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Abstract

This paper presents a new method for nonparametric estimation of the conditional distri-
bution function of excess returns. The method, based on techniques recently developed for
generalized additive models, avoids the “curse of dimensionality” problem while retaining
interpretability and may be viewed as dual to the one based on modelling the quantiles of
the conditional distribution. QOur results indicate the presence of nonlinearities in the impact
of a monetary aggregate on the conditional probability of future excess returns that do not
arise from structural breaks and constitute a robust feature of the data.
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1 Introduction

Empirical work in asset pricing has been devoted almost exclusively to the study of the first
two moments of the probability distribution of asset returns. Such an emphasis, largely due
to the simplicity of classical Capital Asset Pricing Models, is too narrow.

More generally, any equilibrium model of asset pricing can be thought of as imposing
restrictions on the conditional probability distribution of future excess returns Y;,,, defined
as the difference between the return on the stock market and a risk-free asset, conditional
upon the current state X;. Such a model would have as primitives a law of motion for the
state of the economy X;, a Markov process defined by its transition function P( Xy < z|X,),
the preferences of the investors and a production technology. Given the structure of the
model, one can characterize the functional relation linking current returns to the state of the
economy [see e.g. Lucas (1978)]. From this solution, one can derive the probability of future
returns Y;4y conditional upon the current state X, P(Y;;; < y|X;). It is clear that while
the equilibrium solution implies restrictions on the conditional first and second moments of
excess returns, the dependence of these moments on the conditioning variables need not be
of a simple parametric form.

To go beyond the limitations of moments and simple parametric specifications, in this
paper we try to accomplish two things. First, we look at the entire distribution function of
excess returns conditional on a set of predictors including dividend yields, interest rates, and
rates of growth of money and employment. Second, we model the conditional distribution
function of excess returns as a flexible function of the predictors. Our estimates are based on
techniques recently developed for generalized additive models [Hastie and Tibshirani (1990)].

In an effort to model flexibly the functional relation between excess returns and predictors,
nonparametric estimation of conditional means has been advocated and implemented. For
example, Boudhouk, Richardson, and Whitelaw (1992) use kernel regression and flexible
Fourier transforms to estimate the functional relation linking expected excess returns to a
single predictor, an indicator of the term structure of interest rates.

One advantage of our approach is that it avoids the “curse of dimensionality” problem
that makes 1t difficult to extend classical scatterplot smoothers, such as kernel regression,
to high dimensions. Another advantage is interpretability, due to our use of an additive
specification for certain functionals of the conditional distribution of excess returns.

As a by-product we obtain measures of the conditional location, spread, symmetry, and

tail weight of the distribution of excess returns, based on the quantiles of the estimated con-



ditional distribution function. This offers an appealing alternative to the use of conditional
moments. While estimates of first and second moments may be sensitive to the presence of
outliers, conditional distribution functions and conditional quantiles are robust functionals
by definition. This may be quite important in the case of the distribution of excess returns
which may comprise extreme events, such as market crashes.

Our approach may be viewed as dual to the one based on modelling the quantiles of the
conditional distribution. Unlike linear regression quantiles [Koenker and Bassett (1978)],
however, we do not restrict the quantiles to be of a specific parametric form. Further, our
approach is easier to implement using existing software than quantile smoothing splines
[Koenker and Ng (1992)].

The remaining of this paper is organized as follows. In section 2 we describe our method.
Section 3 describes the data and motivates the choice of predictors. Section 4 presents
our results and shows that a standard parametric specification fails to capture important
characteristics of the data. We document the presence of nonlinearities in the impact of
a monetary aggregate, the rate of growth of M2, on the conditional probability of future
excess returns. The shape of the nonlinear relation suggests a nonmonotonicity which does

not arise from structural breaks and constitutes a robust feature of the data examined.

2 The statistical model

Let the continuous randomn variable Y., denote future excess returns, and let X, be a
random k-dimensional vector that helps predict Y;;;. We are interested in studying F(y|z) =
P(Yi41 < y|X: = z), the conditional distribution function of Yi;, given X, = z, which is
assumed to be time-invariant. Knowledge of F(y|z) represents the complete solution to the
problem of predicting Y, given X, in the sense that it contains all the information relevant

for prediction, irrespective of the particular loss function that the analyst may be using.

