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Abstract

In this paper we discuss recent advances in modeling and estimating dynamic
factor demand models, and review the use of such models in analyzing the
production structure, the determinants of variable and quasi-fixed factors,
and productivity growth. The paper also discusses the traditional approach
to productivity analysis based on the Divisia index number methodology.
Both approaches may be seen as being complementary. The conventional
index number approach will measure the rate of technical change correctly if
certain assumptions about the underlying technology of the firm and output
and input markets hold. The approach is appealing in that it can be easily
implemented. However, if the underlying assumptions do not hold, then the
conventional index number approach will, in general, yield biased estimates of
technical change. The econometric approach based on general dynamic factor
demand models allows for a careful testing of various features of a postulated
model. Furthermore it not only provides a framework to estimate technical
change, but can also yield a rich set of critical information on the structure
of production, the dynamics of investment in physical and R&D capital, the
effects of spillovers, the depreciation rate of capital, the impact of taxes,
expectations, etc. The paper provides both a review of recent methodology
developed for the specification and estimation of dynamic factor demand
models, as well as a review of recent applications. The paper also explores in
terms of a Monte Carlo study how estimates of important characteristics of
the production process can be affected by model misspecification. The study
suggests that characteristics of the production structure such as scale and
technical change are sensitive to model misspecification, and that adopting
a simple specification for reasons of convenience may result in serious biases.

Keywords: Productivity Growth, Dynamic Factor Demand, Spillover, R&D,
Tax Incentives, Capital Utilization, Depreciation Rate, Misspecification Test
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1 Introduction

The traditional approach to productivity analysis is to use the Divisia in-
dex number methodology. This approach has the advantage of simplicity
as well as the benefit of not requiring direct estimation of the underlying
technology. Therefore, the often difficult tasks of econometric specification
and estimation of structural models can be avoided. However, for the index
number approach to provide meaningful estimates of technical change, fairly
strong assumptions about the underlying technology and allocation decisions
by the firm must be maintained. In particular, it is necessary to assume a
constant returns to scale technology, competitive input and output markets,
full utilization of all inputs, and instantaneous adjustment of all inputs to
their desired demand levels. As a result the productivity measures based on
the index number approach will in general yield biased estimates of technical
change, if any of these assumptions are violated.

Technical change is an integral feature of the production process. Changes
in variable factor inputs, the accumulation of quasi-fixed factor inputs, and
technical change are in general intertwined in that the demand for inputs
and the supply of outputs depend on the rate of technical change, while
technical change, in turn depends typically on the input and output mix.
The traditional measure of total factor productivity only measures technical
change, but does not explain the complex and simultaneously determined
process that governs the evolution of outputs, inputs and technical change.

A rationale for a general structural econometric modeling approach is
that it allows for the careful testing of various features of a postulated model,
rather than to simply impose those features a priori. We note that any mis-
specification of the underlying technology of the firm will typically lead to
inconsistent estimates of technical change and the determinants of the invest-
ment decisions. A simple illustration of misspecification is the case where the
true technology is translog but the hypothesized model is Cobb-Douglas, or
the case where the input adjustments involve considerable time lags but are
ignored, or where the expectation process is not taken into account or not
formulated correctly. In such cases the estimates of the model parameters,
including the estimates of technical change, will be inconsistent. Thus, if the
objective is to obtain a consistent estimate of the true model parameters,




choosing, e.g., a simple model for convenience of presentation and estimation
is not admissible empirical practice. The reason for considering a dynamic
rather than a static factor demand model is to not impose a priori that all
factors are in long-run equilibrium.

A general dynamic factor model, as considered in this paper, has a fairly
elaborate structure, requires an extensive data set and poses considerable es-
timation challenges. However, there seem to be two important advantages to
this approach: First, the model contains “simpler” models as special cases. In
particular, it contains static factor demand models as special cases, but does
not impose a priori the premise that all factors are in long-run equilibrium.
As in case of static factor demand models the analysis can be carried out
by specifying the technology in terms of a production function, cost/profit
function, or restricted cost/profit function, and the model can be estimated
from a subset or the complete set of the factor demand equations. Of course,
if the model is only estimated from the variable factor demand equations,
then we do not have to formulate an intertemporal optimal control problem.

Second, the dynamic factor demand model generates a very rich set of
critical information about the structure of production, sources of productivity
growth, impact of technical change and effects of policy instruments and
expectations on output supply, input demand, direction of technical change
and productivity growth. Not only is it possible to calculate the components
of traditional productivity measure but also the determinants of employment
and investment decisions of the firm simultaneously.

More specifically, the advantages of the estimation of (dynamic) factor
demand models — apart from providing for the possibility of testing various
modeling hypotheses — may include:

o In estimating the technology we obtain explicit information on the
process that transforms inputs into outputs, and on changes of the
technological frontier over time. In particular we obtain estimates of
technological characteristics such as, e.g., technical change, scale and
scope. We may also gain estimates of the effects of R&D, spillovers,
etc. Furthermore, we can compute marginal products, elasticities of
substitution among the inputs, describing the underlying structure of
production.

e In estimating the demand for variable and quasi-fixed factors we gain
additional insight into the underlying dynamics of factor allocation and




factor accumulation - short-run, intermediate-run and long-run — as a
function of the variables that are exogenous to the firm. The latter
variables typically include (expected) factor prices, taxes, exogenous
technical change, spillovers, etc.

e As a by-product of estimating dynamic factor demand equations, we
may gain insight into the expectation formation process and the firms
planning horizon, and how this process affects production decisions in
general and investment decisions in particular.

e Furthermore, given that we allow the depreciation rate of capital goods
to be endogenously determined, we obtain an economic model for re-
placement investment and expansion investment. (We note, however,
that the modeling framework also covers the case of an exogenous and
constant depreciation rate.)

The paper is organized as follows: In Section 2, we start by precisely
defining input- and output-based technical change on the primal (produc-
tion) side in the presence of adjustment costs. We then discuss how those
measures can be evaluated on the dual (cost) side. We also show how capac-
ity utilization rates can be derived in the context of dynamic factor demand
models. Next we discuss the conventional measure of total factor produc-
tivity (TFP) based on the Divisia index, and show how this measure can
be biased (as a measure of technical change) if the assumptions underlying
its derivation are not satisfied. The biases can, e.g., be due to presence of
economies of scale, adjustment costs, and the difference between the shadow
prices and long-run rental prices of the quasi-fixed inputs.

In Section 3 we first specify a general class of dynamic factor demand
models, which allows several non-separable quasi-fixed factors, allows for
the utilization rate/depreciation rate of some of the quasi-fixed factors to
be endogenously determined, and allows expectations to be non-static. We
then discuss the class of linear quadratic dynamic factor demand models in
more detail. For this class of models we give explicit analytic expressions
for the firm’s optimal control solution, i.e., for the firm’s optimal factor in-
puts. Those expressions make clear the dependence of the firm’s investment
decisions on the expectations of future exogenous variables. We also discuss
convenient ways of estimating such models based on a re-parameterization.
Since some of this material may be unfamiliar and technically involved, we




have attempted to show step-by-step how the models are derived and es-
timated. After our discussion of linear quadratic dynamic factor demand
models we discuss several approaches towards the estimation of dynamic fac-
tor demand models in general. This includes the estimation of the Euler
equations by the generalized method of moments approach, given rational
expectations. We also consider the formulation and estimation of models
with finite planning horizons, and discuss the relationship of models with a
finite and infinite planning horizon.

Section 4 reviews several empirical applications of dynamic factor de-
mand models. Dynamic factor demand models have been widely employed to
study the behavior of factor demands including investment and employment
decisions, output supply behavior, profitability, nature of technical change,
spillover effects of R&D investment, international technology spillovers, role
of public investment, taxes and subsidies, etc. The empirical examples are
provided to illustrate the versatility of these models.

In Section 5 we present briefly the results of a Monte Carlo study that
explores the effects of misspecifications. The true data generating process
corresponds to a general dynamic factor demand specification with non-
separable quasi-fixed factors, non-constant returns to scale and non-static
expectations. The model and various implied characteristics including tech-
nical change are then estimated under the correct specification and under
various forms of misspecification. This allows us to assess the degree of bias
induced by various forms of misspecifications as when a simple model of the
firm’s technology is adopted for convenience of presentation and estimation
instead of the true model. Concluding comments are given in the last section
of the paper. Many of the underlying mathematical derivations are relegated
to the appendices.




2 On the Conventional Approach to Produc-
tivity Analysis '

As remarked in the Introduction a focus of this paper is the presentation
of recent developments in the dynamic factor demand literature and their
application to estimation of technical change and output growth. To set
the stage we first give a brief review of the conventional Divisia index based
approach to productivity analysis. To put the discussion on sound footing
we start with a formal definition of technical change.!

2.1 Definition of Technical Change

The conventional Divisia index based measure of total factor productivity
growth assumes, in particular: (1) that producers are in long-run equilibrium,
(2) that the technology exhibits constant returns to scale, (3) that output and
input markets are competitive, and (4) that factors are utilized at a constant
rate. The puzzle of the observed slowdown of productivity growth during
the 1970s has initiated a critical methodological review of the conventional
measure of productivity growth.?

The model considered in the following discussion relaxes these assump-
tions corresponding to the conventional measure of total factor productivity
growth. In the following we define, within the context of that mode], appro-
priate measures of technical change. More specifically, in defining technical
change we first give such a definition on the (primal) production side. We
then show how the measure of technical change so defined can be expressed
alternatively on the (dual) cost side. To interpret the expressions on the cost
side we also discuss measures of capacity utilization.

!The subsequent discussion makes use of the following notational conventions (unless
explicitly indicated otherwise): Let Z; be some ! x 1 vector of goods in period ¢, then p#
refers to the corresponding ! x 1 price vector; Zy; and pZ denote the i-th elements of Z,
and pf, respectively. Furthermore, in the following we often write (pf)' Z; for 3_%_; pZZ4:
where “” stands for transpose.

2See, e.g, Berndt and Fuss (1981, 1986, 1989), Bernstein (1994a), Bernstein and
Mohnen (1988, 1991), Caves, Christensen and Swanson (1980, 1981), Caves, Chris-
tensen and Diewert (1982a,b), Denny, Fuss and Waverman (1981a), Griliches (1987), Hall
(1988), Hulten (1986), Mohnen (1992a), Mohnen, Nadiri and Prucha (1983), Morrison
(1985a,b, 1986a, 1989, 1992a,b), Nadiri and Prucha (1983, 1984, 1986, 1990a,b), Nadiri
and Schankerman (1981a,b), and Prucha and Nadiri (1996).



The following discussion allows, in particular, for a technology with mul-
tiple outputs, allows for some of the factors to be quasi-fixed (and thus does
not assume that the firm is in long-run equilibrium), and allows for non-
constant returns to scale® Now let ¥; = (Yi,...,Yu)' be the vector of
output goods produced by a firm during period ¢, and let V; = (Vq,..., Vi)'
and X; = (X,1,..., Xw)" be the vectors of variable and quasi-fixed inputs
utilized during period £, respectively. We then assume that the technology
can be represented by the following transformation function

F(K:W:Xt:AXta’-Ti) =01 (21)

where the vector of first differences A X, represent internal adjustment costs
in terms of foregone output due to changes in the quasi-fixed factors, and 7,
represents an index of (exogenous) technical change.

In the following it will also be useful to decompose the variable factors
into M; = V,; and L, = (Vio,...,Vim)', and to represent the technology in
terms of the following factor requirement function

]"Jt = M(}/f.:LtaXt,Ath:Ft)' (22)
We can then think of the transformation function to be of the form

F(}/;::V;:XI:AXBT}) (23)
= M(}It, Lt,Xt,AXt,T;) - Mt =0

For ease of notation in the following we drop time-subscripts whenever those
subscripts are obvious from the context.

2.1.1 Primal measures of technical change

To define technical change formally assume that the technology index T
shifts by, say, §. Now let a = a(6,Y,V, X, AX,T) be the proportionality fac-
tor by which all outputs Y can be increased, and let b = 5(8,Y,V, X, AX,T)
be the proportionality factor by which all inputs can be decreased corre-
sponding to this shift in technology when the firm remains on its production
surface, i.e., F(aY,V,X,AX,T + 6} = 0 and F(Y,bV,bX,bAX, T + §) = 0.
Furthermore let ¢ = ¢(x,Y,V, X, AX,T) be the proportionality factor by
which all outputs ¥ can be increased corresponding to an increase in all

3Generalizations that allow for variable factor utilization rates will be discussed later.



inputs by a factor x when the firm remains on its production surface, i.e.,
F(cY,xkV,6X,kAX,T) = 0. We can then give the following two definitions
of technical change, AY and AX, and returns to scale, p:

+§;§—£xl iaax;”*]’
p o= %m:)\"/)\x,

where F(.) is evaluated at (Y, V, X, AX,T). We refer to AY and \¥, respec-
tively, as the rates of output and input based technical change or productivity
growth. For an explicit derivation of the above expressions see Appendix A.
We note that the definitions given above are consistent with those given,
e.g., in Caves, Christensen and Swanson (1981) and Caves, Christensen and
Diewert (1982a,b) for the case of technologies without explicit adjustment
costs.

In case of a single output good we can also represent the technology in
terms of a production function, say,

Y = f(V,X,AX,T). (2.5)

Input and output based technical change can then also be expressed as usual
4
as

RO g_; Y (2.6)
)\X — i af
- af = Of

+ 3X1X;+Za AX,.

4See Appendix A for a derivation.



2.1.2 Dual measures of technical change

We next show how these measures can be evaluated from the cost side, using
simple arguments of duality theory. We note that the expressions developed
below are given in terms of a restricted or variable cost function. Expressions
in terms of the (unrestricted) cost function are contained as a special case,
in that for the case where all factors are variable the restricted cost function
and the (unrestricted) cost function coincide.

Let p” denote the price vector for the variable inputs L normalized by
the price of the variable input M. The normalized variable cost is then
given by M (Y, L, X, AX,T) + (p*) L. The normalized variable cost function
is obtained by minimizing this expression w.r.t. L. Assuming that the fac-
tor requirement function M(.) is differentiable and that a unique interior
minimum exists, the corresponding first order conditions are given by:

— + (p*) =0. (2.7)

Let L denote the minimizing vector. The normalized variable cost function
is then given by N ~
G(p" Y, X,AX,T) = M+ (p")'L (2.8)

where . ~
M=MY,L X AXT).

For duality results between factor requirement functions and normalized re-

stricted cost functions G{.) see, e.g., Diewert (1982) and Lau (1976). We

assume that the function G(.) is twice continuously differentiable in all its

arguments, homogeneous of degree zero in p¥, non-decreasing in Y, |AX],

and pt, non-increasing in X, concave in p%, and convex in X, and AX.
Differentiating (2.3) yields

oF oM
27 =37 [rZ=Y,LXAXT. (2.9)
Differentiating (2.8} and utilizing (2.7) yields
oG oM
@ = B—Z for Z = Y,‘X, AX, T (210)
Consequently we have
aF oG
Ev ARy for Z=Y,X,AX,T. (2.11)



From (2.9) with Z = L and (2.7) we obtain
oF

il AV
5L — @) (2.12)
Furthermore we have from (2.3)
OF :
— =1, .
oM (2.13)

Given the variable inputs V = [M, ']’ are chosen optimally, i.e., L = L and
M = M, it follows from (2.12) and (2.13), and from (2.8) that

G(pL,Y,X, AXrT) = ﬁ'? + (pL)’.E = — Z g—}?—
i=t

A (2.14)

Substituting the expressions in (2.11) and (2.14) into (2.4) yields the fol-
lowing expressions for technical change and returns to scale in terms of the
normalized restricted cost function G-

A= —‘—;g {ég—g}fJ (2.15)
Mo = _gg [G_gg—gxl—;g%mq],
po= X/A% = [G_g%xl—ggg%zsxl}/

k

The total shadow cost (normalized by the price of the variable factor M) is
defined as

"8G m 8G
C=CGp~Y, X, AX,T)- S —LX, — ——AX, 2.16
(p ) gax,, : ;aAX, : (2.16)

where —0G/0X; and —0G/BAX; denote the respective “shadow values”.
The above expressions for output based and input based technical change and



returns to scale generalize those given in Caves, Christensen and Swanson
(1981) in that they allow explicitly for adjustment costs.’

