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The problem of business cycle symmetry is usefully addressed within
the context of time reversibility. To this effect, we introduce a
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1. Introduction

If the probabilistic structure of a time series going forward in time is
identical to that in reverse time, the series is time reversible. If the series
is not time reversible, the series is said to be time irreversible. The
importance of the issue of time reversibility for economics is easily seen from
consideration of the standard modelling paradigm in macroeconomic analysis.

Wide classes of business cycle models are based on the interaction between
impulse and propagation mechanisms. The usual idea is that independently and
identically distributed shocks provide impulses which affect output through
distributed lag relations. This modelling strategy stems from the early work of
Frisch (1937) and Slutsky (1922) in which they show that a linear system of
equations driven by random shocks could produce business cycle like behavior in
the sampie path of a random variable. Blanchard and Fischer (1989) stress that,
while macroeconomists disagree both as to the main sources of these shocks and
the exact nature of the propagation mechanism, the Frisch-type approach is
currently the dominant one in both theoretical and empirical macroeconomics.

However, Blatt (1980) demonstrated that Frisch-type models are unable to
capture cyclical asymmetries; asymmetries due to potential differences in the
dynamic structure across business cycle expansions and contractions. If business
cycle fluctuations are asymmetric, it is intuitively clear that the associated
time series is time irreversible. For example, an asymmetric cycle in which the
time series increases faster, but for a shorter time, than it decreases is time
irreversible since in reverse time its expansions are longer but less sharp than
its contractions. Correspondingly, a symmetric cycle is time reversible. Thus,
the result that fluctuations in Frisch-type models are symmetric implies that

these models are time reversible. In this light, the empirical question of
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business cycle asymmetry, studied in a line of work opened in a seminal article
by Neftei (1984)!, can be usefully restated as whether the dynamic behavior of
key macroeconomic variables is time reversible, In this paper, then, we identify
business cycle asymmetry with the concept of time irreversibility. This provides
a unified framework for addressing the issue of business cycle asymmetry.

If the rate of adjustment toward long-run equilibrium differs across phases
of the business cycle, then conventional forecasting techniques, such as Gaussian
Autoregressive Moving Average (ARMA) models, will clearly be inappropriate. It
can indeed be shown formally that stationary Gaussian ARMA models are time
reversible?. Hence, detection of irreversibility in a particular time series
implies that the conventional Gaussian ARMA approach is not an appropriate
modelling strategy. Irreversible behavior would require consideration of
alternative time series models capable of capturing this property. Evidence of
time irreversible dynamics is also consistent with recent theoretical models of
state-contingent adjustments®,

The purpose of this paper is twofold. First, we introduce a time domain
test, cailed the Time Reversibility (TR) test, to identify and characterize time

irreversible stationary time series. We are not aware of any other test for time

! Brock and Sayers (1988), DeLong and Summers (1986), Falk (1986), Nefteci
(1984), Rothman (1991), Sichel (1989, 1993), and Westlund and Ohlén (1991) use
nonparametric techniques to study business cycle asymmetry, Parametric
approaches include Boldin (1990), Brinnis and De Gooijer (1992), Brunner (1992,
1993), French and Sichel (1993), Goodwin (1993), Ham and Sayers (1990), Hamilton
(1989), Hussey (1992), Luukkonen and Terdsvirta (1991), Mittnik (1991), Potter
(1991), Rothman (1992}, Stock (1989), and Térasvirta and Anderson (1992).

2 See Weiss (1975).

? See, for example, Ball and Mankiw (1992), Bertola and Caballero (1990),
Caplin and Leahy (1%991), and Tsiddon (1991). See also the recent paper by Evans
and Honkapohja (1993) in which time irreversible behavior is generated in a model
with multiple steady states due to a production externality.
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irreversibility in the statistical time series literature®>.

In addition to
providing a simple diagnostic to check the adequacy of a Gaussian ARMA modelling
strategy for a particular time series, the TR test serves as a direct test of
business cycle symmetry in the applied macroeconomics literature. Time
irreversibility is a precise formalization of the concept of asymmetry in
business cycle analysis. The TR test statistics also provide a concise
characterization of the way in which the business cycle is asymmetric, i.e.,
either "fast up and slow down" or "slow up or fast down". Second, we apply the
TR test to both the well-known Nelson and Plosser (1982) representative
macroeconomic dataset recently extended by Schotman and Van Dijk (1991) and to
the international dataset studied by Backus and Kehoe (1992). Our results
provide ubiquitous evidence that business cycle fluctuations are time
irreversible, showing that the business cycle indeed is asymmetric.

In Section 2 time reversibility is formally defined and a tool for
identifying time irreversible stochastic processes, the symmetric-bicovariance
function, is introduced. The TR test statistic is presented in Section 3. 1In
Section 4 the TR test is applied to the business cycle indicators. Section 5

provides a characterization of the business cycle asymmetry detected by the TR

test and Section 6 concludes the paper.

4 The work closest to ours is the bispectrum frequency domain test of

Hinich (1982), since both we and he analyze sample bicovariances. A more direct
analogue to our test would be to examine whether the imaginary part of the
polyspectra is identically equal to zero. In personal communication Professor
Hinich has informed us that he is developing such a frequency domain test of time
reversibility for the bispectrum.

> The main ideas in this paper were originally formulated in Ramsey and
Rothman (1988) and further refined in Rothman (1%920}.



2. Time Reversibilicy

A formal statistical definition of time reversibility for a stationary time
series is:

Definition 2.1 A time series {X,} is time reversible if for every positive
integer n, and every t;,t;,...,t, € R, the wvectors (th,th,...,th) and
(x_ﬁ)x;tz,...,x_ﬁg have the same joint probability distributions. A time series
which is not time reversible is said to be time irreversible.