2.1 Model specification

The problem of estimating the conditional distribution function F(y|z) from the data is
simplified considerably if only a finite set —o0 < y; < -+ < yj < o0 of evaluation points is
considered. Define a sequence of binary random variables Z; ;11 = 1(Y;41 < y;), i =1,...,J,
where 1(-} is the usual indicator function. For each j, the conditional distribution of Zit+1

given X; = z is a Bernoulli with parameter F(y;|z) = E(Z;,41|X; = z). This reduces the

J

problem to estimation of the finite sequence {F(y;|z)};_,-



Although the sequence {F(y;|x)} must satisfy the monotonicity constraint
0< Flpulz) < < Flyslx) <1 (1)

for all x in the support of X, the estimation problem is much easier if (1) is not imposed.
The Bernoulli is a one-parameter linear exponential family of distributions with canonical

parameter (i)
Fy;|z
i) = In FRE T Y,
the log odds-ratio. The conditional log-likelihood function for a single observation (z,z) on

(Zjt41, X:), expressed in terms of the canomnical parameter, is of the form

l(n(yjaz)) = z’?(yjs :E) - ln[l + exp U(yj,l')]'

Among other things, reparameterizing the model in terms of the canonical parameter ensures
that the constraint 0 < F(y;|z) <1 is automatically satisfied.
The conventional parametric approach to estimation proceeds by restricting n(y;,-) to a

family of functions indexed by a finite-dimensional real parameter. If

(i, €) = Yoj + x6;, (2)

where z is a row vector, we have the classical logit model. Beside ease of estimation, one
important feature of the linear specification (2) is interpretability, namely the fact that the
h-th component of the vector §; can be interpreted as the partial effect of the k-th variable in
X, on the log odds-ratio. One problem with this approach is that the linear specification may
be too restrictive. A more flexible parametric specification may be obtained by specifying
7(y;,z) as a polynomial function of z, such as a quadratic or a cubic. Even in this case,
however, the global nature of the approximation may be too restrictive.

The alternative of a fully nonparametric specification is out of the question, in the case of
small to moderate sample sizes, if one wants to control for a sufficiently rich set of predictors.
One way of attacking the curse of dimensionality problem would be to consider projection-

pursuit logistic regression, with the canonical parameter specified as

m
(i, %) = Yoi + D_ 9ni(z6h3), (3)
h=1
where {z8,;}7", are linear combinations or projections of the elements of z, and {gs;}j,

are arbitrary univariate smooth functions. As in standard projection pursuit regression
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[Friedman and Stuetzle (1981)], the number m of linear combinations, the vectors {é;;} and
the functions {g;;} would be determined from the data by minimizing a measure of predictive
power.

Although projection pursuit may be a promising approach, in this paper we choose for

simplicity to work with a specification that is intermediate between (2) and (3), namely

k
U(yj-;l') =Yo; + hz_:ghj(xh)a (4)

where {gx;} are arbitrary univariate smooth functions, one for each component of the vector
X, to be estimated nonparametrically. The additivity imposed by (4) makes it possible to
interpret g,; as the derivative of the log odds-ratio with respect to the hA-th component of
X:, thereby retaining interpretability, which is one of the important features of the linear
specification (2).

We shall also compare the additive specification (4) with the semi-additive model

k
(%) =705 + 20 + 3 (), ©
=1
where the k, variables in z(V) enter linearly, and the k&, = k — k, variables in z(® enter
nonlinearly. A specification similar to (5) was used by Engle et al. (1986) in the context of
modelling a conditional expectation function. Clearly, the linear, semi-additive and additive
specifications form a sequence of nested models.

Estimation of models (4) and (5) may be based on the local scoring algorithm proposed
by Hastie and Tibshirani (1990) for generalized additive models. Their method modifies the
scoring algorithm for the logit model by constructing at each step smooth estimates of the
univariate functions {g;;}, obtained by fitting an additive model to the adjusted dependent
variable from the previous step. Smoothing may be based on nearest neighborhood methods,
such as Cleveland’s (1979) loess, or on cubic smoothing splines. The latter choice has certain
advantages, including convergence of the local scoring algorithm. The smoothing parameter
may be chosen subjectively, or an automatic selection criterion, such as cross-validation, may
be employed.

