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Bayesian Learning Without Common Priors and
Convergence to Nash Equilibria

Yaw Nyarko
ABSTRACT.

Congsider an infinitely repeated game where each player 1is
characterized by a "type" which may be unknown to the other players
in the game, Suppose that players obey the axioms of Savage
(1954): I.e., players have prior probability beliefs over the set
of types and actions that will be chosen by all players and
maximize their expected utility given these beliefs. Assume also
that any event which has probability zero under any one player’s
beliefs has probability =zero under the beliefs of all other
players. Suppose further that each player’s beliefs about others
are independent of that player’s type. Then any limit point of
beliefs of players about the future of the game conditional on the

past lies in the set of Nash equilibria.
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1. IIltl'OdllCtiOIl. Consider a finite collection of players in an

infinitely repeated game. Suppose that each player is
characterized by a "type" which is not necessarily known to the
other players of the game. Impose only two conditions on players.
First, suppose each player obeys the Savage {(1954) axioms: In
particular, each player has a prior probability belief over the set
of types of all the players as well as the actions over time each
player-type will choose. Each player then maximizes its expected
utility for the infinite horizon game given those beliefs. Second,
suppose that the beliefs of players are such that if one player
assigns probability zero to an event, then all other players assign
probability zero to that event. We show that under these two
conditions the beliefs of players converge toO the set of Nash
equilibria.

The motivation of this paper is the same as that of Blume and
Easley (1984) much earlier: We seek to determine conditions under
which players initially not in equilibrium can "learn" their way to
an equilibrium. The results reported in this paper are a
generalization of the results of Jordan (1991a and b). Jordan
studied the same model as presented here, but assumed that players'’
priors are the same. We generalize the results of Jordan by
showing that convergence to the set of Nash equilibria still occurs
when we weaken the common prior assumption by requiring merely that
players’ ‘"uncommon" priors a mutually absolutely continuous with

respect to each other; (i.e., they assign probability zero to the



same events). The common prior assumption is due to Harsanyi
(1968). We therefore refer to our condition as the Generalized
Harsanyi Condition or Condition (GH).

Allowing players to have different priors is important.
Inmposing the common prior assumption begs the question of where
these priors come from. . Players are solving complicated
optimization problems. The less is the amount of initial
coordination of beliefs we model players as having,.the better. is
any result we obtain on the convergencé to equilibrium over time.

Like Jordan (1991a and b) our results shall state that beliefs
of players converge to the set of Nash equilibria. The actual play
over time does not necessarily converge to the set of Nash
equilibria. In section 2 we provide an example to illustrate all
this. Kalai and Lehrer (1995), (K-L) also obtain results on the
convergence to the set of Nash equilibria. However the assumptions
impoged in (K-L) are stronger than the ones we impose in this
paper. Indeed, our example in section 2 violates the (K-L)
assumptions but satisfies those of this paper. Without our very
weak condition (GH) we do not believe much can be said the players’
limiting behavior. Indeed, for an example of what éould go wrong
without condition (GH) see Nyarko (1991a).

Now suppose that there are no "types" or, alternatively,
suppose that the types are common knowledge. Under the common
priors framework of Jordan (1991a and b), since players have no
"types" to condition their actiomns on, each player will know the

actions that will be chosen by the other players. Hence under



common priors and common knowledge of types, players will be in a
Nash equilibrium from date one. When pridrs are not common, each
player may be unsure of the actions that will be chosen by others
even when types are common knowledge. Indeed, consider a game
where at each date no player has a strictly dominated action. Then
in any fixed finite time period any play of players could be
optimal given some beliefs (which can be made to obey our condition
(GH) ) . Our results show that in the limit, the play of the game
must be Nash. Any disagreement over the play of the game will
disappear over time! Our main result states that beliefs converge
to a Nash equilibrium. When types are common knowledge more is
true: Actual play also converges to a Nash equilibrium. (See
section 8.8 for details.)

Like Jordan (1991a and b) we shall suppose that each player’s
peliefs about the other players is independent of that player’s own
type. In Nyarko (1992) this assumption is relaxed. However,

without the type-independence assumption, the limit points of

beliefs are not necessarily Nash equilibria. Instead they are
correlated equilibria. Nyarko (1992) extends the work of this
paper and of Jordan (1991a and b) in another dimension. Nyarko

(1992) also obtains the convergence of sample path averages (i.e.,
the empirical distributions) to the set of Nash (or, without type-

independence, correlated) equilibria.

