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1. INTRODUCTION

Among the numerous normative criteria developed within the body of welfare economics,
the notion of Pareto optimality is undoubtedly the most well-known and compelling one.
Given an abstract collective choice problem that is represented by the set of all possible
distributions of (utility or monetary) payoffs of individuals (as in Nash’s bargaining
problem), one thus exclusively concentrates on the Pareto frontier of the choice set. Yet
it is, of course, not reasonable to view all outcomes on the Pareto frontier as equally
desirable for the society; a social planner with some egalitarian concerns would surely not
be satisfied with certain Pareto optimal allocations of individual payoffs. Identification
of the egalitarian Pareto optimal solutions of a collective choice problem is, therefore, of
interest. Put differently, what we need is a refinement of the Pareto frontier of a choice
problem by means of eliminating those Pareto optimal outcomes that would never be
selected by any inequality averse social choice procedure. In this paper, we shall propose
one such refinement.

The notion of “egalitarianism” we employ in the present paper is defined in terms of
the celebrated Lorenz criterion.? Given a collective choice problem S (i.e., a compact,
comprehensive and convex subset of R?, n > 2, with a nonempty interior), a distribution
of payoffs z € S is viewed “more equal than” another outcome y in S whenever z strongly
Lorenz dominates y (see below for formal definitions). If both y and 2 are Pareto optimal,
egalitarianism clearly demands that y cannot be viewed as a social best, for z is a better
outcome than y relative to the Lorenz criterion (while y and z are not distinguishable
by the Pareto criterion). Now suppose y is Pareto optimal in S while z is not. But
one can then show that there must exist a Pareto optimal z € S such that z Pareto
dominates z which is, in turn, more egalitarian than y. Consequently, from an ethical
angle that combines the notions of Pareto and Lorenz optimality in a particular way, y
is again dominated by another feasible outcome, namely z. If the choice situation under
consideration is a cooperative bargaining problem, for instance, it seems reasonable that
an egalitarian arbitrator would not view y as a socially preferred outcome over z, let
alone proposing y as the solution to the problem. We are thus led to refine the Pareto
frontier of a choice problem S to obtain what may be called the Lorenz-Pareto frontier
which contains all Pareto optimal outcomes that are not Lorenz dominated by any
feasible outcome in S.

Given the popularity of the Lorenz domination concept in the theory of income
inequality measurement, there is reason to believe that the Lorenz-Pareto frontier might
prove to be an interesting refinement of the Pareto frontier of a collective choice problem.
As is evident from the fact that the Lorenz-Pareto frontier of a problem S is simply
the collection of all second order stochastically (i.e. generalized Lorenz) undominated
outcomes in S, this refinement, after all, contains all the outcomes which do not perform
unacceptably in either equality or efficiency fronts. Moreover, it is always nonempty and

2 Analogous formulations of egalitarianism can be found in Moulin (1988) in a context which is very
similar to the present one, and in Dutta and Ray (1989) in the framework of TU games in coalitional
form. Blackorby, Bossert and Donaldson (1994), on the other hand, point to the importance of inequality
aversion in cooperative bargaining problems, and develop a solution concept which is “egalitarian” in
precisely the same sense that is advanced in this paper; see Example 4.

2



compact, and as all egalitarian refinements of the Pareto frontier should do, it reduces
to a singleton (which is composed of Kalai’s egalitarian solution) when the problem at
hand is symmetric.

It may thus be argued that an “inequality averse” solution concept (choice function)
should never pick an outcome that is not in the Lorenz-Pareto frontier of a collective
choice problem. We call such solution concepts Lorenz-Pareto optimal, and elaborate
on their properties in the sequel. First we demonstrate that Lorenz-Pareto optimality
is not a degenerate postulate; while the egalitarian, Nash, and the generalized Gini
solutions are all Lorenz-Pareto optimal (whenever they are well-defined), the Kalai-
Smorodinsky solution concept fails to satisfy Lorenz-Pareto optimality. Second, we
show that if a Lorenz-Pareto optimal solution concept satisfies independence of irrelevant
alternatives (strong axiom of revealed preference), then it is rationalizable by a strictly
monotonic and strictly Schur-concave (complete and transitive) reflexive binary relation.
Unfortunately, such a solution concept need not be representable in the sense that it may
not be obtained as a result of maximizing a particular social welfare function. However,
by using an important representability result due Peters and Wakker (1991), one can
show that all Lorenz-Pareto optimal solution concepts which satisfy the strong axiom of
revealed preference and a weak continuity axiom are, in fact, representable by an upper
semicontinuous, strictly monotonic and strictly Schur-concave social welfare function.
This observation generalizes the main representability theorem of Bossert (1994) to n-
person bargaining problems.

All in all, the notion of Lorenz-Pareto optimality leads to an interesting refinement
of that of Pareto optimality. It has a natural interpretation which integrates two key
ethical criteria of egalitarianism and efficiency. Moreover, it is observed here that this
notion has rather nice properties and implications, and hence, one may gain considerable
analytic ground by replacing Pareto optimality with Lorenz-Pareto optimality in certain
axiomatic inquiries. We conclude that while Lorenz-Pareto optimality is admittedly
not the only way one can introduce a “concern for equality” into the collective choice
process, it paves way towards a potentially fruitful “ethical” approach to the problem
of collective choice.

The organization of the paper is as follows. In Section 2, we review some prelimi-
nary concepts like collective choice problems, solution concepts, Lorenz and generalized
Lorenz ordering and Schur-concavity. We introduce the key notion of Lorenz-Pareto
frontier as a correspondence on the class of all choice problems in Section 3. After
establishing some basic properties of this correspondence, we move to study the Lorenz-
Pareto optimal solution concepts in Section 4. Several examples of such solution concepts
are provided in this section along with some comments concerning characterizations of
these choice functions with the aid of the Lorenz-Pareto optimality axiom. Finally, we
report our main findings on the rationalizability and representability of Lorenz-Pareto
optimal solution concepts in Section 5. The paper concludes with a number of remarks
on the possible extensions of our main representation theorem.



