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INTRODUCTION

Over the past fifty years, the mathematical theory of fair
division has often been formulated in terms of cutting a cake.
More specifically, one seeks ways to divide a cake among n
people so that each person is satisfied, in some sense, with the
piece he or she receives, even though different people may
value certain parts of the cake differently. (See [BT), {G], (K], [O]
and [S3]) '
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We focus in this paper on “moving-knife" schemes for fair
division, but the earliest fair-division methods were quite
different. When there are only two people (n = 2), the parental
solution for appeasing two quarreling children of "one cuts, the
other chooses" is well known, going pback at least to Hesiod’s
Theogeny some 2,800 years ago [L,pp. 126-131]. A half century
ago, Hugo Steinhaus [S1] first asked about generalizing cut-and-
choose to more than two people. Since that time, three kinds
of results have been obtained: '

1. Existence results. One of the earliest results of this kind
was Neyman's theorem [N], which established the existence, for
n countably additive probability measures defined on the same
space C, of a partition of C into n sets that is even (meaning
that each of the sets is of measure 1/n with respect to all the
measures). The proof, however, in the words of Rebman
[R; p. 33], gives “no clue as to how to accomplish such a
wonderful partition.”

Note that any even division is envy-free (meaning that
each person thinks he or she received a piece at least as large
as those received by the other people), and that any envy-free
division is proportional (meaning that each person thinks he or
she received at least 1/n of the cake). The reader is invited to
construct, for n = 3, examples showing that neither implication
is reversible. For n = 2, of course, proportionality and envy-
freeness are equivalent.

2. Discrete algorithms. The so-called last-diminisher
procedure of Stefan Banach and Bronislaw Knaster (see [S1])
provides an early example of this kind of result, which is called
a "protocol” in [BT], [G] and a "game-theoretic algorithm” in [B].
Under the Banach-Knaster procedure, the first person cuts a
piece from the cake [that he or she considers to be of size 1/nll
This piece is then passed, in turn, to each of the other people.
Upon receiving such a piece, a person has the option either to
pass it along unaltered to the next person [which is done if the
person holding it considers it to be of size at most 1/n], or to
trim it [to size 1/n in his or her measure] and then pass it

1Our use of brackets will bg explained later.




along. The last one to trim it - or the first person, if no one
trimmed it - gets that piece as his or her share. The
trimmings are returned to the cake, and the procedure is then
repeated for the remaining cake. Note that a participant may
receive a "piece” consisting of many subpieces that were widely
separated in the original cake, which is a feature common to
many discrete algorithms. '

We leave it to the reader to check that if a player follows
his or her strategy - and it is precisely these strategic aspects
that we have placed in square brackets - then that player will
receive a piece he or she thinks is of size at least 1/n,
regardless of what strategy the other players employ. We shall
say more later about the difference between strategies and
rules.

3. Moving-knife procedures. This kind of continuous

procedure seems first to have been proposed in 1961, when
Lester Dubins and Edwin Spanier [DS] presented the following
elegant version of the Banach-Knaster protocol: A Kknife is
slowly moved across the cake, say from left to right. (Figure 1,
borrowed from [Al, illustrates this.) At any time, any player
can call "ecut” and then receive the piece to the left of the knife,
with ties broken by sorme kind of random device. It is easy to
see that if a player employs the obvious strategy of calling
“cut” any time the piece so determined is of size exactly 1/n In
his or her measure, then this will certainly yield him or her a
piece of size at least 1/n. In contrast to discrete algorithms,
moving-knife schemes tend, by exploiting continuity and
intermediate values, to minimize the number of chunks each
person receives.

cake

Figure 1




Any discrete algorithm or moving-knife procedure consists
of both rules and strategies. Rules incorporate those parts of
the procedure that can be enforced by a referee (because the
referee can tell whether or not a rule has been followed
without knowing the measures of the various players},
whereas strategies are good advice to the players (which they
can follow by using their knowledge of only their measure). To
keep the distinctions clear, strategies are put in square
brackets whereas rules are not. For example, a rule and
strategy we shall use later is, "Player 1 divides the cake into
three pieces [each of which is 1/3 of the cake in his or her
opinionl.”

For the sake of brevity, in what follows we ignore the
possibility that all of the players involved in some part of a
procedure abandon their strategies by choosing never to call
“cut.” The problem is easily addressed via an added rule that
allocates the cake in some manner (eg., according to some
random device) should this situation arise.

