of w,/w, between 2:1
and 3:1 is likely to give Country 2 its maximal gains from trade. However, both countries cannot
simultaneously have this exchange rate (or per capita income) advantage. This is another way of
looking at the element of conflict that exists in international trade.

Fully Normalized Productivity Curves: All three of our standard productivity curves describe
BP families whose maximal productivities e™*,(Z;) and ¢™> (Z,) are in some sense balanced. In
all three cases, when both countries are fully developed, the resulting equilibrium, the classical
point, gives each country half of world production. Neither country, when fully developed,
dominates the other. This shows up in the e-Z, diagram where all three productivity curves cross
the P,, curve at Z,=.5, which implies that the world peak, and, therefore, the classical level, are at
Z,=.5. We will call these balanced productivity curves, curves with e™*,(.5)=.5, fully
normalized productivity curves.

We can expect fully normalized production curves to play a major role in the modern
world. In any trade situation involving both goods in which one country has a natural advantage,
and also goods whose methods of production can be learned and perfected in either country, we
should see successively (1) a first part of the productivity curve where Country 1 has an inherent
productivity advantage (normalized productivity >.5), then (2) arange of industries in which
neither country has an in inherent advantage, (normalized productivity at or near .5), and then (3)
a range of industries where Country 2 has an inherent advantage (normalized productivity <.5).
If the industries that can be learned and perfected play a significant role, the flat middle part of
this curve will be large and will be the part that intersects the world line P,,., producing a fully
normalized productivity curve.

Fully normalized productivity curves also play a special role in this theory. We will show
below that all the regions resulting from productivity curves that are not fully normalized are
very simply related to the regions obtained from BP families with fully normalized production
curves.

Before we analyze these more general regions we will observe that our productivity plot
gives us not only the location of regional peaks but also a rapid way t0 read out the structure of
boundary equilibria.

Reading Out the Structure of Boundary Equilibria: We can quickly read out from the e-Z,
diagram the industry assignments X, and the productivities €, of any boundary equilibrium. We
will illustrate this process in Figure 6.3 by finding the structure of the Country 1 peak produced
by the maximal productivity curve E,

The intersection of E, with P;, marked x in Figure 6.3, determines the Z, value, ZP, of the
Country 1 peak. We put a vertical line V, through that intersection and also a horizontal line H,
through the intersection of V, with Py, The two lines V, and H, divide the plot into four
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quadrants. These four quadrants determine the assignments x and the productivities € of the
equilibrium.

The assignments and productivities are determined as follows: (1) The industries in the
upper left quadrant are assigned to Country 1 and for these e(Z,)=e™(Z,), and &,(Z,)=e"",(Z,)).
(2) The industries in the lower right quadrant are assigned to Country 2 with €,(Z,)=e™*(Z,), and
e(Z,)=e™(Z,). (3) The industries in the lower left quadrant are also assigned to Country 1, but
for these industries Country 2 needs to be incompletely developed so that Country 1 can be the
producer. Giving Country 2 a productivity of zero in these industries will certainly accomplish
that, but any values eX(Z,) with e,(Z,)/w, < e™ (Z,)/w, will do just as well. This completely
describes the equilibrium structure for the E, peak."

In this case we see that Country 1's ideal trading partner, the country that provides peak
gains from trade to Country 1, is one that is fully developed in the industries in which it has
strong natural advantages, and underdeveloped in those that in which Country 2 is more closely
competitive.

Utility at the Boundary Points: For unit sized countries we have been able to locate the peaks
and determine their structure and those of any boundary points. Both for unit sized countries and
for countries of arbitrary size we will also need to determine the utility of boundary points.
Remarkably enough, the assumption of symmetry, by giving us simple expressions in (6.1)
enables us to obtain exact formulas giving us the utility of boundary points. We obtain these
formulas by integrating the derivatives in (6.1).

The first formula we obtain is for the world boundary. In stating the formulas we will use
B (Z,, €™, €™, L, ,L,) to indicate the world boundary for the BP family with productivities
e™* and ¢™,, and country sizes L, and L,. We will use A,(€™,,.L,) to denote for that family the
utility of Country 1 in autarky. We will use S',, for world utility measured in Country 1 autarky
units -- this is B,/A,. The formula, which we derive by integrating the world boundary derivative
from (6.1), is:

13 Here is the reasoning that leads to this process. Industries above the horizontal line H,,
which is the line e=Z° =w" , have e™(Z,)>W",, hence with our normalizations, e™,=1-¢™" <1-
e
Combining these gives ™ wF >e™/w",. This means that the classical assignment assigns these
to Country 1. Similarly those below H, are assigned by the classical assignment t0 Country 2.
But to the left of V, all industries must be assigned to Country 1, therefore, those in the lower left
quadrant must be switched over to Country 1 by lowering Country 2's productivity in these
industries. This explains the process for a Country 1 peak. If the productivity curve had passed
through the upper right quadrant instead of the lower left, as would have happened if we had
chosen to examine the peak of Country 2 instead of the peak of Country 1, the industries in that
quadrant would have to be switched from Country 1 to Country 2, and to make this happen we
would decrease the Country 1 productivity in those industries.
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BW(Zl’em axl,em axz,leLz) - A](em ﬂxl,Ll) Slw(Zl,em axl,em HIZ’LI’Lz)

L Z, m ax
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The Country 1 utility boundary, as we know from is simply the expression for the world
boundary in (6.3) multiplied by Z,. So B,=Z,B,, =A,(Z,S',)=A,S',, where S'; denotes the
Country 1 boundary curve in Country 1 autarky units. When we plot the boundary curves in
Country ] autarky units, as we usually do, we are simply plotting the world curves S!, or the
Country 1 curves S',.

We will also need world utility expressed in terms of Country 2's utility in autarky, A,, s0
we need the corresponding formulas:

B (Z)= Aye™ L) S* (Z.e™ e PolosLy)

(6.3) i)

(6.4) L% e™
with  S7. = (&%) (UZY" (1/Z)"exp( [ 2w gy,
L2 0 em axi’Z(S)
Again Country 2's utility boundary B, and Country 2 curve S%; are simply the expressions in (6.4}
multiplied by Z,.