Note that the above definition does not impose stationarity on the time
series (X.!}. This is in contrast te an alternative definition of time
reversibility found, for example, in Tong (1990, p. 193).

Under Definition 2,1 it is possible to produce examples of nonstationary

time reversible processes. Rothman (1990, p. 26) demonstrated the following:

Example 2.1: Let (X.} be the stochastic process defined by the sequence of
independéntly, but not identically, distributed random variables where F.(x,) =
N(p-t?,02), where F.(x,) is the probability distribution function of X;. Then
{X,} is time reversible and clearly nonstationary.

The importance of this example is that there exists a nonstationary process
that 1is time reversible, so that nonstationarity does mnot imply time
irreversibility. As is well know, see Subba Rao and Gabr (1984) and Tong (1990),
stationarity does not imply time reversibility. Hence, stationarity and a
general definition of time reversibility are separate concepts and neither
implies the other.

An alternative definition of time reversibility, due to Kelly (1979, p. 5)

Definition 2.2 A time series {X;) is time reversible if for every positive

integer n, every ty,t;,...,t; € R, and all m € N, the vectors (th,th,...,th) and
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Xyt Kt yrmy - - - »X-tn+m) have the same joint probability distributions.

Under Defipition 2.2 Kelly (1979) showed that time reversibility implies
statlionarity. Consider the special case in which the time indices {t;} are
constructed as follows: t; = t;, + k, ke R, i =2, ..., n, i.e., the sequence
{t;} is characterized by equal increments of time. Letting m = t; + t,;, it is
seen that time reversibility under Definition 2.2 implies that the vectors
(th,th, e ,th) and (th,th_l, v ,th) have the same joint probability
distributions. We shall wuse this stationary-restricted definition of time
reversibility, so that time reversible processes are a subset of the class of
stationary processes.

It is straightforward to show that (X;) is time reversible when ({X;} is
independently and identically distributed. The result that statiomary Gaussian
processes are time reversible appeared as Theorem 1 in Weiss (1975, p. 831). 1In
the same paper Weiss proved the converse within the context of discrete-time ARMA
models, i.e., if (X,} is a time reversible ARMA process, then the underlying
innovations are normally distributed. This was the main contribution of his
paper. Weiss conjectured, without proof, that this result heolds when {X.) is a
general iinear process. This conjecture was shown to be true by Hallin, Lefevre
and Puri (1988).

We next establish the equality between certain pairs of moments from the
joint probability distributions for a time reversible stationary time series
{X,}. By the definition of mathematical expectation, and given the assumed
uniqueness of the representation of the joint distributions by their moments, it
is straightforward to prove the following®:

Theorem 2.1: Let {X.} be a stationary time series with mean zero and assume

6 See Rothman (1990, pp. 30-31).
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that the multivariate characteristic generating functions of (X,X;y) and
(X, ,X%.) can be expanded as a convergent series in the moments and cross moments
of the respective joint probability distributions; that is, it is assumed that
the joint probability distributions are uniquely characterized by the respective

sequence of moments and cross moments. Then, (X.} is time reversible only if:

E(X -] = E[X-xi,] (2.1)

for all i, j, k € N, where the expectation is taken with respect to each
respective joint distribution.

By Theorem 2.1, for i = j = 1 we have:

E[X, Xy = E[XXyi] (2.2)

for all positive integers k., Statement (2.2) is simply the tautology that the
autocovariance of a stationary series at lag k is equal to itself. This is
because the autocorrelation function is an even function of k. As such, we see
that the autocovariance function can provide no relevant information with respect
to the potential time irreversibility of any specific time series.

When at least one of i, j is greater than one, i,j € N, the two terms in
(2.1) are called generalized autocovariances, following Welsh and Jernigan
(1983). From Theorem 2.1 it follows that if there exists a lag k for which these
two moments do not equal one another, the series is time irreversible. While
this is a sufficient condition for time irreversibility, it is not a necessary
one, since (2.1) considers only a proper subset of moments from the joint
distributions of (th,th, e 'X‘-n) and (th,X,_n_l, - ,th) . Further, we do not
consider the case where Ftl,tz(-) = th,tl(-) but Ftl,bz,ts(-) # Fy rt,18,() for some

t;,ty,t; € N.
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We propose to consider the difference between two bicovariances. The

symmetric bicovariance function is defined as follows:

¥2.1(k) = (E[X2-Xy 4] ~ E[X Ko ]) (2.3)

for all integer values of k. If {X;} is time reversible, then y; (k) =0 V k €
N. Our reason for restricting attention to the differences in bicovariances is
that the distributional properties will be more manageable than if one used
higher-order moments and that as a practical matter the lower-order moments seem
to be sufficiently informative in most cases that we have examined’.

We next demonstrate the time irreversibility of two different time series
models using the symmetric-bicovariance function, one linear and one nonlinear.

First, consider the following non-Gaussian MA{l) model:

Ry = €y = 0rey g, (2.4)
where {e.) 1Is a sequence of independently and identically distributed random
variables drawn from a non-symmetric probability distribution function. It is
straightforward to see that for this stochastic process, 7, (1) = (8% + #)p§,

3

where u§ = E[¢l], showing that {X,} is time irreversible.

Next, consider the following simple bilinear model:

Xy =X+ X g€ + €y, (2.5)

where {¢,) is a sequence of independently and identically distributed N(0,1)

random variables. The third-order moment structure of this process has been

7 We are indebted to Pomeau (1982) for the suggestion of studying time

reversibility through a similar but higher-order function, 7y; ;{(k). He did not,
however,_draw a direct connection between his proposed test and the formal
statistical definition of reversibility. He also did not investigate the

sampling distribution of any estimator of v, (k).
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computed by Subba Rao and Gabr (1984, pp. 53-537). From their calculations it
follows that for this time series model, 7, (1) = 0, showing that {X;) is time
irreversible.