This paper is organized as follows: In the next section an
example is provided to illustrate the results of this paper. The
rest of the paper contains the details. 1In section 9 we provide



some comments on the existence of the behavior described here under

our assumptions.

2. An Example. Suppose there are three players, A, B and C,

each with two actions, L and R. Player i could be any type 7; in
the interval T=I[7, 7] where O<7z<Ti<w. The utility or payoff
function is given by the following matrix box, where in each box

the paycffs are those for players A, B and C respectively.

If C goes L If C goes R
and and
Player B Player B
L R L R
L|1,1,-75 | 0,0,0 L|-1,0,0 [-7,,0,0
Player A A
Rj 0,1,0 0,0,1 R 0,-TB,0 ¢,0,0

Note that the complete information game with a given fixed and
known vector of types (T,,Ts, Tc) does not have a Nash equilibrium
in pure strategies. Also notice that if any player chooses the
action R then that player receives a payoff of zero regardless of
the actions the other playexrs choose.

For each ieI, let m be any probability distribution over the
type space, T. m; will be Player i’s prior probability over the

type space. At the beginning of the initial period, Player i



realizes its type, 7, and is given no other information (and in

particular is not told of the types of the other players, 7;).

Player i‘s beliefs about the other players’ types will be given by

the conditional probability, m(.]7). We shall suppose that for
each i, m 1is a product measure. This implies that m(.|7) is
independent of 7;. We shall suppose further that =; admits a

strictly positive and continuous Lebesgue density function over T.
Each player has a zero discount factor so at each date seeks to
maximize its expected payoffs within that period.

Consider player A. Suppose that Player A assigns probability
Pap (resp. Pac) to player B (resp. C) choosing action L. The

expected return to A choosing action L is

DuagPuc~Pas (1-Pac) ~Ta (1-Pac) (1-Pug) - {2.1)

Since A receives a payoff of zero if A plays R, Player A will

choose action L if 7,<7," where

T4 = [PapPac-Pas (1 -Pac) 1/(1-pae) (1-Pyp) (2.2)

(and where, whenever the denominator in this expression is zero, we
define 71,"=+» or -o depending upon whether the numerator in the
expression 1is positive or negative). Similarly, if p; is the
probability assigned by player i to the event that player j chooses
the action L then player i chooses action L (resp. R) if r<7]

(resp. 7,>7,"), and player i is indifferent between actions L and R
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if 1=7, where 7,” is as in (2.2) above, and where

Ty = [Ppslpct (1-Pay) Pacl / [ (1-Pgps) (1-pPgc)] and (2.3)

Tc‘= (1 'pCA) '(1 ‘pcg) / [pc,q,pcg] . (2 - 4)

The vector of numbers 7'=(7,°,75,7c) determines the behavior
of each player. We shall construct our example so that there is
agreement as to how each player will behave as a function of that
player’s type. However there will be imperfect information on what
the types of each player actually are, and there will in general be
disagreement about the relative likelihoods of each type (e.g., B
and C may have different beliefs about A’'s type). Hence, in our
example, the vector of critical types 7'=(7,",75,7c) will be known
to each player. Players i'e beliefs about the type space is given
by . If player i knows the critical type vector, 7, this will
determine i’s beliefs about the actions of other players, {P;}j.-

In particular, we shall have

P = T ([T, T8 1) - and DPac = T ([T¢, Tc 1) (2.5)
Pas = Tp([14, 7,1) and Psc = Mg ({7, 7c 1) (2.6)
Poa = Tel(l1,,7,1) and Peg = Tl l[Tp,75]) (2.7)

Given any tuple of beliefs about the type space {m},, the
critical vector of types, (7,°,7s,7c), will be determined by the
simultaneocus solution of the equations (2.2)-(2.7). From the

results of sgection 8 we may conclude that such critical types



exist. Each player i will have beliefs over the vector of initial
types and date one actionsg, TxS, induced by w; and the critical
types, 7°. Denote this measure by p'. Then player i’s behavior as
described by 1’'s critical type, 7;, is a best-response to 1i’s
veliefs, pu'.