Now that we have our utility formulas we will begin to deal with general BP families.
We start by analyzing the effect on the regional shape of a uniform across the board increase in
productivity.
Uniform Increases in Productivity: Both Hicks [1953] and Dornbush, Fischer and Samuelson
[1977] conclude that a uniform across the board increase in the productivity of a trading partner
is beneficial for both countries. Since their result applied to each individual equilibrium we can
hope to find some fairly uniform change in the region of equilibria if we replace Country lbya
new Country 1 whose maximal productivities have all been increased by a uniform multiple A>1.

So we now introduce a new BP family whose Country 1 maximal productivities have
been multiplied by A while those of Country 2 remain the same. Direct substitution in (6.3) and
(6.4)"* shows that the new region has boundary curves B*, =A*S*, with

B Bry P51 ad D2 s,

Ax, A ¥ A, ¥

:lZI Sl

(6.5) )

In Figure 6.4, B, and B, are the regional boundaries based on the productivity curve E;, and B’

14 This substitution shows that the new autarky level A*, and the new curve shape S*' are
given in terms of the old by

A+, = A Afem™ L) and S*', = (A2 S (e™ ¥ e™ oL L)
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and B", are the boundaries when the new Country 1 is 4 times more productive.

The first equation in (6.5) shows that, because of the multiplication by A%l the new
Country 1 now has a region allowing more total utility than the original Country 1 when
measured in original Country 1 autarky units. Nevertheless, its boundary curve B¥, is lower than
B, in Figure 6.4. This is because, as usual, we have plotted Country 1 utility in Country 1
autarky units, and the second equation in (6.5) shows that its gains from trade have decreased
relative to its new and higher autarky level. The decrease ranges from a factor of 1/A at the left
edge to no change at the right edge. This decrease means that trade has become less important to
Country 1.

However, both Figure 6.4, and the third equation in (6.5), also show that a productive
Country 1 opens up the possibility of extremely large gains from trade for Country 2 relative to
its unchanged autarky level A,=A*,. Multiplying the Country 2 boundary by A” increases the
height of the boundary. This increase evolves steadily from no change at the extreme left to a
factor of A at the right edge. The gains for Country 2 will be especially large if Country 2 can
obtain its peak gains. If Country 2 can trade with a partially developed Country 1 that is very
productive in the few industries in which it is actually the producer, it can obtain enormous
benefits.

In the modern world it is more difficuit than before to talk about a “potentially rich
country” and to find examples of a new Country 1 with four times the maximal productivities of
the original. However, what we will see next is that different country sizes (measured by the size
of the labor force) produce exactly the same effects as different maximal productivities, and even
the modern world has no shortage of countries that are of different sizes.

Effect of Country Size: As we would expect, especially from Dornbush, Fischer, and
Samuelson [1977], country size has a strong effect. The effect of country size is in fact almost
indistinguishable from the case of a uniform increase in productivity. This is plausible since it is
4 well known observation that we can change units of labor and of productivity together. If we
are measuring labor input in person hours, we can change to measuring the input in terms of an
hour’s work of a group of 10 provided we increase the productivity by 10 also. So a uniform
increase in productivity is equivalent at the total country level to an increase in country size. The
two changes are different if instead of total income we consider exchange rate or per capita
income since the total national income in a small very productive country is spread over fewer
workers than the same national income obtained from a large unproductive country. So our
figures, which represent total national income level, will respond the same way to an increase in
size and an increase in productivity, but when we translate Z, into wage w,=Z,/L, we will get
very different results.

In fact, as we can easily verify by direct substitution in (6.3) and (6.4), an increase in
Country 1 size by a factor A yields new regions whose boundaries are given by the equations in
(6.5). Therefore, we can reinterpret Figure 6.4 as giving the effect of an increase in the size of
Country 2 rather than as giving the effect of an across-the-board increase in productivity.

We can summarize the reinterpretation as follows: A small Country 1 trading with a large
County 2 has the possibility of very large gains from trade, especially if the large Country 2 is
relatively undeveloped. However, in accord with common sense, Country 2 matters little to the
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large Country 1 if Country 1 can ever become fully developed.

General Regional Shape: We have discussed the effect on the regions of simple across-the-
board changes in productivity curves, and also of changes in country size. If we use this together
with our knowledge of fully normalized BP families (families having completely normalized
productivity curves) we can elucidate the general structure of all possible regions.

Our first theorem states that the world boundary for any BP family is closely related to the
boundary obtained from a fully normalized BP family with unit size countries. In fact, it is
obtained from the completely normalized BP family’s boundary by multiplying that boundary by
B” where P is an easily determined constant. Furthermore, the completely normalized
production function that is used in the BP family is also easily obtained from the original
maximal production curve by dividing by a constant and renormalizing. More precisely:
Theorem 6.2 - General Regional Shape Theorem: For any BP family with parameters e™",
e, L, and L,, the world boundary curve in Country 1 autarky units is S',, = p*

S, (en™*, en™*,,1,1). Here S, (en™* ,en™",,1,1) is the world curve for unit sized countries using
the fully normalized en™,. This en™, derived from e™*, by dividing by ¢™*(.5) and
renormalizing is:

em axl(Zl)/em axl(.s)
e™ ax](zl)/em axi(.s)_'_em ax2(Z])/em axz(.s)’

en™ “\(Z))=

L, e™ *(.5)

and P is the constant .
L, e™ (.5

It is B that makes the adjustment both for different country sizes and for different overall
productivities. Clearly there is a similar statement for the world boundary in Country 2 autarky
units. And, as we would expect, the country boundaries for Countries 1 and 2 are obtained from
the world boundaries by multiplying by Z, and Z, respectively. We give a derivation of Theorem
6.2 in Appendix E-2

An equivalent form of the theorem, which we will use in the application below, is one
that expresses any boundary curve, whatever the actual size of the countries, in terms of unit
sized countries and a changed, but not fully normalized, maximal productivity curve. In this
case, there is no term B* to affect the shape of the boundary curve.

Theorem 6.2a.-Second Regional Shape Theorem: For any BP family with parameters €™, €™,
L,, and L,, the world boundary curve in Country 1 autarky units is S', = S, (eb™,eb™,,1,1),
with

(1/B)en™ “*(Z))
(1/BYen™ ** (Z,)+en™ “ SZ))

eb” " (Z,) =
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In this form of the theorem the countries are still unit sized, but the factor f has been
absorbed into the production function, which, as a result, is no longer fully normalized. The
advantage of this form is that, since we have S',, exactly equal”® to a boundary curve involving
only unit size countries, we can use our peak diagram (Figure 6.2b). We can find all the peaks by
intersecting the changed (but casily obtained) production functions eb™*, with P,, P, and P, .
We derive this form too in Appendix E-2.

