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Abstract

We study the evolution of preference interdependence in aggregative games which
are symmetric with respect to material payoffs but asymmetric with respect to player
objective functions. Specifically, some players have interdependent preferences (in the
sense that they care not only about their own material payoffs but also about their
payoffs relative to others) while the remainder are (material) payoff maximizers in the
standard sense. We identify a class of aggregative games whose equilibria have the
property that the players with interdependent preferences earn strictly higher material
payoffs than do the material payoff maximizers. Included in the class are common
pool resource and public good games. If each member of the population interacts
with each other member (the playing-the-field model), we show that any evolutionary
selection dynamic satisfying a weak payoff monotonicity condition implies that only

interdependent preferences can survive in the long run.
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1 Introduction

A standard assumption in the economic modeling of human behavior is that people have
independent preferences. Given a choice between two income distributions, they will prefer
that in which their own income is higher, regardless of their rank or relative standing in
the two distributions. Changes in the incomes of others, provided that their own material
circumstances remain unchanged, leave them neither better nor worse off, and they are
consequently unwilling to sacrifice any portion of their own material well-being in order to
enhance or to diminish the well being of others.

The usual methodological defense of independent preferences is made on evolutionary
grounds: units which maximize their own material payoffs will prosper and thrive, while
those that do not will be outperformed and driven to eventual extinction (Friedman, 1953).
While compelling in the context of perfectly competitive environments, this evolutionary
argument runs into difficulties in imperfectly competitive settings. It is possible in some
strategic environments that individuals who care only about their own material well-being
obtain strictly lower material rewards in equilibrium than similarly situated individuals who
are also concerned with the well-being of others. Our purpose in the present paper is to
identify strategic environments of economic importance which give rise to this phenomenon.
Specifically, we identify games in which players with independent preferences, who care only
about their own (material) payoffs, earn strictly lower material payoffs in equilibrium than
do players with interdependent preferences, who care additionally about their payoffs relative
to others.

This disparity in equilibrium payoffs has implications for the theory of preference for-
mation. Recent work dealing with the evolution of preferences in strategic environments
is based on the methodology that individuals within a generation behave rationally with
respect to their inherited (or acquired) preferences, but that the distribution of preferences
across the population changes from one generation to the next under pressure of differential
material rewards.! It is typically assumed in this literature that the evolutionary selection
dynamics are payoff monotonic, i.e., higher material payoffs to a heritable trait typically

lead to more rapid replication of that trait over time. Consequently, the finding that the

! Applications of this methodology include evolutionary explanations of time preference (Rogers, 1994),
risk-aversion (Robson, 1996), reciprocity (Giith and Yaari, 1992), altruism among siblings (Bergstrom, 1995),
altruism in general (Bester and Giith, 1998), preferences for social status (Fershtman and Weiss, 1996), and
systematic errors in expectations (Waldman, 1994). For an alternative and complementary approach to

preference formation based on forward-looking parental socialization see Bisin and Verdier (1997).



material rewards to those with interdependent preferences strictly exceed the rewards to
those with independent preferences leads directly to the implication that evolution will favor
the persistence of interdependent preferences in particular classes of strategic environments.

The strategic environments that we consider are aggregative games, in which the (ma-
terial) payoff to any given player depends only on her own action and some aggregate of
the actions of all players. The general problem of preference formation can, of course, be
studied within the context of any strategic environment. Our focus on aggregative games
is motivated by the fact that such environments include common pool resource extraction
and public good games, which have been a perennial feature of human societies from the
earliest times. Traditional societies even in the present day rely heavily on commonly owned
fisheries, grazing lands, and forest areas for their subsistence. Similarly, throughout human
history, a large number of essential activities have required collective action of one kind or
another, ranging from the hunting of large animals and the construction of housing to the
provision of irrigation, harvesting, and defense against encroachment or attack by competing
groups. If such environments favor the emergence of preference interdependence, then the
use of interdependent preferences to explain experimental and empirical anomalies, and in
economic modeling more generally, may be justified on evolutionary grounds.?

The paper is organized as follows. In Section 2, we introduce a formal framework which
makes precise the idea that one type of preference may have a strategic advantage over
another. In Section 3 we identify a class of aggregative games in which players with interde-
pendent preferences have a strategic advantage over those with independent preferences, and
show that standard models of common pool resource extraction and public good provision
belong to this class. The evolutionary implications of our findings are explored in Section
4, in which it is argued that when each member of the population interacts simultaneously
with every other member (the “playing the field” model), independent preferences cannot
survive in the long-run.®> Section 5 concludes with a discussion of possible extensions and

additional applications of our results.