2. PRELIMINARIES
2.1 Collective Choice Problems

Let n > 2. The class of all compact, comprehensive (with respect to the origin) and
convex sets in R7 which have a nonempty intersection with R7 , is denoted by X".3 We
refer to each S € X" as a collective choice problem (or a choice situation), and call
any member of S an outcome. _

There are several specific models of group-decision making which fall well within the
boundaries of this abstract setting. For example, under some plausible assumptions,
the standard wutility possibility sets of classical welfare economics are well-defined col-
lective choice problems (see Bossert, 1996).* Alternatively, each member of " can be
interpreted as a cooperative bargaining problem in the sense of Nash (1950) where the
disagreement point is taken to be the origin. (See Thomson, 1994 for an excellent survey
of the related literature.)

One may also think of problems in 3™ which model certain instances of division of
monetary incomes. Consider, for example, the problem of distributing welfare payments
among a certain subgroup (of presumably poor individuals). The social cost of providing
the payment distribution z € R} need not be simply >"i", z;, for this would ignore that
the characteristics of the poor individuals (like employment histories, etc.) and how
the money is collected from the rest of the society. More generally, the social cost of
the transfer payment distribution x can be considered as C(z) for some C' : R} — R
such that C(0) = 0, and in this case, the space of feasible benefit distributions would
be S; = {r € R} : C(z) < ¢} for some ¢ > 0. Notice that S. € X" provided that C is
continuous, increasing and convex.

A solution concept (or a choice function) on X" is defined as any function F :
»" — R% such that F(S) € S for all S € ¥". For any S € X", we define

PO(Sy={ze€S:-FyeS:[y>z|}

and say that the solution concept F is strongly Pareto optimal if, for any S, F(S) €
PO(S).5 On the other hand, F is said to be Pareto optimal if, for any S, there does
not exist an z such that z > F(S). We say that F' is symmetric if, for all S € X" such
that S = {a;H z € S} for any n X n permutation matrix II, we have F;(S) = F;(5),
,7=1,..,n

38 ¢ R} is called comprehensive if, for any x € S, z > y > 0 implies that y € S; it is called strictly
comprehensive if it is comprehensive and for any z,y € S, £ > y implies that there exists a z € S such
that z; > y; for all 4.

“Where X C R is a closed convex set of feasible alternatives, for all continuous, concave and
strictly increasing u; : X — Ry such that inf,ex ui(w) =0, ¢ = 1,...,n, we have {(u1(w), ..., un(w)) :
w € X} € T". If u;s are affine, the associated utility possibility set coincides with the classical budget
set of a consumer. X", therefore, contains the linear budget problems (along with the nonlinear ones)
which are extensively studied within the domain of revealed preference theory.

5Vector inequalities: For all z,y € R*, z >y iff z; >y foralli; z >y iff z >yandz £ y; 2>y
iff z; > Yi for all 3.



2.2 The Lorenz Ordering and Schur-Concavity

Let Rf = {z € R} : 2; < --- < .}, and for any = € R}, let z() stand for zII where
ITis an n X n permutation matrix such that z¢y € R}. Thus, z(q) < - - - < z(,) for any
z € R}. The Lorenz ordering -, is defined on R} as: z =1, y if, and only if,

;w(i) >

Y yw foralls=1,..,n—1 and > z;=> y.
i i=1

1= i=1

As usual, we define ~, = =, N{(y,z) 1z =Ly} and >, = > \ ~ .

When z >, y, we contend that the elements of z are more equally distributed than
those of y, for by a result due Hardy, Littlewood and Polya (1934), = >, ¥ holds if, and
only if,  can be obtained from y by a finite sequence of transfers from y’s larger entries
to its smaller ones such that the rank orders of the elements of y remain unaltered.
(In the literature on income inequality, such transfers are usually referred to as the
Pigou-Dalton transfers; see Dasgupta, Sen and Starrett, 1973, Fields and Fei, 1978 and
Marshall and Olkin, 1979). Especially when the elements of R? are interpreted as
income distributions, therefore, =1 ensues to be a compelling equality ordering.

A binary relation »=C R} x R% is called (strictly) Schur-concave if =1 C 3 (and
>, C>), where > stand for the asymmetric factor of %=. On the other hand, a real-
valued function W on R is said to be strictly Schur-concave if, for all z,y € RY,
z >, (~r)y implies W(z) > (=) W(y). In the context of income distributions, a strictly
Schur-concave function on R% is usually interpreted either as an inequality averse social
evaluation function or as an equality index (cf. Foster, 1985). We note that a strictly
Schur-concave function is necessarily symmetric in the sense that W(z) = W(z(,) for
all z € RY.

Notice that z and y in R} can be connected with =, only if >7 , z; = Y%, ¥ so
that »= completely disregards the Pareto optimality characteristics of the distributions.
For instance, while (5,5) is clearly a better income (or utility) distribution than (1,1)
for a 2-person society, this intuition is totally missed by %, for the Lorenz ordering
focuses on only the equality of distributions of a fixed size. One way of remedying for
this is to extend %=1 to what is usually called the generalized Lorenz (or second order
stochastic dominance) ordering, g1 C R} x R%, which is defined as

z =¢r vy if and only if Zx(i) > Zy(i) foralls =1,...,n.
i=1 i

i=1

(The asymmetric part of 3=¢y, is denoted by >¢r, .) It is well-known that the general-
ized Lorenz ordering, in effect, integrates the inequality aversion embodied in = with
the basic premise of vector dominance (see Shorrocks, 1983). This argument can be
formalized as follows:



Lemma 1: For any S € X" and any z,y € R}, the following statements are
equivalent:

(1) z>aLy
() W(z) > W(y)for all strictly increasing and strictly Schur-concave
W:R} - R
(¢43) There exists a z € Ssuch that x > z =1, ywith either Zor =, holding
strictly.