Observe that substituting (2.16) into (2.15) yields the following expres-
sions for input based technical change and scale: A¥ = —(8G/8T)/C and
p=1 [ f=1(8G/6‘Y})Y,-/C]. In the case where all factors are variable
we have C = @, and thus in the case of a single output good we have -
the following simplifications: AY = p~I3* with A¥ = —(8C/0T)/C and
p=1/[(8C/8Y)Y/C]. This relationship was established by Otha (1974).

2.1.3 Capacity Utilization and Technical Change

The issue of a proper measure of technical change, given the firm is in short-
run or temporary equilibrium, but not in long run equilibrium, has also been
discussed, among others, by Berndt and Fuss (1981, 1986, 1989), Berndt and
Morrison (1981), Hulten (1986), and Morrison (1983, 1986a, 1989). Those
authors discuss proper measures of technical change in terms of adjustments
of traditional technical change measures by utilization rate measures. Berndt
and Fuss (1981, 1986) and Hulten (1986) consider single output technologies
with constant returns to scale. Morrison also considers single output tech-
nologies, but allows for (possibly) non-constant returns to scale and explicitly
takes into account adjustment costs. Berndt and Fuss (1989) consider mul-
tiple output technologies with (possibly) non-constant returns to scale, but
do not explicitly consider adjustment costs.

We now show that the measures for AY and AX are consistent with the
technical change measures of Berndt, Fuss, Hulten and Morrison by demon-
strating that XY and A% can also be viewed as having been obtained via a
capacity utilization adjustment of conventional (long-run) measures of tech-
nical change. For this purpose consider the following restricted total cost
function {normalized by the price of the variable factor M):

Cct = M+ @"YL+ ()X (2.17)
GE", Y, X,AX,T) + ()X,

5We note that the mathematics used in deriving the expressions in (2.15) is analogous
to that used by Caves, Christensen and Swanson (1981). The expressions also generalize
those previously given in Nadiri and Prucha (1983, 1984, 1990a,b) for single-output tech-
nologies with adjustment costs. A generalization of those expressions for multiple-output
technologies with adjustment costs and variable factor utilization rates is given in Prucha
and Nadiri (1990, 1996), and will be discussed below.

10



where ¢X denote the vector of rental prices for the quasi-fixed factors X
(normalized by the price of the variable factor M ). Recall that in long-run
equilibrium, or in the case where all factors are variable, we have shown
above that input based technical change equals —(8C/0T}/C. Now suppose
we attempt to measure technical change in terms of the total restricted cost
function C* analogously by

XY = —(8Cct/oT)/C. (2.18)

Observing that 8C*/8T = 0G /0T it follows immediately from (2.15) and
(2.16) that

XYoo= pdX(CH/C), (2.19)
M= AX(ct/e).

Analogously to Berndt, Fuss, Hulten and Morrison we can interpret
CU=C/C* (2.20)

as a measures of capacity utilization and we can therefore interpret our input
and output based measures for technical change as being derived from X
via an adjustment in terms of a capacity utilization measure to account for
temporary equilibrium. Clearly, in long-run equilibrium C* equals C and
hence in the long run A¥ equals A*. In general, however, MY differs from A¥
by the factor C*/C.

2.2 Divisia Index Approach

In the productivity literature technical change is often estimated as the dif-
ference between the growth rate of a measure of aggregate output minus
the growth rate of a measure of aggregate input. This approach to estimate
technical change in terms of a residual dates back to Solow (1957). In com-
puting aggregate output and input one of the most widely used methods
of aggregation is Divisia aggregation. The conceptual justifications for Di-
visia aggregation were developed by Jorgenson and Griliches {1967), Richter
(1966), Hulten (1973) and Diewert (1976), among others.® In the following
we first define the conventional measure of total factor productivity based on

6For recent reviews see, among others, Griliches (1996) and Hulten (1987, 1997, this
volume).

11



the Divisia index formula. As remarked, the Divisia index approach is based
on & set of particular assumptions concerning the technology and the inputs
and output markets. If any one of those assumptions is violated, the measure
of total factor productivity based on the Divisia index formula will in general
yield biased estimates of technical change in that it may then include, e.g.,
effects of scale economies or temporary equilibrium in addition to shifts in
the production frontier. In the following we first develop a growth account-
ing equation for technical change. We then compare this expression with
that for the conventional measure of total factor productivity, and based on
this comparison discuss potential sources of bias in the latter measure. The
subsequent discussion builds on Denny, Fuss and Waverman (1981a), who
consider a model where all factors are variable, but where scale is allowed to
differ from unity. In the following discussion we take T' = t.

221 The Conventional Measure of Total Factor Productivity

For ease of presentation we start our discussion in continuous time. Recall
that V = [M, L] denotes the vector of all variable factors, and let p¥ =
(1, pL'} denote the corresponding price vector (normalized by the price of M).
Furthermore let p¥ denote the vector of output prices, and let ¢X denote the
vector of rental prices for the quasi-fixed factors X (normalized by the price
of M). The Divisia index for aggregate output, say Y?, is now defined by

VAR £
— =) 8 = (2.21)
Ve LtY
where the s)’s denotes output shares in total revenue Rt = le p}/Yi, i.e.,
_ vy
y _Piti
S‘.i. - R+ ] (2'22)

and where dots over variables denote derivatives w.r.t. time . The Divisia
index for aggregate input, say F“, is analogously defined by

ooV, o x X
= il 2.23
Fe ZSJ ‘/J + —~ 5 Xl ( )

3=1 !

where the s7’s and s{’s denote input shares in total cost Ct=3%", pyV;+
Z?_—q CIXXI, i.e.,

274 X
V_pJVJ chlXj:

et o (2.24)



The conventional measure of total factor productivity, say TFP, is now de-
fined as the ratio of the Divisia index of aggregate output over the Divisia
index of aggregate input, i.e., TFP =Y*/F?® and thus

TFP y' F

nialihaN R S 2.25

TFP Ye Fe (225)

LI A N AN 4
y i vYi x A1
§i—— ) S =) 8§ -

The above Divisia index based definition of total factor productivity growth
is given in continuous time. Empirical data typically refer to discrete time
points. For discrete data the above formulae for the growth rates of aggregate
output, aggregate input and total factor productivity are typically approxi-
mated by the following Térnqvist approximations, where A denotes the first
difference operator: .

k

AlnY? = %Z (s + ¥ 1] Aln(va), (2.26)
i=1
1 m
AlF = 5 (st + 511 ] Aln(Vy) (2.27)
j=1
1 n
+§ Z [Sﬁ + Siil,i] AIH(X“),
=1
and
AlnTFP, = AlnY®—AlnF! (2.28)

1 k
= E Z [Sg + 53/_1,1'] Aln(}"tl)
i=1

NgE

[slg + sf_lvjl Aln(Vy;)

.
il
-

b= BSe

NE

[s35 + si%14) Aln(Xa).
]
Diewert (1976) has shown that the Térnqvist index is in fact exact if the
underlying potential function has a translog form. We note further that a
primary feature of the Divisia/Térnqvist index approach is that it can be
implemented even if the number of inputs and outputs is large; see Diewert
(1980).

I
4R
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2.2.2 Growth Accounting Equation for Technical Change

For ease of presentation we again start our discussion in continuous time.
Consider the continuous time analog of (2.8)

G@h,Y, X, X,t) =M+ (p*YL (2.29)

Differentiation of the above equation w.r.t. ¢ and observing that L = L and

M=M yields
8G| ., 0G|, 0G| . G|, O6G
l:('a?j\jp + [8—Y:\Y + [—(ﬁ}}{ + [5—X]X + r (2.30)

= M+ @)L+ (D)P"

By Shephard’s lemma L = (0G/dp*)’. Upon substitution of this expression
into the above equation it is easily seen that

_%_f = [g_g_]if — M- (p"YL - [163%)'( - [;—i.ﬂ)?. (2.31)

As implied by (2.15), input based technical change is now obtained by divid-
ing the above equation by the continuous time analog of the restricted total
shadow cost defined in (2.16), L.e, C = G(p", Y, X, X 1) — (3G /0X1) X, —
5,(8G/8X)X;. Some simple algebra - and recalling that V = [M, L' and
p¥ = [1,p"] - then yields the following expression for input based technical
change:

X = ——— 2.32
g C ot (2.32)
LY, M,V Sy X g X
- el S-Sy -y
i=1 i =1 i I=1 I =1 l
with
7 = QEE g‘{':;_)m
T a},: C’ 7 C H
" 'e "”aGXl X —BG.Xg

It

51

8x, C’ = ax; C

For given “shadow values” —9G/0X, and —8G/8X, we have 8G/0Y; =
8C/8Y;, and the §;’s can be interpreted as the elasticities of the restricted
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total shadow cost C' with respect to the output Y;. Furthermore, 3}’, 3% and
3X represent the input cost shares for, respectively, V;, X, and X,in the
restricted total shadow cost. An analogous expression to (2.32) for single
output technologies is, e.g., given in Morrison (1986a, 1992a}. Analogous
expressions for models without explicit adjustment costs are given in, e.g.,
Denny, Fuss and Waverman (1981a) and Berndt and Fuss (1989). General-
izations that allow for endogenous factor utilization are given in Prucha and
Nadiri (1990, 1996), and will be discussed in Section 3.

For purposes of interpretation of (2.32) observe that in light of (2.15)
¥ .3, = 1/p, where p denotes the scale elasticity. In case of the single
output good the above expression for input based technical change simplifies

to

Y m
)\X — pfl____ . EV
v XY

From this expression we see that in calculating input based technical change
in case of increasing [decreasing] returns to scale, output growth is dimin-
ished [enhanced] before subtracting the growth in aggregate inputs. In case
of a single output good, constant returns to scale, and in case all factors
are variable the growth accounting equation for technical change simplifies
further to

Vj - —XXI . -XXI
—_ — 8 —— — -, 2.33
V. Z I Xl Zsl Xl ( )

J 1=1 i=1

Y m r
X _ Y _ —1_/ 3
N =N =2 -3 vij’  (239)

i=1
which corresponds to the expression developed by Solow (1957).
The above expressions for technical change were derived in continuous

time. Tn Appendix A we derive the following discrete time approximation of
(2.32):

soren) =3 (a% aowey) e
ﬁ%gbwwHJAmm)

_%g [gt‘; +§y_1‘j] Aln(Vy;) — %; [Eff + Ef‘_u] Aln(Xy)

_% 3 [4% + 30, Am(AX)

.-..
Il
-
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with

Gti a'}/h Ct H [ 4] Cf, 1
EX — aGt ﬁ EAX — aGt, AXH'
te 6Xu Cf,’ . ath Ct

2.2.3 Sources of Bias in the Conventional Measure of Total Factor
Productivity

We now compare the growth accounting expression for technical change with
the conventional measure of total factor productivity, and explore sources of
potential bias in the latter measure. For ease of presentation we again start
the discussion in continuous time. Consider the following alternative index
for aggregate output, say Y, defined by

b k .
Y vYi

i=1

where
v 5 _ (0G/oV)Yi

5 = =
T R
with R = 5 ,(8G/dY,)}Y:. Furthermore, consider the following index for
aggregate input, say F”, defined by

F - —VVT' - —XXI - —XXI
E—t 5.—+ L} _+ & —=. (2.37)
F® ; TV g ' X z; "X

Recalling that in light of (2.15) Y&, 7; = 1/p, where p denotes the scale
elasticity, we can now write the growth accounting equation (2.32) for input
based technical change as

M=l L (2.38)

As demonstrated in Appendix A comparing (2.25) with (2.38) yields the fol-
lowing decomposition of the conventional measure of total factor productivity
growth in continuous time.
: -b - a -b - b - a
TFP Y Y Y F F
=X —1/0)— e — - 2.39
7rp = T eyt (Yﬂ Yb) * (Fb Fa) (2.39)
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with

AN L NAY A e
Y——-ﬁ=2( )(f——),- (2.40)

¢ i=1 R i Y
F S (-oG/8x: - ) X0\ (% F"
F* Fe & C X, Fe

n ((-8G/oX) X\ (% F°
*2( ) (R

The first term in the above decomposition of TFP /TFP corresponds to
actual (input based) technical change. The remaining terms decompose
the difference between TFP /TFP and technical change, i.e., they reflect
sources of potential bias of TFP /TFP as a measure of technical change.
More specifically, the second term reflects scale effects. We note that un-
der increasing returns to scale and positive output growth T FP JTFP will
overestimate technical change. The third term reflects the effects of devia-
tions from marginal cost pricing. The fourth term is due to the presence of
adjustment costs. It consists of two effects: One effect stems from the dif-
ference in the marginal conditions for the quasi-fixed factors between short-
and long-run equilibrium due to adjustment cost, i.e., the difference between
the shadow price and (long-run) rental price.” The other effect reflects the
direct effect of adjustment costs in the sense that due to the presence of X
in the transformation function the growth rates of those terms also enter the
decomposition of the output growth rate.

Empirical data typically refer to discrete time points. Equations (2.26)-
(2.28) provided Térnqvist approximations for the growth rates of the aggre-
gate output Y?, the aggregate input F** and total factor productivity TFP.
Analogously, consider the following approximations for the growth rates of
the aggregate output Y, and of the aggregate input F*:

k
AlnY! = % > [gg + 3{_1,1.} Aln(Yy) (2.41)

=1

"Suppose the shadow price for a particular quasi-fixed factor exceeds the long-run price

used in the computation of TFP /TFP. In this case TFP JTFP will, ceteris paribus,
overestimate the technical change effects given the growth rate of the quasi-fixed input
exceeds that of the aggregate input index.
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where
¥ = Gt (6Gt/ Y)Y
| k

i=1 gtz R,
with Rt = f=1 (aGt/a)/m)Y;h and

1 m
AmF = 53 st +3. 5] Aln(Vy) (2.42)

E
—

+3° [5F + 3550, Aln(Xa)
=1

+ 30 [sR% + 30, Aln(AXy).
=1

As demonstrated in Appendix A, it is then possible to decompose the Tornqgvist
index based approximation of the growth rate of the conventional measure
of total factor productivity as follows:

1
AITFP =3 (Af‘ + )\;"_1) +% Y (1-1/p)AIYT (2.43)

T=t,t—1

+ (AlﬁY;* ~AlnY)+ (Al F - Aln FY)

with
Aln)/ta . /_\lan (244)
k ’1 6G /aY'n TE a, T
_ Yl = (( R )Y (Aln(Yy) - Aln Y™,
i=1 L T=t,t—1 T
AlnF’ — AlnF,
n -1 “aG'r/aX‘r -C-rX Xri a,t
= > 2 2 (( Cl I) (Aln(Xy) — AlnF)
=1 [ “ 7=tt-1 T
n [ —8G,[OAX ) AX, a,r
ESIES (( /C ) z)(Am(AXﬂ)—AlnFt')}
=1 [ < r=tit-1 T

and

AlnY" = ZSYAln (Ya)

Aln Ff7" = ZSVAIII Vi) + ZsﬁAln(Xﬂ)
=1
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for 7 = t,t — 1. This decomposition and its interpretation is analogous to the
continuous time decomposition of TFP growth given in (2.39) and (2.40).
It generalizes analogous expressions given in Denny, Fuss and Waverman
(1981a) for technologies without adjustment costs and in Nadiri and Prucha
(1983, 1986, 1990a,b) for single output technologies with adjustment costs.
Expressions that allow for endogenous factor utilization have been consid-
ered in Prucha and Nadiri (1990, 1996), and will be discussed in Section 3.
We note that variations of the decomposition (2.39) or (2.43) have also ap-
peared in various other studies, including Nadiri and Schankerman (1981b),
Bernstein and Mohnen (1991), Mohnen (1992a), and Bernstein (1994a).
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3 Recent Developments in Modeling Dynamic
Factor Demand

The recent dynamic factor demand literature rests on the seminal work of
several contributors. Four advances in the theory and estimation method-
ology are of particular importance: The neoclassical theory of investment,
the advances in fexible functional forms of the production (cost) functions,
the development of duality theory, and the theoretical and empirical devel-
opments concerning adjustment costs. It is the confluence of these strands of
literature that made the wide empirical applications of factor demand models
possible.