2The importance and plausibility of interdependent preferences has often been noted (Duesenberry, 1949,
Frank, 1987, and Cole, Mailath and Postlewaite, 1992), and is supported by ample empirical and experi-
mental evidence (see Clark and Oswald, 1996, and references cited therein). It is also well known that the
introduction of interdependent preferences into economic models has non-trivial implications in that many

conventional results have been either overturned or significantly modified in the presence of such preferences.
3This result need not hold when individuals are matched to play games within smaller subgroups (as is the

case in pairwise random matching models). For reasons discussed in Section 4, however, the playing-the-field

hypothesis is particularly appropriate in the analysis of aggregative games.



2 The Nature of the Problem

Let a < b < 0o and consider any symmetric n-person normal form game

I'= ({[a,b], 7 }ret,n) s

where [a,b] and 7, : [a,b]™ — R, stand for the action space and the material payoff function
of player r, respectively. The set of all such games is denoted by G. We let 7(z) = > m.(z)/n

denote the mean material payoff at the action profile x, and define

x € [a,b]".

Here p, () stands for the relative payoff of individual r at action profile x.*

It is important to distinguish between material payoffs and objective functions because we
permit individuals to have objective functions that do not simply require the maximization of
material payoffs. Specifically, we suppose that only k € {1,2,...,n — 1} players are material
payoff maximizers in the usual sense; their objective functions are increasing in their own
material payoffs and do not depend on the material payoffs of others. Such persons will be
said to have independent preferences. The remaining players are concerned not only with
their own material payoffs but also with their relative payoffs as defined above. To introduce
the preferences of these individuals formally, let us first define the following collection of real
functions:

F={F: RiJr — R : F is differentiable and 0, F, 0, F > 0}.°

We say that a player j has (negatively) interdependent preferences if there exists an FV € F

such that j’s preferences are represented by an objective function Wy : [a, b — R of the
following form:

Upi(2) = F7 (7;(2), pj(2)) (1)

This particular representation of (negatively) interdependent preferences has recently

been proposed and axiomatically characterized by Ok and Kogkesen (1997). In particular,

the preferences represented by (1) can be interpreted as a compromise between the standard

case where the individual is assumed to care only about her absolute payoft 7;, and the

4To guarantee that p, is well-defined, we assume throughout that the material payoff functions always
take strictly positive values. Note that speaking of “relative payoffs” forces us to evaluate material payoff
functions in a strictly cardinal manner. This is conceptually unproblematic when payoffs represent amounts

of money, profits, or any homogeneous commodity.
SHere 0;F represents the partial derivative of F with respect to its ith component.



extreme case where she is concerned exclusively with her relative payoff p,. (The latter
case corresponds to Duesenberry’s relative income hypothesis.) The class of interdependent
preferences we consider here is quite rich, and includes several specifications used elsewhere.’

Let I, = {1, ..., k} represent the set of players with independent preferences, and J, =
{k 4+ 1,...,n} the set of those with interdependent preferences. We shall assume that all
objective functions are common knowledge. Hence the actual strategic interactions of the
individuals are modeled by means of the normal form game where the rth player’s action
space is [a,b] and her objective function is either m,. (if r € I) or is given by (1) for
some F" € F (if r € Ji). Let us denote a generic game of this sort by I'r, where F =
(FF1 FR2 F™) € F*F is the vector of interdependent objective functions. Formally, I'g

is the normal form game ({[a, b], pr}r=1,. »), Where p, : [a,b]" — R is defined as:

T, e Ik
pr= (2)
\IJFT, re Jk;

with F" € F, r € Ji. Therefore, the primitives of our analysis are the symmetric n-player
game [', the number of independent players k, and the vector of interdependent objective
functions F. Given these primitives, the game I'r is fully specified.

An immediate question of interest is the following: are there economically important
classes of games I' for which, regardless of the population composition k, and the vector of
interdependent objective functions F € F"*, it is the case that at any equilibrium action
profile of the I'r, the material payoff to each player with interdependent preferences exceeds
the material payoff to any player with independent preferences? To state this question

precisely, we introduce the following:

Definition. Let ' € G and let F € F"* for some k € {1,....,n — 1}. We say that
interdependent preferences yield a strategic advantage over independent preferences in

I'r if, at each Nash equilibrium x of T,
mi(x) > mi(x) for all (i,7) € I x Ji (3)

and

mi(z) > mi(x) for some (i,7) € I X J. (4)

6One interesting special case of our specification is that in which interdependent players maximize the
difference between their payoff and the mean payoff, i.e., p; = m; —7 = m; (1 — p{l). Such objective functions

are sometimes referred to as the “beat-the-average” functions (Shubik, 1980).



In the next section, we demonstrate that interdependent preferences yield a strategic
advantage over independent preferences in a rich class of aggregative games, and provide
two economically important examples of games which belong to this class. The evolutionary

implications of this finding are then explored in Section 4.