We are not concerned, in this paper, with how an
individual might exploit knowledge of another’'s measure to do
even better than he or she would by following the suggested
strategy. (Even cut-and-choose is sensitive to this kind of
information [BT2].) In effect, then, we assume that none of the
players has knowledge of others’ measures, and we seek
procedures that guarantee a certain payoff under this
assumption. In fact, in the schemes we present, each player's
strategy will guarantee him or her the appropriate payoff
(either at least 1/n of the cake, or freedom from envy), even in
the face of a conspiracy by the other players.

Our goal in the present paper is to present eight moving-
knife schemes, in addition to that of Dubins and Spanier [DS]
described earlier, several of which are new. Our main focus is
on obtaining an envy-free division among three people - that
is, one in which each player not only considers the piece he or
she gets to be of size at least 1/3 but also to be a piece at least
tied for largest among the three pieces allocated. Neither the

4




Banach-Knaster [S1] scheme, nor the Dubins-Spanier [DS]
moving-knife version of 1t, guarantees an envy-free allocation.
Five of the schemes to be presented yield such an allocation for
three people.

Two of the envy-free schemes that we will present employ
Austin's two-person scheme, to be described next.

AUSTIN'S TWO-PERSON EQUALIZING SCHEME

Recall that Neyman's {N] result guarantees the existence of
a partition of the cake into n pieces such that every person
thinks every piece is of size 1/n. For n = 2, this yields a single
piece of cake that both people agree is of size exactly 1/2. In
1982, A. K. Austin [A] produced the following elegant scheme
that achieves this using a pair of moving knives, wherein each
player's strategy will guarantee that he or she receives a piece
of size exactly 1/2:

Assume there is a single knife that moves slowly across the
cake from the left edge toward the right edge, as in the
Dubins-Spanier [DS] procedure, until one of the players -
assume it is player 1 - calls "stop” {which he or she does at the
point when the piece so determined is of size exactly 1/2]. At
this time, a second knife is placed at the left edge of the cake.
Player 1 then moves both knives across the cake in parallel
fashion [in such a way that the piece between the two knives
remains of size exactly 1/2 in player 1's measure], subject to
the requirement (superfluous, if the strategies are followed)
that when the knife on the right arrives at the right-hand
edge of the cake, the left-hand knife lines up with the position
that the first knife was in at the moment when player 1 first
called “stop” (see Figure 2}). While the two knives are moving,
player 2 can call "stop” at any time [which he or she does
precisely when the measure of the piece between the two
knives is of size exactly 1/2 in his or her measurel.




ceke becomes cake
2nd st
knife knife
Figure 2

Now, what guarantees that there will be a point where
player 2 thinks the piece between the knives is of size exactly
1/2? Notice that at the instant when the two knives start
moving, player 2 thinks the piece between the knives is of size
strictly less than 1/2 {(assuming he or she has followed the
strategy given). At the point when the two knives stop
moving, the piece between the knives is the complement of
what it was when the knives started moving. Hence, player 2
thinks the piece between the knives is now of measure strictly
greater than 1/2. Thus, with an appropriate continuity
assumption, there must be a point where the measure of the
piece between the knives is gxactly 1/2.

No generalization of Austin's scheme to n > 2 people 1is
known. (We give later an additional reason why a
generalization would be of interest.) However, Austin himself
noted - and we will need this observation later - that a simple
extension of his scheme produces a single piece of cake that
each of two players thinks is of size exactly 1/k for any k. This
extension proceeds as follows:

Player 1 first makes a sequence of k-1 parallel marks on
the cake [in such a way that he or she thinks the k pieces so
determined are all of size 1/k]. Now, player 2 cannot possibly
think all k pieces are of size less than 1/k, and player 2 cannot
possibly think all k pieces are of size greater than 1/k. Thus,
either player 2 thinks one of the pieces is of size exactly 1/k -
in which case we are done - or we can assume, without loss of
generality, that he or she thinks the first piece is of size less
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than 1/k and the second piece is of size greater than 1/k. But
now we can can have player 1 place knives on the left and
right edges of the first piece, and move them as before [so as to
keep the measure of the piece between the two knives at
exactly 1/k], subject to the same sort of requirement as before.
This argument shows that, at some point, player 2 will think
the piece between the two knives has measure exactly 1/k.