First, in a seminal contribution Jorgenson (1963) laid the foundation of
the neoclassical model of investment. He developed the concept of the user
cost of capital, that included explicitly various taxes and incentives. Also he
modeled the lagged response of investment to changes in demand for capi-
tal by generalizing the Koyck (1954) geometric lag distribution to what is
called the rational distributed lag; see Jorgenson (1966) and Jorgenson and
Stephenson (1967). Many other facets of investment decisions such as the
rate of depreciation and the distinction between net and replacement invest-
ment were explicitly considered in a series of papers dealing with theory and
application of the neoclassical theory of investment; see Jorgenson (1996a,b)
for a collection of this important body of work.

Building on the neoclassical model of investment Nadiri and Rosen (1969,
1973) introduced their interrelated disequilibrium model, whereby disequilib-
rium in one factor market was formally related to the extent of disequilibrium
in other factor markets. As a result short-run overshooting is possible, and
the difference between short- and long-run price elasticities for a particular
input depends not only on its own partial adjustment parameter, but also
on all cross adjustment parameters of other inputs.

A second major advance in the literature has been the formulation of flex-
ible functional forms for the description of the technology. The purpose was
to avoid restrictive features inherent in, e.g., the Leontief and Cobb-Douglas
production functions. Flexible functional forms of cost and production func-
tions have first been introduced in the economics literature in seminal papers
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by Christensen, Jorgenson and Lau (1971, 1973) and Diewert (1971). These
authors introduced the transcendental logarithmic and the generalized Leon-
tief functional forms, respectively.® These functional forms do not impose
a priori restrictive constraints such as homotheticity, constancy of elasticity
of substitution, additivity, and so on. Another important flexible functional
form has been proposed by McFadden (1978) and extended by Diewert and
Wales (1987).

The third strand of literature contributing to advances in the theory of
production was the development of duality theory. Fundamental contribu-
tions include Shephard (1953), Diewert (1971, 1974, 1982), Lau (1976), and
McFadden (1978). Of course, there was close interaction between the de-
velopment of flexible functional forms and duality theory. Profit and cost
functions (or restricted versions thereof) are widely used in empirical analy-
sis. This may be explained in part by the following observation of McFadden
(1978): “In econometric applications, use of the cost function as the starting
point of developing models avoids the difficulty of deriving demand systems
constructively from production possibilities, while at the same time insuring
consistency with the hypothesis of competitive cost minimization.”

Fourth, in an effort to construct a dynamic framework capable of yield-
ing a demand for investment Eisner and Strotz (1963) introduced adjustment
cost into the neoclassical theory of the firm. Several other important con-
tributions were made by Lucas (1967a,b), Gould (1968), Treadway (1969,
1970, 1971, 1974), Uzawa (1969), Mortenson (1973) and Steigum (1983).
~These studies indicated that the multivariate flexible accelerator model can
be justified theoretically as a solution of a dynamic optimization problem
that incorporates adjustment cost for the quasi-fixed factors. The adjust-
ment cost incurred in order to change the level of the quasi-fixed factors can
take two forms. The first type is internal and reflects the fact that firms
may have to make trade-offs between producing current output and divert-
ing some of the resources from current production to accumulate capital for
future production (e.g., Treadway (1974)). The second type is external: As
the firm adjusts its quasi-fixed factors it may face either a higher purchase

8The transcendental logarithmic form has been used by Jorgenson with different asso-
ciates to study the properties of the production structure and productivity analysis in a
number of sectors in the US and Japanese economies and to compare productivity growth
among different countries; see Jorgenson (1995a,b).

9For a detailed review of the literature and a collection of various other important
contributions see Fuss and McFadden (1978a,b).

21



price for these factors (e.g., Lucas (1967a,b)) or a higher financing cost for
the accumnulation of these inputs (e.g., Steigum (1983)).

Based on these theoretical development on cost of adjustments a num-
ber of dynamic factor demand models referred to as the “third generation
models” have been estimated. For comprehensive reviews of this influen-
tial literature see Berndt, Morrison and Watkins (1981) and Watkins (1991).
Examples include Berndt, Fuss and Waverman (1980), Denny, Fuss and Wa-
verman (1981b), Morrison and Berndt (1981), Morrison (1986a,b), Galeotti
(1990), Watkins and Berndt (1992) and Lee and Kwon (1994). Several fea-
tures of the “third generation” dynamic factor demand models are important
to note. First, those models are explicitly dynamic and provide the optimal
path of investment from temporary to full long-run equilibrium. The dynamic
path of adjustment to long-run equilibrium is based on economic optimiza-
tion at each point in time; thus short-, intermediate-, and long-run are clearly
defined. Second, the speed of adjustment of the quasi-fixed factors to their
long-run equilibrium levels is allowed to be endogenous and time varying,
rather than exogenous and fixed. Third, the short-run demand equations
for variable inputs depend on, among other things, prices of variable inputs,
output, and stocks of the quasi-fixed inputs. Variable inputs may in the
short-run overshoot their long-run equilibrium values to compensate for the
partial adjustment of the quasi-fixed factors.

Empirical applications of third generation dynamic factor demand models
typically only allowed for one quasi-fixed factor, or, slightly more generally,
for several separable quasi-fixed factors. As a consequence of the separabil-
ity assumption the models did not allow for interactions between the optimal
investment paths. The technical reason for maintaining separability between
the quasi-fixed factors was that it facilitated a major simplification in the
computation of the firm’s optimal investment decision. More specifically,
separability implies the absence of interaction between the difference equa-
tions describing the optimal investment paths of the respective guasi-fixed
factors. As a consequence, each of those equations can be solved separately.
Technically this entails the solving of a quadratic equation for each of the
quasi-fixed factors — which, of course, can readily be done analytically. If,
however, separability is not maintained, then rather than having to solve
several quadratic scalar equations, one is confronted with a quadratic ma-
trix equation. Analytic expressions for the solution of this quadratic matrix
equation, and hence for optimal investment, are then generally not available.

Other characteristics of the empirical implementation of third generation
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dynamic factor demand models were that the underlying technology was
modeled in a linear quadratic fashion, that expectations were typically mod-
eled as static and that factor utilization rates were assumed to be constant.
Recent developments were aimed at a relaxation of those assumptions.

3.1 Theoretical Model Specification
3.1.1 Technology and Optimal Control Policy

For the subsequent discussion we generalize the setup of Section 2, in that
we consider a firm that combines the set of variable inputs V} and the set
of quasi-fixed inputs X; to produce the set of outputs for current sale Y;,
as well as a set of capital inputs for future production. More specifically,
in the generalized setup we allow the firm to also choose how much of the
beginning-of-period stocks of some (but not necessarily all) of the quasi-
fixed capital inputs will be left over at the end of the period. We note that
this adopted modeling framework dates back to Hicks (1946), Malinvaud
(1953), and Diewert (1977, 1980}. In the empirical dynamic factor demand
literature this framework was first adopted by Epstein and Denny (1980) and
Kollintzas and Choi (1985) for the case of a single quasi-fixed factor. Prucha
and Nadiri (1990, 1996) generalized the setup by allowing for more than
one quasi-fixed factor. They also discuss measures of technical change and
capacity utilization for the generalized modeling framework.!® We note that
the generalized modeling framework contains — as discussed in more detail
below — the case where a constant fraction of the beginning-of-period stocks
is left over at the end of the period as a special case.

In the following we use K; to denote the vector of the stocks of the quasi-
fixed capital inputs at the end of period't for which the firm chooses how much
of the beginning-of-period stocks will be left over af the end of the period,
and K? to denote the vector of “old” stocks left over at the end of period ¢
from the beginning-of-period stocks K;_;. Of course, being able to choose the

100 a theoretical level the generalized modeling framework has also been considered
by Bernstein and Nadiri (1987a,b). A special case of the model was implemented in Nadiri
and Prucha (1996). Bischoff and Kokkelenberg (1987) adopt a related framework in which
the depreciation rate is modeled as a function of capacity utilization. Other contributions
to the dynamic factor demand literature that allows for the firm to operate at different
levels of utilization, but are based on an alternative modeling framework, include papers by
Abel (1981), Bernstein (1983), Kokkelenberg (1984), Honkapohija and Kanniainen (1985),
and Shapiro (1986).
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level of K? by, e.g., to choose appropriate levels of maintenance, is equivalent
to being able to choose endogenously the rate of depreciation for those stocks,
since we can always write K = (1 — 65)K,_, and interpret 65 as a diagonal
matrix of depreciation rates. R is the vector of the end-of-period stocks of
the quasi-fixed factors, whose depreciation rates are exogenous to the firm.
We assume furthermore that all quasi-fixed factors become productive with
a lag.!! In the notation of Section 2 we then have X; = [K, ;, R;_,]" and
AX, = [AK!,AR) . Furthermore, as in Section 2 we will decompose the
variable inputs as V; = [M,, I}].

In more detail, we assume that the firm’s technology can be represented
by the following factor requirement function:

Mt = M(YE,L;, qut—laRt—luAKﬁARhﬂ)- (31)

This specification generalizes the factor requirement function considered in
(2.2) in that it includes the vector of capital stocks left over at the end of
the period K?. The stocks K; and R, accumulate according to the following
equations:

K =IF+K;, Ro=I}+(-8"Re, (3.2)
where IX and If denote the respective vectors of gross investment and &
denotes the diagonal matrix of exogenous depreciation rates (some of which
may be zero).

The firm’s cost in period ¢, normalized by the price of the variable factor
M,, is given by

My + (pF)' Lo + (@) IE + (@) I, (3.3)

where ¢X and ¢f* denote the prices of new investment goods after taxes,

possibly normalized by 1 —u,, where u; denotes the corporate tax rate.'? We

11This assumption is made for simplicity of exposition. For a generalization where some
of the quasi-fixed factors immediately become productive and some become productive
with a lag see Prucha and Nadiri (1990, 1996).

12A5 an illustration, suppose K is a scalar and corresponds to the stock of a certain
capital good; then ¢* may equal 1 — ¢ — u(l — mc)Blp! K /(1 — u), where p’¥ denotes
the price of new investment goods, u denotes the corporate tax rate, ¢ is the rate of the
investment tax credit, m is the portion of the investment tax credit which reduces the
depreciable base for tax purposes, and B is the present value of depreciation allowances.
We note that the appropriate expressions for the price of new investment goods after taxes
are actually obtained by explicitly introducing taxes into the firm’s objective function. As
a result, the price of new investment goods after taxes will in general also depend on
expectations on future tax variables. We have not chosen this route for simplicity of
presentation.
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assumed that the firm faces perfectly competitive markets with respect to its
factor inputs.

Suppose the firm’s objective is to minimize the expected present value of
its future cost stream.!? Substitution of (3.1) and (3.2) into (3.3) then yields
the following expression for the firm’s objective function:

00

Et Z[M(Yra L'r) K-?: K‘r—l: RT-I, AKT) ART1 T’r) + (pL)’L-r - (q-i()’Kg

-
T=t

+(Q1I'()fKT + (qf)I[RT - (I - 6f)RT—1] ] (1 + 'rs)—ls (34)

s

s=1

If

where E, denotes the expectations operator conditional on the set of infor-
mation available in period ¢ and 7 denotes the real discount rate (which may
possibly also incorporate variations in the corporate tax rate).

Suppose the firm follows a stochastic closed loop feedback control pol-
icy in minimizing the expected present value of its future cost stream (3.4).
Then, in period ¢t the firm will choose optimal values for its current inputs Ly,
K., Ry, and for K?. At the same time the firm will choose a contingency plan
for setting L, K, R, and K? in periods 7 =t + 1, +2,... optimally, de-
pending on observed realizations of the exogenous variables and past choices
for the quasi-fixed factors. Of course, for given optimal values for L,, K,
R,, and K? the optimal values for M. are implied by (3.1). Prices, output
and the discount rate are assumed to be exogenous to the firm’s optimization
problem.

Since L, and K¢ can be changed without adjustment costs the stochastic
closed loop feedback control solution can be found conveniently in two steps.
In the first step we minimize the total (normalized) cost in each period 7 =
t,t+1, ... with respect to L, and K7 for given values of the quasi-fixed factors
and the exogenous variables. Substitution of the minimized expressions into
(3.4) then leads in the second step to an optimal control problem that only
involves the quasi-fixed factors K and R,.

The part of total cost that actually depends on L, and K? is given by

M(Y‘rs LTs K:J KT—I: RTwla AKT) ART) TT) + (pf)’LT - (QE)'Kga (35)

i.e., variable cost minus the value of the “old” stocks left over at the end
of the period from the beginning of period stocks. Assuming that M(.) is

13We note that the subsequent theoretical discussion can be readily modified also to
apply to the case of a profit maximizing firm.
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differentiable and that a unique interior minimum of the above expression
exists, the first order conditions for that minimum are given by:

oM, oM, oy
3L, SR (g-) =0 (3.6)
Let L, and Kﬁ denote the minimizing vectors, then the minimum of the
variable cost minus the value of the “old” stocks is given by

G, = G, ¢ Y. K, _1,R,_1, 0K, AR, T) (3.7)

= M.+ (pr)L. — (¢F) K7,

with M, = M(Y:, L., K2, K,_1,R._1,AK.,AR;,T;). The function G(.) has
the interpretation of a normalized variable cost function net of the value of
the “old” stocks left over at the end of the period from the beginning of
period stocks. Technically it can be viewed as the negative of a normalized
restricted profit function. For duality results between factor requirement
functions and normalized variable profit functions see, e.g., Diewert (1982)
and Lau (1976). We assume that the function G(.) is twice continuously
differentiable in all its arguments, homogeneous of degree zero in p” and q¥,
non-decreasing in Y, |AK|, |AR| and p?, non-increasing in K1, R_; and
¢*, concave in p and ¢¥, and convex in K_;, R, AK and AR.