3 Strategic Advantage

3.1 Aggregative Games
The symmetric game I' = ({[a, b], 7, },=1,. ) is said to be aggregative if

() =H (xr, znjlxq> , x€la,b",r=1,..n, (5)
—

where H : [a,b] x [na,nb] — R, is an arbitrary twice differentiable function.” (The ter-
minology we use follows Dubey, Mas-Colell and Shubik, 1982; for a recent and extensive
analysis of aggregative games, see Corchén, 1996.) Among many interesting aggregative
games are the Cournot oligopoly, the common pool resource and public good games, and a

number of search theoretic models.
Let I" be an aggregative game, so that the payoff functions satisfy (5). Consider the

following assumptions:
Hy 20, Hys0, Hi; <0, Hi2<0 (6)

and
|Hy(a,na)| Z |Hy(a,na)| and |Hi(b,nb)| < |Hs(b, nd)|. (7)

While the assumption (7) is made only to rule out some trivial boundary equilibria (and
is standard in economic models), assumption (6) is quite crucial for the main result of this
section.® We denote the class of all aggregative games that satisfy (6) and (7) by .A.

The following is the main result of this section.

"The entire analysis of this paper goes through in terms of generalized aggregative games in which
m(z) = H (2, Y. h(zg)) for all z € [a,b]" and r = 1,...,n, where h : [a,b] — R is a continuous, strictly
increasing and concave function, and H : [a,b] x [nh(a),nh(b)] — R, is any C? function. The required

modifications of the proofs are straightforward.
8Both (6) and (7) are readily satisfied, for instance, in any Cournot oligopoly model with linear cost and

demand schedules, provided that the price level that corresponds to the industry capacity is above the unit
cost. More general Cournot models and other interesting games also satisfy these assumptions; two such

examples are given below.



Theorem 1. Take any k € {1,....n — 1} and any F € F**. For any aggregative game
I' € A, interdependent preferences have a strategic advantage over independent preferences

m FF.Q

Proof. Let I € A such that (5) holds with H; > 0 and Hy < 0. (The proof of the case
where H; < 0 and Hy > 0 is analogous to that which follows.) Fix any k € {1,...,n— 1} and
F € 77 %, and let x be a Nash equilibrium of I'r. We begin with a preliminary observation.

Claim 1. = # (a,...,a) and = # (b, ..., b).

Proof of Claim 1. From the boundary condition Hi(a,na) > |Hy(a,na)|, it follows that

there exists a small enough € > 0 such that
mi((a,...,a) +ee') = H(a +¢e,na +¢) > H(a,na) = m4(a,...,a),

for all i € I, where €' is the ith unit vector. Since I}, # (), we conclude that (a, ...,a) cannot

be a Nash equilibrium. The second part of the claim is proved similarly. ||

Now define
Al={ich:a<z;<b} and A*={icly:z;=a}

and
B'={jeJy:a<z;<b} and B*={j€ Jy:z; =b}.

First consider the case in which A' = (). In this case, H; > 0 and (5) together imply (3) so,
since H; > 0, the proposition fails to hold only if z; = a for all j € J;. But this would imply
that x, = a for all »r = 1,...,n, contradicting Claim 1. Therefore, the proposition holds in
the case A' = ().

Next consider the case A' # (). Let i* be the smallest index that satisfies

i* € argmax m;(x),
icAl

and take any j € B'. Then, by definitions of Nash equilibrium and I'r, we must have

O () >0 and Op;(x)
8(1%* 83:]-

<o0. 8)

9Theorem 1 continues to hold if the set I; consists of players whose preferences are either independent
or positively interdependent (the latter having objective functions F;(m;, p;) which are increasing in the first

but decreasing in the second argument); the modification of the proof is straightforward.



By using (1) and (2), we can write the second inequality as

opj(z)  Om; i1 j i j o, i
or;  Ox; OE” + 7 ! >y O Yoy ; 0z; OF

_ Im i L AN T j

= 8;1;j (81F + = <1 Z 7Tq) 82F Zﬂ'q ; H2 (JJT, Zﬂ'q) 82F

< 0

Q| =

| =

where all the derivatives are evaluated at the equilibrium z. Since Hy < 0, we must then

om; i Ly T j
8I‘j <81F +ﬁ' (1 Zﬂ'r) 82F <0

Om;(z)
oz, <0

since 0, F7, 0, F7 > 0. By using this finding along with (5) and the first inequality of (8), we

have

which is possible only if

obtain

[Hy (w4, ) xg) — Hy (zie, Y2 2g)] + [Ha (25, Y 1) — Ha (24, ) 24)] < 0. (9)

Now suppose that z; > z;. Since Hy, < 0, we have Hy (z;, Y x,) > Hy (x;+, ) x,). There-
fore, (9) yields