An iteration of Austin's two-person scheme allows two
players to partition the cake into j pieces, each of which is of
size 1/j according to both players. For example, if j = 3, we
begin by using Austin's two-person scheme to obtain a single
piece of cake that both players think is of size 1/3. Now we
apply the k = 2 version of Austin's two-person scheme to the
rest of the cake. These latter two pieces have size 1/2x 2/3 =
1/3 according to both players, as desired. In what follows, we
refer to both the original and iterated version as Austin's two-

person scheme.

AUSTIN'S VERSION OF FINK'S ALGORITHM

A. M. Fink [F] devised a clever alternative to the Banach-
Knaster [S1] procedure. Fink's scheme is, like the Banach-
Knaster procedure, a discrete algorithm that yields an
allocation for n players wherein each player receives a piece of
cake that he or she thinks is of size at least 1/n.

Austin [A] introduced his two-person scheme into Fink's
algorithm, obtaining a moving-Kknife scheme that yields an
allocation among n players in which each player thinks he or
she receives a piece of size exactly 1/n. The scheme proceeds
as follows:

Players 1 and 2 use Austin’'s two-person scheme to divide
the cake into two pieces, A and B [so that both think A and B
are of size 1/2]. Players 1 and 3 then cut a piece A’ from A
[that they both think is exactly 1/3 of Al. Players 2 and 3 now
do exactly the same thing to B to obtain B’ (see Figure 3).
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Player 1 now receives A - A', player 2 receives B - B, and
player 3 receives A" U B'. It is easy to see that each player
receives a piece of cake that he or she thinks is of size exactly
1/3.

1/2 (players 1 & 2) 1/2 (plagers 1 & 2)

A B

1/3 (players 1 & 3) 1/3 (players 2 & 3)

A’ A-A B’ B-B'
\plaqer 1's piece / player 2's piece
player 3's piece

Figure 3

If a fourth person now comes along, each of the three
earlier players simply gets together with this fourth person
and cuts a small piece that he or she and the fourth person
agree is 1/4 of the piece held by that player. The fourth person
then gets the union of the three small pieces, etc.

STROMQUIST'S ENVY-FREE SCHEME

Probably the best known but most complicated moving-
knife scheme is the envy-free procedure for three players due
to Walter Stromaquist [St]l. This procedure begins with a referee
holding a knife at the left edge of the cake. Each of the three
players holds a knife parallel to the referee's [at a point that
that player thinks exactly halves the remainder of the cake to
the right of the referee’s knifel. The referee moves his or her
knife slowly across the cake, as was the case with all the
previous procedures. The three players move their knives In
the same way as the referee, with each player’s keeping his or
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her knife to the right of the referee’s [so that it exactly halves
the piece to the right of the referee’s knife, with respect to that
player's measurel.

At any time, a player can call "cut’ and receive the piece
to the left of the referee's knife (X in Figure 4). A cut is then
also made by whichever of the three players’ knives is in the
middle (yielding Y and Z in Figure 4). Of the other two players,
the one whose knife was closer to the referee’s knife gets Y,
and the other gets Z.

ceke

10 [

— —_—
Referee  three
players
Figure 4

The strategy is for a player to call "cut” only if he or she
thinks the left-hand piece X is at least as large as both the
middle piece Y and the right-hand piece Z. (Misinterpretations
of this strategy have caused some confusion in the literature,
see [0] and [St].) Hence, the player calling "cut” will never envy
the other two. Since neither of the other two players called
“cut,” they must each think the largest piece is either Y or Z.
To see that neither of them experiences any envy, notice that
each thinks he or she is getting the larger of Y and Z, or there
is a tie. This is easy to check and left to the reader.

THE LEVMORE-COOK ENVY-FREE SCHEME

There is another procedure for producing an envy-free
division among three people. It is due to Saul X. Levmore and
Elizabeth Early Cook [LC] and seems to have been largely
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overlooked. It is essentially a moving-knife algorithm, although
they describe it as a process with “infinitely small shavings.” It
can be described as follows:

Player 1 divides the cake into three pieces P, Q, R [that he
or she considers equall. Each of the other two players selects a
piece [that he or she considers largest]. If they choose different
pieces, we are done. Otherwise, we can assume they both
choose P. Now player 1 starts a vertical moving knife, as In
the Dubins-Spanier [DS] scheme, but at the same time he or
she places a second knife perpendicular to the first and over
the portion of the cake over which the vertical knife has
already swept (see Figure 5). '

