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1. Introduction

The traditional revealed preference theory starts from the premise that one may be able to
uncover the preferences of a consumer by observing the choices she makes when choosing
a commodity bundle from her budget set. The basic insight, however, need not apply only
to standard consumer choice problems; it is equally forceful with respect to more complex
choice situations where the feasible sets may possess different characteristics than the usual
budget sets. Peters and Wakker (1991} and Bossert (1994), for instance, advanced the idea
that revealed preference theory can be generalized to incorporate cooperative bargaining
problems 4 la Nash where the bargaining solutions are thought of as the recommendations
of an impartial arbitrator, or as predictions about the outcome of the underlying non-
cooperative bargaining game. In either case, the solutions of a Nash bargaining problem
can be viewed as choices from the set of all feasible utility profiles, and therefore, it appears
natural to study the conditions under which such solutions can be rationalized by a well-
behaved preference ordering. Indeed, it is possible to pose the basic question of revealed
preference theory in terms of arbitrary utility possibility sets familiar from theoretical
welfare economics (cf. Bossert, 1996). One is thus led to extend the basic results of classical
revealed preference theory to the case where the feasible set is not anymore restricted to
a be a budget set in R7, but rather, it may take the form of any convex, compact and
comprehensive subset of R}. This is indeed roughly the framework of the penetrating
analyses of Peters and Wakker (1991) and Bossert (1994).2

While the choice situations covered by arbitrary convex, compact and comprehensive
sets are far more general than the so-called budget problems, there are other interesting
choice problems that do not fit in this framework. Indeed, a number of authors have argued
that convexity of a bargaining problem is a stringent hypothesis, for it is solely motivated
by appealing to a randomization argument which is valid only when the constituent parties
are expected utility maximizers. When the expected utility hypothesis (which does not
have a commendable experimental support) is dropped, the convexity postulate becomes
suspect. Moreover, one may think of numerous instances where the second-best utility
possibility set of a given economy is non-convex, and where convexification of this set by
randomizing over the set of all alternatives is not possible. In consequence, the problem of
extending the findings of Peters and Wakker (1991) and Bossert. (1994) to a setting which
includes non-convex choice situations arises. It is, in fact, precisely this problem that we
aim to provide a solution in the present paper.

After introducing some preliminary concepts and nomenclature in Section 2, we present
a collective choice problem (choice situation) as any compact and comprehensive set in R}
with a nonempty interior in Section 3. A choice function is any function that associates a
choice problem with a feasible allocation while a choice correspondence is any multi-valued
function that maps each choice situation to a nonempty set of feasible outcomes. We say

2A well-known branch of revealed preference theory takes as primitives a finite number of observations
of individual choices from certain budget sets, and studies the conditions under which these particular
choices can be rationalized by means of a well-behaved utility function (cf. Afriat, 1967). Indeed, there are
even some studies that incorperate generalized {nonlinear) budget sets within this framework {cf. Matzkin,
1991}. The present approach, however, differs from these studies; as it will become apparent shortly, it
rather accords with the general treatment of the theory of “rational choice” as outlined in Richter {1971).
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that a choice correspondence is (regularly) representable if it is obtained by maximizing
a (continuous, strictly increasing and quasiconcave) real-valued function; see Section 4 for
formal definitions. In Section 5, to characterize such choice correspondences, we consider
the widely used properties of strong Pareto optimality (SPO) and Arrow’s choice axiom
(ACA) along with two weak regularity conditions, namely, upper hemicontinuity (UHC)
and compromisation (C).

In Section 6 we show that no choice correspondence that satisfy these axioms can be
single-valued over the class of choice problems under consideration. Since Arrow’s choice
axiom is equivalent to Nash’s independence of irrelevant alternatives (ITA) axiom in the
case of choice functions, this observation demonstrates that one may not hope to develop a
useful revealed preference theory in our non-convex framework in terms of continuous choice
functions which satisfy the compelling properties of SPO and ITA. Given the main findings
of Peters and Wakker (1991) and Bossert (1994), it is thus evident that expanding the
domain of choice problems to include non-convex situations entails considerable differences
with regard to conclusions concerning representability of choice functions.