Hy (x4, y) < Hy(zis, ) 24)

which contradicts that Hy; < 0. Hence, we must have x;« < z;. But then H; > 0 entails

mi(w) = H (vj, ) x4) > H (Tir, ) 7) = i (),

whereas

i (x) > mi(x)  Vie I
by the choice of i*. We have thus established the following claim.
Claim 2. 7;(z) > m;(z) for all (4,7) € I x B*.
Notice that H; > 0 implies
mi(x) > mi(z) Y(i,j) € I x B

Therefore, in view of Claim 2, the proof would be complete if B! # () or if z; < b for some
¢ € Ir. But if neither of these statements holds, it must be the case that z, = b for all

r =1,...,n, which contradicts Claim 1. H



Theorem 1 identifies a class of aggregative games in which interdependent preferences
yield a strategic advantage over independent preferences in terms of material payoffs. The
following examples of well-known economic models show that the theorem is both easy to
apply and that it has economic significance. The first of these examples also helps provide

some intuition for the result.

3.2 Examples
3.2.1 Common Pool Resource Extraction

Consider a population consisting of n individuals, each of whom has access to a common pool
resource. Let x, > 0 denote the extraction effort chosen by individual r, while X = )" x,
denotes the aggregate extraction effort. There is an opportunity cost w > 0 per unit of
extractive effort and each member of the population receives a share of the total product
that is proportional to her share of aggregate extractive effort. Total product is given by a
twice differentiable and bounded function f: R, — R, with f(0) =0 and f'(0) > w.

We let A(X) = f(X)/X stand for the average return to effort for all X > 0, and set
A(0) = f1.(0). It is standard to assume that A'(X) < 0 for all X > 0. Consequently,
by the boundedness of f and A(0) = f’(0) > w, there must exist a unique Xy, > 0 such
that A(X) ; w whenever X z Xo. We may then define the common pool resource game

rer = ({[a, b], 7, }r=1..n) by letting

,,,,,

m(z) =z, (AX) —w), z¢€la,b]", (10)

where 0 < a < b < Xo/n.!’

['“P* is a minor modification of the widely-studied common pool resource game. Our
modifications are two-fold. First, by requiring that extraction effort cannot fall below some
(arbitrarily small) positive number a, we ensure that 7, is positive-valued and that the con-
dition Hy < 0 of Theorem 1 is satisfied Second, we assume that each individual’s extractive

effort is bounded in such a way that overcrowding can never be so extreme as to yield neg-

10T his formulation, which closely follows Sethi and Somanathan (1996), is general enough to encompass a
variety of institutional settings. For instance, if the output is for agents’ own use and a labor market does
not exist (as in pre-market societies) one would interpret w as the opportunity cost of the extraction effort in
terms of other useful activities. If, on the other hand, the good is sold in a competitive market and a labor
market exists, w can be interpreted as the foregone outside wage relative to the price of the product. If the
output market is imperfectly competitive, A(X) can be thought of as the product of a decreasing inverse

demand function with the average product.



ative payoffs (i.e., A(X) < w). This too is required to ensure that 7, is positive-valued.'?
Given these assumptions, provided that a is sufficiently small and b is sufficiently large (i.e.
provided that the action space is sufficiently rich), it is a straightforward matter to verify
that I'P* € A. Hence Theorem 1 immediately applies: interdependent preferences have a

strategic advantage over independent preferences in the common pool resource game.

1
0.9- Reaction Function, Player 1 .
,/'
0.8 ¢ Reaction Function, Player 2 :
-~ (Interdependent)
0.7¢ e :
c e
ie) e
g 0.6 - ‘ // Reaction Function, Player 2 1
£ i / (Independent)
w ‘ ]
~ 0.5 | L
o | ,/
0.4¢ : e :
o } /
P .= B
0.3 ‘ | e b
| e
|
0.2F ‘ | :
|
0.1r ‘ ! i
i i
0 4 1 1 1
0 0.2 0.4 0.6 0.8 1

Player 1 Extraction

Figure 1: A Two-Player Common Pool Resource Game

The common pool resource game can also be used to provide some intuition for Theorem
1. The reaction curves for independent and interdependent players in a simple two-player
version of this game are plotted in Figure 1 above.'? In this game, if both players had inde-
pendent preferences, the unique equilibrium would be symmetric with both players choosing
extraction effort 0.33. However, player 2’s reaction curve with interdependent preferences is

everywhere above the one that she would have had with independent preferences.!® Con-

1 Both these assumptions can be relaxed without changing any of our conclusions, though some additional

work is required in this case; see Kockesen et al. (1997a).
12The figure is based on the following specifications: w = 1, F%(r,p) = ©1p?, f(X) = 2X — X? for

X e[0,1] and f(X)=1for X > 1.
13Tt is important not to view Figure 1 as being generic. Theorem 1 holds regardless of whether the original

reaction curves are downward sloping, and it need not be true that the reaction curve derived from p; is in

general “everywhere” above the one that is derived from ;.