As indicated above, the stochastic closed loop optimal control solution for
the quasi-fixed factors can now be found by replacing M; + (pEY L. — (¢X)Y K2
in (3.4) by G(pk,¢¥ Y, K.y, Br_1, AK:, AR.,T,) defined in (3.7), and then
by minimizing

+(p7)' =0,

(G(pE,qX .Yy, Kooy, Re1, AK7, AR T7)

gL

E

t

4
1l

T

YK, + (@FY [Re — (I = F) Rl [T +7) 7" (3.8)

5=t

T

+(g

with respect to the quasi-fixed factors {K,,R,}%, only. Standard control
theory implies that the stochastic closed loop feedback control solution that
minimizes (3.8), say (K., R}, must satisfy the following set of stochastic
Euler equations (7 = £,t+1,...):™

8G1-+1
—Er oK.

14Compare, e.g., Stokey, Lucas and Prescott (1989), ch.9, for a more detailed list of
assumptions and a careful exposition of stochastic control theory, as well as for a discussion
of the transversality condition.

(L+7r0)”" = (gX)
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GAK, TOAK,i

(1+7010)7" (3.9)

0G, _ ,
—E; 3}'?:1 (1 + 'r1'+1) o= (CTR)
0G- 0Grq1 -1
+6‘/_\R., E"aAR,,H (1+7,41) "+, (3.10)

where
=B g1+ 1) — (I - 6 ar )/ (L + rras)

can be viewed as a vector of rental prices. The firm’s optimization decisions
with respect to L, and K? are incorporated in the stochastic Euler equations
via G,. (Recall from (3.7) that G, gives the minimal value of the variable
cost net of the value of the “old” stocks for given values of the quasi-fixed
factors and exogenous variables.) A detailed economic interpretation of the
stochastic Buler equations is given in Appendix B.

The optimal values for L. and K? can be found by differentiating G with
respect to pL and ¢X and then making use of (3.6), i.e., via Shephard’s and
Hotelling’s lemma.'®

. aG.\’ . G-\’

LB, k() e

The derivatives on the r.h.s. of the above equations need to be evaluated at
the optimal control solution for the quasi-fixed factors.

The formulation of a stochastic closed loop control policy generally re-
quires knowledge of the entire distribution of the exogenous variables. Alter-
natively one may postulate — as will be the case in the empirical application
— that the firm formulates a certainty equivalence feedback control policy,
which only requires knowledge of the first moment (mean) of the exogenous
variables. In that case the firm’s objective function is given by (3.4) or (3.8)
with the expectations operator moved next to each of the exogenous variables.
The firm would now devise in each period ¢ an optimal plan for its inputs in
periods ¢,t + 1,... such that its objective function in period t is optimized,
and then choose its inputs in period ¢ accordingly. In each future period the
firm will revise its expectations and optimal plan for its inputs based on new
information. In case of a certainty equivalence feedback control policy the

15]n case of a profit maximizing model we have furthermore the following condition for
the output vector: 8G,/0Y, = pY + [8pY /BY;]Y;.
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first order conditions for the optimal plan in period t for the quasi-fixed fac-
tors would be given by (3.9) and (3.10) with all exogenous variables replaced
by their expected values (conditional on information available at time ¢ and
the expectations operator in front of the respective derivatives suppressed).
Equations (3.11) remain the same. If G(.) is linear-quadratic, then the well
known certainty equivalence principle implies that the stochastic closed loop
and the certainty equivalence feedback control policy are identical.’®

3.1.2 Generalized Expressions for Technical Change and Total
Factor Productivity Decomposition

The discussion in Section 2 considered the case where the depreciation rates
of all of the quasi-fixed factors are exogenously given. In this section we have
allowed the depreciation rate of some of the quasi-fixed factors to be endoge-
nously determined. Analogously to equations (2.4) and (2.15) in Section 2.1
we can define primal and dual measures of input based technical change 2,
output based technical change Y, and scale p, and we can define measures
of capacity utilization for the generalized technology considered in this sec-
tion. Those expressions are given in Prucha and Nadiri (1990, 1996), and
are not repeated here in order to conserve space.!” Analogously to equations
(2.39), (2.40) and equations (2.43), (2.44) in Section 2.2 one can also obtain,
respectively, a decomposition of the growth rate of total factor productivity
and its Térnqvist index based approximation. A generalization of the de-
composition (2.39), (2.40) of the growth rate of total factor productivity in
contimious time is given in Appendix B. The generalization of the Tornqvist
index based approximation (2.43), (2.44) is analogous. For the case of a sin-
gle output good the latter generalization is also given in Prucha and Nadiri
(1990, 1996).

3.1.3 Flexible Functional Forms of Restricted Cost Functions

Empirical specifications of dynamic factor demand models typically model
the underlying technology in a “fiexible” fashion. As discussed at the begin-

186For general technologies input decisions corresponding to the latter policy may be
viewed as first-order approximations to those of the former policy; see, e.g., Simon (1956},
Theil (1957) and Malinvaud (1969) on the principle of certainty and first-order certainty
equivalence.

17There are some typos in Prucha and Nadiri (1996) in that between equations (3.4)
and (3.6) cX and c® should read ¥ and cF, and in equation (3.9) C* should read C.
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ning of Section 3, flexible functional forms of cost and production functions
have first been introduced by Diewert (1971) and Christensen, Jorgenson and
Lau (1971, 1973). In the dynamic factor demand literature the technology
has often been modeled in terms of a normalized restricted cost function;
see, e.g., Berndt, Fuss and Waverman (1980) for an early application. In
the following we discuss some of the functional forms used in the recent
literature.'®

Recall that in our notation K refers to the vector of quasi-fixed factors
whose depreciation rate is endogenously determined, and R refers to the
vector of quasi-fixed factors whose depreciation rates are exogenous. For
ease of presentation we focus the subsequent discussion on the case where
the depreciation rates of all quasi-fixed factors are exogenous to the firm.'?
In this case the normalized restricted cost function (3.7) simplifies to

G, =G(pt, Y., R._1,AR., T;) (3.12)

given that we can now suppress K (and thus g*}. Also, we focus the dis-
cussion on the case of a single output good Y. Furthermore, for ease of
presentation, we drop time subscripts in the following.

Observe that for linear homogenous technologies we have

pr B AR

H Y 7 Y 1
The normalized restricted cost function introduced by Denny, Fuss and Wa-
verman (1981b) and Morrison and Berndt (1981} is of the form

G(pt,Y,R_1,AR.T) (3.14)
, R ,AR
=Y {ao + (ar)'p* + (ar) —-)-/—1 + (aR) v + arT
, . R- , AR
+0.5(pL) ALLPL + (pL) ALR—l + (pL) ALR——l- -+ (CLLT)'pLT

Y Y
+o.5R§1ARRR‘1 LBy AR !

G(p",Y, R-1,AR,T) = g( T)Y. (3.13)

y v Ariy T (e T
AR AR AR 2
_}_/—ARR_)'/_ + (GRT) _Y—T + 0.5appT }

+0.5

18For general surveys of functional forms in modeling the firm’s technology see, e.g.,
Fuss, McFadden and Mundlak (1978) and Lau (1986).

19The discussion can readily be extended to the case where both types of quasi-fixed
factors are present.
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where ap, ar, apr are (scalar) parameters, ar, g, @p, @LT, QRT; Gpy 8T€
conformably dimensioned parameter vectors and Arr, ALr, AL Py Agpg, A Riy
A hi A€ conformably dimensioned parameter matrices. The normalized re-
stricted cost function (3.14) can be viewed as having been obtained from
a second order approximation of g(p*, R_1/Y,AR/Y,T). Following Denny,
Fuss and Waverman (1981b) and Morrison and Berndt (1981) the above
normalized restricted cost function can be simplified by imposing parameter
restrictions such that the marginal adjustment costs are zero at AR = 0, i.e.
= 0, ALR =0, AHR = O, G‘RT = 0.

Nadiri and Prucha (1983, 1990b) generalize this normalized restricted
cost function to cover also homothetic technologies by replacing Y on the
rhs. of (3.14) by h(Y) = Y#+é:!n(¥) This generalization is based on the
observation that the normalized restricted cost function corresponding to
homothetic technologies is of the following general form:

g

L ' ; B AR
where H(Y) is some function of Y. We note that h(Y) can — apart from
a scaling factor — be viewed as a second order translog approximation of
H(Y), assuming the latter function is sufficiently smooth.?® Utilizing (2.15)
it is readily seen that scale is given by {(dH/dY)(Y/H )"!. In the special
case where H(Y) = Y scale equals 1/¢;.

A convenient feature of the normalized restricted cost function (3.14) and
its generalization is that it allows for closed form solutions for the firm’s opti-
mal factor demand. However, the factor demand equations implied by these
restricted cost functions are not symmetric in the sense that they are not
invariant as to which of the variable factors is chosen as the numeraire. Thus
different normalizations represent different specifications of the technology,
which may seem arbitrary.

Recently Mohnen (1992a) introduced a new restricted cost function which
treats all factors symmetrically, but also allows for closed form solutions
for the firm’s optimal factor demand. This cost function generalizes the
symmetric Generalized McFadden cost function put forth by Diewert and
Wales (1987) through the inclusion of quasi-fixed factors. The manner in
which the quasi-fixed factors are introduced is analogous to that in (3.15).

20Guppose we approximate H(Y) in terms of a second-order expansion in logs, then
In H(Y) = const+doImY +¢1(InY)? = const-+In A(Y}), and therefore H(Y) & Y¢eteo1lnY,
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A further restricted cost function which treats all factors symmetrically
was suggested by Morrison (1988, 1990). This restricted cost function repre-
sents an extension of the Generalized Leontief restricted cost function intro-
duced by Diewert (1971). Prucha (1990) points out, however, that Morrison’s
restricted cost function is not invariant to units of measurement. Thus dif-
ferent choices of the units of measurements represent different specifications
of the technology, which may again seem arbitrary. Prucha (1990) suggests
a modification of Morrison’s restricted cost function such that the resulting
function is invariant to units of measurement. Based on the observation in
(3.15) he also suggests a generalization to cover homothetic technologies.

For all of the above discussed functional forms the implied Euler equa-
tions form in essence a linear system of difference equations, which can be
solved explicitly along the lines discussed in Section 3.2 below. The Euler
equation estimation approach discussed in Section 3.3 below does not require
an explicit solution of the Euler equations. A functional form that has been
used widely in conjunction with this approach is the tanscendental logarith-
mic functional form introduced by Christensen, Jorgenson and Lau (1971,
1973).

For pooling data from different units, such as industries or countries,
an interesting modeling strategy is the meta-production function approach.
This approach dates back to Hayami and Ruttan (1970, 1985). It has been
recently used and further extended in a series of papers by Boskin and Lau
(1991, 1992a, 1992b), Kim and Lau (1994, 1996) and Lau and Yotopoulos
(1989).

3.2 Solution and Estimation of Dynamic Factor De-
mand Models in Case of Linear Quadratic Tech-
nologies

Section 3.1 provided a general discussion of recent vintages of dynamic fac-
tor demand models. In this section we consider in more detail dynamic
factor demand models in case the firm’s optimal control problem is of a “lin-
ear quadratic” nature. In this case it is possible to obtain explicit analytic
solutions for the firm’s optimal factor inputs. We start the discussion by
considering a specific example. We then consider the solution and estima-
tion of a general class of “linear quadratic” dynamic factor demand models.
To keep this discussion widely applicable we only specify the model in terms
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of a set of first order conditions, rather than in terms of a specific cost or
profit maximization problem. The last subsection discusses potential pitfalls
in using formulae for the optimal factor inputs derived from a continuous
time model for estimation from discrete data.

3.2.1 Illustrative Example with Endogenous Depreciation Rate

In this subsection we illustrate the solution and estimation of dynamic fac-
tor demand models by considering in detail a specific example of the model
considered in Section 3.1. As our illustrative model we consider the model
employed by Prucha and Nadiri (1990, 1996) in analyzing the production
structure, factor demand and productivity growth in the US electrical ma-
chinery industry. More specifically, we consider a model with two variable
inputs M, and L;, two quasi-fixed factors K; and Ry, and one ontput good Y;.
Following Prucha and Nadiri (1990, 1996) we may assume that M; and L
denote, respectively, material input and labor input, and K; and H; denote,
respectively, the end of period stocks of physical capital and R&D, and Y;
denotes gross output. We allow for the firm to determine the depreciation
rate of capital endogenously, in that we allow the firm to choose K7, the level
of “old” stocks left over at the end of period t from K;_;. The depreciation
rate of R&D 6% is fixed. With p- we denote the price of labor, and qf and
¢F denote the after tax acquisition price for capital and R&D normalized by
the price of material goods. The real discount rate r is taken to be constant
over time.

To model the technology, we specify (dropping subscripts ¢) the following
functional form for the normalized variable cost function net of the value of
the “old” stocks as:

G(p*, ", K_1,R_1,AK,AR,Y,T) (3.16)
1 1
= Yl‘lp{(l‘o + aLpL —+ aLTpLT —+ EOéKuKo(qK)z =+ aLKaquK + §aLL(PL)2}
4axgK_ 1 +agh_ 1+ O!KLK_1pL + aKKoK_lqK
—t—aRLR-lpL + aRKoR_lqK + aprK 1T+ arrR_AT

1 1
+Y_l/p{§aKKK31 + axpK_ 1R 1+ EQRRRzl

1 2 1 2

We note that the adopted functional form is a special case of the linear
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quadratic restricted cost function specified in (3.14) ~ abstracting form the
fact that for notational simplicity the specification (3.14) was only given
for the case where the depreciation rates for all quasi-fixed factors are ex-
ogenously given. In light of the above discussion we note further that the
technology specified by (3.16) is homogeneous of degree p. Also recall that
by duality theory G(.) is convex in K, R, AK, AR and concave in pY and
¢*. This implies the following parameter restrictions: agg > 0, agrr >
0, axxRrr — ()(%(R > 0, g fe > 0, Cph > 0, agp < 0, agege < 0,
OrrOKeKe — aiKo > 0.

Now suppose the firm’s objective is to minimize the present value of
its future cost stream. Suppose further that the firm determines its inputs
according to a certainty equivalence feedback control policy, and holds static
expectations on relative prices, output and the technology. In this case the
firm’s objective function is given by the certainty equivalence analog of (3.8)
with G(.) defined by (3.16). As discussed above, in each period ¢ the firm
establishes a plan for periods t,t+1,... of how to choose its inputs optimally
by optimizing this objective function conditional on its expectations, and
implements the plan for the current period ¢ (only). The plan is revised
every period as new information becomes available. For simplicity we assume
that expected (relative) prices equal current (relative) prices. The certainty
equivalence analog of the Euler equations (3.9} and (3.10) is then given by
(r=0,1,...)

_akKKt+T+l -4 [O.’KK -+ (2 + T)OKKK]KH.T (317)
~(1+r)a,  Kipro1+ oxrBeir

= —|ax+axrTi+ agLpy + qu(l + 7+ CYKK“)]i}tl/pa

_aRRR£+T+1 + [err + (2 + T)GRR]RL%-T
—(1+ T)GRRRHr—l + akprKiir
= —[ar+arrTi+ appl + ¢ + 101V 7l
where ¥, denotes expected output. In solving (3.17) we restrict the solution

space to the class of processes that are of mean exponential order less than
(1 + r)/2.2 This rules out the unstable roots. (Of course, the unstable

21 A vector process, say, 7 is said to be of mean exponential order less than s if there
exist constants ¢ and A with 0 < A < & such that Ej ||ne4;|| < eA**? for all t and 7 > 0.
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roots can also be ruled out by imposing the transversality condition.) As
demonstrated in Appendix B, solving (3.17) yields:

AKt = mKK(Kt* - Kt—l) + mKR(R: - Rt—l), (3.18)
AR, = mpx(K} — K1) +mrr(Ry — Re1),
with
Ky _ _ | ®kx OKR -
R QKR ORR

y [ ak + axrT; + agrpy + @ (147 + akke) | /e
t .

ar + aprTi + arppt + gft(r + 6%)

That is, the optimal quasi-fixed inputs can be described in terms of an accel-
erator model. As demonstrated in the appendix, the accelerator coefficients
M = (my;); jor g have to satisfy the following matrix equation:

BM?+(A+rB)M - A=0 (3.19)

with A = (cu;)i j=k r and where B is the diagonal matrix with elements o
and o, in the diagonal. In the appendix we demonstrate further that the
matrix C = (¢i;)ij=k,r = —BM is symmetric and negative definite.