Interestingly, switching our focus from choice functions to correspondences, we can
draw a markedly different picture. Indeed, the main result of this paper establishes that
a choice correspondence satisfies SPO, ACA, UHC and C if, and only if, it is regularly
representable; see Section 7. This result appears to indicate that the primitives of a revealed
preference analysis for non-convex choice problems should be choice correspondences rather
than choice functions.

Given our characterization of regularly representable choice correspondences, it is pos-
sible to learn more about the representing function by imposing further properties on the
induced correspondence. To illustrate the potential of this observation, in Section 8, we use
our characterization theorem in conjunction with a result due Weymark (1981) to obtain a
complete characterization of the generalized Gini bargaining solutions of Blackorby, Bossert
and Donaldson {(1994). This concludes the present paper.

2. Preliminaries

Throughout this paper, we shall treat n € {2,3,...} as a fixed parameter and adopt the
following notation for vector inequalities: Forall z,y e R*, 2 > yiff x; > y; foralli; x > y
iff z > yand z # y;, x> yiff z; >y, for all :. We also define 0,, = (0,...,0) € R™ and
1, = (1,...,1) € R™ The ith unit vector is denoted by €', i = 1, ...,n. Finally, given a set
Xm, by the notation (a,,) € X, we mean that (a,,) is a sequence the mth term of which
isam € Xm,m=1,....

Let R be a binary relation on RY}: R C R} x R%. R is said to be a complete preorder
if it is complete and transitive; it is called asymmetric if {(z,y),(y,z)} € R for any
z,y € R%. We say that R is upper (resp. lower) semicontinuous if {y : (y,z) € R} (resp.
{v : (z,¥) € R}) is closed. R is continuous if it is both upper and lower semicontinuous.
Finally, the transitive closure of R is defined as UJ,_, R, where Ry = R, and z R, y if and
only if there exist an m > 1 and 2',...,2™ € R? such that z Rz* R --- 2™ Ry.

A set S C R is called comprehensive if, for any z € S, z > y > 0 implies that y € S,
it is called strictly comprehensive if it is comprehensive and for any z,y € S, z > y implies
that there exists a z € S such that z > y. Given any S C R, the comprehensive hull of S,




ch S, is defined as the smallest comprehensive set containing S. The conver comprehensive
hull of S, cch S, is defined as the smallest comprehensive and convex set containing S.

Let C™ denote the set of all nonempty and compact subsets of R*. C" is made a metric
space by the Hausdorff distance, p, defined as

p(S,T) = max {sup d(z, T}, sup d(y,S)} for all 5,T € C*

z&S yeT

where d(z, A) = infyeca ||z — y|| for any A € C™. 1t is easy to see that p(S,T) = inf{§ > 0:
S C Ns(T) and T C Ng(S)} where Ns(A)= {y e R*: 3z € A: [||lz — y|| < §]} for any
A € C" (cf. Kuratowski, 1966).

3. Collective Choice Problems

The class of all compact and comprehensive sets in R’} which have a nonempty intersection
with R} | is denoted by 2". In what follows, we treat Q" as a metric subspace of C*. The
set of all convex members of £2” is denoted by 027 . .

A set § € Q" is referred to as a collective choice problem (or as a choice situation). A
choice problem may be interpreted as a set of feasible utility levels of the constituents of
the society, although other interpretations are possible. The comprehensiveness postulate
reflects the free-disposability of utilities (alternatives). While compactness is assumed for
mathematical convenience, the existence of at least one z >> 0, in S € 2" eliminates
degenerate problems.

There are several specific models of group-decision making which fall within the bound-
aries of this abstract setting. For example, under some plausible assumptions, the stan-
dard utility possibility sets of classical welfare economics are well-defined collective choice
problems (see Bossert, 1996). Alternatively, each member of Q" can be interpreted as a
cooperative bargaining problem in the sense of Nash (1950) where the disagreement point,
is taken to be the origin. (See Thomson, 1994, for an excellent survey of the related liter-
ature.) Classical choice sets like linear and/or nonlinear budget sets are also included in
Qr, :
The main difference of our approach from the standard collective choice models lies
in the fact that 2" includes non-convex problems along with the convex ones. Conse-
quently, the cooperative bargaining problems where randomization over the whole set of
alternatives is not possible, or where some individuals are not expected utility maximizers,
are included in our domain of problems.® Similarly, the utility possibility sets induced by
classical economies with externalities may be non-convex even when utility functions are
well-behaved. In such situations, it is conceivable that stochastic policy-making may not
be admissible, and if so, one would be forced to deal with non-convex choice problems once
again.