The two examples demonstrate that time irreversibility can stem from two
sources: (1) the underlying model may be nonlinear even though the innovations
are symmetrically (perhaps normally) distributed; or (2) the underlying
innovations may be drawn from a non-Gaussian probability distribution while the
model is linear. Linear models are inherently time irreversible, even though the
special properties of the Gaussian distribution yield time reversibility in the
context of a general linear process. We shall refer to the first nonlinear case
as "Type 1" time irreversibility and to the latter as "Type 2" time
irreversibility”. Type 1 time irreversibility is consistent with a nonlinear
process. Type 2 time irreversibility is consistent with a non-Gaussian linear
process.

Nonlinearity does not imply Type 1 time irreversibility, however. That is,
there exist stationary nonlinear processes which are time reversible®. A test
for Type 1 time irreversibility, then, is not equivalent to a test for

nonlinearity.

3. The TR Test
The TR Test statistics consist of a sample estimate of the symmetric-
bicovariance function given by equation (2.3). The sample bicovariances for a

mean zero stationary time series {X;} with T observations are:

8  For example, Lewis et., al, (1989) showed that the random-coefficient

gamma MA(l) process is time reversible since its bivariate characteristic
function is symmetric.



n L, I
By (k) = (T - 3 XX
and (3.1)
B, ,(k T-k)t . % XX
1,2(k) =« t=k*1xt t-k

for various integer values of k.
With the bicovariance estimators from (3.1), the TR Test statistics are

constructed as follows:

§2,1(k) = By 1 (k) = By 5(K) (3.2)

for various integer values of k. It is straightforward to show that ¥, ;(k) is
an unbiased and, under some additional restrictions, consistent estimator of
V2,1 (k)°.

Under the null hypothesis that {X,)} is time reversible, the expected value
of %;1(k) is zero for all k. Under some mixing conditions %, ;(k) has an
asymptotic normal distribution. More specifically, assume {XZ-X., - X.-X¢,) is
a sequence of mixing random scalars such that either ¢(m) or a(m) = O(m>) for
A > r/(r-1), r > 1, where ¢(m) and a{m) are the mixing coefficients as defined
in Definition 3.42 of White (1984, p. 45). Then, by Theorem 5.19 of White (1984,
p. 124), /T-[Qll(k) - ¥2,1(k)1/{Var(3; ;(k)) 1% is asymptotically distributed as
N(0,1)1°. 1In the more restrictive independently and identically distributed
case, aéymptotic normality follows directly from Theorem 4.3 of Welsh and

Jernigan (1983, p.391).

? See Theorem 1 of Rosenblatt and Van Ness (1965, p. 1125).

10 Since we assume (X;) is stationary, the uniform convergence conditions

required on Var(?ml(k)) for the theorem to hold follow directly.
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The exact small-sample expression for'Var(?Ll(k)) for {X;}) independently and
identically distributed is given next. Straightforward calculations show'l:
Theorem 3.1: Let {X;} be a stationary sequence of independently and

jdentically distributed random variables for which E[X;] = 0 Vv t. Then:

Var[7,,1(K) = 2(pby - #3)/(T-k) - 2u3(T-2k)/(T-k)? (3.3)

where u, = E[Xf], p3 = E[X}] and p, = E[X{].

If a given stationary series {X;} exhibits no serial correlation, %Ll(k) can
be calculated on the raw data for a set of wvalues of k. Since ﬁzJ(k) is
asymptotically normally distributed, rejection regions can be calculated using
the expression for \i’.‘:lr("ifz‘l(k))1’2 in Theorem 3.1.

We consider three procedures to test for time reversibility for the case in
which thg given series {X.} exhibits serial correlation. We adopt this testing
strategy since the null hypothesis of time reversibility is rather complicated.
The data generating mechanism for a time reversible series could be a linear
process with Gaussian innovations or a nonlinear process with either Gaussian or
non-Gaussian innovations. Our different procedures are designed to allow for
these varied cases.

Each apprecach requires that an ARMA model first be fitted to the series.
If the null hypothesis of time reversibility is restricted to the case of a
Gaussian linear process, the following procedure is appropriate. QZJ(k) is
calculated on the unfiltered series. An estimate of Var(%al(k)) is then
provided through a Monte Carlo simulation, with allowance for the ARMA structure
and using Gaussian innovations.

In the second procedure we once again calculate %, ;(k) on the unfiltered

11 3ee Rothman (1990, pp. 39-41).
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raw data. But in this approach we estimate Var(ﬁll(k)) through a bootstrap
simulation. We approximate a possibly time reversible nonlinear structure by
fitting an ARMA model and drawing with replacement from the set of ARMA
residuals!?. By the Wold decomposition theorem the ARMA approximation will
adequately facilitate the bootstrap simulation in so far as it produces
uncorrelated, but not necessarily independent, residuals,

Rejection through these first two procedures is consistent with both Type
1 and Type 2 time irreversibility. The third procedure is designed to be
consistent with Type 1 time irreversibility, i.e., time irreversibility due to
a time irreversible nonlinear data generating mechanism. In this approach
%zA(k) is calculated on the ARMA residuals. Var(?al(k)) is then calculated
using the expression for the independently and identically distributed case given
in Theorem 3.1.