At the beginning of date 2 the players will observe some
vector of actions s!. This will indicate to each player that the
vector of types is in some rectangle T, = Il [75,Ty4]l - (For example,
if the vector s'=(L,R,L) is observed then the vector of types must
lie in the set T,=[7,, 7. 1x[75", Tglx[7c, 71 .) Each player’s posterior
distribution over the type space will then be the prior conditional
on thisg information.

For ciate 2 in history s!, we may mimic the construction for
date 1 to obtain some critical types (7,°, T 7o) sSuch that under
the following behavior at date 2 each player is best responding to
its beliefs: Player i chooses action L at date 2 if its type, 7y,
is less than or equal to 7, and chooses the action R otherwise.

This process may be continued in each and every period to
construct critical types at each date n 1in every history,
(Toa"» Tap s Toc ) in a manner similar to that obtained for date 1. It
should of course be noted that the values of the critical types at
each date depend upon the past history. = Each player i will have
beliefs over the vector of initial types, T, and play of the game
over the infinite time horizon, induced by =, and the critical
types, { (T, ) Tas s Toc) }¥ne1- Denote this measure by g;. Then player

i’s behavior as described by i’s critical types, {74 }%.=, 1is a
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best-response to i’s beliefs, pu;. In particular, if we suppose that
each player begins the game with beliefs given by y;, then under
each player’s action at each date is a best response to the beliefs
determined by ;. However, since we allow for wm#m, players’
beliefs about the game may differ.

Whatever is the true vector of types notice that players are
choosing a pure strategy (L or R) at each date. (The set of types
where players are indifferent at any date is a countable set and
has probability zero under w; for each i.} Any limit point of the
players’ actions will therefore be some vector of pure strategies.
However, for the trué game with given vector of types (7,, 7y, Tc) €T,
there does not exist a Nash equilibrium in pure strategies. Hence
along each sample path the limit points of actions chosen by the
players do NOT constitute a Nash egquilibrium for the true-game with
the given vector of types TeT.

Note that we are allowing the priors w,, my and 7. to differ;
hence this is a model without common priors. In particular, two
players, e.g., A and B, may disagree about the probabilities that
the type of the third player, player C, lies in the set [71.,7¢1;
players A and B may therefore disagree over the probability that
player C will choose the action L in equilibrium. Let p"; denote the
probability assigned by player i conditional on the observed
history, s"!, to the event that at date n player j chooses the
action L. Since the priors of players are different, in general
P # pY% for ixk for all n<w. In section 7 we show that the

probabilities assigned by any two playefs to the event that the
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third player chooses L merge in the following sense: If along some
sub-sequence the beliefs of one player (i.e., the probability
assigned to the third player choosing action L) converges to some
1imit point then along the same sub-sequence the beliefs of thé

other player will converge to the same limit point. In particular,

| o-scl = 0. |Pas-Pesl>0, and |P'a-Pesl=0 as mso, (2.8)

Fix a true vector of types (7,,Ts, Tc) €T and a sample path s”.
Suppose along some sub-sequence of dates Pac 2 Pe”r Plug = Pp° and py,
-+ p,”. Since beliefs of players’ merge, we conclude that along the
given sample path and sub-sequence of dates, Dee ® P, P = P
and p'e, » p,°. The results of section 7 show that (0", Pg" P ) 18
a (mixed strategy) Nash equilibrium for the normal form game with
true vector of types (7,,7s, 7c). 8o, loosely speaking, "beliefs

of the players converge to a Nash equilibrium”.

3. Some Terminology. I is the finite set of players. Given

any collection of sets {X}a, we define X=lL X, and X=L.X,. Given
any collection of functions £;:X » ¥; for ieI, £;:X; = ¥ is defined
by £;(x;) = IL,£(x). The Cartesian product of metric spaces will
always be endowed with the product topology. Let X be any metric

gpace. We let P(X) denote the set of (Borel) probability measures
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on X. Unless otherwise stated the set P(X) will be endowed with
the weak topoclogy. Given any o¢eP(X) we let o¢(dx) denote
integration: fh(x)o(dx) is the integral of the real-valued
function h on X with respect to ¢. If X is a cartesian product
X=YZ we let o{dy) denote integration over Y with respect to the
marginal of ¢ on Y. The latter will often be denoted by Margy 0.

R denotes the real line.