Stone (1986) showed that under appropriate regularity conditions, the estimates based
on model (4) are consistent for the best additive approximation, in the Kullback-Leibler
sense, to the true population log odds-ratio. Similarly, the estimates based on model (5) are

consistent for the best semi-additive approximation to the true population log odds-ratio.



By analogy with standard logit models, we compare nested models using the ratio of the
log-likelihoods. Although the distribution theory for these statistics is not yet developed,
simulation results in Hastie and Tibshirani (1990) show that the x* distribution provides a
useful approximation. Of course, a computationally expensive alternative would be to use
the bootstrap. Following Hastie and Tibshirani (1990), we compute the number of degrees
of freedom of the asymptotic x? approximation as the value of a quadratic approximation

to the expectation of the likelihood ratio statistic under the truth of the restricted model.

2.2 Relation with regression quantiles

In this section we relate our method to the regression quantiles introduced by Koenker and
Bassett (1978). The original motivation for regression quantiles was robustness with respect
to outliers in the y-space. This property is also shared by our method, because Z = 1(Y < y)
is a bounded random variable.

A 7-th quantile of the conditional distribution of Y given X = z, or regression quantile

for short, is a root 0(w,z) of the implicit equation in y
F(ylz) = P(Y <ylX =z) =,

for given z and 7 € (0,1) (we dropped time subscripts for simplicity). Knowledge of the
whole family of regression quantiles is equivalent to knowledge of the conditional distribution
of Y given X. A regression quantile is linear in z if it is of the form 8(x, z) = a(7) + z8(x).

The assumption of linear regression quantiles is restrictive. For example, suppose that Y
is generated by a location-scale transformation of a standardized continuous random variable
U, that is, Y = p(z) + o(z)U, where 0 < o(z) < oo. The #-th regression quantile of Y is
then equal to

b(r,z} = p(z) + o()0(x),

where 6(r) denotes the m-th quantile of the distribution of U. Clearly, even when u(z) is
linear in x, 8(r,z) is generally nonlinear.

In what follows we consider the restrictions on the family of regression quantiles implied
by a specific assumption on the log odds-ratios and, viceversa, the restrictions on the family
of log odds-ratios implied by a specific assumption on the regression quantiles.

Suppose first that 5(y, z) is a known continuously differentiable function of (y,x). Also
suppose that n,(y,z) is strictly positive for every (y,z), where subscripts denote partial

derivatives. These assumptions are equivalent to the assumption that F(y|z) is continuously



differentiable in (y,z), with a density f(y|z) that is strictly positive for every (y,z). For a
fixed # € (0,1), the m-th regression quantile 8(m,z) is a solution with respect to y of the

implicit equation

T
(y,z) = In+—
By the implicit function theorem, 8(, z) is unique and continuously differentiable in z, with
Y5 Fy
0,(r,2) = —"=¥:%) I 1¢'1C)) _ (6)
(¥, 7) y=8(x,z) flylz) y=8(r, )

Notice that, 8.(x,z) and 5.(6(x,z), ) have opposite sign. Clearly, linearity of regression
quantiles obtains if and only if the right-hand-side of (6) does not depend on z. In the special
case when the log odds-ratio is linear in z, that is n{y,2) = v(y) + zé(y), linearity of the
regression quantiles obtains if and only if 36/0y = 0, that is, é(y) is a constant function, as
in the ordered logit model.

Now suppose that 8(w,x) is a known continuously differentiable function of (,z). This
implies that f(0(r,z)|z) is strictly positive for all z. If #(r,z) = y, where y is a fixed
number, then by definition

r = F(8(r,2)l2) = F(ylo)

Hence, by the chain rule,

Fz(y|$) = _02:(77) .’L') f(y|$)|1r=F(y|n:)
or, equivalently,
Uz(y!x) = —9,,(71’,.’17) ny(y’ $)|«=F{y|x) . (7)