The firm’s demand equations for the variable factors and the firm'’s opti-
mal choice for the “old” stock (to be left over from the beginning-of-period
capital stock) can be derived from (3.16) — using Shephard’s and Hotelling’s
lemma - as M, = Gy — pLL, + g¥K?, L, = 8G,/pF. and K7 = —8G,/dqf:

1 1 ~
M, = {ap— -Q'Offfﬂf(o(th)2 — apgepra; - QQLL(Pf)z}Y:l/P (3.20)

+ox K, 1+ arBRi_1 + oaxrKi 1T + arprRi1T;
1 1
+{§0€KKK£1 + agpKi 1R + §O~’RRRf_1
1 51
5GRRAR?}/Y3 e,
L, = {ar+oarTi+ aLK°Qf( + GLLPf’}ﬁl/p
+ag K1+ app B,

1 2

and
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K° = —{opxept + axoxegi }V" — axxoKioy — apgeRicr. (3:21)

Equation (3.21) provides an economic model for K7 and hence for the de-
preciation rate of capital §; recall that the depreciation rate of capital is
implicitly defined by K¢ = (1 — §f)K,_;. Equation (3.21) explains K7 as a
function of relative prices, output and lagged stocks. The case of a constant
and exogenously given depreciation rate is contained as a special case with
Qrge = Quoge = apxe = 0 and agge = —(1 — 6%). We emphasize that
by imposing those zero restrictions we can formally test whether or not the
depreciation rate is constant.?

One difficulty we face in trying to estimate this model is that in general
the quadratic matrix equation (3.19) cannot be solved for M in terms of A
and B. The equation can, however, be solved for A in terms of M and B:
A= BM(M ++I)(I — M)~*. Since the real discount rate r was assumed to
be constant, the matrix M is constant over the sample. Hence, instead of
estimating the elements of A and B, we may estimate those of M and B.%
To impose the symmetry of C we can also estimate B and C' instead of B
and M. Observe that 4= C — (1 + r}[B — B(C + B)~'B] and hence

oxx = cxx —(L+7)og, - () oy terr)/fl,  (3.22)
arr = crr— (L+7)og, — (@) (ag g +exx)/f,
axr = cxkr— (1+7){a;  opackr)/ ],
with
f= (aKK + CKK)(QRR + crr) — C?K'R'

To re-parameterize (3.18) it also proves helpful to define D = (di;}i;=k.r =
—MA-!. Observe that D = B~ +(1471)(C —rB)~!. Hence D is symmetric

22 A< discussed in more detail in Section 4, Prucha and Nadiri (1996) cannot reject
the hypothesis of a constant depeciation rate for physical capital in the U.S. electrical
machinery industry.

23This re-parameterization approach was first suggested by Epstein and Yatchew (1985)
for a somewhat different model with a similar algebra, and was further generalized by
Madan and Prucha (1989). It will be discussed in more detail and within a general-
ized setting in the next subsection. For additional empirical studies utilizing the re-
parameterization approach see, e.g., Mohnen, Nadiri and Prucha (1986) and Nadiri and
Prucha (1990a,b).
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and its elements are given by

dxx = /o + (1 +71)crr —rag,l/e, (3.23)
dpr = 1/ag; +(1 +r)lekx — rog /e
dxkr = —(l+r)ekr/e,

with
e = (cxx — T YRR — TOR,) — chp

Given the definition of D we can rewrite (3.18) as

AK, = dxxlox +agrTi+axpf +q (1+7+ aKaKo)]f;”p (3.24)
+dgplor + arrTy + arpl + g (r + 5P TP
+lexx /oy | K1+ [exr/ay g | R

AR, = dgglox +axrTi+oxwpr +¢ (14+7+ aero)] V7
+drplor + aprTy + arppr + g (r + 10} ke
+exr/a K1 + [err/ojplBe.

The re-parameterized factor demand equations are now given by (3.20),
(3.21), and (324) with G, YRR, XK R, dKK, dRR and dKR defined by (322)
and (3.23). Once the model has been estimated in the re-parameterized
form we can obtain estimates for the original model parameters via A =
C - (1+7)[B - B(C+B)'B].

A further difficulty in estimating the factor demand equations is that

K, =IK + K? | (3.25)

is unobserved, since K? depends on a set of unknown model parameters.
(We note that K7 is unobserved even in the special case of a constant and
exogenously given depreciation rate, i.e., even in the case where arge. =
oo = e = 0 and agge = —(1 — 6%), as long as 6% is estimated from
the data.) We now assume, analogously to the approach taken by Epstein
and Denny (1980), that equation (3.21) for K7 holds exactly. This assump-
tion is clearly strong. However, it facilitates expression of the unobservable
stocks K; and K?, at least in principle, as functions of observable variables
and the unknown model parameters. More specifically, by solving (3.21)
together with the identity K, = IX + K7 recursively for K; and K7 from
some given initial capital stock, say Ko, we can express K, as a function of
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IK IX ..., Ko, Ri_1,Ri_s,. .., the exogenous variables and the model pa-
rameters. Consequently, upon replacing K; and K, in the variable factor
demand equations (3.20) and in the quasi-fixed factor demand equations
(3.24) by the expressions so obtained we can, at least in principle, rewrite
the system of factor demand equations as a dynamic system of equations
that determines I, R;, M;, and L;, and where in the so obtained system all
variables are observable. (If the initial stock is unobserved we may treat it
as an additional parameter.)

For purposes of estimation we need to add stochastic disturbance terms
to each of the factor demand equations in (3.20) and (3.24). Those distur-
bances can be viewed as random errors of optimization, errors in the data,
or as stemming from random shocks observed by the firm but not by the
researcher; cp., e.g., Epstein and Yatchew (1985). Assuming that the distur-
bances are not correlated with the variables in the firm’s information set we
can, e.g., use those variables (and functions of them) as instruments in esti-
mating the model by the generalized method of moments (GMM) approach.
The GMM estimation approach was introduced by Hansen (1982) within
the context of stationary data generating processes. To allow for {possibly
unknown) correlation over time we may estimate the variance covariance
matrix of the moments with a heteroskedasticity and autocorrelation robust
variance covariance matrix estimator. For a general discussion and recent
results concerning the asymptotic properties of GMM estimators for (pos-
sibly) temporally dependent and nonstationary data generating processes,
including a discussion and consistency results of heteroskedasticity and au-
tocorrelation robust variance covariance matrix estimator, see, e.g., Gallant
(1987), Gallant and White (1988) and Pétscher and Prucha (1991a,b, 1997).

Numerical algorithms for the computation of estimators that are defined
as optimizers of some statistical objective function — as, e.g., the generalized
methods of moments estimator or maximum likelihood estimator — gener-
ally require the numerical evaluation of the statistical objective function for
different sets of parameter values. We note that for the actual numerical com-
putation of estimators of the model parameters it is not necessary to solve
(3.21) and (3.25) analytically for K, (and K7). Rather we can first solve, for
any given set of parameter values, (3.21) and (3.25) numerically for K; (and
K?), and then employ the numerical solution for K; (rather than the ana-
lytic solution) in evaluating the statistical objective function. This approach
is, however, typically cumbersome in that it requires the programming of
the estimation algorithm by the researcher. Recently Prucha (1995, 1997)
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suggested a more convenient approach based on a reformulation of the ana-
lytic solution. This approach can be performed with standard econometric
packages such as TSP.

3.2.2 Solution and Estimation of a General Class of Models

The illustrative example presented in the previous subsection can be viewed
as a special case of a more general class of models where the firm'’s optimiza-
tion problem involves the computation of a stochastic closed loop optimal
control solution and where the objective function is “linear quadratic”. As
discussed above, the stochastic closed loop optimal control solution can al-
ways be found in two steps. In the first step we optimize the firm’s objective
function in each period with respect to the variable factors, for given values of
the quasi-fixed factors. Substitution of the optimized values for the variable
factors back into the firm’s objective function then yields a new optimal con-
trol problem that only involves the quasi-fixed factors, which can be solved
in a second step. In the following let X, denote the, say, n x 1 vector of
quasi-fixed factors, i.e., the vector of control variables for the second step.

For a wide class of “linear quadratic” optimal control problems the opti-
mal control solution will have to satisfy a set of linear second order difference
equations (possibly after recasting a higher order difference equation system
into a second order one). In particular, assume that the control variables
satisfy the following set of difference equations (r =1t +1. .. )

—BE, X1 +GX, — (1+7)B'X,_1 = E; ¢, (3.26)

where B and G are n xn matrices, the ¢,’s represent a set of forcing variables,
r is the discount rate, and where the respective expectations are assumed to
exist. Since the objective function is “linear quadratic”, certainty equivalence
implies that solving (3.26) is equivalent to solving the difference equations
(r=t,t+1,...)

_...-B_XT+1 + Q-XT - (1 + T)EIXT—I = (1 + T)Q-r (327)

with @, = Ey¢-/(1 + 7).

We note that while the methodology discussed here is presented within the
context, of dynamic factor demand models, it applies more generally to any
rational expectations model where the data generating process X, is deter-
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mined in the preceding manner.?* The literature on finding optimal control
solutions and solving rational expectations models has a long history.?® The
aim of the methodology outlined below is not only to obtain a solution of
(3.27) for the X;, but to express the solution so that the estimation of the
model can be performed by standard econometric packages (such as TSP).

We assume that B is nonsingular and restrict the solution space to the
class of processes X; that are of mean exponential order less than (1+ r)/2.
The characteristic roots of the difference equation system (3.27) are defined
as solutions of

p(\) = det [-BN? +GA — (1 + r)B| =0 (3.28)

It is well known and not difficult to show that those characteristic roots come
in pairs multiplying to (1 + r). We assume that these roots are distinct. It
then follows that there are exactly n roots that are less than (1 + r)¥/? in
modulus. Let A be the n x n diagonal matrix of these roots, and let V' be
the n x n matrix of solution vectors corresponding to those roots, i.e.,

_BVA*+ GVA - (14+7)B'V =0, (3.29)

As in Kollintzas (1986) and Madan and Prucha (1989) we assume that V' is
nonsingular, and define M = I —VAV !, Given the maintained assumptions,
the following theorem follows, e.g., from Madan and Prucha (1989):

Theorem 3.1 The solution for X, of the difference equation system (3.26)
(or, because of certainty equivalence, (3.27)) is uniquely given by the following
accelerator model:

X, = MX;+({I-MXi1, X;=AJ, (3.30)
J, = DY (I+D)y g,
T=t
D = (+n{I-M)1-1,
A (I - MY (rI+M"\BM/(1+7)=DBM/(1+7).

24We note that the discussion also applies to processes described by a set of higher order
difference equations, as long as that system can be rewritten as a second order difference
equation system of the above form.

25Gee, e.g., Binder and Pesaran (1995, 1997), Blanchard and Kahn (1980), Broze,
Gouriéroux and Szafarz (1985, 1990, 1995), Broze and Szafarz (1991), Cassing and
Kollintzas (1991}, Epstein and Yatchew (1985}, Hansen and Sargent (1980, 1981), King
and Watson (1995, 1996), Kokkelenberg and Bischoff (1986), Kollintzas (1985), Madan
and Prucha (1989), Uhlig (1995).
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The accelerator matriz M satisfies
—B(I-M¥?+GI-M)—(1+7)B =0. (3.31)
Purthermore, S = B(I — M) is symmetric.

In the case of static expectations on the forcing variables we have g, = g,.
In this case the above solution simplifies in that in this case J; = a,.

Madan and Prucha’s proof of the theorem is based on a decomposition of
X, into a backward component, given by (I — M)X,_;, and a forward com-
ponent, given by g, = X, — (I — M)X,_1, where M is determined by (3.31).
This basic approach has recently also been used by Binder and Pesaran (1995,
1997) to solve rational expectations models, where, in our notation, B is al-
lowed to be nonsingular. Binder and Pesaran refer to this approach as the
quadratic determinantal equation (QDE) method.

The quadratic matrix équation (3.31) can generally not be solved for M
in terms of the original parameter matrices B and G, except in case X;isa
scalar, i.e., n = 1. However, we can use (3.31) to express G in terms of M
and B, i.e.,

G=BI-M+(1+nBU-M™" (3.32)

Thus we can re-parameterize the model in terms of M and B, and estimate
M and B rather than the original parameter matrices G and B. As remarked
above, this re-parameterization approach was first suggested by Epstein and
Yatchew (1985) within the context of a symmetric dynamic factor demand
model where B = B’ (and G = G'). Madan and Prucha (1989) point out,
that this symmetry is, e.g., typically violated if factors are allowed to be-
come productive at different points in time — for example, if some factors
become productive immediately and some with a lag - and/or if we allow for
non-separability between the adjustment cost terms and the inputs. Madan
and Prucha (1989) then extend the re-parameterization approach to non-
symmetric dynamic factor demand models with B # B' (and G = G').
This approach is presented in more detail in Appendix B.? The discussion
in Appendix B also considers an explicit specification of the stochastic pro-
cess governing the forcing variables. In adopting also a re-parameterization

26Both Epstein and Yatchew (1985) and Madan and Prucha (1989) consider matrices
G with additional structure, which they utilize during the re-parameterization. The dis-
cussion in the appendix shows that the re-paramtererization approach works even without
additional structure on G.
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for the parameters describing that process it is possible, as demonstrated in
Appendix B, to obtain closed form analytic expressions for X, in terms of
the model parameters and the forcing variables. The advantage of the re-

parameterized model is that it can be estimated with standard econometric
packages (such as TSP).?’

3.2.3 Discrete versus Continuous Time Specifications

The discussion of dynamic factor demand models has been given in form of
a discrete time model. The reason for this is that empirical data typically
refer to discrete time points. Much of the early theoretical analysis of dy-
namic factor demand models was given in continuous time; see, e.g., Eisner
and Strotz (1963), Gould (1968), Lucas (1967a,b), Mortenson (1973) and
Treadway (1969, 1970, 1971, 1974). Furthermore, in deriving dynamic factor
demand equations for empirical estimation, the third generation dynamic fac-
tor demand literature typically first solved a continuous time optimal control
problem, and then specified the estimating equations as a discrete time ap-
proximation to the continuous time optimal control problem.* Prucha and
Nadiri (1991) note that the empirical specifications obtained from the latter
approach differ from those derived directly from a discrete time model. They
emphasize that the formula for the accelerator coefficient obtained from a
continuous time optimal control problem model is not appropriate within a
discrete setting (without further modification). In particular, they point out
that while in a discrete time setting the accelerator coefficient should tend to
unity as adjustment cost tend to zero, the continuous time formula for the
accelerator coefficient tends to infinity. As expected, the accelerator coeffi-
cient. derived from a discrete time optimal control problem tends to unity as
adjustment cost tend to zero. We emphasize that the point being made here
should not be understood as a statement against economic analysis in contin-
uous time, but rather only to point to potential pitfalis if formula obtained
in a continuous time setting are nsed (without modification) to estimate and
test economic relationships from discrete data.