Proof. Since the equivalence of (i) and (i7) is established by Shorrocks (1983, The-
orem 2), and that (i) implies (7) is obvious, it is enough to show that (i) = (ii4).5
Take any z,y € S € X" such that z >—GL y, and assume that z y € R} without loss of
generality. Let

{£,} = argmin Z(w, ;)
ke{l,..n} =1

and define w! € RY such that w} = =;, i=1,...,6, —land w} =z, — X2, (z: — u).
(That wj > 0 easily follows from the defnition of ¢;.) Notice that if ¢; = n, the result

is trivially established upon choosing z = w!, so we assume that ¢, < n — 1.
We wish to show now that w! %=1 (y1,..., 7, ). Consider first the case where we1 >
w}l_l (so that w} < --- < w}). In this case, z gL ¥ 1mphes tha.t YE wl=3F 2>
1_1 y; for all K = 1,...,4; — 1, and by definition of w, }:i=1 1 = Zfl_llx, + zp —
Zf1=1( T —y) = Y% ;. Consequently, we may conclude in this case that w! 3=

(y JEREEY yh)'
Assume now that wy, < wy _;, and let

s=#{ie{l,..—1}:w} <wj}+1.

(Consequently, s is the rank order of we in w'.) By the hypothesis that z =g ¥, we

have ¥ | w} > Z,_l y; for all k = 0,...,;s — 1. (Throughout this proof, we adopt the

conventlon that 3°°__ f(i) = 0 when b < a.) On the other hand, for any k € {s, ..., ¢, —1},
k  w! > Y%  y holds if and only if

s-1 £ :
do(@i—w) + (z —vs) + Z (@i—w) =) (z:—w:) >0,
i=1 i=s+1 i=1

But since x4, > z,, we have

4

i(mi—yi)+(xel'—ys)+ Z (z; — Z("’z_yz)>z z; — ;) Z(fi—yi)ZO,

i=s+1 i=1 =1 i=1

the last inequality following from the definition of ¢;. Consequently, we may conclude
that Z L w) > Z ', Ui for all k=1,..,4 — 1. Since we have 21 Jw} = }:f;ly,- by
construction, it follows that w! | (yl, ey Yy )-

Although (i) = (#ii) can hardly be considered as a new result, we were unable to find a proof of
this particular form of the assertion in the literatures on inequality measurement and majorization. For
completeness, therefore, we present here a proof of the claim which is similar to Fan’s decomposition of
the submajorization ordering (cf. Fan, 1951, and Marshall and Olkin, 1979, p. 123.)

6



Now, by definition of ¢;, we must have Z:;el“ T > Zf=el+1 y; forallk=4+1,...,n
so that (Z¢,41, - Tk) 6L (Yes+1, .- Yk). But then by defining

k
{6} = argmin ) (zi—w)
ke{ti+1,...,n} =g, 41

we may find a w? € R%™% such that (z¢,41, .-, Te,) = W? =1 (Yo 41, -, Yp,). Continuing
this way, we obtain a finite sequence £y £y, ..., £r (where £ = 0 and r < n) such that
¢, = n and there exist w* € Rﬁ“_e", i=1,...,r, with the property that

(o4 - Teyy) = W =L (Vo410 Yoy,) forall =0, —1.

But then defining z = (w!,...,w"), it is easily observed that z > z %=y y. Since S is
g (]

comprehensive and z € S, we must have z € S. Moreover, £ = z ~p y contradicts (z),
and hence (4i7) is established. W

3. THE LORENZ-PARETO FRONTIER

Consider a collective choice problem S € X", and let y € PO(S). From an efficiency
perspective, therefore, it is not feasible to improve upon y in S. Yet y can be an unaccept-
ably unequal distribution of payoffs, it can even be a dictatorial solution to the problem
at hand. It may thus be possible to “improve upon” y from an egalitarian point of view.
For instance, it may well be the case that there exists a z € S such that z > y; that is,
z Tepresents a ‘more equal’ distribution than y in S. But of course, z may itself be vastly
Pareto inoptimal, and hence discarding y just because there exists a more egalitarian
payoff distribution in S seems hardly reasonable. But it is easy to see that there must
then exist another z € PO(S) such that z > 2.7 There is then a clear sense in which
z “dominates” y, for the Pareto optimal  Pareto dominates z which, in turn, Lorenz
dominates y; one may thus say that a Lorenz-Pareto improvement over y is feasible. It
appears that one who wishes to eliminate the unacceptably unequal outcomes in PO(S)
would then discard y. In other words, no inequality averse collective choice procedure
would propose y as a solution to the problem S as opposed to an alternative like z.
This discussion leads us to refine the Pareto optimal frontier of a collective choice
problem S € X" to obtain what we shall henceforth refer to as the Lorenz-Pareto

7If there exists a w € S such that w > z, then by compactness of S,
max{\ > 0: Az € S}z€ 8SNRY,,

so by convexity and comprehensiveness of S, we may assume without loss of generality that z is weakly
Pareto optimal. Then there must exist a w € S such that w; > z for all i € K and w; = 2; for all
i€ {1,..,n}\K for some K = {a1,...,ax} C {1,..,n}, 1 <k < mn Let 2! = (\Wa,,W_q,) Where
A1 = max{A > 0 : (Aw,,,w_,,) € S} and define

& = (Ajwa;, 27 ,)) where ); = max{} >0: (\jWay, 7 o0) €S}5 =2, .,k

By compactness of S, ¥ € PO(S) and zk > 2.



frontier of S:

LPO(S) {y € PO(S): =3z € S: [z >y}

= {ye§:-3(z,22%) € PO(S) x S:[2* = 2% = y]}.

The members of LPO(S) are said to be Lorenz-Pareto optimal in S. Clearly, an
outcome z is Lorenz-Pareto optimal in S if, and only if, a Lorenz-Pareto improvement
over z is not feasible in S.%

Remarks: (1) Not all outcomes in LPO(SS) can be thought of as egalitarian. Indeed,
one can easily see that there exists an S € X" such that argmax,csz; C LPO(S) for
some ¢; that is, there may exist a dictatorial outcome in the Lorenz-Pareto frontier of
a pa.rtlcular choice problem; a telltale sign of the potential existence of inegalitarian
outcomes in the Lorenz-Pareto optimal frontier. In fact,

(argmax Z@) (VLPO(S)# @ forall Se X",

z€S i=1

that is, there is always a utilitarian choice in any LPO(S). Nevertheless, it must be clear
that all outcomes in PO(S)\LPO(S) are surely inegalitarian according to the Lorenz
criterion. Put differently, the notion of Lorenz-Pareto frontier is useful in determining
a (usually quite large) subclass of inegalitarian Pareto optimal outcomes rather than
identifying only the egalitarian ones. Implicit in LPO(-) are, therefore, some efficiency
considerations stemming from presumably the shape of the problem at hand.