3The relevance of non-convex bargaining sets are well-recognized in the literature on axiomatic bargain-
ing theory; see, for instance, Kaneko (1980), Herrero (1989), and Conley and Wilkie (1991, 1996).
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4. Choice Functions and Correspondences

A choice function on Q" is defined as any function F : Q" — R such that F(S) € S for
all § € ". The interpretation of F' depends on the choice problem under consideration. If
S € " is interpreted as a bargaining problem, for instance, F{S) can be thought of as the
resolution suggested by an impartial arbitrator, or a prediction concerning the outcome of
the underlying strategic bargaining game. If S is, on the other hand, a budget problem,
F(S) can be interpreted as the demand of the individual.

A natural generalization of the notion of a choice function leads us to that of a choice
correspondence which is defined as any correspondence on £2”* such that § # F(S) C S for
all S € Q". Where S € Q" is interpreted as a bargaining problem, for instance, F(S) could
be viewed as the set of all recommendations of an impartial arbitrator.

As in the classical revealed preference theory, we are particularly interested in this paper
with choice functions that are generated by an optimization exercise. A choice function
F is said to be rationalizable if there exists a complete preorder = on R such that
F(S) = yforally € S and all § € 2. A well-known necessary and sufficient condition
for rationalizability of F is the following: Where R C R%} x R is defined as = Rp y iff
y € S and ¢ = F(S) for some S € ", the transitive closure of Rp is asymmetric. (See, for
instance, Richter, 1971, Corollary 1.) This condition is usually referred to as Houthakker’s
strong aziom of revealed preference (SARP). If Rp is itself asymmetric, then F' is said to
satisfy the weak aziom of revealed preference (WARP) on Q™.

A choice correspondence F' is said to be rationalizable if there exists a complete preorder
»= on R} such that F(S) is the set of »-greatest elements in S for all S € Q". A nec-
essary and sufficient condition for rationalizability of a choice correspondence is Richter’s
congruence ariom which states that, for all § € Q" itz € S and z Rpy for all y € S, then
x € F(S). (See, Richter, 1971, Theorem 8).

A choice function F' is said to be representable if there exists a W : R} — R such that

F(S) € argmax W(a) forall S e,

acl

whereas a choice correspondence F' is called representable if there exists a W : R? — R
such that
F(S)= argréla.x Wi(a) forall §e Q"
a<

In either case, W is said to represent F. (Of course, a representable choice correspondence
(or function) is necessarily rationalizable.) We shall say that F'is reqularly representable if it
is representable by a strictly monotonic, quasiconcave and continuous real-valued function.
It is important to note that while a regularly representable choice correspondence is single-
valued over strictly convex choice situations, it cannot be single-valued on Q2.

5. A Basic Set of Axioms

In this section, we introduce a basic set of axioms for choice functions and correspondences.
To provide a coherent presentation, we formulate these axioms in terms of choice correspon-
dences with the understanding that a single-valued choice correspondence is equivalent to a



choice function. Since most of the following axioms are studied extensively in the literature,
we shall keep our related discussion brief.
Our first axiom is certainly very widely used, and is hardly exceptionable.

Strong Pareto Optimality (SPO): For all S € Q™ and oll z € F(S), there does not exist
ay €S such that y > .

Another widely used axiom (introduced by Arrow, 1959) requires a choice correspon-
dence to be consistent in its choices with respect to contractions of the choice set:

Arrow’s Choice Axiom (ACA): For all S,T € Q*, if T C S and F(S)NT # 0, then
F(I)=F(S)NT.