270f course, one can solve the quadratic matrix equation numerically. However for
the purpose of estimation this approach can in general not be implemented in standard
econometric packages and is computationally much more involved.

28This approach was, e.g., taken by Berndt, Morrison and Watkins (1981), Denny, Fuss
and Waverman (1981b), Morrison (1986a,b) and Morrison and Berndt (1981).
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3.3 Estimation of Dynamic Factor Demand Models for
General Technologies

The theoretical model specified in Section 3.1 is quite general, and allows
for the firm’s technology and optimal control problem to be “non-linear
quadratic”. We note that in case the firm’s optimal control problem is not of a
“linear quadratic” nature it is generally not possible to obtain an explicit ana-
lytic expression for the firm’s stochastic closed loop feedback control solution.
In the following we discuss strategies for estimating “non-linear quadratic”
dynamic factor demand models. Those strategies can, of course, also be
applied in estimating “linear quadratic” dynamic factor demand models.

Before proceeding we re-emphasize that while the model specification in
Section 3.1 is quite general, the discussion does not impose this generality.
That is, the discussion also covers implicitly less general specifications as
special cases. The specification in Section 3.1 contains in particular the case
where all factors are variable — and hence the firm is at each point in time in
long-run equilibrium - or the case where the depreciation rates of all quasi-
fixed factors are exogenously given as special cases.

3.3.1 Estimation of Variable Factor Demand Equations

In estimating a factor demand model we can, in principle,. always attempt
to estimate the unknown model parameters from only a subset rather than
the entire set of factor demand equations. Statistically there are pros and
cons for such a strategy: If the model is correctly specified, we will generally
obtain more efficient estimates by utilizing the entire set of factor demand
equations rather than a subset. However, if one or a subset of the factor
demand equations is misspecified, then not only the parameters appearing
in the misspecified equations, but in general all model parameters will be
estimated inconsistently.

As is evident from the discussion in Section 3.1, certain aspects of the
model specification such as the nature of the optimal control policy and
the expectation formation process only enter into the specification of the
demand equations for the quasi-fixed factors. Consequently, in this sense
the demand equations for the quasi-fixed factors are more susceptible to
potential misspecification than the demand equations for the variable factors.
In cases where the determinants of the demand for the quasi-fixed factors
are not of real interest, but where one is especially concerned about the
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possibility of misspecification of the quasi-fixed factor demand equations, it
may be prudent only to estimate the variable factor demand equations. By
estimating only the variable factor demand equations we are typically also
faced with a less complex estimation problem.

The variable factor demand systems can take various forms depending on
the specification of the technology. E.g., in case the technology is specified in
terms of a translog restricted cost function the variable factor demand system
is typically given by a system of share equations.” The model specified in
Section 3.1 allows depreciation rates of some of the quasi-fixed factors to
be determined endogenously and to be modeled as a function of unknown
parameters. As remarked above, as a result the stocks of those quasi-fixed
factors are then unobserved. To estimate the system of variable factors we
may proceed analogously as outlined at the end of Section 3.2.1; for empirical
applications see, e.g., Epstein and Denny (1980) and Nadiri and Prucha
(1996).

3.3.2 Euler Equation Estimation Approach

In Section 3.1 we derived a general set of stochastic Euler equations that
need to be satisfied by the stochastic closed loop feedback optimal control
solution for the quasi-fixed factors without restricting the technology to be
“linear quadratic”. Those stochastic Euler equations are given by equations
(3.9) and (3.10). In Section 3.2 we solved those equations explicitly for the
case where the technology is indeed “linear quadratic”. In case the technology
is “non-linear quadratic” such an explicit solution is generally not available.
In this case we may then adopt an alternative estimation approach due to
Kennan (1979), Hansen (1982), Hansen and Sargent (1982), and Hansen and
Singleton (1982).3% In this approach all expectations of future variables are
replaced by their observed values in future periods. More specifically, in this
approach we would rewtite the stochastic Euler equations (3.9) and (3.10) as

29The variable factor demand equations typically form a triangular structural system.
Lahiri and Schmidt (1978) point out that the full information maximum likelihood (FIML)
estimator and the iterative seemingly unrelated regressions (SUR) estimator are identical
for triangular structural systems. This identity might be thought to imply that for such
systems the variance covariance matrix estimator typically associated with the SUR esti-
mator is a consistent estimator for the asymptotic variance covariance matrix. However,
Prucha {1987) points out that this is generally not the case.

30The approach has been used widely in empirical work. Early empirical implementa-
tions include Pindyck and Rotemberg (1983a,b) and Shapiro (1986).
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If expectations are truly formed rationally we have FEwK = 0and Exft =0,
and equations (3.33) and (3.34) can then be estimated consistently by the
GMM estimation approach.?® Of course, the stochastic Euler equations
(3.33) and (3.34) can be augmented by the demand equations for the vari-
able factors. Recall that K, denotes the vector of quasi-fixed factors for
which the depreciation rates are determined endogenously and are modeled
as a function of unknown parameters. Thus, as remarked, K; is unobserved.
In estimating the demand equations we may again proceed analogously as
outlined at the end of Section 3.2.1.

The Euler equation estimation approach allows considerable flexibility
in the choice of the functional form for the technology. Also, it does not
require an explicit specification of the process that generates the variables
exogenous to the firm’s decision process or specific assumptions concerning
the firm’s planning horizon. However, it is generally not fully efficient in that
it neglects information from the entire set of Euler equations (and, e.g., the
transversality condition), which only comes into play by actually solving the
Euler equations. In their comparison of alternative methods for estimating
dynaric factor demand models Prucha and Nadiri (1986) report that small
sample biases and efficiency losses seem especially pronounced for parameters
that determine the dynamics of the demand for the quasi-fixed factors. We
note further that while the fact that the Euler equation estimation approach
does not require either an analytic or numerical solution for the firm’s optimal
demand for the quasi-fixed factors is very attractive, such a solution - or some
approximation to it - will be needed, e.g., for tax simulations.

3iFor references concerning the asymptotic properties of GMM estimators see the dis-
cussion at the end of Section 3.2.1.
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3.3.3 Finite Horizon Modeling Approach

A further approach for modeling and estimating dynamic factor demand
models that allows for “non-linear quadratic” technologies and non-static
expectations was suggested by Prucha and Nadiri (1982). In this approach
the firm is modeled with a finite but shifting planning horizon of, say H + 1
periods, and is assumed to set its inputs according to a certainty equivalence
feedback control policy.® In contrast to, e.g., Schramm (1970) the firm is
not assumed to cease to exist beyond the actual planning horizon. Rather
in this approach the firm is assumed to set its inputs beyond the actual
planning horizon under the simplifying assumption of static expectations and
a constant firm size. Prucha and Nadiri (1986, 1991) explore the relationship
between the optimal factor demands implied by the finite horizon model vs.
that obtained from an infinite horizon model. Their results suggest that
the finite horizon model approximates the infinite horizon model well even
for moderate sizes of the planning horizon. For recent contributions to the
literature on finite horizon dynamic factor demand models see, e.g., Gordon
(1996) and Steigerwald and Stuart (1997). '

An attractive feature of the finite horizon modeling approach is that it
leads to a finite dimensional optimization problem. The optimal plan values
in each period ¢ can be obtained by “simply” solving a finite dimensional sys-
tem of equations. We note that in empirical applications it may be difficult
to obtain explicit analytic expressions for the optimal plan values. However,
Prucha and Nadiri (1982, 1988) discuss numerical algorithms for the estima-
tion of the implied dynamic factor demand equations, without requiring such
an explicit analytic solution.

3.4 Further Developments

In addition to the developments in modelling dynamic factor demand de-
scribed above there have been other important developments. In particular,
since the late 1970’s there was a process of convergence between the invest-
ment literature based on Tobin’s (1969) ¢ and the investment literature with
explicit adjustment costs. In Tobin’s investment model the rate of invest-
ment is a function of ¢, defined as the ratio of the market value of capital to

32Concerning certainty equivalence and first-order certainty equivalence of this policy
with the stochastic closed loop feedback control policy see also the discussion and references
given at the end of Section 3.1.1.
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its replacement cost. Hayashi (1982) shows the equivalence of the two invest-
ment theories for a general class of models; see also Mussa (1977) and Abel
(1983). The literature distinguishes between average ¢, defined as the ratio
of the market value of existing capital to its replacement cost, and marginal
g, defined as the ratio of the market value of an additional unit of capital
to its replacement cost. While average g is observable, marginal ¢, which is
the quantity relevant for the firm’s investment decision, is not observable.
However Hayashi (1982) also derives an exact relationship between average
g and marginal ¢, which is important for a proper empirical implementation
of the ¢ theory of investment.

Another important development is an expanding literature that considers
the effects of irreversibility combined with uncertainty and timing flexibility
on the firm’s investment decision. Irreversibility is another avenue that in-
troduces a dynamic element into the investment decisions. The literature
on irreversible investment dates back to Arrow (1968). The more recent
literature utilizes option pricing techniques to determine the firm’s optimal
investment pattern under irreversibility. A survey of this literature and ex-
position of those techniques is given in Dixit and Pindyck (1994).3 One
way to incorporate irreversibility into an adjustment cost model is to assume
infinitely large adjustment costs for negative investment. This approach was,
e.g., taken by Caballero (1991). Another approach was explored by Abel and
Eberly (1994). Their model incorporates Arrow’s observation that the resale
price of capital may be less than the purchase price of new capital, which
includes the case where the resale of capital is impossible, corresponding to
the extreme case of a resale price of zero. Additionally their model includes
adjustment costs as well as fixed costs and thus provides for an interesting
integration of the irreversible investment and adjustment cost literature.

33For early contributions to this literature see Bertola (1988), Pindyck (1988, 1991) and
Dixit (1991, 1992).
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4 Applications

There are numerous applications of the factor demand models using differ-
ent sets of data and answering important questions of theoretical, empirical
and policy interest. There is a vast literature showing the wide spread use
factor demand models for empirical analysis**. The class of dynamic factor
demand models considered in Section 3 has been used to study a variety
of subjects ranging from the analysis of the production structure of various
industries, the rate of technical change, the impact of R&D investment and
R&D spillovers, the convergence of productivity levels, the effect of public
infrastructure on the private sector productivity, the impact of financial vari-
ables on production decisions, the cyclical behavior of utilization and markup
of prices over costs, etc. Here we will provide only a brief description of a
few applications of dynamic factor demand models for illustrative purposes.
'To save space we do not report on the formal structure of the models used
in the studies.

As remarked above, besides analyzing productivity behavior, the dynamic
factor demand methodology also addresses issues concerning the structure of
production such as substitution among factors of production in response to
changes in relative prices, technological change, changes in public capital,
international or inter-industry or inter-firm spillovers due to R&D invest-
ment, etc. The time path of the adjustment of different types of capital
and the linkages between short-, intermediate- and long-run behavior are ex-
plicitly modeled and estimated. Changes in capacity utilization rates and
depreciation rates of different types of capital and their effects on the de-
mand for other inputs can be estimated. Given estimates of the depreciation
rates it is possible to decompose gross investment into replacement and net
investments, and generate consistent measures of capital stocks within the
framework of the dynamic factor demand model.

34Gee, e.g., Berndt, Morrison and Watkins (1981), Jorgenson (1986, 1995a,b, 1996a,b),
Watkins (1991), Galeotti (1996) and Good, Nadiri and Sickles (1997) for partial references.
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4.1 Tax Incentives, Financing and Technical Change

The effect of taxes and other incentives on factor demand and output growth
has been of a long and ongoing interest in the literature. The role of taxes
as a component of the user cost of capital was made clear in seminal papers
by Jorgenson (1963) and Hall and Jorgenson (1967, 1971). Jorgenson and
his associates have examined the impact of tax incentives for business invest-
ment in the United States in a series of papers; see Jorgenson (1996b) for
more detailed references®®. Hall and Jorgenson (1967, 1971) and Jorgenson
(1971) modeled the accelerated depreciation of the 1954 tax law and guide-
lines for asset lifetimes, the investment tax credit introduced in 1962, the
reduction in corporate tax rate in 1964 and the suspension of the investment
tax credit in 1966. These tax law changes were incorporated as elements of
the user cost of capital. The general conclusion of this body of work was
that investment incentives exert a considerable long-run effect on the rate
of capital accumulation. Each major change in investment incentives was
followed by an investment boom which in turn led to increases in the level
of economic activity that induced further increases in investment. However,
the lag between changes in investment incentives and investment expenditure
was found to be fairly long.

As discussed in Section 3, given the underlying intertemporal optimiza-
tion framework, the notion of a user cost of capital or the after tax acquisi-
tion price is also present within the framework of the dynamic factor demand
modes reviewed in this paper. A general discussion of the effect of taxes and
incentives within the context of dynamic factor demand models is, e.g., pro-
vided by Bernstein and Nadiri (1987a). We emphasize that in general the
effect of any tax changes designed to affect a particular factor of production
will influence also the demand for other inputs®. This arises from the inter-
relatedness of factors. Early generations of dynamic factor demand models
assumed separability between the quasi-fixed factors and hence could not
fully capture such effects.

Tax policy operates through factor prices. The effect of changes in tax
policy depends in general on the degree of substitutability or complemen-

35Recent extensive studies of the effects of taxes also include, e.g., Auerbach and Hassett
(1992), Cummins and Hassett (1992), and Feldstein (1994).

36Recently Diewert and Lawrence {1996, 1998) have examined the effect of the excess
burden of taxes using general models which allow cross price effects of taxes on the demand
for factors of productions.
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tarity among factors of production. As discussed in Section 2, technological
change, if not neutral, depends on relative prices (as is, e.g., evident from its
definition on the cost side). Hence, tax policy can also affect technological
change. We note that in the short-run the effects of changes in tax policy on
factor demands may be quite different from their effects in the long-run in
that in the short-run the firm may find it advantageous to over-adjust some
of its variable factors to lessen the effects of adjustment costs. The frame-
work of a dynamic factor demand model also provides a natural setting for
analyzing the effects of expectations about future tax policies®.

As an illustration of the application of the dynamic factor demand mod-
els for tax analysis, consider the recent study by Bernstein (1994b). The tax
instruments considered are the corporate income tax (CIT), the investment
tax allowances (ITA), and capital consumption allowance (CCA). A nor-
malized variable profit function with quadratic adjustment costs for capital
stock is formulated and the model is estimated using data for the Turkish
electrical machinery, non-electrical machinery, and transportation equipment
industries. The empirical results suggest the following findings:

1. The adjustment cost parameter estimate suggest that these industries
are not in long-run equilibrium. The mean value of the speed of ad-
Justment ranged between .33 to .36 for each of the industries implying
that about 35 percent of the capital stock adjustment occurs within
the first year of capital accumulation.

2. The effects of taxes and incentives on production and investment de-
cisions are transmitted though changes in the rental price of capital.
The magnitudes of the input elasticities to changes in tax instruments
differ in short-, intermediate- and long-run due to presence of adjust-
ment costs. They also differ with respect to the various tax policy
instruments, as well as across industries. The long-run elasticities of
output and the inputs are quite small, but larger than the short- and
intermediate-run elasticities. Another important point is that, because
of the inter-dependence among production decisions embedded in the
dynamic factor demand models, taxes and incentives targeted toward
a particular input also has effects on the other inputs.