(2) When a collective choice problem is interpreted as comprised of utilities of the
individuals (as in Nash’s bargaining problem), information invariance required by the
LPO(-) correspondence becomes a relevant issue. Evidently, the definition of a Lorenz-
Pareto frontier in the case of such problems necessitates cardinal full comparability, i.e.,
invariance with respect to identical affine transformations. Nevertheless, it is important
to note that LPO(-) admits translation and scale invariant selections; see Examples 1
and 2 below.

(8) LPO(S) is nonempty for all S € X". To see this, take any S € X" and let
¢ : R — R be any continuous, symmetric, strictly increasing and strictly concave
function. It is well-known that any such function is strictly Schur-concave (cf. Marshall
and Olkin, (1979), p. 68, Proposition C.2.d), and hence, for any z,y € R% such that
T gL Y, we have ¢(z) > ¢(y) . But by continuity of ¢ and compactness of S, T =
arg max,ecs ¢(z) # 0, and in fact, by strict concavity of ¢ and convexity of S, T is a

8The notion of the Lorenz-Pareto optimal frontier is also discussed in Moulin (1988, p.48) and
Dutta and Ray (1989). We refer the reader to the former reference for interesting examples of choice
problems the Lorenz-Pareto frontiers of which are explicitly computed (see, in particular, Example 2.3
and Exercises 2.5-6). We note that the way we wish to utilize the Lorenz-Pareto optimality concept is
very similar to Dutta and Ray (1989). While Dutta and Ray employ this notion to identify egalitarian
allocations in TU cooperative games in characteristic function form, we wish to implement Lorenz-
Pareto optimality to find out which Pareto optimal payoff distributions can be deemed inegalitarian in
collective choice problems.



singleton; say T' = {y}. Therefore, by the previous observation, there does not exist an
z € S such that z ¢, y, and thus, y € LPO(S).° B

In view of Lemma 1, we readily observe that the Lorenz-Pareto frontier of a collective
choice problem has, in fact, quite a simple algebraic structure:

Proposition 1: For all S € ¥,
LPO(S)={ye S:-3z€ S : [z >cL ]}
Proof. By using Lemma 1 and compactness of S, we obtain
JzeS:[z-ry] & H(m,z)ePO(S) X S: [m>z>-Ly]
& 3Jz € PO(S): [z >c¢r Y]

& JzeS:(zrary

for all y € S, and the proposition follows. ll

Proposition 1 sheds further light into the basic structure of LPO(.). Since ¢y, is
a dominance relation that brings together the notions of equality and efficiency with
respect to Lorenz and Pareto criteria, respectively, LPO(S) can be thought of as the
set of all outcomes in S which survive the equality-efficiency dilemma. To see this from
a different angle, notice that by Lemma 1, y ¢ LPO(S) if and only if W (z) > W(y) for
any inequality averse (i.e. strictly Schur-concave) and Paretian (i.e. strictly increasing)
social welfare function W : R} — R. Inother words, when y ¢ LPO(S), both Rawlsians
and utilitarians would agree that there is a better outcome than y in S.10 It is in this
sense we argue that the notion of Lorenz-Pareto optimality integrates the key notions
of equality and efficiency.

4. LORENZ-PARETO OPTIMALITY

The basic premise behind Lorenz-Pareto optimality is that, for any collective choice
problem S, PO(S)\LPO(S) is comprised of (Lorenz-wise) inegalitarian Pareto optimal
outcomes. It is then natural to require an inequality averse solution concept not to choose
an outcome outside the boundaries of the Lorenz-Pareto frontier. This motivates the
following axiom:

Lorenz-Pareto Optimality (LPO): For all S € ™, F(S) € LPO(S).

90One can also show that LPO(S) is compact for all S € X". Since we shall not use this property in
the sequel, however, we omit the proof here.
107t is immediate from Proposition 1 that the Lorenz-Pareto optimal frontier of a 2-person choice
problem S € X? is simply that section of PO(S) which falls between the egalitarian and the utilitarian
outcomes in S (see Moulin, 1988, Figure 2.2).



We refer to a solution concept which satisfies this axiom as Lorenz-Pareto optimal.

In this section we shall study several examples of Lorenz-Pareto optimal solution
concepts. But before doing this, let us highlight two important properties of such solution
concepts.

Proposition 2: If F' is a Lorenz-Pareto optimal solution concept on X", then it is
strongly Pareto optimal and symmetric, but not conversely.

Proof. If F satisfies LPO, then it is trivially strongly Pareto optimal. To see sym-
metry, take any S € 3" such that S = {zIl: z € S} for any n x n permutatlon matrix
II. Pick any z € S and notice that, by convexity of S,

y= I'Z:I:H €S

where {II; : ¢ = 1,...,nl!} is the set of all n X n permutation matrices. But since

1 Yi = X.z;, it is immediate that y >y z unless z; = - - - = z,,, and therefore,
z ¢ LPO(S) unless z; = - -+ = z,,. But as shown above LPO(S) # 0, and hence,
z € LPO(S) if and only if z € PO(S) and z; = - - - = z,.

To show that the converse of the assertion fails to hold, choose any symmetrlc and
strongly Pareto optimal solution concept which coincides with the Kalai-Smorodinsky
solution concept on X2 so that, for any S € X2, F(S) is in PO(S) and is on the
segment connecting (0, 0) to (a1(S), a2(S)), where a;(S) = arg max,cg x;.!! Choose S =
{z € R2 : 2 < 1 -z, zy < 1/2}, and notice that LPO(S) = {(1/2,1/2)} while
F(S)=1(1/3,2/3). 1

This proposition shows that LPO is an axiom with a considerable ‘bite’; it combines
the widely used properties of Pareto optimality and symmetry, among others. Moreover,
it has a certain selection power; for instance, the celebrated solution concept of Kalai and
Smorodinsky (1975) does not satisfy LPO, as demonstrated in the proof of Proposition
2. In what follows, we shall present four examples of Lorenz-Pareto optimal solution
concepts along with some observations about their characterizations.