If the null hypothesis is rejected in that %, ,(k) lies in the critical
region as determined by the appropriate estimate of Var(%zJ(k)) then the pattern
of time irreversibility as characterized by %&1(k) can be used as a diagnostic
aide to the specification of an appropriate time series model. For example,
through Monte Carlo simulations Rothman (1990) studied the power of the TR test
against simple bilinear and threshold autoregressive models!®., The TR test was
shown to have excellent power against these time irreversible alternatives.
Further, the characterization of time irreversibility produced in the TR test

statistics for these two classes of models is quite revealing. For the bilinear

2 Computer programs to implement both the Monte Carlo and bootstrap
variances are available from the authors. The reason why we estimate the
variances in these cases is that the exact small sample expression for
Var[¥, ;(k)1, when {X.} is ARMA, is an algebraically complicated function of the
higher order moments whose computation is tedious.

13 gee Tong (1990) for detailed descriptions of these models.
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models, the %Ll(k) values decline exponentially across k. For the threshold

models, significant rejections occur only at lag k = 1.

4, Testing Business Cycle Symmetry with the TR Test

We first apply the TR test to the extended Nelson and Plosser (1982)
dataset. In their seminal paper, Nelson and Plosser explored the stochastic
trend null hypothesis for a representative set of fourteen annual real and
nominal macroeconomic time series. This has been the most heavily analyzed
macroeconomic dataset over the past decade. In a recent paper, Schotman and Van
Dijk (1991) updated each time series in the dataset up to 1988.

For twelve of the fourteen series we analyze growth rates. For the other
two series, the unemployment rate and bond yields, we work with raw first
differences. The first step is selection of an ARMA model for the transformed
series according to the Akaike Information Criterion (AIC); our results are not
sensitive to model selection via the Schwartz Information Criterion (SIC)*,

Table 1 presents standardized TR test statistics at lags k=1,...,5, i.e.,
¥2,1(k)/[Var(y; 1(k)) 12, where 92,1(k) is calculated directly on the transformed
series and Var(%zJ(k)) is estimated via Monte Carlo simulation using Gaussian
innovations and estimated coefficients for the ARMA models selected by the AIC.
The data are annual so that examination of the statistics at lags k = 1,...,5
provide evidence on the reversibility of the series at frequencies relevant for
business cycle analysis. For twelve out of the fourteen series, the time
reversibility null hypothesis is rejected at the 5% significance level for at

least one lag k. Using the Bonferroni inequality, for each of these series the

14 AIC = -2-1n(L) + k, where L is the maximized value of the likelihood
function and k is the number of parameters in the model. SIC = -2-In(L) +
k-1n(n), where n is the number of observations.
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first five standardized TR test statistics are jointly significantly different
from zero at the 10% level. This provides evidence of time irreversibility,
showing that the U.S. business cycle is asymmetric. The two series which fail
to display any evidence of time irreversibility over these lags are the
employment and nominal wage growth rates.

Table 2 presents standardized TR test statistics, for which 3, (k) is once
again calculated directly on the transformed series, but with Var(%tl(k))
estimated via bootstrap simulation using the residuals for the AIC-selected ARMA
models for each series. For the same twelve series, the time reversibility null
hypothesis is rejected with this approach at the 5% significance level for at
least one lag. Once again, the employment and nominal wage growth rate series
fail to exhibit any departure from time reversibility.

The rejections in Tables 1 and 2 are consistent with both Type 1 and Type
2 time irreversibility. The results in Table 3 provide a more direct check on
Type 1 time irreversibility for these series,

Table 3 1lists standardized TR test statisties, for which ?Ll(k) is
calculated on the ABRMA residuals and the independently and identically
distributed wvariance given in Theorem 2.1 is used. For twelve of the ARMA
residual series, time reversibility is rejected at the 5% significance level for
at least one lag, providing evidence of Type 1 time irreversibility. This
suggests that nonlinearity is an important source of business cycle asymmetry in
the U.S. economy. The employment growth rate residuals provide no evidence
against time reversibility. But with this approach the nominal wage growth rate
rejects while the money growth rate fails to reject.

We mext turn to analysis of the Backus and Kehoe international dataset. We

examined twenty four series, the same four indicaters for six different
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countries. The four indicators chosen were real output, investment, price level,
and money supply. These four series were selected for Australia, Canada, Italy,
Sweden, the United Kingdom, and the United States. For all of the twenty four
series we analyzed the growth rates.

Our TR test results for the Backus and Kehoe data are presented in Tables
4, 5, and 6. Table 4 reports standardized TR test statistics, where %Ll(k) is
calculated directly on the transformed series and Var(%al(k)) is estimated via
Monte Carle simulation. For eighteen out of the twenty four series, the time
reversibility null hypothesis can be rejected at the 5% significance level for
at least one of the first five lags k. Results in Table 5 show that use of
bootstrap estimates of Var(%al(k)) slightly reduces the number of such
rejections down to seventeen. The ARMA residual results in Table 6 show that
time reversibility is rejected for twenty out of the twenty four series. The
ARMA residual results therefore suggest that rejection is due to Type 1 time
irreversibility, i.e., time irreversibility due to a nonlinear data generating

mechanism.

5. Characterization of Business Cycle Asymmetry

The idea that the business cycle is asymmetric can be traced back over sixty
years to the work of Mitchell (1927) and Keynes (1936). The conventional
asymmetry hypothesis is that economic expansions are longer but less sharp than
downturns. With respect to a counter-cyclical series such as the unemployment
rate, this would imply that the unemployment rate increases quickly in recessions
but declines relatively slowly during expansions.