Notice that if cuts were 10 be made from such a
positioning of the knives, the piece of cake labeled P would be
cut into three pieces, exactly two of which would involve both
knives. Let S denote one of these two pieces and let T denote
the other. The second knife is moved up and down [in such a
manner that player 1 thinks Q U S is the same size as R U Tl

P Q R

Figure 5

When the process begins, both S and T are the empty set,
so player 2 and player 3 both think P-(SUT) is larger than both
QUS (giving two inequalities} and RUT (giving two inequalities).
Now let either player 2 or player 3 call "stop” fwhen he or she
knows that any of these four inequalities first reverses], and
take QUS or RUT [whichever he or she thinks is bigger]. Player
1 gets the other composite piece, and the player who did not
call "stop” gets P-(SUT).
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WEBB'S ENVY-FREE SCHEME

It turns out that by combining the basic idea in the
Dubins-Spanier [DS] scheme with Austin's [A] two-person
scheme, one can obtain a fairly simple moving-knife procedure
that guarantees an envy-free allocation among three people.
This scheme was first discovered by William Webb (W],
although he was unaware of Austin's work and thus recreated
the part of it he needed. The version we give next uses
Austin’s original scheme:

A knife is slowly moved across the cake, as in the Dubins-
Spanier procedure, until some person - assume it is player 1 -
calls “cut” [because he or she thinks the piece so determined 1s
of size 1/3]. Call the piece resulting from this cut Al, and
notice that players 2 and 3 both think Al is of size at most 1/3.

We now have player 1 and either one of the other two
players - assume for definiteness it is player 2 - apply Austin’s
two-person scheme to the rest of the cake, resulting In a
partition of it into two sets, A2 and A3 [that players 1 and 2
think is a 50-50 division of the rest of the cake]. Notice that if
the bracketed strategies are followed, then

1. Player 1 thinks that all three pieces are of size exactly
1/3.

2. Player 2 thinks A2 and A3 are tied for largest (since
each is exactly 1/2 of a piece that is at least 2/3 of the whole
cake).

An envy-free division is now easily obtained by having the
players choose among the three pieces in the following order:
player 3, player 2, player 1. Notice that player 3 envies no
one, because he or she is choosing first; player 2 envies no one,
because he or she had two pieces tied for largest; and player 1
envies ho one, because he or she thinks all three pieces are the
same size.
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A PIE SCHEME FOR ENVY-FREE DIVISIONS WITH n = 3

Another conceptually simple envy-free moving-knife
scheme for 3 players can be achieved by picturing a round
cake (or pie, as in [G]) instead of a rectangular one. The idea of
using a pie and radial knives seems 1o be a part of the cake-
division folklore, but the following scheme is, as far as we
know, new.

Start by having player 1 hold three knives over the round
cake as if they were hands of a clock [in such a way that he or
she considers the three wedged-shaped pieces to be all of size
exactly 1/3]. Now have player 1 start moving all three knives
in a clockwise fashion [so that each piece remains of size
exactly 1/3 in his or her measure], subject to the requirement
(superfluous if strategies are followed) that the moment any
knife reaches the initial position of some other knife, all knives
line up with such initial positions.

The claim is that, at some point, player 2 must think at
least two of the wedges are tied for largest. That is, if player 2
thinks a single wedge (call it A) is largest at the instant when
the knives start moving, then A is eventually transformed, as
in Austin's scheme, to the wedge immediately clockwise. Thus,
at some point prior to this, the piece determined by the two
knives that originally determined A loses its position as largest
to another piece. At the instant when this happens, we have
the desired two-way tie for largest in the eyes of player 2.

The envy-free allocation is now obtained by having the
players choose in the following order: player 3, player 2, player
1. This scheme can be recast as one in which three knives
move in parallel across a rectangular cake (with the
understanding that as a knife slides off the right edge, it
immediately jumps back onto the left edge).
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AN EASY THREE-PERSON ENVY-FREE SCHEME

Our final envy-free moving-knife scheme for three people
is an immediate consequence of Austin’s [A] two-person scheme
for dividing a cake into three pieces such that each of two
players thinks that the division is even. One simply has
players 2 and 3 use that scheme to obtain a partition of the
cake into three pieces [that they both think are all of size 1/3].
The players then choose the piece they want in the following
order: player 1, player 2, player 3. Player 1 experiences no
envy, because he or she is choosing first; and neither player 2
nor player 3 will experience envy, because each thinks all
three pieces are the same size.