Example 1. (The Egalitarian Solution) If F satisfies LPO and Kalai’s monotonicity
(i.e. if, for all S,T € X, T C S implies F(S) > F(T)), then for any strictly compre-
hensive problem S, F(S) € PO(S) and Fi(S) = - - - = F,(95); that is, all such solution
concepts agree with Kalai’s egalitarian solution concept. The proof is immediate from
Proposition 2 and the well-known characterization of the egalitarian solution by Kalai
(1977). W

Example 2. (The Nash Solution) If F satisfies LPO, independence of irrelevant
alternatives (defined below), and scale invariance (i.e. if F({zA: z € S}) = F(S)A for

N The Kalai-Smorodinsky solution concept does not provide the counter-example we seek here in
general, for it is not strongly Pareto optimal on X", n > 3.
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any diagonal n x n matrix A with strictly positive diagonal entries), then, and only then,
F is the Nash solution concept: F(S) € arg maxzes [[;-; z: for all S € X". The proof
trivially follows from the classic characterization theorem of Nash (1950) and Proposition
2. This example is interesting in that it shows that while LPO(-) correspondence is
clearly not scale invariant, it admits a scale invariant selection. Il

Example 3. (The Collectively Rational Separable Solution) Let ¥ = (J22, %"
and define a generalized solution concept as any function F' : X —{J72, R} such that
F(S) € S for all S € X (cf. Thomson, 1983). A generalized solution concept F' satisfies
LPO, continuity (defined below) and multilateral stability'?, if and only if, there exists
a continuous, strictly increasing and strictly concave f : Ry — R such that F(S) €
arg maxzes y oy f(z;) for all S € X. The proof is again straightforward: If F' satisfies
these properties, then by Theorem 1 of Lensberg (1988), F'(S) € argmaxzes >0 fi(:)
for all § € X, for some continuous and strictly increasing f; : Ry — R, i = 1,...,n.
But by Proposition 2, F must be symmetric, and therefore, f; = - - - = f,. Moreover,
by LPO, the mapping z — Y., f(z;) is strictly Schur-concave on R (see Lemma 2
below) so that f must be strictly concave by Proposition C.1.a of Marshall and Olkin

(1979).3 m

Example 4. (The Generalized Gini Solution) Let X% denote the class of strictly
convex choice problems in X", and let X7 be the set of all compact, and convex sets in
R" such that S, "R} € X" whenever S, € X7. Consider a solution concept F' defined
on X7, and let it be generated by maximizing a continuous function ¢” : R7 — R in
the sense that F(S) € argmax,cs g™(z) for all S € X". Assume further that F satisfies
LPO and linear invariance (i.e., forall S € ¥* and i = 1,...,n, F(S + {&:€'}) = F(9)+
8;e* where €' is the ith unit vector, and §; € R satisfies F(S)+ 8;¢' € R} and F;(S)+
b;et > F;(9) iff F;(S) > F;(S) for all j # 4), and in addition, suppose that there exists
an S € X" such that z,y € S and F(S) € {z,y}, for all z,y € R}. Then, one can easily
show that F'(S) must be a generalized Gini solution on X% (cf. Blackorby, Bossert and
Donaldson, 1994, 1996); that is,

n
F(S) € argmax Y oz forall S € BF

z€S i=1

2let n > 2 and 0 C {1,...,n}, and denote the projection of any = € R" on R#? by z,. Define
H; ={yeR":yq,. n}\oc =2Z(1,..np\e} forallzeR",

and, for any z € T C R™, let tZ(T) stand for the projection of HZ NT on R*°. Multilateral stability is
a consistency condition on F defined as follows: For all n > 2, o0 C {1,...,n}, S € X" and T € T#,
T =t (S)(S) implies F(T) = F(S), (cf. Lensberg, 1988, and Thomson and Lensberg, 1989).

13This example is, in fact, fully captured by Theorem 1 of Lensberg (1988), for this theorem yields
that F(S) € argmaxzes Y 1, fi(z:) for all S € X where, in addition to the properties stated above,
fis have the property that z = Y. fi(z;) is a strictly quasiconcave mapping on R} which, in turn,
implies that at most one f; can fail to be strictly concave (cf. Yaari, 1977). Adding the symmetry
axiom, therefore, readily establishes the observation noted in Example 3.
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for some o > - -- > a > 0.1 To see this, consider the ordering > € R™ x R™ defined
by = = y iff g*(z) > ¢9™(y). = is, of course, a continuous and complete preorder which
is, by LPO, anonymous (invariant under permutations) and strictly Schur-concave (see
Lemma 2 below). Now take z,y € R/ and define 2,y € R such that z; = z; and
y; =y;forall j#iand o} =z;+t and y; = yi +1¢ for some t € R such that =,y € R}.
Notice that if z > y, then by hypothesis, there exists an S € X" such that z,y € S
and F(S) = z. But then by linear invariance, F(S + {te'}) = F(S)+ te’, and since y+
;' € S+ {te'}, we must have z’ >~ y/. That 2’ > v/ implies z > y is similarly observed.
Therefore, z % y if and only if 2’ = y’, and hence we can apply Theorem C of Ben
Porath and Gilboa (1994) to conclude that, for all z € R}, g"(z) = 37 of'z(;) for some
o} > -+ > af > 0. Since # arg max,es g"(z) = 1 whenever S is strictly convex, F’ must
be the generalized Gini solution concept on X%. B

5. RATIONALIZABILITY OF LORENZ-PARETO OPTIMAL SOLUTION
CONCEPTS

In this section, we shall combine the LPO axiom introduced above with some other
axioms for solution concepts which are studied extensively in the literatures on axiomatic
bargaining and revealed preference. Our aim is to obtain a tight set of axioms that
will characterize the Lorenz-Pareto optimal solution concepts which are obtained by
maximizing a real-valued function. The rest of the present study is, therefore, closely
connected to the analyses of Peters and Wakker (1991) and Bossert (1994).