Notice that ACA reduces to Nash’s independence of irrelevant alternatives (1IIA) axiom
in the case of choice functions: For all 5,7 € ", if T C § and F(S) € T, then F(T) =
F(S). '

We note that ACA, and hence ITA, are much stronger conditions on £2” than they are on
Q7 .. Indeed, by a result due Hansson (1968), IIA is equivalent to WARP on Q" since 2"
is closed under intersections, while WARP is equivalent to SARP on " since Q" is closed -
under finite unions. (It is well-known that the latter equivalence fail on 7 .) Therefore, a
choice function F' on Q" satisfies IIA if, and only if, it is rationalizable. Zhou (1996) shows
that if F' further satisfies SPO, then it is in fact representable by a real-valued function.
As we shall see, similar results hold for ACA as well .

Our next axiom is a commonly used continuity requirement:

Upper Hemicontinuity (UHC): For any S € " and open O C R} such that F(S) C O
there exists a 6 > 0 such that F(T) C O for all T € Ng(8).

7

In words, UHC says that infinitesimal changes in the choice problems should not cause
dramatic changes in the choices that F' dictates. It may thus be viewed as a rather weak
regularity condition for choice correspondences. We should also note that UHC reduces
to the usual continuity axiom familiar from cooperative bargaining theory in the case of
choice functions. (We thus refer to single-valued choice correspondences that satisfy UHC
simply as continuous choice functions.)

Our final axiom concerns the possibility of ceratin compromises between two choices in
convex choice problems.

Compromisation (C): For any S € 2, #F(S) # 2.

con?

4The following weakening of ACA is sometimes used in the related literature: (Dual Chernoff Aziom)
For all 5,7 € Q™ if T C S and F(S)NT # @, then F(T) C F(S)NT. We note that all of the results
reported in this paper remain valid if we replace ACA with the dual Chernoff axiom. This is because an
upper hemicontinuous choice correpondence that satisfies SPO and the dual Chernoff axiom necessarily
satisfies ACA; the proof of this claim is identical to that of Lemma 1 of Blackorby et al. (1994).



The intuition behind this axiom is fairly straightforward. If #F(S) = 2, then only two
“extreme” outcomes are chosen, and no compromise between these outcomes are allowed.
Axiom C, therefore, requires that at least one compromise between two choices are always
in the choice set in convex choice situations.®

We should note that Blackorby et al. (1994, 1996) use the property of connected-
valuedness of F' on 27, to study choice correspondences which allow for compromisation.
This property is, however, technically demanding, and C (which is obviously a far weaker
postulate) seems to be more readily acceptable in comparison. In fact, all of the results in
this paper would remain true, if we have replaced C with the requirement that F(S) be
convex for all S € Q7. (See Lemma 2.) What is more, C can be dropped from our basic
list of postulates so long as one is not interested in gquasiconcave representations of choice
correspondences. (Compare Theorems 1 and 2).

We conclude this section by noting a number of elementary observations which clarify
the basic structure that axioms SPO, UHC and ACA bring in.

Lemma 1: Let F be a choice correspondence defined on €2 which satisfies SPO and
UHC. For any x € R"} and any sequence (y™) € RT such that y™ — y, we have

M > 0: [({y} = Flch{z,y}) and  £9) = (¥m > M : [{y"™} = F(ch{z,y"P)] (1)
and
M > 0: [({z} = F(ch{z,y}) and z £ y) = (vm > M : [{z} = F(ch{z,y"})])]. (2)
If, in addition, F satisfies ACA, then, for any z € R",
Va > 0: [({z,al,} = F(ch{z,al,}) = (vy € (0,0) : [{z} = F(ch{z,71.}))]  (3)

and

Vo > 0: [({z,0l1,} = F(ch{z,ol,}) = (V8 > a: [{fl.} = F{ch{z,(1,})])]. (4)

Proof. To see (1), take an ¢ > 0 such that z ¢ N.(y). (Here N.(y) stands for the
e-neighborhood of y in the standard topology.) By UHC, there exists a § > 0 such that
F(T) C N(y) for all T € Ns(ch{z,y}). But since y™ — y implies ch{z, y™} — ch{z,y} as
m — 00, there must exist an M > 0 such that ch{z,y™} € Ns(ch{z,y}) for all m > M.
Thus, F(ch{zx,y™}) C N(y) for all m > M, and since z ¢ N,(y), z ¢ F(ch{z,y™}) for all
m > M. By SPO, therefore, we have {y™} = F(ch{x,y™}) for all m > M. (2) is shown to
hold similarly.