Clearly, linearity of the log odds-ratio obtains if and only if the right-hand-side of (7) does
not depend on z. If the regression quantiles are linear, that is 8(7,z) = a(r) + z8(r), the

log odds-ratio is linear if and only if

Wa:(ya -7':) = _"ﬂ(?r) ny(y, I)'fr:F(ylx)

does not depend on z. A sufficient condition is that B(r) is a constant function and 5,(y, z)
does not depend on z.
As an example, suppose that Y = 28 + U, where U has a logistic distribution with mean

zero and unit variance. Then the 7-th regression quantile of Y is linear
6(n,z) = a(r) + =8,
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where a(7) is equal to the w-th quantile of the distribution of U/. On the other hand,
exp(y — z8)
F{y|z) = ,
Wlo) =13 exp(y — z/3)
and so n(y,z) = y(y) + z8, where y(y) = y and § = —4.
One motivation for regression quantiles is their robustness with respect to outliers in the

y-space. This property is also shared by our method, because Z = 1(Y < y) is a bounded

random variable.

3 Empirical Results

3.1 Choice of predictors

Our general frame of reference is an equilibrium model in which interest rates and future
stock returns are determined by the current state of the financial, real, and monetary sectors
of an economy.

To summarize the state of the financial sector we use the short term interest rate and the
dividend yield. The short term rate is a proxy for the location of the investment opportunity
set over time [Merton (1973)]. The dividend-price ratio, or dividend yield for short, is a
proxy for expected future returns [Rozeff (1984)]. Since the dividend yield encompasses
expected dividend growth, it is a noisy proxy for future returns. To control for dividend
growth, we also include measures of growth of the economy, based on industrial production
and employment. Industrial production and employment are also proxies for the state of
the real sector, as they capture the business cycle and the labor market conditions. Similar
cyclical variables have been used in the studies of Gertler and Grinols (1982) and Chen, Roll,
and Ross (1986) as macrofactors in an Arbitrage Pricing Theory context.

Finally, as an indicator of the monetary sector, we include the rate of growth of M2.
Monetary variables have received considerable atiention in studies of the relation between
stock returns and inflation [Fama (1981)]. More recently, the use of an endogenous monetary

aggregate such as M2 has been advocated as a proxy for consumption in a consumption-

oriented Capital Asset Pricing Model [Chan, Foresi, and Lang (1992)].

3.2 Data sources

Our data are monthly from January 1960 to December 1990.
The macroeconomic variables include industrial production, employment, inflation, and
M2. The financial variables include the dividend yield on the Standard & Poor Commeon

7



Stock Composite, the one month yield on Treasury bills, a term spread equal to the difference
between the six-month and the three-month Treasury bill yields, and a default spread equal
to the difference of the yields on BAA and AAA corporate bonds. Excess returns are the
difference between the returns on the equally weighted portfolio of New York Stock Exchange
common stocks and the yield on a one-month Treasury bill.

The macroeconomic data and the dividend yield are seasonally adjusted from Citibase.
The other financial data are from the Center for Research in Security Prices at the University
of Chicago.

Interest rates, dividend yields, and rates of returns are continuously compounded.

3.3 Data transformations and model selection

We take the natural logarithm of the macro variables. All variables are then standardized
by subtracting the sample mean and dividing by the sample standard deviation.

Dividend yield, interest rates, industrial production, employment, and money display
long memory. While we could include several lags of the predictors, for reasons of parsimony
we restrict attention to levels and first differences. We consider both one-month first differ-
ences of a variable X, dX; = X; — X,_4, and twelve-month differences ddX; = X; — X,_1».
Twelve-month differencing eliminates seasonal components up to the monthly frequency and
is interpretable as a smoothing filter based on the first difference of an equally weighted
MA(11). Thus, it has the flavor of adding more lags while retaining a tractable dimension
of the vector X,.

We use the linear logit specification as a benchmark when selecting the predictors.
Twelve-month differences of the macroeconomic variables display a smoother profile than
monthly first differences and no recognizable seasonal pattern. For these variables, twelve-
month differences perform better in estimation than one-month differences. In contrast,
one-month differences of the financial variables, such as the dividend yield and the inter-
est rate, display no recognizable seasonal pattern and perform better in estimation than
twelve-month differences.

While both levels and one-month differences of the dividend yield are strongly significant,
neither one- nor twelve-month differences in interest rates add significant predictive power
after the inclusion of the level.