We say that a solution concept is rationalizable if there exists a > C R} x R}
such that

{F(S)} =G(S;%) forall Se X",

where
G(S;=)={ze€S:VyeS:[z=y]} forall SeX"

The relation > is then said to rationalize F. The following observation identifies the
influence of LPO on rationalizable solution concepts.

Lemma 2: Let F be a choice function defined on X" which is rationalizable by
a reflexive binary relation = on R%,. F satisfies LPO if, and only if, = is strictly
monotonic and strictly Schur-concave.

Proof. Sufficiency is readily established. To see the necessity, let F' be rationalizable
by %=, and satisfy LPO. Since LPO implies strong Pareto optimality, that % must be
strictly monotonic is obvious. We now wish to show that »g; C > . Assume that
¢ >¢r, y and that ~(z > y). Letting S = cch{z, y}, we must have F(S) = Az + (1 — M)y
for some A € [0,1]. Moreover, since F(S) » z for all z € S, and F is single-valued,
we must have F(S) = z for all z € S. Therefore, since ~(z > y) while y € S, we

must have F(S) # z. By LPO, y = F(S) cannot hold either, and hence we conclude

14Gych functions are usually referred to as the generalized Gini (social) evaluation functions since for
af =2(n—14)+1,i=1,..,n, g" reduces to the (absolute) Gini equality index on R’} (Weymark, 1981).
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that F(S) = Az + (1 — Ay for some 0 < A < 1. But since for any 0 < A < 1 and
ke{l,..,n}, 5,z > (>) L, yG) implies
k

k k k
>ow 2 () A ze+ (-2 ve =Y Az + 1= Nyw)
i=1 i=1 =1 i=1
we must have £ >g1, Az+(1—\)y for all X € [0, 1). Consequently, we obtain z »g;, F(S)
which contradicts LPO by Proposition 1. B

A widely used necessary and sufficient condition for rationalizability is:

Independence of Irrelevant Alternatives (IIA): For all S,T € X", if T C S and
F(S) €T, then F(T) = F(S).

In view of Lemma 2, the combined effect of LPO and ITA on solution concepts is
straightforward:

Proposition 3: Let F' be a solution concept defined on ™. F satisfies LPO and
ITA if, and only if, it is rationalizable by a strictly monotonic and strictly Schur-concave
binary relation = on RY.

Proof. Sufficiency is again obvious. To see necessity, assume that F' satisfies LPO
and ITA, and notice that X" is closed under finite intersections. But IIA is equivalent
to the weak azxiom of revealed preference (WARP) on a domain which is closed under
finite intersections (cf. Hansson, 1968, Theorem 4), and hence, F' satisfies WARP. But
it is well known that the binary relation

»={(z,y) eRY :IS€ X" : [z =F(S) and y€ S|} (1)

rationalizes F" so long as F' satisfies WARP. Moreover, if F' is strongly Pareto optimal, =
must be reflexive, for then, F(cch{z}) = z for any z € R}, . The proof is thus complete
in view of Lemma 2. B

Remark: From the analyses of Peters and Wakker (1991, 1994), we know that a
strongly Pareto optimal solution concept that satisfies LPO need not be rationalizable
by a complete preorder. Unfortunately, the examples constructed in these papers do
not establish the insufficiency of LPO and IIA in guaranteeing rationalizability by a
complete preorder. We are presently unable to settle this issue; the question of whether
a solution concept on X" which satisfies LPO and IIA must be rationalizable by a
complete preorder is open at the moment. l

To guarantee the rationalizability of a solution concept by a complete preorder, we
shall employ another well-known postulate which is stronger than IIA. To introduce this
particular strengthening of IIA, let us define the following two binary relations on R%}
given a solution concept F' on X™:

zRpy if and only if z = F(S) and y € S for some S € °

13



and
zRypy if and only if zRpz'Rp--- Rpz™Rpy for some m > 1 and 2*,...,2™ € R%.

Notice that R} is simply the transitive closure of Rp. As usual, we denote the asymmetric
part of Rp by Pp.
We are now ready to state our next axiom:

Strong Axiom of Revealed Preference (SARP): For all z,y € R%, if xR}y, then
~(yPrz).

This rationality postulate is sometimes called the congruence axiom (mostly when
the solution concepts under consideration are multi-valued). We note that the present
formulation of SARP is equivalent to its standard version which is, in turn, equivalent
to rationalizability by a complete preorder. (See Wakker (1989), Theorem 1.2.5.) The
following observation is thus straightforward.

Proposition 4: Let F be a choice function defined on X". F satisfies LPO and
SARP if, and only if, it is rationalizable by a strictly monotonic and strictly Schur-
concave complete preorder on RY.

We say that a solution concept F' is representable if there exists a W : R} — R
such that
{F(S)} = argmax W(z) forall S e X"
z€S

W is said to represent F, and is usually thought of as a social welfare (or evaluation)
function (SWF). We shall adopt this interpretation in what follows.

Clearly, a solution concept which is represented by a strictly increasing and strictly
Schur-concave SWF is rationalizable by a strictly monotonic and Schur-concave complete
preorder. We demonstrate next that the converse of this observation fails to hold.

Proposition 5: Let =! be the leximin preorder’® and define the solution concept
{9} =G(S;%") forall Se "

While | is rationalizable by a strictly monotonic and strictly Schur-concave complete
preorder, it is not representable by any monotonic SWF.

Proof. Let  »¢r, y for some z,y € R%. By definition, we must then have Zle Ty >
ZLI Yy for all k = 1,...,n, with at least one of the inequalities holding strictly. But

BDefine ~ = {(z,y) € R} : () =y} and
~'={(z,y) € R} :3ke{l,.n}:[zu =yu fori=1,...k— 1 and z) > y()l}.