(3} readily follows from the fact that x € F(ch{z,v1,}} holds by ACA forany a > v > 0
and {z,al,} = F(ch{z,al,}). So if (3) was false, by SPO and ACA, we would have

{z,v1,} = F(ch{z,v1,}) = F(ch{z, 1, }) Nch{z,~1,} = {z}

®Notice that C conditions choice correspondences only with respect to convex problems, for it is ev-
ident that compromises between alternative solutions may sometimes be ineflicient in non-convex choice
situations. (Consider a choice problem like ch{z,y} where = and y are equally desirable, for instance.)
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yielding z = «1,,. But then by SPO, = ¢ F(ch{z,al,}) since a > +, contradiction.
Clearly, if x = «l,, then (4) trivially holds, so assume that = # al,, and take any
B8 > a If 81, ¢ F(ch{z,1,}), by SPO, {¢} = F(ch{z,51,}) must hold, and thus by
ACA, '
{z,al,} = F(ch{z,al,}) = F(ch{z, 81,}) N ch{z, al,} = {z}

contradicting  # al,. If, on the other hand, {z,/1,} = F(ch{z,81,}), we must have
{z} = F(ch{z,al,}) by (3), and this contradicts {z,al,} = F(ch{z,al,}). O

6. A Difficulty with Continuous Choice Functions

There are, of course, many choice functions on " which satisfy SPO and IIA; for instance,
any choice function which is representable by a strictly increasing real-valued function
trivially satisfies these axioms. However, it is easily observed that a continuous choice
function cannot satisfy both SPO and ITA. This is demonstrated next.

Proposition 1: There does not exist a continuous choice function on Q™ which satisfies

SPO and IIA.

Proof. Let F' be a choice function on 2" which satisfies SPO, IIA and C. As we have .
noted in Section 5, IIA is equivalent to rationalizability on €"*; there must then exist a
complete preorder > on R% which rationalizes F. Let ~=3% N{(z,y) : (y,z) €%}. It is
readily observed that [z]. = {y € R} : £ ~ y} is a singleton for any « € R7. Indeed, let
x ~ y for some x # y, and suppose F(ch{z,y}) = = without loss of generality. But then
by continuity, SPO and the fact that > rationalizes F),

v = F(eh{z,y}) = F (Jm en{(1- ) s)) = Jim P (en{(1- ) mu}) =,

contradiction. So, #[z]. = 1.

We now proceed to show that »> must be continuous. Let us first establish that L(z) =
{y € R% : z » y} is closed for any z € R". Take any (y™) € L(x) and let y™ — y.
If y = z, then clearly y = F(ch{z,y}), and by (1), there exists an M > 0 such that
y™ = F(ch{z,y™}) for all m > M. Since 3= rationalizes F, we must have y™ %= z for all
m > M, and hence, we obtain 3™ ~ z for all m > M. But since #[z|. = 1, y™ = z for
all m > M so that y = z contradicting y > z. L(z) is thus closed, and we may conclude
that » is lower semicontinuous. The upper semicontinuity of = is observed similarly. > is
thus continuous. Since a monotonic and continuous complete preorder on R} cannot have
singleton indifference classes, Proposition 1 follows. O

This result, of course, does not hold for choice functions defined only for convex choice
problems in £2". For example, both the Nash and the utilitarian choice functions are con-
tinuous, and satisfy both SPO and IIA on Q7

con*

SFor any = € R7 such that z; # z; for some i # j, by SPO, there must exist 3 > a > 0 such that
A1, = x > al,, and by continuity of ¥, x ~ ~v1,, for some v € {a, @) while z # v1,.



7. Regularly Representable Choice Correspondences

The main result of this section is an axiomatic characterization of the regularly repre-
sentable choice correspondences. Interestingly, while there does not exist a choice function
on 2" which satisfies SPO, ACA and UHC, one can easily see that any regularly repre-
sentable choice correspondence on 2" satisfies SPO, ACA and UHC. Moreover, we shall
show in this section that the converse of this statement would also hold if we confine our
attention to correpondences that satisfy C. Put precisely, the class of all regularly repre-
sentable choice correspondences on £2* is equal to the class of all choice correspondences
on " which satisfy SPO, ACA, UHC and C.
We begin by proving two lemmas that we shall use in proving the main theorem.