4. The Basic Structure.

4.1. Following Jordan (1991b) we have the following basic structure

of the game. I is the finite set of players. §; represents the
finite set of actions available to player i at each date n=1,2,...;
§=I;S;. Even though the action space §; is independent of the date
we shall sometimes write S, as S, when we seek to emphasize the set
of action choices at date n. We define SV<IIN_,S, and S*=II"__;S,, the
set of date n and infinite histories, respectively. s° will denote
the null history, (at date 0, when there is no history)! In
summary, s or S with a "superscript" (e.g., s") denotes the history,
while with a "subscript" (e.g., 8,) denotes the current period.
Next, we define Fy={fy:S"! - P(S,)}; Fy = I, Fy; F =II"y\Fn; F;

II*y_,Fn- F; is the set of all behavior strategies for player i.

Fn 1s endowed with the topology of pointwise convergence; Fy, F; and
F are endowed with their respective product topology. The mapping

m:F>» P(S”) defines the probability distribution m(f) on 87
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resulting from the behavior strategy profile £; i.e., induced by

the following transition equation: For each subsct D of Sy,

m(f) (D} s") = £y, (") (D) (4.2)

Perfect recall is assumed; in particular, at date n when
choosing the date n action sy, player i will have information on
s¥l={s,,...,84}- For each 1e¢I, we define equivalence class

relation, ~, on F, as follows: For each f; and £’ € F;, £ ~ £’ if
for all f.eF;, m(f, £;) =m{f’,£;). Let F,~ denote the set of
equivalence classes of ~. From Kuhn (1953) and (Aumann (1964) for
the infinite horizon case) we may conclude that there is a function
k;:P(F,)>F~ such that for any $;¢P(F;) and any fiex(¢) and any L €F;,
the probability distribution on §® induced by ¢; and £, is equal to
m(f,, £;).

The shift operator oy:S8VxF, »F; is defined by setting for each

sNesS¥ and feF, oy(s¥, f)=f; where the date n coordinate of f’; is

defined by £’ (.) = Epna(s¥, ). We also use the shift operator
over measures. We define the shift operator oy:S"xP(S8®)-P(5%) for
any date N as follows: Fix date N history s, Let g be any

probability measure over S%. Denote the probability distribution
6ver the "future", s™*={s }*,.n,; conditional on the past, sV, by
q(ds™**|sY). We define oy(s8Y,q) to be .t:he probability distribution
obtained by viewing the game as beginning at date one where the
play of the game has the same distribution as the date N "future"

under g{ds“V**|s¥). In particular we define oy:S"xP(S8®) -P(S”) by
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setting for all subsets D of 8%, oy (sV,q) (D)=q(D(s™) |s") where
D(sY)={s"’eS”| "' =5" and there exists some s”"eD such that s,"=Sy.,’
for all n=1,2,....}. We denote oy(s¥,q) by qy(.|{s¥). I.e., we use
a subscript N to signify that gy(.|s™ is equal to the conditional

probability g(.]sY) but "shifted® by N-coordinates.

4.3. The Type Space. Each player has an attribute vector which is

some element @, of the set ;. The attribute vector will represent
the parameter of its utility function unknown to other players in
the game. u;:9xS-M is player i’s (within period or instantaneous)
utiiity function which depends upon its attribute vector, 6;, as
well as the vector of actions, seS, chosen by the players. We
assume that u, is continuous and uniformly bounded on it’s domain.
The player has a discount factor which is a continuous function,
5,:8~{0,1), of the player’s attribute vector. We ghall suppose
that 6, is a compact subget of finite dimensional Euclidean space.
This is without loss of generality since the set of joint actiong,
S, is assumed finite.

We suppose that players know the. functional forms of each
player’s utility function, {u},;- Each player i knows its own
attribute vector #, but does not know those of other players, #;.
Player i’s type, 7;, specifies that player’s attribute vector, 60;;
it also specifies that player’s -beliefs about oﬁher players’

attribute vectors; it specifies that player’s beliefs about other
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players’ beliefs about the attribute vectors; and beliefs about
peliefs about beliefs ...; etc. In particular an player’'s type
gpecifies a hierarchy of beliefs about §. We let T; denote the set
of possible types of player i, and set T=IL,T,. We let §;(r;) denote
the attribute vector of player i of type 7;; 8;:T6; is therefore the
projection mapping from the type space T, representing the i-th
players attribute vector into 6,. (See Mertens and Zamir, 1585, or

Nyarko, 1991b, for details).