The leximin preorder is defined as 3='= ~f U »!.
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then z(; =y forall i =1,...,5s — 1 and z(5) > y(s) where

k Tk
§= min{k €{l1,..,n}: Zm(i) > Zy(i)} )
i=1 i=1

and hence, z >! y. Therefore, >g C >, and [ is rationalizable by a strictly monotonic
and strictly Schur-concave complete preorder. To complete the proof, we wish to show
that [ is not representable by any increasing SWF. If we assume the contrary, we would

have

G(S; ") = arg rélax W(z) forall Se X" (2)

z€

for some increasing W : R} — R. Now let = %! y for arbitrary z,y € R}. If z; > y; for all
i, then W(z) > W (y) by monotonicity of W. If, on the other hand, x4 > yqu), i =1, ...,k
and Z(x11) < Ykt1), Observe that G(cch{z,y}; =') = {z} so that, by (4), W(z) > W(y)
obtains again. Conversely, assume that W(z) > W(y) for arbitrary =,y € R%. Since
y ! = would yield W(y) > W(z) by a similar argument to the previous one, we must
have z %' y. Thus, if | is representable by an increasing W : R? — R, then W must
represent 3=' . But this is well-known to be impossible. H

In view of Propositidn 5, it is clear that F must satisfy a certain ‘continuity’ property
in order to be representable. The following continuity axiom is introduced in Peters
(1986):

Pareto Continuity (PC): For all {Sp,}5-; in X7,
Jim F(Sn) = F  Jim, Sn)
provided that lim, . S € X" and limy, 0o PO(Sy) = PO(S).18

PC says that infinitesimal alterations of the choice problem must result in infinites-
imal changes in the solution, provided that the changes in the Pareto frontier of the
problem are also small. It should be noted that this axiom is weaker than the standard
continuity axioms widely used in axiomatic bargaining theory.

Combining PC with LPO and SARP, one may considerably improve upon Proposition
5; the main result of the present paper follows:

Theorem 1: If F' is a solution concept defined on ™ which satisfies LPO, SARP
and PC, then it must be representable by a strictly monotonic, strictly Schur-concave
and upper semicontinuous SWEF.

16The limits are taken with respect to the topology induced by the Hausdorff metric. (The Hausdorff
metric, p, on the set of all nonempty and compact subsets of R} is defined as

p(S,T) = max {sup d(z,T), supd(y, S’)}
€S yeT
where d(z, A) = inf,ec4 ||z — yl| for any compact A C R%; Berge, 1963, pp. 126-7.)
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Proof.!” By Theorem 5.3 of Peters and Wakker (1991), there must exist an f : R? —
R which represents F' by representing the indirect preference relation R}, i.e., z R}y y
if and only if f(z) > f(y). By Lemma 5.4 of Peters and Wakker (1991), on the other
hand, f must be strictly monotonic and strictly quasiconcave.'® Define ‘

W(z) =lim sup g(z) for all z € RY,
€10 2eN(z) *

where N¢(z) is the e-neighborhood of z relative to R%, and where

i)
92) = 717

for all z € R

We wish to show that W is a strictly monotonic, strictly Schur-concave and upper
semicontinuous function which represents F. First note that f(z) > f(y) if and only if
g(z) > g(y) so that g is a strictly monotonic and strictly quasiconcave function which
represents R} (and hence represents F'). Moreover, since the range of g is bounded, W
is well-defined, and is hence upper semicontinuous.!®

To show that W represents F, we shall show that

argmax W(z) = argmax g(z) for all S € X"
zeS z€S

Pick any S in ", and note that arg max,cg W (z) # 0 since W is upper semicontinuous

and S is compact. Now let z € argmax;cs W(z) and z # F(S). Since g represents F'

and F is single-valued, we must have g(F(S)) > g(z). Let y = (z + F(S))/2 and notice

that y € S since S is convex so that g(F(S)) > g(y).

Let U(y) = {w € R} : g(w) > g(y)}, and notice that this set is convex by quasi-
concavity of g. Since y is on the boundary of U(y), therefore, by the supporting hyper-
plane theorem, there exist a p € R™ such that pw > py for all w € U(y). In fact, we can
show that p € R4, for if p; < 0 for some %, say ¢ = 1, then by choosing w, large enough,
we obtain pyw; + Y%, piy; < py while (w1, Y2, ..., ¥a) € U(y) by monotonicity of g, a con-
tradiction. On the other hand, if p; = 0 for some i, say i = 1, then (y1+1, y2, ..., ¥») must
be on the hyperplane supporting U(y) which means that (y; + 1,¥2,...,y») €int U(y),
contradicting strict monotonicity of g. Therefore, we have p € R .

Now let T = {w € R%} : pw < py}, and notice that y = F(T) since g represents
F. But since g represents R* and g(F(S)) > g(y), we must have F(S) ¢ T, i.e. py <
pF(S) = p(2y — z) which yields py > pz. Thus, there must exist an € > 0 such that
N(z) Cint T which implies that

g(y) > sup g(2) > W(z).
zEN(x)

17The method of proof is basically due Hurwicz and Richter (1971); Proof B, p. 69.

18Gtrictly speaking, the results of Peters and Wakker (1991) do not apply readily to our setting for
their domain of choice situations include non-comprehensive sets as well. - But given strong Pareto
optimality (entailed by LPO), we may use their results without loss of generality.

19Gee Haaser and Sullivan (1971), Proposition 2.5, p. 220.
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Consequently, we have
W(F(S)) = g(F(S)) > g(y) 2 W(z)
which contradicts that z € arg max,cs W(z). It follows that
argmax W (z) = {F(S)} = argmax g(2),

that is, W represents F.

To complete the proof we need to demonstrate that W is strictly monotonic and
strictly Schur-concave, i.e., we shall be done if we can show that = > y implies
Wiz) > W(y) for all z,y € R%. So let £ >g¢, y. Since by Lemma 2, f, and hence g, is
strictly monotonic and strictly Schur-concave, g(z) > g(y) holds, and since g represents
R}, we have z Rpz'Rp - - - Rpz™Rpy for some 2, ...,2™ € R?. But W represents F,
and hence, we must have W(z) > W(z!) > --- > W(z™) > W(y) by definition of Rp.
[

We conclude with several remarks concerning the tightness and extensions of Theo-
rem 1.

Remarks: (1) Let F' be a solution concept on X" such that F(S) > 0 for all
S € X" Lemmata 5.4 and 5.5 of Peters and Wakker (1991) and Theorem 1 culminate
in the following characterization: F' satisfies LPO, SARP and PC, if and only if, it is
represented by a strictly monotonic, strictly quasiconcave, symmetric and upper semi-
continuous SWF on R% .20

(2) Lemma 5.4 of Peters and Wakker (1991) and the proof of Theorem 1 show that
Theorem 2 of Bossert (1994) generalizes to n-person bargaining problems.