As an application of this general theorem we will find approximate peak exchange rates
for a Country 2 trading with a large Country 1.

The Peak Exchange Rate when Trading with a Large Trading Partner: Knowing the peak
exchange rate, even approximately, enables each country to know where it is in its regional
diagram. If the current exchange rate is more favorable to Country 2 than its peak exchange rate,
then the current trade regime is in the region of cooperation and Country 2 will benefit from
Country 1's increased productivity. If the exchange rate is less favorable than Country 2's peak
rate, the countries are in the region of conflict and Country 2 is likely to lose from Country 1's
increases in productivity.

We start with a productivity curve e™*(Z,). Let us assume that L,=1 and that L, 1s the
larger trading partner, so L,>1. In Figure 6.5 we show three productivity curves E*, , E*,, and
E*,. Each E*; is derived from one of our standard fully normalized productivity curves E;, E,,
and E, , using Theorem 6.2a with a p=1/4. This is the B we would have, for example if Country
] were four times the size of Country 2 and the productivity curve ¢*(Z,) was fully normalized
so k=e™(.5)/e™* (.5)= 1. The E*, are the eb™; of Theorem 6.2a, and the E, are the en™" .
Whatever our original €™, may have been, fully normalized or not, its fully normalized version
en™ is likely to lie somewhere between E, and E;, and therefore the corresponding eb™, would
lie between E*, and E*,. Then, as we can see from Figure 6.5, eb™*, would intersect P,
somewhere between .4 and .5, locating the Country 2 peak between those Z, values.

Since w,/w;= Z,L, /Z,L,, this locates the peak exchange rate w,/w, in the interval
(.5/.5)L, < wy/w,< (.6/4)L,. Since p=1/4, we have 1/4= K/L, or L,=4k, so that interval is 4k<
w,/w,<6k. As we have argued before in discussing fully normalized productivity curves, in a
modern world we are not likely to see a k very different from 1, so in fact the peak exchange rate
for Country 2 is likely to be somewhere between 4:1, and 6:1.

We can repeat this argument with ever larger L's. If we do we will find that Country 2's
peak exchange rate continues to increase steadily with the size of Country 1. When Country 1 is
10 times the size of Country 2, and k is near 1, Country 2's peak is obtained at an exchange rate
in the neighborhood of 9. A good approximation over a fairly wide range of Country 1 sizes is
that w,/w, at the Country 2 peak is L, (2/3 + 5/3L,)k. We, therefore, have the following
observation: when Country I is much larger (or inherently more productive) than Country 2,
Country 2's peak is attained at wages that are a large multiple of the wage in Country 1.

This contrasts strongly with the exchange rate obtained when both countries are fully

15 We are referring to the fact that there is no longer the factor B to reshape the curve as in
Theorem 6.2.
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developed. This can be shown by the same methods always to remain not far from 1 as Country
1 increases in size. In this case we have the following observation : as Country I approaches full
development the real wages in the two countries will approach closely to one another, as real
wage in country 2 declines'® and that in Couniry I simultaneously increases.

This more general analysis is consistent with what we have shown earlier with fully
normalized production curves and unit sized countries. With a disparity of size the effects seen
there become even more pronounced. A small country trading with a large underdeveloped
country can obtain far greater gains from trade at its peak than it can obtain when its partner is
fuily developed, and to obtain these gains it requires an exchange rate that is very strongly in its
favor.

The Importance of Peak Gains from Trade: Our methods allow us to find the peak and
classical point locations for a wide range of country sizes. We can then obtain from (6.3) the
gains from trade, both at the classical point and at the peaks and see directly how large both gains
are.

In Figure 6.6 we have plotted utility for Country 1 at the classical point, and also at the
Country 1 peak, for country sizes L, ranging from L,=2and L,=8,to L=.8and L,=2. This
covers country size ratios ranging from 1:4 to 4:1 with equal sized countries at L,;=.5. As usual,
the utilities are in Country 1 autarky units, so for each curve it is the vertical height above 1 that
measures gains from trade. The solid curves C,, C,, and C, show the utility at the classical point
using productivity curves E;, E, and E,. The dashed curves P, P, and P, show the corresponding
utilities at the Country 1 peak. We observe that: Over a wide range of country sizes the peak
gains are a very considerable addition to the classical gains from trade, often exceeding the
classical gains by more than the amount that the classical gains exceed autarky. The relative
importance of peak gains increases strongly as we move from E, to E; to E,.

The picture that emerges from this analysis, from the point of view of a developed
country, is that in the early stages of the development of its trading partner, the developed
country realizes very large gains from trade, which then diminish appreciably as the trading
partner becomes more developed. Knowledge of the exchange rate enables a country to know
roughly where it is in this process. These peak gains are considerable over a wide range of
productivities and country sizes, and they become even stronger as trade becomes less natural
resource based and more based on skills and knowledge.

In this section we have provided the tools that permit a detailed exploration of possible
regional shapes and boundary equilibrium structures. Next we will discuss, in a less detailed
way, the underlying economics that lies behind the basic regional shape.

VII. Some Underlying Economic Factors and a Connection With Economies Models
Most of the work we have done so far is quite quantitative. We calculate actual regional

16The curves of Figure 6.6 described below give us some measure of that decline.
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boundaries, we prove rigorously that the rise to the peak is monotone, we can be quantitative
about peak gains from trade. In this section we wili take a different tack. We will attempt to
give some intuitive economic reasoning that bring our results in line with ordinary economic
intuition.

The simplest intuitive explanation of the characteristic regional shape involves the
generally dome-like shape of the world utility frontier. If we have a roughly dome-like world
utility we can see why, as Country 1's share grows it should at first gain utility, it is getting a
larger share of an increasing world output. We can sce why it would later lose utility as it gets an
ever larger share of a world output that is now decreasing toward the autarky level. But why, in
economic terms, would we expect the world region to be dome shaped? One reason comes
immediately to mind. The allocation of fair shares of industries to each country allows the
exploitation of comparative advantage far better than when one country does most things for
itself. We would expect this for any utility, not only Cobb-Douglas.