Following the existing literature on asset returns [see e.g. Gertler and Grinols (1982)
and Chen, Roll, and Ross (1986)], we also tried additional predictors such as the default

spread, the term spread and inflation. It is usually argued that the default spread contains



information useful to forecast future business conditions, since the return on private debt
instruments reflects the near-term risk in the economy. The term spread may capture the
relative availability of credit with respect to the demand. After the inclusion of money,
however, the default spread and the term spread are no longer significant. This is in line
with the evidence in Stock and Watson (1990) that money, term spread, and default spread
convey similar information as to the state of the business cycle and thus to the state of future
returns. Similarly, we find that inflation does not enter as significant after the inclusion of
our predictors.

More importantly, we find no evidence that past excess returns help predict future excess
returns after conditioning on our set of predictors.

Finally, industrial production and employment contain similar information for predicting
excess returns. Thus we drop industrial production and use only employment as a proxy for
the business cycle.

In conclusion, the best results obtain with the following five predictors: the dividend
yield (fsdxp), one-month differences of dividend yield (dfsdxp), the one-month Treasury
bill rate (fygm1), twelve-month differences of the log of M2 (ddfm2), and twelve-month
differences of log employment (ddlp).

As for the dependent variable, the excess returns Y, we evaluate its conditional distri-
bution function at the deciles of the unconditional distribution. The financial literature on
market timing is often interested in the probability of positive excess returns. Thus we also

consider ¥y = 0 as an additional evaluation point.

4 Findings

We use S-PLUS and STATA as computation environments.

Figure 1 presents the scatter plot matrix of the data. The first row shows the relation
between the predictors and future excess returns. Here, no clear patterns emerge. More
recognizable patterns emerge in the relation between certain pairs of predictors, such as a
positive relation between the one-month Treasury bill rate and the dividend yield, and a
negative relation between the one-month bill rate and the dividend yield.

Figure 2 plots the estimates of the logit slope coefficients corresponding to the ten eval-
uation points and the associated two-standard error intervals. The vertical line corresponds
to zero excess returns.

To interpret this figure consider the dividend yield and the rate of money growth. The



dividend yield has a negative and statistically significant effect at all evaluation points of the
conditional distribution. This implies that an increase in the dividend yield, keeping all other
predictors constant, shifts the conditional distribution of excess returns to the right. Thus,
our results are in line with previous findings of Rozefl (1984), who documents a positive
relation between dividend yields and expected excess returns.

On the other hand, the impact of money on the probability of excess returns changes
sign at different evaluation points and is significantly different from zero only at evaluation
points corresponding to positive excess returns.

Figure 3.a and 3.c show the three-dimensional (31}) surface of the conditional distribution
of excess returns as a function of the dividend yield and the one-month bill rate keeping all
other predictors constant at their mean level (zero, because of standardization). Figure 3.b
and 3.d show the corresponding iso-probability contours.

Notice that, although the monotonicity constraint (1) is not imposed in the estimation,
no violation is found when fitting both parametric and nonparametric versions of our model.

A positive slope of the iso-probability contours indicates a negative impact of the condi-
tioning variable on the probability that excess returns exceed any given level. For example,
the positive slope of the contour levels in the case of the dividend yield is the counterpart of
the negative slope coefficients for the logit model in Figure 1.

While one could mn principle retrieve the conditional moments from the estimate of the
conditional distribution, it is more natural to look at measures of location, dispersion, sym-
metry, and tail weight based on the conditional quantiles. The #-th conditional quantile
f(x) is just the projection onto the y-axis of the iso-probability curve with probability level
T.

A measure of location of the conditional distribution is given by the conditional median
0.50(7). As a measure of dispersion, one may consider the interquartile range 8 75(z) — 0 35(z).

A possible measure of symmetry is the ratio

9.75(37) — 9.50(1)
650(2:) — 0_25(.’1:)’

while a possible measure of tail weight is the ratio

090(13) - 8_10(17)
9.75(-’15) - 9.25(1’) '

The observed differences in the spread, symmetry, and tail weight corresponding to differ-

ent values of the conditioning variable give a clear indication of conditional heteroskedasticity.
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We now compare the linear specification with the additive and the semi-additive. In
the latter, only the rate of growth of money enters nonlinearly. To estimate the additive
and semi-additive model we considered both smoothing splines and loess. While the overall
shape of the estimated relation between Y and X is similar for the two smoothers, the visual
appearance of splines is more regular. Loess is also computationally more cumbersome:
the local scoring algorithm requires more iterations and in a few cases failed to converge.
Consequently, we only present results for the case of splines. The degree of smoothing is
based on the equivalent number of degrees of freedom [Hastie and Tibshirani (1990)] and is
set equal to 5 after an informal comparison of Akaike criteria.