10



sequently, she is willing to extract more of the common pool resource at every choice of
extraction level by the independent player (player 1), even if that means a reduction in the
material payoffs that she would receive. This leads to an asymmetric equilibrium at which
player 1 chooses a strictly lower level of extraction effort than that of player 2. Given the
structure of 7., this leads to a higher material payoff for the interdependent player than for

the independent player.

3.2.2 Private Provision of Public Goods

Consider an n-person economy in which there is one public good and one private good. Each
individual is endowed with an identical level of private good denoted by b > 0. The quantity
of public good is defined as the sum of (voluntary) contributions of individuals which are
paid out of their endowments.!* Since the private good holdings of individual r would be
b — z, when she contributes z, to the production of the public good, we may write the

absolute payoff of person r as a function of the profile of the contributions as follows:
m(x) =U0b— x> x,), z€][00]" (11)

where U : R — Ry, is a twice differentiable money-metric utility function such that
Uy >0, Uy>0, Uy <0, and U, > 0. We also postulate the following standard boundary
conditions: U;(0,nb) > Us(0,nb) and Us(b,0) > U (b,0).

This environment induces the (symmetric) game I'* = ({[0, b], 7, },=1, ), which we refer
to as the public good game. 1t is routine to check that I'’* € A under the assumptions stated
above. Hence by Theorem 1 we may again conclude that interdependent preferences have a

strategic advantage over independent preferences in the public good game.

141f the public good in question is something like the protection of a military front or the irrigation of a
common land, this production technology might be found objectionable. For this reason, Cornes (1993), for
instance, proposes to examine the model with quasiconcave CES technology, where the quantity of public
good is (> xqa)l/ *, a < 1. (Notice that this technology approaches to Hirshleifer’s weakest-link technology
as a — —o00.) More generally, one may assume that the technology is given by any additively separable
production function & — > h(z4) where h is any strictly increasing and concave real function on [0, a]. Our

strategic advantage result applies to this case as well; see footnote 7.
15 All of the assumed regularity conditions are standard (with the possible exception of Ujo > 0 which entails

that the private and public good are complements). Among the examples of commonly used functional forms
for U that satisfy these postulates are U(e, X) = V(c) + W(X), where V and W are twice differentiable
positive functions with V/ > 0, V” <0 and W’ > 0.

11



4 Preference Evolution

In this section we examine the potential implications of the results obtained above for the
evolutionary theory of preference formation. Along the lines of recent work by Fershtman
and Weiss (1996) and Bester and Giith (1998), we consider a sequence of generations such
that the distribution of preferences is fixed within a generation but varies across generations
under pressure of differential material payoffs. The fundamental selection criterion that
we use is a substantially weakened version of the standard notion of “payoff monotonicity,”
which is based on the hypothesis that higher material payoffs to a heritable trait lead to more
rapid replication of that trait over time (see, for instance, Waldman, 1994, Bergstrom, 1995,
or Robson, 1996). This hypothesis is consistent with a variety of distinct intergenerational
preference transmission mechanisms. The most obvious is genetic transmission, in which
children inherit the preferences of parents. In this case differential fertility rates drive the
selection dynamics and payoff monotonicity corresponds to the hypothesis that number of
surviving children that each parent leaves behind is an increasing function of the material
payoffs that they earn in their adult life. Similarly, if preferences are acquired by emulation or
inculcation within the home, and parents transmit (with or without deliberate intent) their
own preferences to their children, then again differential fertility rates will drive the selection
dynamics provided that parents raise their own children. If parents raise children that are not
biologically their own (for instance through adoption), then high adoption rates in addition to
high fertility rates will be important and payoff monotonicity implies that wealthier parents
will be more likely to adopt. Preferences may also be transmitted through the emulation
of non-parents, for instance through the observation of materially successful individuals in
society, or may be deliberately inculcated by parents on the basis of criteria which allow for
differences in the preferences of parent and child. Each of these transmission mechanisms
can give rise to payoff monotonic selection dynamics under plausible assumptions.

Consider a sequence of time periods ¢, in each of which a population of n individuals
interact strategically.!® The material payoffs arising from the strategic interaction are rep-
resented by a symmetric n person game I', which is assumed to be the same in all periods.
While some players maximize material payoffs, we also allow for the possibility that some
have negatively interdependent preferences. The set of all available interdependent prefer-
ences is an arbitrary finite set G C F with |G| = m. The period ¢ population composition,

denoted s; = (s?, s}, ..., s), is then an m + 1 dimensional vector of population shares where

16While we assume that the population size is constant through time, this is only for convenience. The

main result of this section holds so long as the population size is bounded.