Certainly we would expect comparative advantage (o play a role but there is also
something else at work. Both our formulas and our figures show that even when the two
countries in the BP model are identical i.e. €™ (Z,)=e"**,(Z,) we still have the same
characteristic regional shape.

The second economic influence that contributes to the dome shape of the world utility
frontier is the diminishing marginal rate of substitution usually assumed for consumer utilities.
This indicates that the world’s consumers will have a relatively low valuation of a boundary
equilibrium near the extreme right or extreme left of the graph. In such an equilibrium the
country with small share specializes in a very few goods, producing large quantities of this small
number of items because it uses its entire labor force on them. The other country divides up its
labor force giving a small amount of its labor to each of its many industries, so only small
quantities of these goods will be produced. Diminishing marginal rate of substitution implies
that consumers will prefer a more balanced bundle of outputs.

Neither of these arguments depend on special properties of Cobb-Douglas demand. So
that it seems likely that these two economic factors, comparative advantage and diminishing
marginal utility, will produce the same effect in models with other utilities.

However, there are limits to how far these general economic arguments can go. The
arguments we have just given make the dome shape, and, therefore, the element of conflict in the
regional boundaries of the two countries, seem plausible. But these arguments apply to small
models as well as to large, and while it is true that the world frontier of Figure 3.1a is monotone
ascending to a peak, the economic consequences of that is not conflict but rather a central peak
that is good for both countries. Also, with the detailed knowledge that we have about the effect
of different maximal productivity choices on large models, we can also construct, even for large
models, extremely artificial choices of productivity parameters that eliminate the characteristic
two peak shape by merging the two peaks at Z 7" There is room f or much more exploration of

"For example if €™ (Z,) intersects P, and then plummets vertically down to P, the two peaks
will come together.
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the demand structures and productivities that produce a dome shaped world utility with separated
peaks for the two countries.

A third general economic factor that would push the world frontier toward a dome shape
is economics of scale. Since we have linear production functions, economigs are not present in
our models, but if they were they would add further to the dome shape, since economies tend to
be reduced when one country makes almost all the goods. There is in fact a very close tie
between the region of equilibria that we have discussed and the multiple equilibria and the
regional shape that emerges in the presence of scale economies Gomory [1994]. We now explain
that connection.

VIII. The Correspondence Principle.

The Correspondence Principle, indicating that the same equilibrium can arise in both a
linear and a scale-economies model, suggests itself in the following way. A given specialized
equilibrium can be stable for two very different reasons. In a model with linear production
functions, it can be stable because the e;; satisfy the stability conditions (1.5), with the producing
industries the low-cost producers. Alternatively, an equilibrium can be stable because its
production functions have scale-economies. These stabilize the specialized equilibrium by
preventing new producers from entering industries on a small scale, where there is an established
large-scale producer.

This suggests that the same specialized equilibrium with the same assignments of
industries and perhaps even the same output of goods can be obtained from a linear model and
from a model with scale economies. To show this we must define our scale-economies model
and its equilibria.

The Scale-Economies Model and its Equilibrium Conditions. We say that a scale-economies
model M(f;;) corresponds to a linear BP family model if it has the same labor-force sizes L, and
L, and the same country demand values d;;. However, instead of linear production functions
¢;;li;» the model M(f;;) has production functions f;;(/) with economies of scale, defined as non-
decreasing average productivity, f;(/)/l. We assume that there is a well defined derivative

df (/)/d/ at I=0, and that f,(L,)/L;, which is the largest productivity value that f; (/)// can attain in
the model, is €™;;.

We adapt the equilibrium requirements (1. 1)-(1.5) for this model. The conditions (1.1)-
(1.4) can be retained unchanged; we need only remember that g;;, the quantity produced, now
equals f; (/;)) not e;f;;. The conditions (1.5) that stabilize the equilibria also translate easily. If
there are two producers of good 1, we require them to have the same average cost, and we do not
allow a non-producer to have an average cost on entering lower than the current producer. The
average productivity for small scale entry is df; ;(0)/dl, so (1.5) becomes:
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(L df. .(0)/dl.
if x, >0 and x,=0 then Sl 5 if.,(0)dl,,

i1 W,
df, (0)/dl. (1.
8.1) if x,,>0 and x,=0 then i OV, < fallip)
, ’ Wi LWy
(1, (]
if x,,>0 and x >0 then UACAY = Jial "2)_
’ , li,lwl li,zwz

Conditions (1.1)-(1.4) and (8.1) are equilibrium conditions for a stable zero-profit equilibrium.
The equilibria (x,Z,} of such an economies of scale model M(f;;} can be very numerous.

An important special case occurs when all the production functions f;;(7) entail startup
costs. With output zero for small / values, the production functions have df;(0)/d/=0. Using this
in (8.1) we see that any specialized x automatically satisfies the conditions (8.1). In economic
terms, startup costs stabilize any specialized production pattern.

Now we relate the many equilibria that arise in M(f,)) to the linear equilibria.
Corresponding Equilibria. We say that a specialized equilibrium point from the linear BP
family and a specialized equilibrium of a corresponding scale-economies model are
corresponding equilibria if the Z, , the market share variables x;; the wages, the quantities of
labor /;; employed in each industry and the prices and the quantities produced are the same in
both equilibria. Clearly, any two corresponding equilibria are represented by the same point in
our graph. We assert that for each equilibrium of the economies model there is a corresponding
equilibrium of the linear BP family.

Theorem 8.1 - Correspondence Theorem: From any specialized equilibrium (x,Z,) of the scale-
economies model we can construct a corresponding equilibrium (x,Z,,€) of the linear BP family
having the same x and Z, and an € given by: (1) the e;; for producers is average productivity at
the economies equilibrium, so e;;=f;;(/;;///;, and (2) the ¢;; for non-producers is average
productivity at output zero, so ¢;;=df, (0)/d/; .