Perhaps the most important aspect of this three-person
scheme is that it can be extended, at the cost of some
complexity, to a moving-knife scheme that produces an envy-
free allocation among four players. This scheme is described in
[BTZ].

AN ALM.OST ENVY-FREE SCHEME FOR n > 3

As we pointed out earlier, the Dubins-Spanier moving-knife
scheme does not guarantee an envy-free allocation. The reason
is that as soon as a player calls "cut,” he or she is relegated to
spectator status for the remainder of the procedure. Thus, if a
larger piece should arise later, he or she has no recourse but to
sit quietly by and watch one of his or her competitors get it.

Might we not alter the Dubins-Spanier [DS] procedure by
allowing a player to re-enter the process in some way? One
possibility that suggests itself is to allow a player to call "cut’
again, even though he or she already has done so at least once
and thus received a piece of cake. That player would then be
required to take the new piece determined by this most recent
cut, returning his or her previous piece to the cake.
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What this yields is the following: Given n people and some
¢ > 0, there is a moving-knife scheme that will guarantee each
player a piece of cake that he or she thinks is at most ¢
smaller than the largest. The scheme is simply the one we Just
described, and the concomitant strategy: each player calls "cut”
initially whenever he or she thinks the piece this will yield is of
size 1/n, and thereafter calls “cut” whenever he or she thinks
the new piece is ¢ larger than the one he or she presently
holds. Ties are broken at random.

Unfortunately, the rules of this scheme - as opposed to the
strategies just described - would allow 2 player to call “cut”
infinitely many times. However, the strategies described are
not affected by an additional rule which asserts that each
player can call "cut” at most 1/¢ times. Thus, if € = 1/100, a
player need never call "cut’ more than 100 times to ensure
that his or her piece is "almost” the largest - that is, smaller
than the largest piece by at most 1/100 of the entire cake.

TOWARD AN ENVY-FREE SCHEME FOR ARBITRARY n

1f Austin's [A] two-person scheme could be extended to n
players, then one could immediately obtain an envy-free
moving-knife scheme for n + 1 players by simply mimicking
what we did earlier. More generally:

If there exists a moving-knife scheme o that will
divide a cake into n pieces so that each of n players
think all the pieces are of size 1/n, then there
exists a moving-knife procedure for producing an
envy-free division of the cake among n + 1 players.

To see how the envy-free procedure would work for n + 1
players, we begin - as in the Dubins-Spanier [DS] procedure -
by obtaining a piece of cake that, say, player 1 thinks is of size
exactly 1/(n+1) and everyone else thinks is of size at most
1/(n+1). We now have player 1, together with any n - 1 of the
other players, divide up the rest of the cake inton pieces, using
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o, so that each thinks all n pieces are the same size. The player
not involved in the application of o then gets to choose first,
while player 1 is forced to choose last. The order in which the
others choose is immaterial. Envy-freeness follows as before.

The above result shows that if we had a moving-knife
scheme to divide a cake into four pieces so that each of four
players would think it is an even division, then we could
produce a moving-knife scheme that would yield an envy-iree
allocation among any five people. In fact, by a considerably
more complicated argument, we show in [BTZ] that such an
envy-free moving-Knife scheme for five people would follow
from a minimal extension of Austin’'s scheme: a partition of the
cake into two pieces so that each of three players (instead of
two) thinks it is a 50-50 division.

CONCLUSIONS

In general, moving-knife schemes seem to be easier to
come by than pure existence results (like Neyman's [N]
theorem), but harder to come by than discrete algorithms (like
the Dubin's-Spanier [DS} last-diminisher method). In the case
of envy-free allocations for four or more people, however, the
order of difficulty might actually be reversed. Neyman's
existence proof (for any n) goes back to 1946, the discovery of a
discrete algorithm for all n 2z 4 is quite recent [BT 1,3], and a
moving-knife solution for n = 4 was found only as this paper
was being prepared (see [BTZ]). We are unaware of a moving-
knife scheme giving an envy-free division for more than four
players, however, so we conclude with a question:

Is there a moving-knife scheme that yields an envy-free
division for five (or more) players?
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