12



sY represents the population share of players with independent preferences and s] repre-
sents the population share of players with objective function ¥, as defined in (1) for some
Fi € G, 7 =1,...,m. The number of independent players in the population in period ¢ is
simply k; = ns). Finally, let F, = (EM™! . EF") € F** represent the n — k, dimensional
vector of objective functions corresponding to each of the interdependent players, where,
Fi e g, foreachiec {k +1,..,n}.

At time ¢, T'(s;) = I'p, is played.!” T'(s;) can be thought of as a random variable since
we shall assume that (s;)2, is a stochastic process. The manner in which the population
composition evolves over time will depend on the payoffs obtained by each preference type
at whichever equilibrium of I'(s,) happens to be realized in period ¢t. Let N(I'(s;)) represent
the set of Nash equilibria of I'(s;), 7;(x) the average material payoff to individuals with
objective function Wy;, 7 = 1,...,m, and my(z) the average material payoff to individuals

with independent preferences.

Definition. The process (s;);°, is said to satisfy weak stochastic payoff monotonic-

ity if, for all i = 0,...,m, the following conditions hold:
(a) If st >0 and 7,(z) < 7;(x) for all x € N(T'(s;)) and all j # i with s, > 0, then
Prob{s;,; <s; } =1 and Prob{s},; <si} >0, ¢t=0,1,.. (12)
(b) Prob{si,;, =0 s =0} =1.
The class of all such processes is denoted by Spon(T).

The first condition states that the population share of the preference which yields the
lowest material payoff in any given generation does not grow, and that it shrinks with some
positive probability. The second condition states simply that preferences that are driven
to extinction under these dynamics do not subsequently recover. Other than these two
restrictions, no further property is posited on the behavior of (s;):°,. In particular, this

process can be time or history dependent.'®

17Since s; represents only the population shares of each preference type, and admits a variety of inter-
dependent objective functions, it does not tell us the precise assignment of each objective function to each
interdependent player. This is however inconsequential, since the symmetry of I' permits any assignment of

interdependent objective functions to interdependent players without affecting our results.
18The class of weak stochastic payoff monotonic dynamics includes as special cases both regular payoff

monotonic dynamics (Samuelson and Zhang, 1992), and payoff positive dynamics (Nachbar, 1990). Also
included in this class are the generalized replicator dynamics (Sethi, 1998) which are neither payoff monotonic

nor payoff positive in general.
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In what follows, we shall inquire whether we have
lim Prob{s) =0 sy <1} =1 (13)

when I' € A, and when (s;)72, € Sion(I'). In other words, we ask whether weak stochastic
payoff monotonic dynamics imply the elimination of independent preferences in the long run
for an arbitrary initial population composition containing both independent and interde-
pendent players. While it may at first appear that (13) follows directly from Theorem 1,
the following example demonstrates that weak stochastic payoff monotonicity is actually too

weak to guarantee this.

Example 1. Let n = 2 and suppose that (s;)7°, is a non-stationary Markov chain.

Suppose that the evolution of s! is governed by the following transition matrix:

0
1
=%
0

Qt) = t=1,2,..

= o O

1
1

2f
0

(Here Q;;(t) = Prob{s},, = (j—1)/2| s} = (i—1)/2}, 1,5 = 1,2,3.) By Theorem 1, (s;)2, €
Suwon(I') provided that I' € A. However, (13) cannot hold in this case. To see this, define the
events Ag = 0 and Ay = {s? = 0| s) = 1/2}, and notice that A, C A;,; a.s. forallt =1,2, ...
. But then by continuity of probability measures, lim;Prob A; = Zz oProb A 1\ A;. But

Prob A;41\A; = Prob{s),, =0, s{=---=s)=1/2]s)=1/2}
1
= Prob{s{,, =0 s =1/2} [];_; Prob{s) =1/2 | s_, =1/2} < 5

so that lim;Prob A, < Y 2, 1/2t = 1.1 |

Given this example, it is clear that we have to demand more from the selection dynamics.
A sufficient (but not necessary) requirement is to assume that probability of the event that
s¥ > 0 is strictly decreasing is bounded away from zero whenever 7y(z) < 7;(x) for all
z € N(['(s;)) and all j # i with s/ > 0. This is not a terribly stringent requirement in

that any stationary Markov chain in S,,,,(I") satisfies it trivially. In the next result, we shall

More generally, suppose that n = 2 and consider any (s;)22, € Spon(I') such that the evolution of
(s9)22, is governed by a transition matrix Q(t). Then, lim,Prob{s) = 0 | s} = 1/2} = 1 if and only if
> e Qa1(t) = co. To see the “only if” part, notice that if Y, Q21(t) < oo, then there must exist T > 0
such that Y,° Qs (t) < 1. In this case, by defining A, = {5?+T =0 | s = 1/2} and applying the above
argument we find lim;Prob A; < 1. The “if” part is less elementary, and it follows from our subsequent

Corollary 1.