Proof: We can verify directly that the x and Z, with this € satisfy the equilibrium
conditions (1.1)-(1.4) and (8.1) so (x,Z,,€) is a linear equilibrium. Since e;;=f;;(/; <l )L, =
™, this is one of the equilibria of the linear BP family. Since the x and Z, are the same in both
equilibria they yield the same labor quantities through (2.2) and then, because of the choice of the
¢;;» the same quantities are produced at both equilibria. Since the demands are the same, so are
the prices. Therefore, (x,Z,) and (x,Z,,€) are corresponding equilibria.

Many Corresponding Equilibria: If the economies model has many equilibria, each will clearly
correspond to a different equilibrium (x,Z,,€) of the linear model. One economies model is,
therefore, a way of looking at a large sample of the equilibria of a BP family of linear models.
Figure 8.1 shows the equilibria corresponding to one rather small economies model.

The location of the equilibria corresponding to M(f;)) in the region of equilibria of the
linear BP family depends on the nature of the scale economies. If the production functions f; (/)
have productivities f;;(/)// that go on increasing until /=L, the corresponding equilibria tend to be
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low in the region of equilibria of the linear model. This is because equilibrium labor quantities /;;
are generally small compared to the entire work force L;. Therefore, the &=L, ()], they
produce in the corresponding equilibria will tend to be small compared with e™, = f; (L ;)/L;;.
This results in equilibria with relatively low productivity and Jow utility. On the other hand, if
the production functions have already reached full economies of scale when each country is
supplying its own needs in autarky, the corresponding equilibria are high up in the region. In fact
they are all maximal productivity equilibria, because e, =f; ,(/, }/h;; = £ (L)L =™ Figure 8.1
is a case with mild scale economies.

We can also look at the correspondence in the other direction. Given a set of equilibria of
the linear model, when do these all correspond to equilibria from one economies model? We
give a general discussion and a general theorem in Appendix F. Here, however, we will state a
theorem, proved in Appendix F, to indicate the connection between families of linear models and
economies of scale models.

Theorem 8.3 - Maximal Productivity Correspondence Theorem: The 2"-2 specialized equilibria
of the region of maximal productivity always correspond to the equilibria of a single economies
model.

This theorem shows the tight connection between families of linear models and
economies models with startup costs. The region of maximal productivity and its equilibria are
virtually identical with the equilibria of such an economies model. This tends to explain why we
obtain such similar economic resulis, such as conflict in the interests of trading partners, in both
settings.

IX. Summary and Conclusions

By taking explicitly into account the limits of productivity we have shown that the
equilibria of a BP family of linear models form a well defined region with a robust shape. The
shape of the region is such that the best outcomes for one country are always poor ones for its
trading partner, so that policy or circumstance that succeeds in attaining the best outcomes for
one country inherently involves conflict with the interests of the other. In fact, all the best
outcomes for a developed country require its trading partner to be in a only a partly developed
state.

We have introduced the concept of the ideal trading partner for Country 1, and have
shown how the productivity parameter values of a country’s ideal trading partner can be
determined. Any departure from these values, whether through increases or decreases in
productivity of Country 2, the partner, will harm Country 1. Thus the welfare of a country is
sometimes enhanced and sometimes reduced by a rise in productivity of its trading partner, but
these outcomes follow a systematic pattern that is easily understood.

Within the region of equilibria there lies a maximal-productivity subregion. Within the
region the interests of the two countries are in conflict over a wide range, but there is also a range
where improvements in productivity in either country tend to benefit both. This beneficial range
occurs when one trading partner is in the early stages of development.

We then analyzed the effect of the parameters of our linear models on the more detailed
regional shape and on special subregions. Our analyses indicate that the tendency of modern
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industry to be based on acquirable skills rather than fixed natural resources tends to intensify the
inherent conflicts we have described. However, the relative insensitivity of regional shape to
different plausible maximal productivity curves also enables us to estimate the location of
regional peaks based mainly on relative country size. Thus a country can tell whether it is in the
range of cooperation or in the range of conflict from knowing the current exchange rate.

Finally we have introduced the correspondence principle which connects the outcomes
obtained from economies of scale models with those we have obtained here for families of linear
models. This shows that the patterns of multiple equilibria and the regional shape that emerges
in the presence of scale economies are not peculiar to that state of affairs. On the contrary, we
see that even in the linear models that characterize the classical theory of international trade the
large body of equilibria and the region that contains them has its direct counterpart, with all of its
direct implications for theory and policy.
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Appendix A - General Regional Structure
The first step in showing the regional structure is:

Lemma A.] There are equilibria for every Z,, 0<Z,<l. Proof: To construct the desired
equilibrium choose any X satisfying (1.1) for the given Z,. That is, choose any production pattern
x whatsoever that produces the given national income Z,. That there are (many) such x for any
0<Z,<1 follows from the fact that Y (i, Z,+d;,Z,)x;,=1 when x;, =1 all L, and
Y (d, \Z,+d;,Z,)%;,=0 when x;;=0 all . Now to construct an equilibrium from x we simply
choose the ¢;; to produce stability. For example, if x;,;=1 and x;,=0, choose any e; >0 and ¢;,=0.
If x;,=1 and x;,=0, choose ¢;,>0 and ¢;;=0. If both variables are positive for some indusiry I,
choose e, =w,=Z,/L,and ¢, = W, = Z,/L,. These choices clearly satisfy the stability condition
(1.5). By Remark (2) of Section 1, the wages, prices, etc. that this x, Z1 and w;=Z;/L,; generate
satisfy the remaining equilibrium conditions, so this is an equilibrium.
Lemma A2 If (x,Z,€) is an equilibrium on the Z, vertical line with utility U, all the points
below (Z,,U;) on that vertical line are also equilibria.
Proof: If (x,Z,,€) is an equilibrium of the BP family, so is (x,Z,,A€) for all positive A<1 because
the equilibrium conditions (1.1)-(1 .5) remain satisfied. So given any equilibrium (x,Z,,€) if we
steadily decrease the ¢;; by multiplying them by a A<1, the new equilibria have the same x and Z,,
and consequently the same wages W, and the same /;;. However, the quantities produced, the q;;,
will steadily decrease because the g; =Aef; and A is decreasing. Therefore, the utilities U, U,
and U, all decrease and the point representing the equilibrium in any of the regions R,, R,, or R,
moves steadily down, tracing out a vertical line of equilibrium points with decreasing utility.
Now we can establish our theorem:
Theorem A.1- General Regional Structure Theorem: There is a curve C,(Z,)} such that every point
of the (Z,,U,) diagram on or under C{(Z,), and no point above that curve, is an equilibrium point.
Proof: There are equilibrium points on any vertical line by Lemma A.1. These points are
bounded above because the ¢;; and the /;; are bounded, and, therefore, the g;; and U; are also.
Define C(Z,) to be the point in the diagram that is the supremum of the equilibrium points on Z,.
Suppose there is a point p on Z, somewhere below the supremum curve that is not an equilibrium
point. Since C,(Z,) is the supremum, there are equilibrium points on Z, between itand p. But
then lemma A.2 asserts that p must also be an equilibrium. This contradiction proves that every
point strictly below Cj (Z,) must be an equilibrium point. The points on C,(Z,) itself are limit
points of these equilibria. Now if we have a bounded sequence of equilibria satisfying (1.1) -
(1.5), then their limit point will also satisfy (1.1) -(1.5), so that the points on C(Z,) are also
equilibria.