4.4. Payoffs. we define U;:8xS"->® by

U (8, s8°) = Ty [6,(68,) 1%, (0,, 8,)

where s*={s,}%u=;. We define V;:f0xF>Ii by
v, (8, £)=§U,(8,,8")m(£) (ds”)
where m(f) (ds®) denotes integration with respect to the measgure

m(f) over $* (as defined in (4.2)).

4.5. Nash Equilibria. Define for each ieI and 0={0}:1,

N (8,) = (£Il,feF: £, ¢ argmax V{0, £, .))}
N(0) = ngN(8,).
N(8) is the set of Nash equilibrium behavior strategies for the

game with attribute vector #={8},,.
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5. Bayesian Strategy Processes Without Common Priors.

5.1. et {p}.x be a collection of probability distributions over

TxF. Each such probability distribution, p;, of course induces a
probability distribution over TxFxS™ via the measure m(f) over 8%

conditional feF, as defined in (4.2). Hence we sometimes consider
§; as a measure over TxFxS®. We shall consider g; to be the ex ante
beliefg player i has about the evolution of the game before i has
realized its own type. Define m; = Marg; p;, the marginal of p; on
the type space T. We may consider m to be player i‘s ex ante
beliefs about the distribution of types, (before i haé realized its

own type}. {.|7;) is player i’s ex post beliefs.

5.2. We consider as fixed the vector of ex ante beliefs of players

over the type space, {m}., where for each ieI, meP(T). The
collection of measures, {}g ¢ ILP(TxFxS”}, is a Bayesian Strategy
Process (BSP) for the Repeated Game with (not necessarily common)

priors {m},, if the following conditions hold for each ieI:

(5.3) Marg; y, = .

(5.4) p (Af| 1) =Ty, (df;| 7,) .

(5.5) w({(7,£)eTxF|f, maximizes §V,(0,(7,),., £ (df,| 1) })=1.

Condition (5.3) insists that m; indeed be the prior beliefs

of player i over the type space. Condition (5.4) requires under
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player i’s beliefs, each player chooses actions, conditional on
their realizedltype, which is independent of the choices of other
players. This of course does not imply independence under i’s
beliefs conditional on only i’s type; i.e., p(df|7;) need not be a
product measure over F. For example consider a three player model
- where Player A believes that Players B and C went to the same
gschool so either their types are (f',¥’) in which case they choose_
respectively the strategies (fz,g,) or else their types are (8",y")
in which case they choose respectively the strategies (f;,9.).
Under Player A’s beliefs the strategies of the others are not
independent. However, conditional on other Players types, their
strategies are (trivially) independent (since they are uniquely and
non-randomly determined by their types).

Condition (5.5) insists that given player i’s beliefs about
the evolution of the game, p({.|7,), player i maximizes its expected
utility. (5.5) by itself does not imply that under i’s beliefs
about the game other players J#i are maximizing their expected
utility. (However, this will be true under a "condition (GH)" which
will be introduced in a subsequent section.)

If player i1 has a zero discount factor we will need to
strengthen condition (5.5) in the definition of the BSP to the

following, which requires optimization period-by-period:

(5.5°) p,({(1,£,8")eTxFxS>|s,,, maximizes

§u 00,(1), 1 S4i) I (S 40y |s",10}) = 1.
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5.6. Remark: The collection of measures {p}is shall be said to be

a Bayesian Nash Equilibrium (BNE)} if it is a BSPl and in addition
u(. |7y =p(.|7) for all i and j in I and all initial types of
players 7e¢T. In a BNE players agree on the evolution of play of
the game as a function of the initial vector of types of players in
the game. The only uncertainty in a BNE is the initial vector of
types of players in the economy.

Define for each p;, w=Margr p;. Let P, denote the common
conditional probability p(.|7)=g(.|7) in a BNE. Then for each
ieI, p=m.P,. {m}a is said to pe a BNE with common priors if it is
a BNE and in addition w=m;. Obgerve that a Bayesilan Strategy
pProcess with common priors (i.e., where p=p; for all i,jeI) is also
a Bayesian Nash equilibrium with common priors and vice versa. The
example of section 2 was a BNE without common priors. Nvarko
(1991b) has studied a BNE without common priors.