Lemma 2: Let W : R} — R be a continuous, quasiconcave and strictly increasing
function. If F is a choice correspondence on §¥* such that F(S) = arg max,es W{a) for
all § € Q" then it satisfies SPO, ACA, UHC and is convez-valued on 7 .7

con”®

Proof. That F must satisfy SPO and ACA is obvious. On the other hand, the upper
hemicontinuity of F is an immediate consequence of the maximum theorem (Berge, 1963,
p. 116). Finally, since F(S) is the intersection of S and an upper contour set of W, F(S) ~
must be convex for all S € QF . O

con*

The next lemma reports a more general observation than what is needed for our main
result. In particular, it is the counterpart of a result obtained for choice functions on 7
by Peters and Wakker (1991, Lemma 5.4) in the case of choice correspondences.

Lemma 3: Let W : R} — R be a continuous and strictly increasing function, and lel
F be a choice correspondence on Q" that satisfies C. If F(S) = argmax,cs W(a) for all

S e Q. , then W must be quasiconcave.

Proof. Take any z € R and consider the upper contour set of 2, U(z) = {y € R} :
W(y) > W(z)}. Suppose that U(z) is not convex, that is, there exist z,y € U(z) and a
A € [0,1] such that Az + (1 — Ay = w ¢ U(z). We define

a=max{0 € [0,1]: Ow + (1 — 8)z € U(z)}

and
B=max{f €[0,1]: 0w+ (1 -0y € U(2)}.

By continuity of W, both o and § are well-defined, and 0 < o, 3 < 1. Define

r'=cw+(l—a)z and ¥ = Pw+ (1 - 3)y.

"This proposition might at first seem at odds with Theorem 1. But notice that a choice correspondence
that satisfies the hypotheses of Lemma 2 cannot be single-valued.




Since w is a convex combination of z and y, it is obvious that z’ # y'. Moreover, W(z') =
W (y') since z', 4y € OU(z) by the choice of @ and 3. Therefore, since W is strictly increasing
and since int (co {z/,y'}) NU(z) = @, we have

Flech{e',/}) = argmax Wia) = {z/,y')
accch{z’ y'}

contradicting C. O
The following two results constitute our main findings.

Theorem 1: Let F be a choice correspondence defined on Q2*. F satisfies SPO, ACA
and UHC' if, and only if, there exists a continuous and strictly increasing W : R} — R
that represents F.

Proof. Sufficiency is proved in Lemma 2. To establish necessity, we define
W(z) =sup{a >0:2z € F(ch{z,al,})} forallze R,
and note that 0 < W(z) < max; z; for all z € R} by SPO. It is easy to see that if

Vo,y € RY : [F(ch{z, y}) = arg max W{a}], (5)
a€ch{zy}

then we must have F(S) = argmax,cs W{a) for all § € Q". To see this, assume that (5)
holds, and let F(S) ¢ argmax,es W(a) for some S € Q" i.e., let there be an (z,y) €
F(8) x § such that W{y) > W(z). But then by ACA, SPO and (5),

z € F(8) N chiz,y} = F(ch{z,y}) = {y},

contradiction. If, on the other hand, argmax.cs W(a) € F(S} for some S € ", there
must exist an € S\F(S) such that W(z) > W{(y) for all y € S. But then by ACA and

(5),
z ¢ F(S) N chlz,y} = F(ch{z,y}) = {a}

holds for any y € S, contradiction.
Consequently, that W represents F' will be established if we can prove (5). To this end,
we shall demonstrate a further preliminary observation:

Ve e RY - [Fch{z, W(z)1,}) = {z, W(z)1,}]. (6)

Take any z € R} and let a,, = W(z) — 1/m, m = 1, ..., and notice that by definition of
W and ACA, we have

z € Fleh{z,0,1,}) foralm=1,.... (7)

But then if a,1, € F(ch{z,a,1,}) for some m > 1, (4) implies that {q,11,} =
F(ch{z, am411,}) contradicting (7). We must thus have {z} = F(ch{x,aml,}) for all
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m, and since limy,_,och{z, 0, 1,} =ch{z, W(z)1,}, UHC yiclds z € F(ch{z, W(z)1,}).
But W(z)1, € F(ch{z, W(z)1,}), because otherwise {z} = F(ch{z, W(z)1,}), and by
(2), z € F(ch{z, (W (z) + 1/m)1,}) for large enough m, which is impossible by definition
of W. (6) is thus established.