Appendix B - Completing the Proof of Optimality
We now rule out the possibility of there being an equilibrium with greater utility than
those we have constructed. We start from any equilibrium (x,Z,.€). We select from this
equilibrium only those industries in which Country 1 is both the sole producer and the cheaper
producer. Country 1's revenue based on these industries will be less than or equal to what it was
at the equilibrium, and less than or equal to share Z,. Therefore, we can take this as the set S in
the assignment x(Z,,S) or S in which the industries in S are assigned to Country 1, the remaining
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industries are assigned to Country 2, and all productivities are maximal.

We assert that the utility of x°, using maximal productivity in every industry, will have a
larger utility than the original equilibrium (x,Z,,€). This follows from (1) the utility has not
changed in the industries in S. (2) In the remaining industries either (a) Country 1 was not the
cheaper producer, or (b) it was not the sole producer. In case (a) the new assignment gives all
production in that industry to County 2 which is the cheaper producer, so this increases utility. In
case (b) Country 2 had the same unit cost in equilibrium as Country 1, but this cost has decreased
as Country 2 is now the sole producer and its productivity has gone from ¢;; to e™;. Sothe
utility of x* is equal to or greater than the utility of (x,Z,,€).

Since the equilibria derived from x5 have the same utility as the utility of the assignment
x5, (x,Z,,€) can not have a greater utility than these equilibria. This completes the proof.

Appendix C - Convergence of the Approximate Boundary
The utility change from B,(Z,) to (x,Z,€) must come entirely from the one shared

industry. Bither Country 1 reduces its productivity to match Country 2's cost or Country 2
reduces its productivity to match Country 1's cost. In either case the effect on utility is easily
calculated. The ratio of approximate boundary utility to utility of the constructed equilibrium

(x,Z,€) is, using k for the shared industry,
max m ax gy
1) B\(Z) . (max{e R , e W, N
U](x,Zl,E) e™ ax,,,,/W,, e™ "x,,,/w,
Since (x,Z,€) must lie in or under the exact boundary curve C,(Z,), C,(Z,) is even nearer to
B,(Z,) than (x,Z,€) is. This leads to the:
Approximation Corollary: The ratio B,(Z)) C\(Z,))is always < (max(RI/(w1/w2),R2/(w2/w1))D.
Here D=max; d,,, R, =max, ("}, ™, ), and R, = max(e™; /€™ })-
Proof: This is merely (C.1) with the worst possible values inserted.
Now we are ready to address the convergence of B(Z,) to C,(Z,) in large problems.
Convergence in Large Problems: We will say that an n-industry BP family has extremeness
bounded by K if its parameters satisfy:

i € i, i,
(C2) L/L<K, LyLs<K dK (), L<K, 2 <K.

K restricts the amount of variation in country size, productivity advantage, or in the case of the
restriction on demand, the amount by which the demand for one good can exceed the average
demand 1/n. If we restrict the extremeness of our models, their boundaries B, and C, converge
as n, the number of industries, becomes large. More precisely:

Theorem El - Convergence Theorem: For any sequence of n-industry models with increasing n
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and with extremeness bounded by K , the ratio B"(Z,)/C",(Z,) of the nth model approaches 1 as
n—o .
Proof: The formula in the Approximation Corollary shows that any n-industry model in the
sequence has its B"(Z,) C\"(Z,) bounded by:
B"\(Z) n n D 2 Kin
(C.3) l< ) < (max (R"/Z,LJZ,L), R"NZ,LJZ\L,) )" < (K*max (Z,/Z,,Z,/Z))
114

The exponent in the last term in (C.3) approaches 0 so the term approaches 1. So for models
with large numbers of industries the region of equilibria becomes almost identical with the region
under the approximating curve of utility B,(Z,).

Appendix D - Proving Quasi-Concavity of the Approximate Country Boundaries
Qutline of the proof: The approximate boundary B\(Z,) is defined to be InB(Z,)=u,(X,Z,,€™")
where x=x(Z,) is the solution of the linear programming problem (3.3) for each Z,. We prove
quasi-concavity by showing that no local minima of u, are possible.

To do this we first obtain an expression for the derivative du,/dZ,. From this expression
we show that u, has a continuous derivative except at a finite number of exceptional points where
it has a well defined, left derivative (LD) and right derivative (RD). Using properties of the
linear programming solution we will show that at these exceptional points we cannot have both
LD<0 and RD>0, so that a local minimum cannot occur at an exceptional point. Next we obtain
the second derivative at the non-exceptional (regular) points. We show that when du,/dZ,.= 0,
the second derivative is always negative. This rules out the possibility of a local minimum at
regular points and completes the proof.