Jordan (1991a and b) studied a Baye_sian Strategy Process with
common priors (which, as remarked above is also a BNE with common
priors) . Indeed what is defined in Jordan to be a Bayesian
Strategy Process is what here we refer to as a BSP with common
priors. Our definition of a Bayesian Strategy Process. above is
more general than a Bayesian Nash Equilibrium (with or without

common priors).
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6. The Generalized Harsanyi Consistency Condition.

We will impose the following condition on the beliefs of players,
{u i which requires that, ex ante, the players agree on
probability zero events. The Harsanyi (1968) common prior
a'ssumption requires p=g for all i and j. Our condition (GH) below
is therefore a generalization of the Harsanyi assumption. The
common prior assumption is used by Jordan (1991).

Given any two probability measures p’ and p" on some
(measure) space Q, we say that u’ is absolutely continuous with
respect to p" if for all (measurable) subsets D of @, p’(D)>0
implies that u"(D)>0. We then write pu’<<pu". We say that p’ and p"
are mutually absolutely continuous with respect to each other if

pfe<pu™ and pl<<p’ .

6.1. Condition (GH): The measures ({u}, in P(TxF) are mutually

absolutely continuous with respect to each other.

Under condition (GH) any event which has positive (ex ante)

probability with respect to any will have positive {(ex ante)

probability with respect to each g, for all jeIl. Note that
condition (GH) does not require the ex post probabilities, w ()
and m(.|ﬁ), to be mutuélly absolutely continuous.

We shall use the following much weaker version of condition

(GH) :
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6.2. Condition (GGH): There exists a measure y' over TxF such that

for all ieI, p° is absolutely continuous with respect to p.

One may wish to interpret 4’ as the "true" digtribution of the
types and play while p; 1s player i's beliefs. Any event which has
positive probability under g* in condition (GGH) will have strictly
positive probability under u; for each ieI. The converse however
need not be true under the weaker condition (GGH). When condition
(GGH) holds we shall state our results in terms of the measure pu’;
that condition should therefore be thought of as providing such a
measure. If condition (GH) holds, to obtain condition (GGH) we may
take the measure u° to be equal to any of the p;"s or indeed any
measure over TxF which is mutually absolutely continuous with
respect to any (and therefore all) of the pu’'s; e.g., p may be

taken to be the average measure I/ (#I).

6.3. Remark. As will soon become apparent, the principal use of

condition (GH) or (GGH) is to ensure agreement in the limit about
play of the game; (in particular its main use will be to prove
Theorem 7.2 below). Hence, for all the main results of this paper,
we may replace conditions (GH) and (GGH) above with assumptions
which require only absolute continuity of the marginals of y; on 8%
and not necessarily over all of TxS*. In particular, beliefs of

players about types are by themselves unimportant. We use
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assumptions (GH) and (GGH) as stated above because it is

expositionally more convenient to do so.

6.4. Remark. Let p° denote the true distribution of play for the

various player-types. The absolute continuity assumption of Kalai

and Lehrer (1990) requires that for each 1 in I and for each

r={7}u€T, K. |7 << w(.[m). In particular, their assumption
requires ex post absolute continuity. Our condition (GGH) is
weaker and requires only ex ante absolute continuity. In

particular the example of section 2 obeys condition (GH} but
violates the Kalai and Lehrer assumptions. For their assumption to
hold the set of ("behavior equivalent classes of") types must be

finite or countably infinite. (See Nyarko 1991b for details.)

6.5. When Does Condition GGH hold? Suppose that the players’

prior beliefs over the type space are mutually absolutely
continuous with respect to each other. Suppose further that each
player’s behavior strategy is uniquely determined by that player’s
type; (i.e., players are in a Bayesian Nash equilibrium with not
necessarily common priors). Then from Proposition 6.6. below,
condition (GH) is then necessarily satisfied. Analogous remarks
are true for condition (GGH). This enables us to obtain conditions
(GH) or (GGH) merely in terms of beliefs over types in any Bayesian
Nash equilibrium (BNE). (The existence of BNE’s follows from our

discussion in section 9 below.)