If a time series were asymmetric in the Mitchell-Keynes sense, what type of

behavior would we expect the TR test statistics to exhibit? Simulation shows
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that for an asymmetric series which expands more rapidly than it declines, the
TR test values are positive at the lower lag lengths. Such simulation shows the
opposite‘effect for an asymmetric cycle which expands more slowly than it
decreases, i.e., the TR test values are negative at the lower lag lengths.

The most uniform set of results across both datasets is that the TR test
statistics are positive at all lags examined for the inflation rate. This
suggests that these series exhibit the "fast up and slow down" asymmetric
behavior consistent with counter-cyclical dynamies. Such behavior would appear
to be inconsistent with the traditional business cycle view of prices as being
pro-cyclical., However, recent work by Cooley and Ohanian (1991) shows that the
evidence in favor of the pro-cyclicality of prices is in fact extremely weak.

The TR test statistics are uniformly positive across the three testing
procedures for the unemployment rate in the Nelson and Plosser dataset. This
suggests that the unemployment rate indeed increases faster than it decreases,
as predicted by the Mitchell-Keynes asymmetry hypothesis. The same is true for
the Nelson and Plosser bond yields series.

The Nelson and Plosser real, nominal, and per capita GNP series, as well as
the industrial production series, all generate negative TR test statistics. This
suggests that these series generate "slow up and fast down" pro-cyclical
Mitchell-Keynes asymmetric behavior. This is also the case for most of the

Backus-Kehoe investment series.

6. Conclusions
In this paper we have explained the importance for macroeconomic analysis
of the concept of time reversibility. We showed that the question of whether the

business cycle is symmetric can be restated as whether business cycle time series
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are time reversible. Time irreversibility provides a precise formalization of
the concept of temporal asymmetry in a time series.

We have introduced a test of time reversibility. In addition to serving as
a simple diagnostic check for the adequacy of a Gaussian ARMA modelling approach,
the TR test provides a direct test of business cycle asymmetry. The TR test also
provides a characterization of the particular way in which a business cycle time
series mﬁy by asymmetric. Distinct patterns in the TR test statistics are
obtained for "fast up and slow down" counter-cyclical and "slow up and fast down"
pro-cyclical asymmetric cycles.

In our application we showed that many key macroeconomic time series are
time irreversible. Characterization of these series' time irreversibility
through the TR test suggests asymmetric behavior indeed consistent with the
Mitchell-Keynes asymmetry business cycle hypothesis. The following series
exhibit "fast up and slow down" asymmetric behavior: the inflation rate, the
unemployment rate, and bond yields. The following series exhibit "slow up and
fast down" Mitchell-Keynes asymmetric cyclical dynamics: real, nominal, and per
capita GNP, industrial production, and investment.

These asymmetry results should serve as a warning to those who analyze
business cycle fluctuations with Frisch-type models., Asymmetry is an important
property that these series possess which is not captured by such models. OQur
empirical results point more towards recent theoretical models of state-

contingent and regime-switching time irreversible dynamics.



-17-
References

Backus, D.K. and P.J. Kehoe (1992), "International Evidence on the Historical
Properties of Business Cycles," American Economic Review, 82, 864-888.

Ball, L. and N.G. Mankiw (1992), "Asymmetric Price Adjustment and Economic
Fluctuations," unpublished manuscript, Department of Economics, Princeton
University and Harvard University.

Blanchard, 0. and S. Fischer (1989), Lectures on Macrceconmics, Cambridge,
Massachusetts: The MIT Press.

Blatt, J.M. (1980), "On the Frisch Model of Business Cycle," QOxford Economic
Papers, 32, 467-479.

Bertola, G. and R.J. Caballerc (19%0), "Kinked Adjustment Costs and Aggregate
Dynamics," NBER Macroeconomics Annual, 237-288.

Boldin, M. (1990), "Characterizing Business Cycles with a Markov Switching
Model: Evidence of Multiple Equilibria,”™ unpublished manuscript, Research
Paper No. 9037, Federal Reserve Bank of New York.

Brédnnds,K. and J.G. De Gooijer (1992), "Modelling Business Cycle Data Using
Autoregressive-Asymmetric Moving Average Models," 1992 Proceedings of the
Business and Economics Sections of the American Statistical Association.

Brock, W.A. and C. Sayers (1988), "Is the Business Cycle Characterized by
Deterministic Chaos?," Journal of Monetary Economics, 40, 168-195.

Brunner, A. (1992), "Conditional Asymmetries in Real GNP: A Semi-Nonparametric
Approach,™ Journal of Business and Fconomic Statistics, 10, 65-72.

Brunner, A. (1993), "Conditional Moments, Conditional Asymmetries, and the
Asymmetric Properties of Time-Series Models," unpublished manuscript,
Board of Governors of the Federal Reserve System,

Gaplin, A.S. and J. Leahy (1991), "State-Contingent Pricing and the Dynamics of
Money and Output," Quarterly Journal of Economics, 106, 683-708.

Cooley, T.F. and L.E. Ohanian (1991), "The Cyclical Behavior of Prices," Journal
of Monetary Economics, 28, 25-60.

Delong, J.B. and L.H. Summers (1986), “"Are Business Cycles Symmetrical?,” in

Gordon, R.J. (ed.) The American Business Cycle, Chicago: NBER and
University of Chicago Press.

Evans, G.W. and 5. Honkapohja (1993), "Adaptive Forecasts, Hysteresis, and
Endogenous Fluctuations," Federal Reserve Bank of San Francisco Economic
Review, Number 1, 3-13.