We are now ready to prove (5). Take any z,y € R? such that o = W(z) = W(y). If
{z,al,} € F(ch{z,y,al,}), then by ACA and (6),

{z,01,} € F(ch{z,y,al,}) Nch{z,al,} = F(ch{z,al,}) = {z,01,},

contradiction. Thus, {z,al,} C F(ch{z,y,al,}), and that y € F(ch{z,y,al,}) as well
is similarly observed. But then by ACA

F(ch{z,y}) = F(ch{z,y,01.}) N ch{z,y} = {z,y, al.} Nch{z, y} = {=z,y},

and (5) is verified. Now take any z,y € R? such that W(z) > W(y) so that there exists
a 3 > 0 such that W(z) > g = W(51,) > W(y). But then, by SPO and the definition of
W, F(ch{y, 81,}) = {81,}. Moreover, since F{ch{z, W(z)1,}) = {z, W(z)1,.} by (6}, we
must have F{ch{z,31,}) = {z} by (3). Consequently, applying ACA twice we learn that
y, 81, & F(ch{z,y,31,}) so that

F(ch{z,y}) = F(ch{z,y,aln}) N ch{z,y} = {z} N ch{z,y} = {z},

and (5) is established. We therefore conclude that W represents F.

Since strict monotonicity of W is immediate from SPO, all we need to prove is its
continuity. We thus claim that {y € R : W(y) < W(z)} is closed for any z. To see
this, let y™ — y (as m — oo) where W(y™) < W(z) for all m. If W(y) > W(z), there
must exist an @ > 0 such that W(y) > o« = W(al,) > W{(z) so that, by (6) and (3),
F(ch{y,al,})} = {y}. But then by (1), y™ € F(ch{y™, al,}) for m large enough, and since
W rationalizes F, W{y™) > W(al,) > W(z) for such m, contradiction. Therefore, W is
lower semicontinuous. The upper semicontinuity of W is observed similarly. O

Theorem 2: Let £ be a choice correspondence defined on Q. F' satisfies SPO, ACA,
UHC and C if, and only if, it is reqularly representable.

Proof. Immediate from Lemma 3 and Theorem 1. O

8. Application: Characterization of Generalized Gini Bargaining Solutions

Given the representation theorem obtained above, it is evident that postulating further
conditions on a choice correspondence F' that satisfies SPO, ACA and C, translates into
imposing additional properties on the real function representing F. It may thus be possible
to exploit Theorem 1 and certain characterizations of social welfare functions (already
established in the literature on social choice) to obtain direct characterizations of some
interesting regularly representable choice correspondences. To demonstrate the potential of
this approach, we shall provide in this section a complete characterization of the generalized
Gini bargaining solutions (introduced by Blackorby et al., 1994) on our extended domain
which includes non-convex bargaining problems.
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For any x € R", let us write z(y = (z(), ..., ¥(»)) for zII where IT is an n x n permutation
matrix such that z(;) < -+ < #,. The function W, : R - R defined as

Wy(z) = Zaim(i) for somea; > - > a, >0
i=1

is called a generalized Gini (social) evaluation function (Weymark, 1981). We note that
a generalized Gini evaluation function is linear in rank-ordered subspaces of R7, and is
identical to the (absolute) Gini equality index on R} when o; = 2(n — ¢) + 1 for all 7.