21



6.6. Proposition. Let ({m},, be a finite collection of (Borel)

probability measures on a metric space T, which are mutually
absolutely continuous with respect to each other. Let P, be a
‘regular conditional probability measure over a metric space.F
conditional on 7eT. Define for each ieI, the (Borel) probability
measure g; over TxF by p(.)={P,(.)m(dr). Then {p:}a are mutually

absolutely continuous with respect to each other.

Proof: Fix any set D in TxF and suppose that for some 1eI, u;(D)=>0.

Define D’'={7€T|P,(D}>0}. Then from the definition of u we have
m,{D")>0. Fix any Jel. Under the mutually absolute continuity
assumption on wand w, we conclude that m(D’)>0. From the

definition of y; this in turn implies that g;(D)>0. Hence i; (D) >0
implies u;(D)>0. Hence {p;};q are mutually absolutely continuous with

respect to each other. //

The following is also easy to show:

6.7. Proposition. Let {m}iq, T, P, and {p}iq be as in Proposition 6.6.

However in place of the mutual absolute continuity assumption on
{m}a assume merely that there exists a measure 7 € P(T) such that
1 << m for all ieI. Define p'¢P(TxF) by p' (=P ()7 (dT). Then

p' << p; for all ieI.
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7. (GGH) Implies that Beliefs about the Future " Merge."

The following result follows immediately from Blackwell and Dubins

(1963) theorem on. "Merging of Opinions": Let p (dst*|sN) denote
the probability  distribution  over the "future", gh*+=
{Sns1s Snatr - - - 1 €57 conditional on the "past," s, with respect to the
measure p;(.|s"). The norm [1.11 denotes the total variation norm

on 8*; i.e., given p,qgeP(S7),

|ip] = Supg|p(E)-q(E)| (7.1)

where the supremum is over (measurable) subsets E of 8*=.

The theorem below implies that for each i and j in I, the
beliefs of the players about the future of the game conditional on
the past, {pm (@8™* 7| 8M) } ¥y and {[.LjN(dSN++ISN)}°°N=1 have the same
1imiting behavior and share the same limit points along any sub-
gsequence of dates in each sample path. Observe that these

conditional probabilities are NOT conditioned on players’ types.

7.2. Theorem. (Blackwell and Dubins). Suppose that the measures {1t}

on TxFxS* obey condition (GGH) and let u* be as in that condition.
Define
w={(1,f,s”) eTxFxS”: 1im,., | |ty (dS¥H ] &) -y (A5 | S5 | |=0}. (7.27)

Then u' (W) = 1.
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8. Convergence To Nash Equilibrium. we shall now suppose

that under each player’s prior beliefs the set of types of players

are independent.

8.1. A Type-Independence Assumption. m=Marg; p; is a product measure

on the type space T; i.e., m=Il,[Marg T ;]
]

8.2. Remark. The independence assumption (8.1) and the property

(5.4) of a Bayesian Strategy Process implies that for each i, y; is

a product measure over ILTxF; i.e., p=ll, Marg.. o wil .
: ] ]

This latter condition is part of the definition of a Bayesian

Strategy Process in Jordan (1991b).

8.3. Let {ff}*,.; be a sequence of elements in F. Let D be any

subset of F. We write f*° D if every cluster point of ff lies in
the set D,' where the convergence in F is with respect to the weak
topology on F. Fix a Bayesian Strategy Process {u;},y. For each i€l
let fj'i be any Kuhn Strategic representation of the marginal of
on F; i.e., we define

)

£ €k (MargF} u,) and £ = ILLE7. (8.4)

where k; is as defined in (4.1). Under the independence assumption
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8.1, m{fi)=Margy p; i.e., the distribution over play, S*, generated
by £% is the same as the marginal distribution of g; on §*. Hence
£% ig the strategic representation of player i’'s beliefs {not
conditioning on i’s own realized type)! Suppose condition (GGH)
holds and let u’ be as in that condition. From Theorem 7.2. there

ig a set W with p"(W)=1 such that on W,
1imy,., ||oy(s", £7) -oy(s¥,£9)||»0 for all i and jeI. (8.5)

Hence on W the sequences {oy(sM, £7)}"y-, and {og(s™, £9) } "y
have the same limitihg behavior. If along a sub-sequence of dates
one of the seguences converges, then the other will also converge
along that sub-sequence and the convergence will be to the same

limit. We now have our main theorem:

8.6. Theorem. (Convergence to Nash Equilibria.) Let {4}, be a BSP.

Suppose condition (GGH) holds and let p° be as in that condition.
Suppose also that the independence assumption (8.1} holds. Then

u ({(7,8™)eTxS™| (8.5) holds and oy (SN, £9)>° N(6 (7)) for all ieI})=1.