(3) Proposition 8 is tight in the sense that LPO, SARP and PC constitute an inde-
pendent set of axioms. The solution concept defined in Proposition 7 satisfies LPO and
SARP, but not PC. The solution concept defined as

n—1
{Fi(S)} =argmax (Z VZi + 2\/93_,1) for all S € T
zes i=1

satisfies SARP and PC, but fails to satisfy LPO since z — Y7} VZi + 2,/z, is not a
Schur-concave mapping on R . Finally, let a;(S) = max;es z;, ¢ = 1, ..., n, and define

(F3(5)} = argmin 3 (a:(S) — z:)? for all S € 5°

z€LPO(S) ;=1
which is a variant of a Yu solution (cf. Yu, 1973). F; is well-defined since LPO(S) is

compact for all S € X", and it clearly satisfies LPO and PC. F3, however, fails to satisfy
ITA, and hence SARP.%!

20By Lemma 5.3 of Peters and Wakker (1991), and Theorem 1, it is immediate that strict positivity
hypothesis is necessary only for the sufficiency part of this characterization.

Net S={z € R :20<2-2z,21<1}and T={z € R2 :zp <2213, 21 < 1/2}. While
T C S, we have LPO(S) = LPO(T) = PO(T), and (1/3,4/3) = F5(S) # F»(T) = (2/9, 14/9).
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(4) The representing SWF found in Theorem 1 need not be continuous due to the
potential presence of “poles” (see Hurwicz and Richter, 1971, Remark 4). Moreover, it
seems difficult to find “natural” axioms on F. which would guarantee the existence of a
continuous SWF that represents F. One may, of course, use the earlier results proved
within the body of the revealed preference theory, but the additional axioms used there
seem much less appealing in our general setting. For the sake of completeness, however
we shall state two immediate observations.

Define B(p,c) = {z € R% : pz < ¢} for any (p,c) € R}, x Ry . Of course, B(p, c)
is nothing but the budget set of a consumer with income ¢ when the price vector is
p. In our context, {B(p,c) : (p,c) € R}, x Ryy} is thought of as the class of all
strictly comprehensive collective choice problems the Pareto optimal frontier of which is
a hyperplane. A frequently used assumption in the theory of revealed preference posits
that any given strictly positive n-vector is the best choice in one and only one budget set
(see, for instance, Uzawa, 1971, D.II'). A straightforward adaptation of this postulate
in our setting would read as:

Smoothness (S): For any = € R%. there exists a unique (p,c) € R} such that
Yiipi =1 and F(B(p,c)) = 2.2

(i) Let F be a solution concept defined on ™ which satisfies LPO, SARP, PC and
S. If the mapping c — F(B(p,c)) is Lipschitz continuous on Ry, then F is supported
by a strictly monotonic, strictly Schur-concave and continuous SWF.

Proof is immediate from Theorem 2 of Uzawa (1971) and Theorem 1.23

(ii) Let F be a solution concept defined on X™ which satisfies LPO, PC and S, and
assume that F' is represented by W : R} — R. If, there exists a 6 > 0 such that
W (F(B(p,c—6))) > W(y) for any z,y € R} such that x = F(B(p,c)), y ¢ B(p,c) and
W (y) > W(z), then F is represented by a strictly monotonic, strictly Schur-concave and
continuous SWF.

To prove this claim, we may assume that W is upper semicontinuous, for otherwise,
we can obtain an upper semicontinuous function that represents F' and that is isotonic
to W as in the proof of Theorem 1. Moreover, by Lemma 5.4 of Peters and Wakker
(1991), W must be strictly quasiconcave. Therefore, if we can show that for any z € R}
such that z = F(B(p,c)) and any y € R} such that W(z) > W(y), there exists a § > 0
such that W(F(B(p,c — 6))) > W(y), then the claim will be established by the main
Lemma of Sonnenschein (1971) and Theorem 1. To this end, take any z,y € R} such
that z = F(B(p,c)) and W(z) > W(y). If y ¢ B(p,c), then we are done by hypothesis,
so let y € B(p, c), assume without loss of generality that 3°i; p; = 1, and notice that

+ 121 € int{w € R} : W(w) > W(y)}

T
2

22This postulate can intuitively be thought of as a smoothness condition. For instance, if W is a
SWF such that the boundaries of all upper contour sets of W are C! manifolds, then any F which is
supported by W would satisfy S, for then dB(p,c) "R} . coincides on R}, with the tangent space to
{y e R} : W(y) > W(z)} at = = F(B(p,c)).

23In this proposition, one may replace S with the following boundary condition: For all ¢ > 0 and
p™ € R%, such that limy, oo p™ = p € ORY} and p # Oy, limp oo | F(B(p™, €))|| = 00; see Mas-Colell
(1978), Theorem 2.
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by strict quasiconcavity of W. Thus there exists a § > 0 such that W(z — 61,,) > W (y)
where 1, = (1, ...,1) € R*. But recalling that pz < cand ¥ ,p; = 1,

z— 61, € B(p,p(z — 61,)) C B(p,c — 6)

so that W(F(B(p,c — 8))) > W(z — 61,)) > W(y) holds, and we are done.

(5) Let Q" denote the class of all compact and comprehensive sets in R? with a
nonempty interior. Since in many instances of bargaining problems, randomization over
all alternatives (and hence, convexification of the choice situation) is not possible, it is of
interest to see if Theorem 1 would generalize to solution concepts defined on Q" (which
includes non-convex problems). Unfortunately, such a generalization is not viable, for
as shown in Ok and Zhou (1996, Theorem 1), there does not exist a solution concept on
2" which satisfies LPO (or strong Pareto optimality), SARP and PC. However, if F is
multi-valued (so that F(S) C S for all S € Q™) and F(S) is connected for all S € X7,
then one can show that F satisfies suitably generalized versions of LPO, IIA and PC if,
and only if, there exists a continuous, strictly monotonic and Schur-concave SWF such
that F(S) = argmax,cs W(z) for all S € Q"; see Ok and Zhou(1996). W
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