Let Q7 = {S €C*: SNR} € 0}, ie, S € 07 if and only if S is compact, SNR?, # B
and SNRTY is comprehensive. A generalized Gini bargatning solution on 2}, Gy, is a choice
correspondence on §27 that is represented by a generalized Gini evaluation function W,

ie.,
n

GoS) = argmax ) oz forall § € QF
zES f==1

for some a; > -+ > a, > 0 (Blackorby et al., 1994, 1996). The generalized Gini bargaining
solutions are of interest, for they provide solution concepts which yield a certain compro-
mise between the lack of inequality aversion of the utilitarian solution and the egalitarian
solution’s insensitivity to the shape of the choice problems. We refer the reader to Blackorby
et al. (1994) for an extensive discussion of these cooperative bargaining solutions.

As we shall see, our earlier development lets us readily obtain an axiomatic character-
ization of the class of generalized Gini bargaining solutions by adding the following two
postulates to our basic set of axioms.

Anonymity (A): For all S € Q", if x € F(S), then zIl € F({yIl : y € S}) for any
n x n permutation matriz 1.

Linear Invariance (L.INV): For all (S, z) € 2* x F(S),
z+te € F{y+tet:ycS}), i=1,..,n

for all real t; such that z+t;e' € R and z;+t:e' > z; if and only if z; > z; for all j # 1.

Anonymity is a natural requirement guaranteeing the impartial treatment of the indi-
viduals. Linear invariance, on the other hand, requires that expansion (or contraction) of
the choice situation in any coordinate direction by a certain amount entails the expansion
(or contraction) of the choices in exactly the same way, provided that the rank orders of
the agents’ payoffs are preserved. L.INV is thus an additivity postulate which applies only
on rank ordered subspaces of R%. It is demanding and harder to justify relative to the
previous axioms; we refer the reader to Blackorby et al. (1994) for a related discussion.

Theorem 3: A choice correspondence F defined on $¥) satisfies SPO, ACA, UHC, C,
A and L.INV if, and only if, it is a generalized Gini bargaining solution.
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Proof. Sufficiency is readily checked. To see the necessity, notice that by Theorem
2, there exists a continuous W : R" — R such that F(S) = argmax.cs W{a) for all
S € Q. By A, W must be a symmetric function in the sense that it is invariant under
permutations of its arguments. Moreover, by Lemma 3, W must be quasi-concave, and
since it is symmetric, it must, in fact, be Schur-concave on R”: 8

We claim that for all z' € R” such that z* = 2(y,1=1,2,3,

Wi(z') > W(wz) if and only if W(z! + 3;3) > W(a? + 2%).

To see this, recall that W(z!) > W (z?) implies that z* € F(ch{z!, z?}). Therefore, letting
t; = 7 and applying L.INV successively, we have

2+ =2+ Ztiei €F ({y—l—Ztiei Ly € ch{a:l,:c?}})

i=] i=1

while 22 + 2% € {y+ X0, tiet : y € ch{z?,z%}}. But then, W(z' + %) > W(z? + z°) must
indeed be the case. The converse of the claim can proved by reversing the steps in this
argument.

We may therefore apply Theorem 3 of Weymark (1981) to conclude that W(x) =
21 iy for all z € R} for some real oy, ..., o,,. The Schur-concavity and strict mono- -
tonicity of W, on the other hand, imply that ¢; > - - > &, > 0. Therefore, F(S) =
arg max,cs Wa(a) for all S € Q". By SPO, it follows that F(S) = arg max,cs W,(x) for all
SO aswell O

It should be noted that the coefficients of a generalized Gini social evaluation function
on R™ is parametric over n. In other words, Theorem 3 provides a characterization of a
sequence of choice correspondences (F,) such that F,(S) = argmax,eg Y1, ofz() for all
SeN,n=2.,whereal > .- >al >0 If o} = o for all n, then (F,) is called
a single-series Gini bargaining solution. We conclude by noting that single-series Gini
bargaining solutions can also be characterized on 27 along the lines of Blackorby et al.
(1996, Theorem 2) with the aid of Theorem 2 and an independent characterization of the
single-series Gini evaluation functions as in Bossert (1990).

8 A real-valued function f is Schur-concave on R’} if and only if f(z) > f(y) for all 2,y € R’ such that
Z:=1 T 2 Z;‘B:l Y forall s=1,...,n —1, and E?:l Ty = E?:l Y(i)-
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