Proof: Define

G = {(1,8%): oy(s", £) >° N(6,))} | (8.6.1)

On G, any convergent sub-sequence of {og (8N, £7) } "y, converges to the

set N;(#;,). From Theorem 7.2 there is a set W with p'(W)=1, on
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which the measures oy{s¥,£") and oy (8¥,£9) become closer and closer
to each other as N»x for each i and i in I. Hence it is easy to
show that on GMW,

oy (87, £7) »° N (6)) Ffor all jeT. (8.6.2)

Hence on NGMW, (8.6.2) holds for each i and j in I. Since N(6)

=

1€

N, (§,), we conclude that on N,GNW, og(sY, £9) »° N(8) for all jeI,
and in particular there is convergence to the set of Nash
equilibria.

Hence it suffices to show that p (N GNW)=1. We already have

p'(W) = 1. Hence it remains only to show that u(G) =1 for each 1
in I. For this, from condition (GGH) it is easy to see that it
suffices to show that p;(G)=1. The convergence result of Jordan

(1991b, Theorem 3.2) is for a model with common priors. However a
careful reading of the proof of that Theorem shows that what is
indeed proved is the result below, Theorem 8.7. This therefore

concludes the proof of Theorem 8.6.//

8.7. Theorem (Jordan, 1991b). Fix any ie¢I and suppose that p ¢

P(TxFxS*) obeys conditions (5.4)-(5.5) and the independence

assumption 8.1. Let G, be as in (8.6.1). Then k(G) = 1.

8.8. Model with Types Common Knowledge.  Suppose now that there

is only one vector of possible types (or, alternmatively, that the
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vector of types is common knowledge). Then, trivially, condition
(8.1) holds. From Theorem 8.6, 1limit points of beliefs not
conditioning on types lie in the set of Nash equilibria. Since
there is only one vector of types, each player’s beliefs about it’s
own play not conditioning own types is equal to beliefs
conditioning on types which in turn is equal to actual play of that
player. Hence actual play, and not merely beliefs about play,

converges to a Nash equilibrium. I.e.,

8.9. Corollary. Let (i}, be a BSP and suppose condition (GGH) holds.

Also suppose that the type space T is a gingleton (or equivalently

the true vector of types is common knowledge.) Define p~ to be

the true distribution of play, i.e., that induced by {(p;}u- Define
G = {(1,8%): pyt(ds¥*|sY) = N(f (7)) for all iel}

Then p*({(r,s~)eG" and (8.5) holds})=1.

9. On The Existence of Bayesian Nash Equilibria for Games

Without Common Priors. we now study the question of the

existence of a Bayesian Nash equilibrium (BNE} for a game with
given (not necessarily common) ex ante prior beliefs over the set
of types. As remarked all BNE’'s are BSP's, but not vice versa.

Hence the existence of BNE’s implies the existence of BSP’Ss. The
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existence of BNE’s follows immediately from the results of Milgrom
and Weber (1985), (henceforth (M-W)). The M-W result reguires
each player i’s beliefs over types, m;, LO be absolutely continuous

with respect to the product measure induced by 7;:

9.1. An Absolute Continuity Assumption (M-W).  Let m; denote the

marginal distribution of m over T;. Let IL,m; be the product
distribution on T of these marginal distributions. Then =; is

absolutely continuous with respect to ILym; i.e., m << IL ;.

Under our type independence assumption (8.1) m = ILym. So
(8.1) implies (9.1). Under condition (9.1) (M-W) are able to show
the existence of Bayesian Nash equilibria. The results in {(M-W)
were stated in terms of common priors over types. However, as is
mentioned in the paper itself (see p. 631), their result
generalizés immediately to the model without common priors, so long
as (9.1) holds, and the proof follows with obvious changes to the

proof of their result. In particular,

9.2. Proposition (Milgrom and Weber). Fix any collection of (not

necessarily common) priors {m}, over the type space T, and assume
(9.1) for all ieI. Assume the type space, T, is compact. Then
there exists a Bayesian Nash equilibrium for the game with priors

over types equal to the given {m}.
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