-18-

Falk, B. (1986), "Further Evidence on the Asymmetric Behavior of Economic Time
Series Over the Business Cycle," Journal of Political Economy, 94, 1096-

1109,

Frisch, R. (1933), "Propagation Problems and Impulse Problems in Dynamic
Economics," in Essays in Honour of Gustav Cassel, London: Allen and
Unwin,

French, M. and D. Sichel (1993), "Cyclical Patterns in the Variance of Economic
Activity," Journal of Business and Economic Statistiecs, 11, 113-119.

Goodwin, T.H. (1993), "Business Cycle Analysis with a Markov-Switching Model,"
Journal of Business and Economic Statistics, 11, 331-340.

Hallin, M. C. Lefevre and M. Puri (1%988), "On Time-Reversibility and the
Uniqueness of Moving Average Representations for Non-Gaussian Statiomary
Time Series," Biometrika, 75, 170-171.

Ham, M. and C. Sayers (1990), "Testing for Nonlinearities in United States
Unemployment by Sector," unpublished manuscript, Department of Economics,
University of Virginia and University of Houston.

Hamilton, J.D. (1989), "A New Approach to the Economic Analysis of Nonstationary
Time Series and the Business Cycle," Econometrica, 57, 357-384.

Hinich, M.J. (1982), "Testing for Gaussianity and Linearity of a Stationary Time
Series," Journal of Time Series Analysis, 3, 169-176.

Hussey, R. (1992), "Nonparametric Evidence on Asymmetry in Business Cycles Using
Agpgregate Employment Time Series," Journal of Econometries, 51, 217-231.

Kelly, F.P. (1979), Reversibility and Stochastic Networks, New York: John
Wiley.

Keynes, J.M. (1936), The General Theory of Employment, Interest and Money,
London: Macmillan.

lewis, P.A.W., E. McKenzie and D.K. Hugus (1989), "Gamma Processes,"
Communications in Statisties- Stochastic Models, 5, 1-30.

Luukkonen, R. and T. Terdsvirta (1991), "Testing Linearity of Economic Time

Series Against Cyclical Asymmetry," Annales d’économie et de Statistique,
20/21, 125-142.

Mitchell, W. (1927), Business Cycles: The Problem and Its Setting, New York:
National Bureau of Economic Research.

Mittnik, 8. (1991), “"Nonlinear Time Series Analysis with Generalized
Autoregressions: A State Space Approach," unpublished manuscript,
Department of Economics, State University of New York at Stony Brook.



-19-

Neftci, S. (1984), "Are Economic Time Series Asymmetric Over the Business
Cycle?," Journal of Political Economy, 92, 307-328.

Nelson, C.R. and C.I. Plosser (1982), "Trends and Random Walks in Macroeconomic
Time Series: Some Evidence and Implications," Journal of Monetary
Economics 10, 139-62.

Pomeau, Y. (1982), "Symetrie Des Fluctuations Dans Le Renversement Du Temps,"
Journal De Physique, 6, 859-866.

Potter, S. (1991), "A Nonlinear Approach to U.S. GNP," unpublished manuscript,
Department of Economics, UCLA.

Ramsey, J.B. and P. Rothman (1988), "Characterization of the Time Irreversibi-
lity of Economic Time Series: Estimators and Test Statistics,”
unpublished manuscript, C.V. Starr Center Research Report No. 88-39,
Department of Economics, New York University.

Rosenblatt, M. and J. Van Ness (1965), "Estimation of the Bispectrum," The
Annals of Mathematical Statistiecs, 36, 1120-1136.

Rothman, P. (1990), "Characterization of the Time Irreversibility of Economic
Time Series", Ph.D. Dissertation, Department of Economics, New York
University.

Rothman, P. (1991),"Further Evidence on the Asymmetric Behavior of Unemployment
Rates Over the Business Cycle," Journal of Macroeconomics, 13, 291-298.

Rothman, P. (1992), "Forecasting Asymmetric Unemployment Rates," unpublished
manuscript, Working Paper No. 92-03, Department of Economics, University
of Delaware.

Schotman, P. and H. Van Dijk (1991), "On Bayesian Routes to Unit Roots," Journal
of Applied Econometrics, 6, 387-401.

Sichel, D. (19892), "Are Business Cycles Asymmetric? A Correction," Journal of
Political Economy, 97, 1255-1260.

Sichel, D. (1993), "Business Cycle Asymmetry: A Deeper Look," Economic Inquiry,
31, 224-236.

Slutsky, E. (1937), "The Summation of Random Causes as the Source of Cyclic
Processes," Econometrica, 5, 618-626.

Stock, J. (1989), "Hysteresis and the Evolution of Postwar U.S$. and U.K.
Unemployment," in Barnett, W., J. Geweke and K. S5hell, (eds.) Economic

Complexity: Chaos, Sunspots, Bubbles and Nonlinearity, Proceedings of the
Fourth International Symposium on Economic Theorvy and Econometrics, New

York: Cambridge University Press.




-920-

Subba Rao, T.S. and M.M. Gabr (1984), An Introduction to Bispectral Analysis and
Bilinear Time Series Models, Lecture Notes in Statistics, Vol. 24, New
York: Springer-Verlag.

Terdsvirta, T. and H. Anderson (1992), "Characterizing Nonlinearities in
Business Cycles Using Smooth Transition Autoregressive Models," Journal of

Applied Econometrics, Supplement, 7, S119-8136.

Tong, H. (1990), Non-linear Time Series: A Dynamical System Approach, New York:
Oxford University Press.

Tsiddon, D. (1991), "On the Stubbornness of Sticky Prices," International
Economic Review, 32, 69-75.

Weiss, G. (1975), "Time-Reversibility of Linear Stochastic Processes," Journal
of Applied Probability, 12, 831-836.

Welsh A. and R. Jernigan (1983), "A Statistic to Identify Asymmetric Time
Series", American Statistical Association 1983 Proceedings of the Business
and Economics Statistics Section, 390-395.