3. Productivity growth can be affected by the tax policies. This arises
since productivity growth depends on the growth of output and inputs,

39See, e.g., Dubey (1996).
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which are affected by changes in factor prices. As noted above, the
latter are in turn affected by changes in tax instruments.

Another example of the use of dynamic factor demand models involves the
integration of production and financial decisions of the firm. In the theoret-
ical literature, the existence of informational imperfections has provided the
means to genecrate interdependencies between the production and financial
decisions. Generally, in this literature, debt levels are determined through a
trade-off between agency costs and tax shields, while dividends are set by a
trade-off between tax disadvantages and signaling benefits.?” Bernstein and
Nadiri (1993) implement this approach using data for U.S. manufacturing.
They formulate a dynamic factor demand model which integrates produc-
tion decisions with decisions on the level of debt and dividend payouts. The
model yields a set of simultaneous equations for output, variable inputs, cap-
ital, debt and dividends. These conditions define a temporary equilibrium.
There are two costs of adjustment. The first is associated with the internal
cost of capital installation. The second arises from capital financing and is
defined by the agency costs from debt issues. The study reports an estimate
of total adjustment cost of approximately $.22 per dollar of investment. This
amount consists of $0.05 attributable to the agency cost from bond issues,
and the remaining $.17 arises from capital installation costs. The decompo-
sition of TFP growth calculated by Bernstein and Nadiri show that for the
U.S. manufacturing sector the signaling benefits explains about 4.2 percent
of the TFP growth rate, while agency costs reduce it by 3.3 percent.

As illustrated by the above described applications, dynamic factor de-
mand models provide a powerful framework to trace the effects of vari-
ous policy decisions, such as tax and incentive policies and financial deci-
sions. It is possible to examine the impact of these decisions in the short-,
intermediate- and long-run on the production decisions and productivity per-
formance. Also, the effect of expectations can be examined in this framework.

37See the survey by Fazzari, Hubbard and Peterson (1996} and the references therein.
Kim and Maksimovic (1990) examine the effect of agency costs on productivity growth for
the U.S. airline industry, and Greenwald, Kohn and Stiglitz (1990) look at the influence
of agency costs on productivity growth for the U.S. private sector.
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4.2 R&D Investment, Production Structure and TFP
Decomposition

The role of R&D and the behavior of other factors of production in the U.S.,
Japanese, and German manufacturing industries was explored by Mohnen,
Nadiri and Prucha (1983, 1986) based on a special case of the dynamic factor
demand model considered in Section 3. One of the results of the study was
that the average net rates of return were similar for both R&D and capital
in the manufacturing sectors of the three countries. However the rate of
return on R&D was greater than that on capital in each sector. A further
finding was that it takes a considerably longer time for the R&D stock to
adjust to its optinmumn value than for the physical capital stock. The average
lag for capital was approximately three years in the three countries, while
the average lag for R&D was about five years in the U.S., eight years in
Japan and ten years in Germany. The patterns of own- and cross-price
elasticities of the inputs varied considerably among countries. The own-
price elasticities were generally higher than the cross-price elasticities. There
was mostly a substitutional relationship between the inputs. The output
elasticities of the inputs in the short- and intermediate-runs differed from
each other and across countries. The materials input overshot in the short-
run its long-run equilibrium value to compensate for the sluggish adjustments
of the two quasi-fixed inputs, capital and R&D; the output elasticities of the
capital stock were larger than those of R&D in the short- and intermediate-
runs; also, there was evidence of short-run increasing returns to labor. The
Japanese manufacturing sector seems to have higher elasticities than the U.S.
manufacturing sector and to display more flexibility.

Nadiri and Prucha {1983, 1990b) explore the production structure of the
U.S. Bell System before its divestiture®®. They consider a model with two
variable factors, labor and materials, and two quasi-fixed factors, physical
and R&D capital. The technology is not assumed to be linear homogeneous,
but is allowed to be homothetic of a general form. The estimated degree of
scale was about 1.6. As a consequence, in decomposing the traditional TFP
measure they find that almost 80% of the growth of TFP is attributable
to scale. The conventional TFP measure, if it is considered as a measure
of technical change, was thus seriously biased upwards. The estimated rate

38For an exploration of Bell Canada see, e.g., Bernstein (1988b,c, 1989b} and Fuss
(1994).
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of technical change was only about 10% to 15% of the measured TFP. The
most significant source of output growth was the growth of capital with a
contribution of over 50%, while labor and material contributed about 15%,
and the contribution of technical change was about half as much. The growth
of R&D contributed about 2% which, given its small share in the production
is fairly substantial. The rate of return on R&D, however, was much greater
than that on plant and equipment investment. The net rate of return for
R&D investment is about 20% in comparison to the net rate of return of
about 7% for investment in physical capital.

The study by Nadiri and Prucha also considers alternative specifications
of the length of the planning horizon and the expectation formation pro-
cess. They find that the optimal plans for the finite horizon model converge
rapidly to those of the infinite horizon model as the planning horizon extends.
This observation suggests that additional planning costs will quickly exceed
additional gains from extending the planning horizon, which may provide
a rational for why many firms plan only for short periods into the future.
Parameter estimates differ in their sensitivity to alternative specifications of
the expectation formation process. Estimates of parameters determining the
adjustment path of capital and R&D turned out to be sensitive. On the
other hand, estimates of other characteristics of the underlying technology
such as scale seem to be insensitive to the specification of the expectation
formation process.

Recently the dynamic factor demand framework has been used to explore
the role of high-tech capital and information technology equipment, as well
as human capital, on the production structure and productivity growth in
U.S. manufacturing; see Morrision (1997) and Morrision and Siegel (1997).
One finding is that high-tech capital expansion increases demand for most
capital and non-capital inputs overall, but saves on material inputs.

4.3 Technological Spillovers and Productivity Growth

An important feature of R&D investment that distinguishes it from other
forms of investment is that firms which undertake R&D investment are often
not able to exclude others from freely obtaining some of the benefits; that is,
the benefits from R&D investment spill over to other firms in the economy,
and the recipient firms do not have pay for the use of knowledge generated by
the investing firms’ R&D activity. R&D spillovers may affect the production
structure and factor demand in several ways. In particular, R&D investment
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may shift the production function up (or the cost function downward). This is
the direct productivity effect. Also, changes in the R&D spillover may cause
factor substitution. In the language of the technological change literature,
changes in R&D spillovers may cause factor biases, which may be either
factor using or factor saving. Changes in the R&D spillovers may also affect
the adjustment process of the quasi-fixed factors.

There are a number of empirical studies using the dynamic factor de-
mand framework to measure the impact of technology spillover.3® As an
illustration, consider the Bernstein and Nadiri (1989) study which provides
an example of intra-industry spillover effects among the U.S. instruments,
machinery, petroleum, and chemical industries. Several interesting results
are reported:

1. The adjustment process of the two quasi-fixed inputs were shown to be
interdependent, i.e., as the physical and R&D capitals adjust toward
their equilibrium levels, the speed of adjustment of one is affected by the
adjustment of the other. The estimates indicate that about 33% to 42%
of the adjustment of physical capital stock occurred within a single year.
This adjustment process differs across various industries reflecting the
nature of the industries considered. R&D capital adjustment is lower
than that of physical capital; the estimates show that about 22% to 30%
of the adjustment of R&D capital occurred in one year. The adjustment
processes of the R&D capital also vary among the industries.

2. There are a number of effects associated with the intra-industry R&D
spillover. First, costs decline as knowledge expands for the externality-
receiving firms. Second, production structures are aflected, as fac-
tor demands change in response to the spillover. Third, the rates of
both physical and knowledge capital accumulation are affected by the
R&D spillover. The results indicate that the short-run demand for
R&D and physical capital decreased in response to an increase in the

39n recent years there has been a considerable effort to model and estimate the role
of R&D spillover. There are a number of different approaches that have been taken to
specify and measure technical spiliover effects. Recent studies on R&D spillovers within
the framework of dynamic factor demand models other than those dicussed in this section
include papers by Bernstein (1989a), Bernstein and Nadiri (1988), Goto and Suzuki (1989},
Nadiri and Kim (1996), Mohnen (1990, 1992a), Mohnen and Lepine (1991), Srinivasan
{1995). For a more complete list of references on R&D spillovers the interested reader
may consult the survey papers by Griliches {(1992) and Nadiri {1993).
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intra-industry spillovers. Both the variable and average costs for each
industry declined in response to the intra-industry spillovers. Spillover-
receiving firms gained a 0.05 percent, 0.08 percent, 0.11 percent, and
0.13 percent average cost reduction, respectively, in the instruments,
machinery, petroleum, and chemical industries as a result of a 1 percent
increase in the intra-industry spillover. Not surprisingly, the effect of
spillovers on the factor inputs and cost was larger in the long-run than
in the short-run.

3. The results also indicate that for all four industries the net social rate
of return greatly exceeded the net private rate of return. However,
there was significant variation across industries in the differential be-
tween the returns. For chemicals and instruments, the social rate of
return exceeded the private rate of return by 67 and 90%, respectively.
Machinery exhibited the smallest differential of about 30%, and the
petroleum industry exhibited the greatest differential as the social rate
exceeded the private rate by 123%.

Bernstein’s (1988a) study of Canadian industries shows that spillovers
occur between rival firms within the same industry and between firms oper-
ating in different industries. These spillovers, specially those associated with
inter-industry spillovers, caused unit costs to decline and the structure of pro-
duction of the receiving industries to change as the spillovers induced factor
substitution. The productivity effect of the spillovers and the gap between
the private and social rates of return to R&D varied among the industries.

Mohnen (1992b) explored the question of possible cross-country R&D
spillovers among the manufacturing sectors of U.S., Japan, France and UK.
He used a cost function with quasi-fixed factors and adjustment cost based on
the symmetric generalized McFadden functional form. The results indicated
that foreign R&D yields greater cost reduction than own R&D, own R&D
and foreign R&D are complementary and foreign R&D can explain part of
the productivity convergence among the manufacturing sectors of the lead-
ing industrial countries. In the case of the Canadian manufacturing sector,
Mohnen (1992a) reports surprisingly weak spillover effects for R&D under-
taken in other major industrialized countries. Bernstein and Mohnen (1994)
have developed a bilateral model of production between U.S. and Japanese
economies and trace the effects of international R&D spillovers on production
cost, traditional factor demands, the demand for R&D capital and produc-
tivity growth in each country. Their results show that international spillovers
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increased U.S. productivity growth by about 15%, while productivity growth
of the Japanese economy is increased by 52%. The R&D spillovers affect the
structure of production in both countries, particularly the demand for labor
in Japan.

4.4 Capital Utilization, Depreciation Rates, and Re-
placement Investment

In general productivity growth may, at least in the short-run, be influenced
by whether or not various factors of production are fully utilized. Most
of the studies of firm demand for factors of production assume a constant
rate of utilization of inputs and ignore the fact that the firm can choose
simultaneously the level and rate of utilization of its inputs. As discussed
above, a model which allows for the capital utilization and depreciation rate
to be determined endogenocusly, along the lines of the dynamic factor demand
model considered in Section 3, was first implemented empirically by Epstein
and Denny (1980). Using only the demand equations for the variable factors
their model was estimated from U.S. manufacturing data, based on a data
set developed by Berndt and Wood (1975). Epstein and Denny report an
average rate of depreciation of 0.126 for physical capital. The estimated
depreciation rates vary between 0.11 and 0:145 over the sample. The model
generates a capital stock series which is quite different from that implied by
the Berndt and Wood (1975) data. Also, their model indicates substantial
cross price elasticities, showing the inter-related nature of the choice about
capital usage and other inputs and outputs which would be ignored if a
simpler framework is used to describe the firm’s technology. Kollintzas and
Choi (1985) and Bischoff and Kokkelenberg (1987) report estimates of 0.126
and 0.106 on average for the rate of depreciation of physical capital in the
U.S. manufacturing sector.

Morrison (1992a) reports that a significant portion of cost declines in the
U.S., Canadian and Japanese manufacturing industries, resulting from fluc-
tuations in capacity utilization and scale economies, has been erroneously
attributed to technical change. Morrison (1992b) finds furthermore that
the markups of prices over costs are significant and influence measured pro-
ductivity. This conclusion is also supported by Nadiri and Nandi (1997)
in their study of the U.S. telecommunications industry. Galeotti and Schi-
antarelli (1997) have examined the counter-cyclical behavior of markups in
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U.S. two digit manufacturing industries in the context of a dynamic opti-
mization model. Their results show that markups are affected by both the
level and growth of the demand facing an industry in the presence of cost of
adjustment.

As discussed above, Prucha and Nadiri (1990, 1996) apply the dynamic
factor demand model specified in Section 3.2.1 to data for the U.S. elec-
trical machinery industry for the period 1960 to 1980. This study builds
on an earlier study by Nadiri and Prucha (1990a) that is based on capital
stock data from the Office of Business Analysis (OBA). They estimate two
versions of the model. In the more general version of the model, K¢, the
stock of capital left over at the end of the period from the beginning of
period stock, or equivalently the depreciation rate of capital, is permitted
to be determined as a function of output and relative prices; see equation
(3.21). In the other version of the model the depreciation rate of capital is
taken to be constant but unknown by imposing the parameter restrictions
OLKe = Qxoxe = Grge = 0. We note that for both models the depreciation
rate is estimated and the respective capital stocks are generated internally
during estimation in a theoretically consistent fashion. The paper reports
the following findings:

1. The depreciation rate of capital is estimated to be 0.038 as compared
to 0.055 for the Office of Business Analysis (OBA) capital stock series.
This translates into a difference of 16% in magnitude between the im-
plied capital stock series and the OBA capital stock series at the end
of the sample period.

2. Based on their tests Prucha and Nadiri accept the model correspond-
ing to a constant depreciation rate. This finding is interesting, since
the assumption of a constant depreciation rate has a long history, but
has also been the subject of considerable debate. The assumption of a
constant depreciation rate was challenged by, among others, Feldstein
and Foot (1971), Eisner (1972), Eisner and Nadiri (1968, 1970), Feld-
stein (1974), Feldstein and Rothschild (1974) and Bitros and Kelejian
(1974). It was forcefully defended by Jorgenson (1974)*°. Among other
things he pointed out that some of the earlier studies on replacement
investment were not fully consistent, in that they employed capital

40The validity of a constant depreciation rate has also been tested in several papers by
Hulten and Wykoff (1980, 1981a,b,c)
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stock data that were generated under a different set of assumptions
than those maintained in those studies. Within the modeling frame-
work discussed here the capital stocks are generated in an internally
consistent fashion from gross investment data. Thus, as a by-product,
a consistent decomposition of gross investment into replacement invest-
ment and net investment can be obtained. In particular, replacement
investment 1% is defined as the difference between the beginning of
period stocks and what, is left over from these stocks at the end of the
period, i.e., IFf = K; ; — K?. Net investment I*F is defined as
the difference between gross investment and replacement investment,
ie, IKE = [¥ — [KR = K, — K?. For the entire sample period net
investment as a percent of gross investment was about 60 percent. As
expected, this ratio exhibited cyclical patterns with a low of 41 percent
in 1975. The ratio of net investment to gross investment based on the
estimated model is much higher than the rates implied by the OBA
capital stock series.

. The study finds significant adjustment costs. The own accelerator coef-
ficient for physical capital is approximately .20, while that for the R&D
capital is .15. The cross accelerator coeflicients are small (about .02).
The total adjustment costs are about 15% of total gross investments
for each of these two types of capital.