In Table 1 we compare the fit of the three models. Overall, the semi-additive model
including only one nonlinear term in the money growth rate outperforms both the linear and
the additive models.

Figures 4 compares the impact of money growth in the linear (panels a and b) and the
semi-additive model (panel c and d). The estimates are quite different in the two cases. While
money is only borderline significant in the linear logit model, it becomes strongly significant
in the semi-additive [Table 1]. Further, the 3D graphs and the iso-probability plots show
that the more flexible semi-additive model reveals a systematic pattern of nonlinearities at
all quantiles.

For money growth rates close to the mean, we observe a negative association between
money growth and the probability of excess returns below any given value. In this case,
the effect of money growth is to shift the whole distribution of excess returns to the right.
For extreme values of money growth rates, however, the association is positive, that is, the
effect of money growth is to shift the whole distribution of excess returns to the left. To
capture this complicated form of nonlinearity, a parametric model would require at least a

cubic term in money growth, a quadratic term would not be sufficient.

4.1 Time invariance

The marginal distributions of both the excess returns and the predictors may be time-varying
and yet the conditional distribution of excess returns may exist and be time-invariant. Qur
analysis is meaningful only if the conditional distribution of excess returns exists and is
time-invariant. We now show some evidence in support of this assumption.

An obvious candidate for the nonlinearities that we find in the data, is the presence of
structural breaks. To verify this possibility, we distinguish between three subperiods. The

first goes from the beginning of the data to the end of Bretton Woods monetary system
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(March 1972). The second goes from March 1972 to October 1982 and corresponds to
the inflationary part of the 1970’s. Although the change in the operating procedures of
the Federal Reserve from October 1979 to October 1982 is sometimes also identified as a
structural break, we leave this period with the inflationary 1970’s. The third period goes
from October 1982 to the end of the data.

In Figure 5 we consider the semi-additive model and we plot the impact of money growth
on the estimated probability of negative excess returns for the whole sample {panel a) and
separately for each subperiod (panel b). For comparison, money growth rates are stan-
dardized within each subperiod. Although the position of three curves is different, what is
remarkable is the similarity in their shapes, and the fact that the minima and the maxima
in each subperiod occur for similar values of (standardized) money growth. Thus it seems
that the nonlinear relation between money and excess returns does not arise from structural
breaks and can be viewed as a robust feature of the data examined.

What kind of structural model could explain the nonlinearity? The finding is consistent
with the idea that future monetary policy, by lowering interest rates, may increase stock
prices and returns and viceversa. For values of money growth close to its mean, the Federal
Reserve is not expected to move interest rates in any particular direction. A positive relation
of excess returns and money growth in this region is consistent with money leading the stock
market over the business cycle. Higher money growth, however, becomes bad news for stocks
because the Federal Reserve may increase interest rates in the near future to curb inflation.
A further increase of money growth increases the likelihood of higher interest rates, hence
the negative relation of excesss returns and money growth. In contrast, very negative money
growth is good news for stocks because the Federal Reserve may reduce interest rates to
stimulate the economy. A further decrease of money growth increases the likelihood of lower

interest rates, hence the positive relation of excesss returns and money growth.
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Table 1

The table presents informal tests based on the difference of the deviances, defined as twice
the value of the maximized likelihoods for two models. By analogy with the definition of
degrees of freedom in linear models, the number of degrees of freedom in the additive and

semi-additive models is defined as
d.f.=n —trace (2R — RTARA™!),

where n 1s the number of observations, R is the weighted additive-fit operator, and A is the
estimated information matrix [Hastie and Tibshirani (1990)]. The last three columns of the

table report the p-values for a x? criterion based on the difference of the deviances and d.f.

defined above.