14



prove that this requirement is sufficient to guarantee (13) for all games I" € A. The proof of
this proposition will also enable us to obtain a better (possibly time-dependent) lower bound
on Prob {s{,; < s} | s} #0,1} as well.

Theorem 2. Take any k* € {1,....n—1}, let T' € A, and let (s;:)72y € Smon(L). If there

exists a number o > 0 such that

Prob {s},; < s{ | s} #0,1} >0, t=1,2,.., (14)
then
tlim Prob{s) =0 | sj = k*/n} = 1. (15)

Proof. Let K = n — k* and consider the subprocess (Y;)$°, where Y; = %, t = 0,1, ...

. Letting s* = k*/n, we have

Prob{Y; =0 | Yy =5} = Prob{s) =0] s)=s"}

> Prob{s) <s_ |, <---<s)<s*|s)=5"}
K B 0 . .
- HH Prob{s! <s)  |[0<s? <. - <s)=5")
> o
by (14). Thus,
Prob{Vi 0¥y = s} <1-0" (16)

and we obtain
Prob{Y; #0, Yo #0 | Yy =5} <Prob{Yy #0 | Y1 #0, Yy = s*}(1 — o).

But since the first part of (12) implies that Prob{Y; # 0 | Y1 = Yy = s*} > Prob{Y; # 0 |

Y) =i, Yy = s*} for all ¢ > s*, we must have?"
Prob{Y; #0 | Y1 #0, Yo =5} <Prob{Ya #0 | Vi =Y, =5} <1 - ",

We thus find
Prob{Y; #0, Yo #0| Yy = s*} < (1—0")>

20Here the first inequality follows from the fact that, for any events A, B, C in any probability space with
measure P, P(A | B) > P(A | C) implies P(A | B) > P(A | BUC). The second inequality is obtained in a

manner analogous to (16).
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Proceeding by induction, we obtain
Prob{Y; #0, t=1,...T | Yo =5} < (1 -, T=1,2,..
But then by letting T — oo, we find
Prob{Y; #0, t=1,... | Yy =s"} =0.
This establishes (15) in view of the continuity of probability measures. l

Theorem 2 immediately establishes that if the selection dynamics are either deterministic
or stationary Markov, then weak stochastic payoff monotonicity implies that the population
share of independent agents will shrink to zero in finite time with probability one. This
observation is quite general and capable of encompassing many different mechanisms for the
intergenerational transmission of preferences. The following example of a parental socializa-

tion mechanism provides an illustration.

Example 2. Consider an evolutionary scenario in which the strategic interaction in any
generation involves playing a game I'(s;), where s, is the period ¢ population composition and
I' € A. For simplicity, we assume that each adult has exactly one child, and there are only
two types of admissible preferences. Hence s; = (s?,s}), where s; is the population share
of the interdependent individuals. Assume that parents attempt to socialize their children
on the basis of the current equilibrium payoff distribution. Specifically, an adult wishes to
inculcate preferences in her child that yield the highest value for her own preferences. (Bisin
and Verdier, 1997, refer to this as partial empathy.) A parent with objective function (1),
for instance, wishes to inculcate preferences in her child which yield the highest value for
(1). We assume that each independent parent’s socialization efforts are successful in period ¢
with probability ¢, = ((s)), where ¢ : [0,1] — (0, 1) is a decreasing function.?! If the parent’s
socialization efforts are not successful, the child simply inherits her parent’s preferences.

By using Theorem 1, we may readily verify that this socialization mechanism entails a

stochastic process (s;);°, which belongs to Sy,on(I'). On the other hand,

Prob {s},; < sy | sy # 0,1} =1—((sy) > 1-¢(0) >0

2IThe decreasingness of ¢ captures the “oblique” aspect of cultural transmission mechanisms: the more
interdependent people there are in the society, the higher is the chance of successful inculcation by the

independent parents who implore their children to “do as I say, not as I do!” (Bisin and Verdier, 1997).
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so that by Theorem 2, we may conclude that independent preferences are almost surely

driven to extinction in finite time.? ||

Finally, we note the following generalization of Theorem 2, which shows that (13) may
hold under a large class of stochastic processes. The proof is a straightforward modification
of that of Theorem 2, and is thus omitted.