Westlund, A. and §. Ghlén (1991), "On Testing for Symmetry in Business Cycles,"
Empirical Economics, 16, 479-502.



-21-
Table 1

Standardized TR Test Statistics for Growth Rates of Extended Nelson and
Plosser Data Using Monte Carlo Estimated Standard Errors

Real GNP =1.7G3 -1.226 =0.114 —2.556 -0.353
Nominal GNP -0.179 ~3,894 . 1.252 —0.490 -0,100
Real Per Capita GNF -1.601 -1.,093 =0.013 —2.654 -0.424
Industrial Production —5.267 -1.274 ~0.018 -1.944 =0.282
Employment -1.649 -1.227 1.740 0,124 -1.085
Unemployment. Rate * _2.005 _2.396 0.709 2.780 _2.172
GNP Price Deflator _8.652 0.314 _2.438 5,552 2.993
CFI _6.856 4.069 _3.042 3.286 _2.364
Nominal Wage 0,753 0.248 1.236 0.924 -0.659
Real Wage —2.486 1.5643 0,762 1.244 1.054
Money -1.039 =5.199 —4,648 -1.258 0.056
Velocity 0,203 —2.496 1.394 —-0.371 ~0.450

Bond Yields * 0.255 6.016 1.652 1,445 _8.606
S&P500 —4.278 —0.387 _2.262 =0.630 0.401

* Raw, not log, first differences used.

Table shows standardized TR test statistics, ¥, ;(k)/[Var(3; ;(k))]1?,
for extended Nelson and Plosser dataset, where Var(-')\rz'.l(k)) is
estimated wvia Monte Carlo simulation. Underlined statistics
indicate rejection at the 5% significance level.
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Table 2

Standardized TR Test Statistics for Growth Rates of Extended Nelson and

Plosser Data Using Bootstrap Estimated Standard Errors

Real GNP -1.163 -0.983 -0.098 —2.038 -0.
Nominal GNP —0.064 -2.151 0.885 —0.366 -0.
Real Per Capita GNP -1.181 —-¢.900 -0.011 -2.172 -0.
Industrial Producticn =4.291 -1.136 -0.015 —1.643 -0.
Employment -1.153 -1.071 1.478 0.102 -0.

Unemployment Rate * 1.518 1.860 0.522 1.811
GNP Price Deflator 1.944 0.115 1.297 3.387 2.
CP1 _3.805 _2.712 _2.090 _2.350 1.
Nominal Wage 0.370 0.167 0.939 0.743 -0.
Real Wage -2.517 1.639 0.751 1.189 0.
Money —0.680 -3.589 -3.574 -1.031 0.
Velocity 0.198 —=2.423 1.386 -0.366 -0.

Bond Yields * 0.147 4.000 . 1.142 0.972
S&P500 =3.19¢6 —0,334 1,910 -0.541 0.

287

081

354

241

941

974

1.

D26

694

357

988

048

412

399

3,

339

Raw, not log, first differences used.

Table shows standardized TR test statistics, ¥, 1(k)/[Var(3; 1(k))]%%,
for extended Nelson and Plosser dataset, where Var(%;,(k)) is
estimated via bootstrap simulation. Underlined statistics indicate
rejection at the 5% sipgnificance level.
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Table 3

Standardized TR Test Statistics for ABMA Residuals for Growth Rates of
Extended Nelson and Plosser Data Using IID Standard Errors

Real GNP -1.553 -0.212 -0.511 —2.011 0.480
Nominal GNP —3.541 -1.432 -0.189 -0.123 _2.890
Real Per Capita GNP -1.448 -0.201 -0,359 =2.215 0.279
Industrial Production -3.025 —0.402 =0.,747 -1.393 0.149
Employment =1.137 =1.,577 0.595 -0.608 0.387
Unemployment Rate " _3.326 0.791 1.230 1,037 -0.670
GNP Price Deflator 1.743 -1,533 0.589 3.079 _2.199
CFPI _2.915 _2.993 2.586 1,846 2.090
Nominal Wage -1.219 =2.682 1. 442 0.773 1.836
Real Wage —2.608 1.353 —0.568 0.213 0.517
Money -1.729 -1.867 -0.223 0.124 0.695
Velocity 0.159 —2.006 1,539 -0.596 =0.018

Bond Yields * 0.567 1.891 1,143 0.995 _3.651
S&P500 =3.024 —0.948 0.229 0.113 0,844

Raw, nmot log, first differences used.

Table shows standardized TR test statisties, ¥, ;(k)/{Var(¥, ;(k)) ]2,
for extended Nelson and Plosser dataset, where Var(%; ,(k)) is
estimated via bootstrap simulation. Underlined statistics indicate
rejection at the 5% significance level.
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Table 4

Standardized TR Test Statistics for Growth Rates of Backus-Kehoe

Data Using Monte Carlo Estimated Standard Errors

Australia Real Cutput =1.519 0,047 =0.621 -0.073 1.361
Investment -1.552 -1.597 —4.209 =6.346 =4, 564

Price Level 5.633 2.886 _2.722 0.024 -0,309

Money Supply 2.895 -0.807 0.350 =0.154 1.162

Canada Real Output ~4.644 -0.861 -0.930 0.145 1.167
Investment 6.216 -1.720 D.536 -0,493 —0.437

Price Level 6.283 4,488 2.218 4.081 2.588

Money Supply 1.101 1.395 .590 1.642 0.068

Italy Real Cutput —14.804 =16.111 =9.987 =5.162 =4.072
Investment —3.889 —=0.629 =5.305 =5.484 -1.864