Linear (L) Additive (A) Semi-additive (S) p-value
Quantile | Ezc. Rel. | Deviance d.f. | Deviance df Deviance df Lvs A ] LvsS l Svs A
1 < -5.53 201.97 343 | 16723 32354 | 19629 33923 [ 0.02 0.20 0.02
2 <-3.07 329.43 343 | 29598 32349 | 31818 33903 | 0.02 0.02 0.12
3 <-1T71 402.97 343 | 37439 32319 | 391.12 33929 Q.09 0.01 0.41
4 < -0.79 448.31 343 | 42653  323.67 | 43765  339.15 | 0.31 0.03 0.77
- < 0.00 456.99 343 | 43246  323.75 | 445.97  339.12 | 0.19 0.02 0.59
5 < 0.81 461.56 343 | 441.07  323.47 | 452,18 339.09 { 0.39 0.05 0.78
6 < 1.98 448.20 343 | 41883  323.76 | 434.10 339.15 | 0.06 0.10 0.46
7 < 3.3 405.75 343 | 383.23  323.09 | 397.66  339.27 | 0.31 0.07 0.58
8 < 480 339.29 343 | 31282  323.19 | 33044 33902 | o0.07 0.06 0.34
9 < 6.85 218.66 343 197.17  323.84 | 213.87 339.11 | 0.32 0.29 0.36
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Figure 1

Scatterplot matrix of excess returns and predictors. Sample period: January 1960 to De-
cember 1990.
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Figure 2

Benchmark case: linear logit model. We estimate ten logit models with dependent variable
Z;41 = 1Yy < y;), where 31, ..., y10 are equal to

{—5.53, —3.07, —1.71, —0.79, 0.00, 0.81, 1.98, 3.35, 4.80, 6.85}

The figure plots the estimates of the ten logit coefficients for each predictor and the constant
term, with the associated +2 standard-error intervals. The vertical line corresponds to zero
excess returns.
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Figure 3.a

Linear logit model: 3D surface of the estimated conditional distribution of excess returns as
a function of the dividend yield (fsdxp). The dividend yield is standardized by subtracting
the sample mean and dividing by the sample standard deviation. All other predictors are
held constant to their mean value.
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Figure 3.b

Linear logit model: Iso-probability contours of the estimated conditional distribution of
excess returns as a function of the dividend yield (fsdxp). The dividend yield is standardized
by subtracting the sample mean and dividing by the sample standard deviation. All other
predictors are held constant to their mean value.
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Figure 3.c

Linear logit model: 3D surface of the estimated conditional distribution of excess returns

as a function of the one-month Treasury bill rate (fygml). The one-month bill rate is
standardized by subtracting the sample mean and dividing by the sample standard deviation.

All other predictors are held constant to their mean value.
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Figure 4.a

returns

Linear logit model: 3D surface of the estimated conditional distribution of excess
as a function of the money growth rate (ddfm2). The money growth rate is

standardized

by subtracting the sample mean and dividing by the sample standard deviation. All other

predictors are held constant to their mean value.
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Figure 4.b

Linear logit model: Iso-probability contours of the estimated conditional distribution of
excess returns as a function of money growth rate (ddfm2). The money growth rate is
standardized by subtracting the sample mean and dividing by the sample standard deviation.
All other predictors are held constant to their mean value.
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Figure 4.c

Semi-additive logit model: 3D surface of the estimated conditional distribution of excess
returns as a function of money growth rate (ddfm2). The money growth rate is standardized
by subtracting the sample mean and dividing by the sample standard deviation. All other
predictors are held constant to their mean value.
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Figure 4.d

Semi-additive logit model: Iso-probability contours of the estimated conditional distribution
of excess returns as a function of money growth rate (ddfm2). The money growth rate is
standardized by subtracting the sample mean and dividing by the sample standard deviation.
All other predictors are held constant to their mean value.
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Figure 5.a

Semi-additive logit model: Estimated conditional probability of negative excess returns as
a function of money growth rate (ddfm2) for the whole sample period. The money growth

rate is standardized by subtracting the sample mean and dividing by the sample standard
deviation. All other predictors are held constant to their mean value.
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Figure 5.b

Semi-additive logit model: Estimated conditional probability of negative excess returns as a
function of money growth rate {ddfm2) by subperiod:

1. January 1960 to March 1972
2. April 1972 to October 1982
3. November 1982 to December 1990.

All other predictors are held constant to their mean value. For comparison, the data have
been standardized within each subperiod.
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