Corollary 1. Take any k* € {1,...,n—1}, let T' € A, and let (s)72y € Smon(L). If there
exists a o(t) > 0 such that

Prob {sj,; < s | st #0,1} > o(t), t=1,2,..., (17)
and
T (G+1)(n—k*)
thil(gf 1-— H o(t)| =0
J=0 t=j(n—k*)+1

then (15) holds.

The next example illustrates the superiority of Corollary 1 over Theorem 2.

Example 3. Let k* € {1,...n—1}and K =n — k* and o(t) = 1/t/5 t =1,2,....
Notice that since inf;>1 o(t) = 0, we cannot use Proposition 3 to establish (15) even if (17)
is satisfied. But

T

lim (1—a(jK+1)---0((j+1)K))§H<1——) = lim - =0,

T—00
7=0 t=0

and hence by Corollary 1, we may conclude that (15) holds. ||

The above results suggest that interdependent preferences eventually eliminate indepen-
dent preferences in the long run in particular strategic environments. It is important to bear
in mind, however, that our analysis has been based on the assumption that each member
of the population interacts with each other member. This “playing-the-field” hypothesis is
a natural starting point for the analysis of preference evolution in aggregative games, since
the most common examples of such games have precisely such an interaction structure in

mind. Nevertheless, this hypothesis is truly compelling only for small and relatively isolated

22This conclusion could not be obtained as easily if parents were to take into account the fact that
their decisions might influence the population composition in the subsequent generation and therefore alter
the set of equilibria. Taking this effect into account complicates the decision problem faced by parents
quite substantially, however, and demands an improbably sophisticated degree of foresight even when the

population size is small.
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communities. In the case of larger populations, it may be more plausible to assume that
individuals interact in smaller subgroups, either with their geographic or social ‘neighbors,’
or with individuals with whom they have been randomly matched. In random matching
environments (such as those studied by Bester and Giith (1998) and Fershtman and Weiss
(1996)) the link between strategic advantage and evolutionary stability is less immediate and
it is entirely possible that preferences which yield a strategic advantage in each interaction
may yet earn lower payoffs on average than preferences that yield a strategic disadvantage.??
The same is true in local interaction environments of the kind explored by Eshel, Samuelson
and Shaked (1998). While an exploration of preference evolution in random matching and
local interaction networks is beyond the scope of this paper, it is clearly an interesting and

important topic for future research.

5 Conclusions

The findings reported in this paper give some theoretical support to the hypothesis of inter-
dependent preferences. Aggregative games of the type studied here are important from an
evolutionary perspective, and the playing-the-field hypothesis is a natural starting point for
the analysis of preference evolution in the context of such games.

There are several directions in which our results could be extended. It would be interest-
ing to consider the extent to which the main result of Section 3 can be generalized to cover
larger classes of games. Determining the class of all normal-form games in which interdepen-
dent preferences yield a strategic advantage over independent preferences is largely an open
problem (but see Kockesen et al., 1997b). Relaxing the restrictive assumption that all ob-
jective functions are common knowledge is a task which should also be undertaken in future
work. Finally, much work remains to be done with regard to examining the implications of
our strategic advantage results within the context of alternative specifications of evolution,
such as models of local interaction, and alternative socialization mechanisms.

An interesting application of the present approach concerns the theory of oligopolistic

2In Kockesen et al. (1997a), preference evolution under pairwise random matching is investigated for the
special case of the Hawk-Dove game. The Hawk strategy becomes dominant for interdependent players if
their preferences are sufficiently interdependent, causing a homogeneous population of such players to be
vulnerable to invasion by a single independent player (who plays the best response, Dove). Similarly, a
population of independent players is vulnerable to invasion by a (sufficiently) interdependent type since the
latter’s choice of Hawk elicits a best response of Dove from her opponent. As in Banerjee and Weibull (1995),

and for similar reasons, a polymorphic population prevails in the long run.
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competition. The payoff structure of the commons game resembles that of Cournot oligopoly,
and suggests that there may be circumstances in which a profit seeking shareholder (prin-
cipal) will instruct the manager (agent) of her firm to pursue objectives other than the
maximization of absolute profits. This issue has already been explored for oligopolistic mar-
kets with linear demand and cost functions by Vickers (1985) and Fershtman and Judd
(1987), but our findings suggest that the phenomenon will arise much more generally.
Another application concerns the investigation of anomalies frequently observed in ex-
perimental games. Our approach appears particularly well suited to explain behavior in
ultimatum bargaining games, in which a concern for relative standing would predict the
rejection of highly skewed offers and entail fear of retaliation on the part of the first movers
(see, for instance, Bolton, 1991). Furthermore, the ultimatum bargaining environment is
one in which responders with interdependent preferences will earn higher payoffs than those
with independent preferences, so that evolution operating in this environment is likely to
select against the latter. The examination of this issue, and others arising from the present

work, are left for future research.
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