Obtaining the First Derivative: We will repeatedly use the fact that the linear programming
solution has at most only one variable x,, that is neither O or 1. Ata finite number of points
(exceptional points) the non-integer variable can change from index k to some other index. For
points in the intervals between exceptional points (regular points) the solution x changes only in
the x, ; (and X, ,=1-%y ) variables, the other x;, and x , are fixed at their integer values. To obtain
the derivative at regular points we start with

V4
(D.1) u =Inl, =Y, d; b, in d;e; Ly v ln di,lef,zLi,z‘Z—l}-
2
Differentiating with respect to Z, and using the fact that dx; ,/dZ, = 0 except for [=k gives:
du 1 de,, e, ,LZ
(D.z) _l = —Ei di,lxi,z +dk,1 (A n il 2
dz, ZZ, dz, e;,l,Z,

We will make two substitutions in (D.2). First, we need an expression for dx, /dZ,: If we
differentiate
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zi x;(d, 2, +d;,Z)=Z, with respect to Z, we obtain

dx; _ 1_Zixi,l(di,l_di,2) _ 1-y()
dz, (A, Z,+d,,Z) 1D,

Here we use TD, for the denominator which is the total demand for the kth good and y(x) for the
sum in the numerator. We know a fair amount about y(x) from Gomory [1994]. For symmetric
demands y=0. The opposite of symmetric demand is orthogonal demand, i.e. d;,d;,=0 forall L.
It is clear that -1<y(x)<1 and that equality is only possible with orthogonal demands. If we
exclude orthogonal demands, which we will, we have (1-y(x)) always positive. We also have,
since Z(d, ;-d, ))(%;,+%,,)=0, that %, x;,(d;,-d;,)= -Y(x) an identity we will use below.

We will need one more identity: This time it is for Xd; X

Z, :2; (d,\Z,+d 1 2,)%;, :Ei (d; %)), +Zi (d %002, s0
Zi (d,1%,,)Z, +Ei (d;x,0)Z) _Ei ((d,,~d %, )2,=2Z, so
Zz (di, %i2) =Z1 +Zi (@, _d,',z)xf,z) =Z,(1-y(x))

Substituting the two ideantities in (D.2) gives us a remarkably simple expression for the derivative
at regular points:

du d e. LZ

D.3) — —y(x)){Elw a5 2
1 1 ¢ €izlaty
An important property of (D.3) is that the sign of the derivative is the same as the sign of

the term in the brackets because (1-y(x)) is always positive.
Exceptional Points: (3) clearly shows that we have a continuous derivative du,/dZ, except
possibly at Z, values where the index k changes. At these exceptional Z, values we have both
left (LD)and right derivatives (RD) given by (3). We need to show that we cannot have both
LD<0 and RD>0. Let us first suppose that the index changes at the exceptional point Z',
because, as Z, increases, the increasing Xy , has reached a value of 1. For Z, > Z’, we must,

therefore, choose a new k. The index change will produce a smaller value for the expression

_ d. nei,lLIZZ
TD, e;,L,Z,

variable in the linear programming algorithm, and the R value with the new index cannot be
larger than the current R value or 1t would have been picked before it for Z, just less than Z'\. So
in this case there can be a discontinuity in the R-value with the change of index, but it can only
lead to a new index and a new R-value that is not larger. Since the term in brackets in (D.3)
determines the sign of the derivative, this decrease in R cannot change the derivative from

because R is the expression used to pick the next shared or special
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negative to positive as Z, passes through Z',.

The other case is that the shared variable changes index before reaching its maximum
value. This means that some other industry comes to have a larger R as Z, (and hence the wage)
changes. However, it does this by first developing an R equal to that of the current shared
variable and then surpassing it. The index change occurs at equality and, therefore, does not
produce a discontinuity in the bracket in (D.3) although it may produce a discontinuity in y.
However, since the bracket determines the sign of the derivative, the derivative may change
value discontinuously but it cannot change sign.

We have now ruled out a local minimum at exceptional points. Next we discuss regular
points.

Analyzing the Regular Points: With the first derivative in a this form, we look next at the
second derivative, d’u,/dZ,’.

d2 e, L2, dyy . e L7,
(D.4) -{(——(1 e AL3))) (? TD e 1)} (1-v(x)) iz, (? ™ lnei’ 17 1)}

1

(D.4) consists of two terms. Since we are only interested in the second derivative when the first
derivative is zero, we can entirely disregard the first bracket. From (D.3) it will be 0 whenever
du,/dZ, is. This leaves us for the second derivative when the first derivative is 0,

1y L L DSl
==yl g 50
12 dZ, Z, TD e 12l Z
(D.5) \
U e %,Y(x)){__l__dk,l(dk,l k2)lne L, 122 d, ( 1 .
? z? TD? el Z, TD, ZZz
e e e L2, D, ) o
When the first derivative is 0, we have from (D.3), In— =(- ). Using this in (D.5)
€22, AT
gives
d?u, 1 (d -d,,) d 1
oz Ol b %) S Ly,
dZ Z, ZID, 1D, ZZ,
(D.6) ) .,
d"u dkl dlcl ki 1
L1 kL i- 2 (1-Ly,
y (1-yGi- le ZTD , ZZ) ==y - X ZlTDk( Zz)
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Since 1/Z, >1 this shows that d’u,/dZ,” is negative. This rules out a local minimum at a regular
point and proves the theorem.

Appendix E.1 - The Derivative Formulas with Symmetric Demand
With symmetric demand we can modify the formula (D.3) for du,/dZ, by setting y(x)=0
and also use TD=d,,Z,+d; ,Z,=d,,. Therefore, we have for du,/dZ, or equivalently for dB,/dZ,

a8, 1, euliZ

=+ .
ELD dzZ, Z, I BYA

This gives us one of the needed formulas. However, one is enough because with symmetric
demand world utility, Country 1 utility, and Country 2 utility are closely tied together. Country
1's utility is
U=1, v with y;, Country 1's consumption of the ith good. With symmetric
demand Country 1 consumes a fraction F; {Z)=4d;, Z,/(d,,Z,+d,,Z,)=Z, of total world
production. So
(E1.2) U=, y,, " =1L, Z(g,, +g, )" =Z 11, 1(g;, +q, )" =Z, Uy,

To the relation U=Z,U,, we can add U,=Z,Uy, which is similarly derived. This means that when
we maximize (3.3) for any fixed Z, for Country 1 utility, we maximize U, and U,
simultaneously. It follows immediately that the boundary curves have the same relation so
Bl(Zl)zleW(Zl) and BZ(Zl)=ZZBW(Zl)' So:
dinB, 1 dnBy

= —t .
dzZ i Z i dZ 1

(E1.3) InB(Z,)=InZ, +InBy(Z,} and therefore

Substituting the formula for dB,/dZ, from (E1.1) into (E1 :3) gives us the desired formula for
dB,/dZ,. The formula for dB,/dZ, is obtained similarly.