Price Level 2,632 0.328 0.282 3.271 2,192

Money Supply 1,739 1.761 1.148 -1.119 -1.776

Sweden Real Qutput 3.957 =2.980 =2.437 -0,222 —0.435
Investment ~6.750 6.303 0.394 —4.631 -2.592

Price Level 6.791 6.556 9.644 12.224 8.977

Money Supply 0.387 0.433 0.796 1.424 1.430

U.K. Real Qutput =1.,478 ~1.0%85 -1.635 2.991 1.918
Investment =1.012 -5.722 —8.652 —7.815 —7.97¢6

Price Level 9.404 10,875 7.329 7.413 6.0635

Money Supply 1.562 2.426 3.239 3.588 3,085

u.s Real Qutput -0.737 0,532 1.244 -1.432 =0.143
Investment 1.503 -1.639 —2.675 —6.899 -1.700

Price Level 6.600 2.601 1.752 4,748 3.707

Money Supply ~1.849 —6.825 =5.198 ~-1.723 —0.422

Table shows standardized TR test statistics, ¥, 1(k)/[Var(¥, ;(k)) ]2,
for selected series in Backus and Kehoe international dataset, where
Underlined

Var(?zll(k)) is estimated via Monte Carlo simulation.
statistics indicate rejection at the 5% significance level.
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Table 5

Standardized TR Test Statistiecs for Growth Rates of Backus-Kehoe
Data Using Bootstrap Estimated Standard Erxrors

Australta Real Cutput -1.366 0.422 ~0,525 —0.066 1.170
Investment -1.260 —1.234 =3.265 =5.211 —3.810

Price Level 5.223 2,531 2.358 0.021 -0.286

Money Supply _2.198 —0.564 0.266 -0.120 0.922

Canada Real Output —4.336 -0,817 —0.5892 0.144 1.118
Investment 0.106 -1.39%6 0.455 -0.,424 —0.385

Price Level 1.731 1.904 1.483 2.926 1.979

Money Supply 0.523 0.889 0.471 1,386 0.059

Italy Real Qutput =4.231 —7.200 —4.712 =2.496 -2.173
Investment -2, 462 —0.353 —3.282 =3.254 =-1.171

Price Level 0.280 0,062 0.081 1.259 1.032

Money Supply 1.087 1.216 0.846 -0.863 -1.436

Sweden Real Output 2.302 ~1.916 —1.294 -0.,117 —0.236
Investment —4.303 0.187 0.241 —2.890 -1.667

Price Level 0.960 1.558 3.481 5.607 4.910

Money Supply 0.378 0.423 0.778 1.391 1.397

U.K; Real OQutput -0.872 ~0.780 =1.260 2.280 1.540
Investment =0.256 =3.152 -4, 522 =4.396 =4,332

Price Lavel 1.508 2.576 2.504 3.214 3,192

Money Supply 1.417 2.041 2.910 3.273 2,867

u.s Real Output -0.660 0.439 1,028 -1.169 -0.125
Investment 0.825 -1.098 -1.310 —4.937 -1,356

Price Level 2.769 1.638 1.189 3.169 2.590

Money Supply -1.311 -4.,873 =4,337 ~1.515 —0.386

Table shows standardized TR test statistics, ¥, 1(k)/[Var(j, ;(k))]Y?,
for selected series in Backus and Kehoe international dataset, where
Underlined

Var(j; 1(k)) is estimated via Monte Carlo simulation.
statistics indicate rejection at the 5% significance level.
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Table 6

Standardized TR Test Statisties
Growth Rates of Backus-Kehoe Data

for ARMA Residuals for
Using ITD Standard Errors

Australia Real Output -0.128 0.421 -0.701 —0.193 ,2.228
Investment -1.005 -0.953 —2.480 =4.648 -2.726

Price Lavel 2.139 0.381 1.726 —0.266 -0.919

Money Supply 2.069 0.073 0.791 0.276 0.495

Canada Real Output =2.907 =0.316 -1.421 -0.548 -0.217
. Investment -0.277 —-1.749 0.674 -0.229 0.268
Price Level 1.879 -1,363 0.558 3.207 1.610

Money Supply —3.869 0.855 0.453 -0.702 -1.046

Italy Real Cutput -2.693 =4.610 —2_475 ~1.247 =1.030
Investment =2.059 -0.616 =3.287 ~3.598 -1,302

Price Level 1.634 2.910 -0.139 4.752 2,544

Money Supply —1.044 0.0919 0.2086 2.667 2.319

Sweden Real Output 1.288 -1.180 -1.307 3.327 —Q. 467
Investment ~4.834 0.329 —0.604 —2.703 —2.556

Price Level 0.50% —3.088 0,394 3.35%1 1.421

Money Supply 3.220 0,157 2.138 2.154 -1.630

U.K. Real Output -0.521 ~0.345 —2.662 3.972 -0.311
Investment 2,850 —2.049 —2.990 —1,982 —2.834

Price Level 2.753 —0.423 -1.232 2.936 1.921

Money Supply -1.005 1.577 0,643 3.204 =0.031

U.s Real Output 0.097 0.115 0.682 -1.452 0.285
Investment 0,272 =0.631 -0.841 —4,.835 -0.282

Price Level 0.177 2.786 0.290 2.408 2.376

Money Supply -1.211 -0.984 —0.083 =~0.,049 0.841

Table shows standardized TR test statistics, ¥, 1(k)/[Var(¥; 1(k)) ]2,
for selected series in Backus and Kehoe international dataset, where
Underlined
statistics indicate rejection at the 5% significance level.

Var(¥, 1(k)) is estimated via Monte Carlo simulation.