Appendix E.2 - Proof of General Regional Shape Theorems
If we define

em axl(zl)/em axl(.s)
em X (Z)/e™ O (.5)+e™ AZ,Me™ A5

en™ “*(Z) =

Then in (6.3) we can replace in the integral the production functions €™, and €™, using:
em ﬂxz(zl) i} em axz('s) enm axz(Zl)
emaxl(Zl) em ax](‘s) enm axl(Zl)

Then we can move the constant term e™,(.5)/ e™*21(.5) out of the integral and into the term
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L,/L, of (E.5) to form the B of the General Regional Shape Theorem.

To prove the Second Form of the General Regional Shape Theorem, we simply take the
B term, which is a constant, and move it up into the integral and incorporate it into the production
function which becomes eb™,/eb™, with

(1/P)en™

bm ax - .
(1/B)en™ *, +en™ °%,

1
This establishes the second form of the General Regional Shape Theorem.

Appendix F - Multi-Equilibrium Correspondence Theorem

Any one linear equilibrium (x,Z,,€) has well determined labor inputs /;; and the resulting
outputs g;;=e;;f;;. Thereis, therefore, a well determined input-output pair (/;;,q;;) for each
industry in each country. Any m linear equilibria provide m such pairs. We refer to each
collection of m pairs as the set S;;.

Given an S;; with kth clement (/*,q") we say that S;; is an economies set if there is a scale-
economies production function f{7), such that f()y=q" for all m of the (/*,q*) pairs. From Figure
F.1 it is clear that the points (/,q¥) can have a single economies curve passing through all of
them, (and therefore have such a production function), if and only if the slopes from the origin
(average productivities) of successive points, when they are arranged in order of increasing /, are
non-decreasing.

Theorem 8.2 - Multi-Equilibrium Correspondence Theorem: m specialized equilibria of a BP
family of linear models will correspond to m equilibria of a single economies of scale model
M(f},) if and only if each S is an economies set.

Proof: If there are m corresponding equilibria in some economies model M(f;;), each one
has the same input and output as its corresponding linear equilibrium. Therefore, together these
equilibria generate the same set S; . However, they produce each S;; by assigning the various
input quantities /* of the m equilibria of M(f;j) to a single production function f;;(/*) and
obtaining the corresponding outputs g*. This is only possible if S;; is an economies set. So the
condition is clearly necessary.

To show it is also sufficient, we will construct an M(f;) that satisfies Theorem 8.2. To do
this we add (see Figure F.2) to each of the given S;; the pair (0,0), (if it is not already included),
and also a pair (*;;, 0) which lies on the { axis halfway between the origin and the first pair that
is not (0,0). Then we will add the pair (L, e™,:L,) which lies further to the right than any
existing pair. The pairs we have added on the left have zero slopes and are to the left of any
successive pairs with positive slopes. The new pair on the right has a larger / than any of the
other pairs and also a larger slope. This augmented set of points has increasing slopes with
increasing / and is therefore an economies set. Any production function f;;(/) that passes through
this augmented set not only has economies of scale but also zero derivative at /=0, and

£ (LYL=e™;. We will use these f;; in our economies model M(f;;).

Now take (x,Z,,€), one of the set of m linear equilibria, and use its x and Z, as a candidate
equilibrium for the economies model M(f;)). With (x,Z,) in the economies model we will get the
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same demand and hence the same labor inputs as at (x,Z,,€). Because of the construction of the
f,; we will have the same outputs from those inputs, and hence the same prices. Furthermore, the
candidate equilibrium is stable. This is because it is specialized, and the f;; have been
constructed with setup costs. So we have df; ;0)/dI=0 and (8.1) is satisfied. This shows that
(x,Z,) is a stable equilibrium and that it corresponds to (%,Z,,€). This ends the proof.

If we apply this theorem to the maximal productivity equilibria we get:
Theorem 8.3 - Maximal Productivity Correspondence Theorem: The 2"-2 specialized equilibria
of the region of maximal productivity always correspond to the equilibria of a single economies
model.

Proof: Each $;; conlain points of the form (/,e™;/) when Country j produces in industry 1,
and also the point (0,0) when Country j is a non-producer. These points give us a constant slope

¢™,j for every I, 50 §;;is an economies set. Theorem 8.2 then gives the result.
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Figure 1.1a - 14 Equilibria Showing Country 1 Utility
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Figure 1.1b - 14 Equilibria Showing Country 2 Utility
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Figure 1.1c - 14 Point Pairs Showing Country 1 and Country 2 Utility
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Figure 3.1a - World Utility Boundary for a Two Industry Model
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Figure 3.1b - Country 1 Utility Boundary for a Two-Industry Model
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Figure 3.1c - Country 2 Utility Boundary for a Two-Industry Model
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Figure 3.2 - Utility Boundaries for a Four Industry Model
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Figure 3.3 - Utility Boundaries for a Six Industry Model
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Figure 3.4 - The Approximating Curves
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Figure 3.5 - A 22 Industry Model
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Figure 4.1 - Outcomes for a Fully Developed Country
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Figure 4.2 - The Ideal Trading Partoer
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Figure 4.3 -~ An 11 Industry Model
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Figure 5.1 - The Region of Maximal Productivity of Country 1
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Figure 5.2 - Ranges of Conflict and of Cooperation
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Figure 6.1a - The e-Z1 Diagram
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Figqure 6.1b - Three Productivity Curves
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Fioure 6.2a - [ntersecting a Productivity Curve with the World Peak Curve to Determine the

Classical Level.
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Figure 6.2b - The Productivity Curves and their Intersection with the Peak Curves
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Figure 6.2¢ -Country 1 and Country 2 Regions for the 3 Productivity Curves
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Figure 6.3 - Structure of the Peak of Region 1 when the Productivity Curve is El
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Figure 6.3 - Structure of the Peak of Region 1 when the Productivity Curve is El
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Figure 6.4 - Effect of Changing Country Size

Figure 6.4




Newnhb-5

Figure 6.5 - The Changed Productivity Curves
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Figure 6.6 - Utility at the Peak and at the Classical Point
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Figure 8.1 - Equilibria from an Economies Model Corresponding to Equilibria of a Linear

Family
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Figure F.1 - The (1,q) Diagram
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Figure F.2 - The Extended (1,q) Diagram
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