. The pattern of output elasticities reveal that the variable factors of
production, labor and materials, respond strongly in the short-run to
changes in output; in fact, they overshoot their long-run equilibrium
values in the short-run. The output elasticities of the quasi-fixed fac-
tors, capital and R&D, are small in the short-run but increase over time.
The long-run output elasticities suggest an estimate of economics of
scale of approximately 1.2. The own price elasticities are, as expected,
all negative. The results also suggest that the cross price elasticities
of labor and capital may be sensitive to whether or not the rate of
depreciation is endogenous.

. The study also provides a decomposition of the sources of total factor
productivity growth. This decomposition is reproduced in Table 4.1
for both versions of the model.
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Table 4.1: Decomposition of TFP Growth in the U.S. Electrical Machinery
Industry in Percentages: 1960-1980.

Model
Estimated capital Estimated capital
stock: constant stock: variable
depreciation rate  depreciation rate
Technical change 0.69 0.66
Scale effect 0.83 0.93
Adjustment cost effects
Temporary equilibrium 0.42 0.39
effect
Direct adjustment 0.02 0.02
cost effect
Variable depreciation effect 0.00 0.02
Unexplained residual 0.03 -0.03
Total factor productivity 1.99 1.99

The decomposition shows that the estimate of productivity growth
based on the traditional TFP measure is approximately three times
larger than the estimate of pure technical change generated by the
econometric model. The main source of the difference is the scale ef-
fect which represents about 46 percent of the growth in the traditional
TFP measure. The remainder of the difference is mainly due to the
presence of adjustment costs, which accounts for almost 21 percent of
total factor productivity growth. The estimated pure technical change
exhibits a very smooth pattern and increases over time.

Nadiri and Prucha (1996) employ a special case of the model in Section
3 — where the depreciation rates are modeled as constant but unknown —
to estimate the depreciation rates of both physical and R&D capital for the
U.S. total manufacturing sector. The depreciation rate of R&D capital was,
in particular, estimated to be about 0.12, which is quite similar to the ad hoc
assumption of the R&D depreciation rate used in many studies that uses the
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R&D capital stock as an input in the production function*!. Given estimates
for the depreciation rates, gross investment can again be decomposed into
net and replacement investment. For the entire sample period net investment
in R&D in the U.S. total manufacturing as a percent of gross investment was
16 percent. However during the 1970s this percentage declined to 5 percent,
reflecting the near collapse of R&D investment in that period.

415ee, e.g., Griliches {1980), Bernstein and Nadiri (1988, 1991), Mohnen, Nadiri and
Prucha (1983,1986), Mamuneas and Nadiri (1996), Nadiri and Prucha (1990a,b).
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5 Effects of Misspecification: A Monte Carlo
Study

In this section we briefly explore, by means of a Monte Carlo study, the
effects of model misspecification on the estimation of important characteris-
tics of the production process such as technical change, scale and adjustment
speed. The “true” model from which the data for the Monte Carlo study
are generated has the same basic structure as the model for the U.S. elec-
trical machinery sector considered in Prucha and Nadiri (1996), but differs
in terms of the specification of the restricted cost function and in terms of
the assumed expectation formation. The model considered by Prucha and
Nadiri is discussed in detail in Section 3.2.1. The restricted cost function
for that model is given by (3.16), which is a linear-quadratic function in pZ,
g, ¢% K_,/Y?, R_,/Y?, AK/Y? AR/Y* T, multiplied by Y*, where we
have maintained the notation of Section 3.2.1. In contrast, the restricted
cost function of the true model underlying this Monte Carlo study is linear-
quadratic in p*, ¢¥, ¢, K_,, R_;, AK, AR, Y, T, which allows for an
explicit analytic solution even under non-static expectations. In the follow-
ing we use the abbreviations LQR (short for “linear-quadratic in ratios”) and
LQ (short for linear-quadratic) to denote the former and latter restricted cost
function. The true model assumes that prices and output are generated by
simple first order autoregressive processes and takes expectation to be ratio-
nal (and thus non-static). Explicit expressions for the demand equations for
the labor, materials, capital and R&D of the true model and the equations
for the forcing variables are given in Appendix C.

The selection of the true model parameters for the Monte Carlo study
was guided by fitting a static version of the model to the U.S. electrical ma-
chinery data used in the Prucha and Nadiri study, and by estimating first
order autoregressive processes for the forcing variables from those data. The
aim was to select the true model parameters such that the generated data
exhibited properties consistent with those found in the study by Prucha and
Nadiri. The selection of the variance and covariances of the disturbance pro-
cesses was also guided by those empirical results, as well as by computational
considerations to keep the computing time within practical limits. In analogy
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to the study by Prucha and Nadiri the data were gencrated for the period
1960 to 1980, with the initial values taken from the data set for that study.
Each Monte Carlo experiment consisted of 100 trials.*?

The R? values (calculated as the squared correlation coefficient between
the actual variables and their fitted values calculated from the reduced form
based on true parameter values) for the factor demand equations were ap-
proximately .98; those for the forcing variables ranged from, .93 to .85. Out-
put based technical change, Ay, and scale, p, are computed from (2.15).
Their values depend on the input and output mix. The median value of Ay,
computed from the Monte Carlo sample, corresponding to the true parame-
ter values decreased in a smooth pattern from 1.53 in 1961 to 1.00 in 1976
and 0.94 in 1980. The median value of p corresponding to the true parameter
values was 1.09 in 1961, 1.11 in 1976 and 1.12 in 1980. The true accelerator
coefficients mgx, myxr, mrx and mpg take the values 0.22, -0.02, -0.01,
0.15. The true depreciation rate §% was for simplicity taken to be constant
and assumed to be 0.038.

Table 5.1 gives a description of the respective Monte Carlo experiments.
The first experiment re-estimates the true model from the generated data.
As discussed above, the true model is based on the LQ restricted cost func-
tion, takes expectations to be rational, allows for non-constant returns to
scale and for non-zero adjustment costs; the equations for the true model
are given in Appendix C. In our second experiment we estimate the same
model, except that expectations are misspecified in that they are taken to be
static. The third experiment estimates again the same model, but imposes
zero adjustment costs (and thus imposes incorrectly mgyx = mgr = 1). Of
course, with zero adjustment costs expectations do not come into play. In
experiment four we then misspecify the functional form of the restricted cost
function. More specifically, we estimate the model discussed in Section 3.2.1
based on the restricted cost function LQR. We also take expectations to be
static. Experiment five is as experiment four, except that here also scale is
incorrectly assumed to be equal to unity. For each of the experiments we
run two variants. Variant “A” takes the stock of capital (or equivalently,
the depreciation rate of capital) as observed. Variant “B” takes the stock of
capital as unobserved and estimates the (constant) depreciation rate of capi-
tal 6% jointly with the other model parameters. As an estimation procedure

42The number of Monte Carlo trials is small, but is reflective of the considerable com-
putational complexities underlying this study.
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we use 3SLS with lagged inputs, output, prices, and squares of those lagged
values as instruments. The sample period is 1961 to 1980. The study was
performed using TSP 4.4.

Table 5.1: Description of Monte Carlo Experiments

Number Basic Characteristics of Estimated Model
Cost Function | Expectation | Returns to Scale | Adjustment Costs
1A,1B | LQ Rational Non-Constant Non-Zero
2A,2B LQ Static Non-Constant Non-Zero
3A.3B LQ Static* Non-Constant Zero
4A 4B LQR Static Non-Constant Non-Zero
5A,5B LOR Static Constant Non-Zero

*Expectations do not come into play, since the adjustment costs are zero.

In Tables 5.2 and 5.3 we report, respectively, on the estimation results
obtained form the Monte Carlo experiments corresponding to variants A and
B of the experiments. Rather than to report on all parameter estimates
we focus on estimates of the adjustment coefficients, and the parameters
determining those coeffcients, and on estimates of technical change Ay and
scale p. As in the Prucha and Nadiri study we report estimates for Ay and p
in 1976. The estimated values in Tables 5.2 and 5.3 are Monte Carlo medians.
The second column contains the true values for comparison. As a measure of
spread of the respective estimates we report in parethesis their inter-quantile
ranges.*3 In Table 5.3 we also present estimates for the depreciation rate of
capital 6%.

4%ince Ay and p depend on the input and output mix, their values vary in respective
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Table 5.2: Estimates of Model Parameters, Technical Change, and Scale
(Capital Stock Observed)

Parameter | True Value | Estimates for Monte Carlo Experiment Number
1A 2A 3A 4A BA
QKK 0.420 0.472 0.314 0.598 1.151 2.356
(0.214) (0.298) (1.703) (1.457) (5.941)
QKR -0.066 -0.096 -0..310 -0.336 -0.442 -1.232
(0.097) (0.091) (1.314) (0.839) (3.338)
GRR 0.376 0.391 0.338 0.585 0.357 0.921
(0.138) (0.177) (1.534) (0.632) - (1.987)
a . 5.616 5.487 4.337 0 8.655 8.134
(2.323) (2.978) (4.842) (4.573)
o . 10.98 12.52 13.05 0 8.645 10.27
(6.487) (4.870) (7.204) (10.37)
MKk 0.217 0.226 0.217 1 0.268 0.332
(0.050) (0.058) (0.093) (0.218)
MKR -0.021 -0.029 -0.012 0 -0.060 -0.183
(0.031) (0.043) (0.078) {0.161)
MRK -0.011 -0.013  -0.004 0 -0.066 -0.131
(0.013) (0.012) (0.164) (0.180)
MRR 0.147 0.144 0.125 1 0.134 0.119
(0.024) (0.034) (0.177) {(0.199)
Ay 1.000 0.968 0.604 1.296 0.503 1.216
(0.167) (0.287) (0.490) (0.217) (0.454) (0.323)
Scale 1.110 1.136 1.212 1.025 1.341 1
(0.084) (0.121) (0.194) (0.115) (0.152)

Monte Carlo trial even if evaluated at the true parameter values. It is for that reason that
we also report an inter-quantile range for the true values of Ay and p. The variability of the
parameter estimates reflects the small sample size and the assumptions on the variances
of the disturbance processes.
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Table 5.3: Estimates of Model Parameters, Technical Change, and Scale
(Capital Stock Unobserved / Capital Depreciation Rate Estimated)

Paramter | True Value | Estimates for Monte Carlo Experiment Number

1B 2B 3B 4B 5B

oKk 0.419 0.469  0.218 1.350 0414  0.774
(0.422) (0.466) (5.003) (L.151)  (1.129)
QKR -0.066 | -0.077 0.020 -0.035 -0.194  -0.596
(0.149) (0.134) (0.955) (0.587)  (0.898)
QRR 0.376 0414 0362 0375  0.408 0477
(0.178) (0.214) (0.614) (0.719)  (1.001)
o 5.616 5403  4.862 0 9.581  6.465
(3.710) (2.923) (9.299)  (5.594)
a, . 10.98 12.84  13.68 0 12.26  13.09
(7.048)  {(5.796) (5.541)  (7.689)
MKk 0.217 0.224  0.194 1 0.165  0.246
(0.110)  (0.171) (0.249)  (0.157)
mKR -0.021 | -0.024  0.010 0  -0051  -0.164
(0.038)  (0.058) (0.087)  (0.147)
MRk 0011 | -0.010  0.004 0 -0.037  -0.067
(0.018)  (0.020) (0.078)  (0.092)
mag 0.147 0.141  0.121 1 0.119  0.090
(0.023)  (0.043) (0.127)  (0.111)
Ay 1.000 0.960 0552 1.664 -0.003  0.816
(0.167) | (0.405) (0.688) (0.823) (1.872)  (0.982)

Scale 1.110 1128 1.213  0.825  1.390 1

(0.084) | (0.161) (0.244) (1.037) (0.266)

bk 0.038 0.036 0033 0117 0004 0015
(0.018) (0.039) (0.070) (0.058)  (0.037)
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The estimates based on the true model, which are reported under exper-
iments 1A and 1B in Tables 5.2 and 5.3 are, in general, close to the true
values. We note that the inter-quantile ranges of the estimates are generally
smaller for experiment 1A than for experiment 1B, reflecting the fact that
in the latter experiment also 6% is being estimated in addition to the other
model parameters. It is also interesting to note that the inter-quantile ranges
for the estimates of the adjustment cost coefficients o ki and a . are com-
paratively large. This observation is consistent with a similar finding in an
earlier Monte Carlo study by Prucha and Nadiri (1986). In experiments 2A
and 2B expectations are misspecified as being static. The effect of this mis-
specification is to substantially decrease the estimates of technical change to
.60 and .55, respectively, as compared to a true value of 1.00, and to increase
the estimates of scale to 1.21, as compared to a true value of 1.11. If the
model is further misspecified by assuming that adjustment costs are zero the
estimates for technical change increase to 1.30 and 1.66, as reported under
experiments 3A and 3B. Scale falls to 1.02 and .82, respectively. This type
of misspecification also has a considerable effect on the estimate of §%. The
median estimate is .11 as compared to a true value of .038.

Misspecifying the functional form of the restricted cost function in terms
of (3.16), and assuming static expectations, results in estimates of technical
change of 0.5 and 0, as reported under experiments 4A and 4B, respectively.
The estimate for scale increases to 1.30 and 1.39, respectively. The estimates
of the accelerator coeflicients and the depreciation rate of capital are also
fairly sensitive to this form of misspecification. Imposing constant returns
to scale, as in experiments 5A and 5B, results in less bias in the technical
change estimates, and in estimates of mygx and mpgg that are higher and
lower than the true values. There is also substantial downward bias in the
estimates of the depreciation rate of capital. These Monte Carlo results sug-
gest that the estimates of model parameters and model characteristics may
be quite sensitive to misspecification of the functional form, especially since
the functional form misspecification imposed in this study may be considered
as modest in that (3.16) can be viewed as a second order approximation of
the true restricted cost function.
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6 Concluding Remarks

In this paper we have discussed some recent advances in modeling and in the
estimation of dynamic factor demand, and have argued that this approach
provides a powerful framework to analyze the determinants of the production
structure, factor demand and technical change. The basic message of this
paper can be summarized briefly. The conventional index number approach
will measure the rate of technical change correctly if certain assumptions
about the underlying technology of the firm and output and input markets
hold. Furthermore, the conventional index number approach is appealing in
that it can be easily implemented. However, if the underlying assumptions
do not hold, then the conventional index number approach will, in general,
yield biased estimates of technical change.

The index number approach also does not provide detailed insight into the
dynamics of the production process and the determinants of factor demand
and factor accumulation. The dynamic factor demand modeling approach
reviewed in this paper provides a general framework to estimate the struc-
ture of the underlying technology and to relate the investment decisions and
variation of technical change. Of course, in this approach there is, as in any
other econometric investigation, the danger of misspecification. However,
the basic appeal of this modeling strategy is its flexibility, that enables it
to incorporate and analyze in a consistent framework both theoretical con-
siderations and institutional factors that influence technical change, and to
test various hypothesis concerning the specification of the technology and the
optimizing behavior of the firm.

The dynamic factor demand modeling framework described in this paper
enables us to examine a number of issues of both basic research and policy
interest. Using the model it is possible to identify the possible biases in the
conventional measure of total factor productivity growth. These biases can
result from scale effects, the difference between marginal products and long-
run factor rental prices in temporary equilibrium due to adjustment costs,
the direct effect of adjustment costs as they influence output growth, and the
selection of the depreciation rate by the firm. The model presented in this
paper can be used to estimate the structure of the underlying technology and
to specify the magnitudes of these biases if they are present. If the biases are
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not isolated relying on the conventional TFP measure will, e.g., overestimate
technical change in the presence of increasing returns to scale and positive
output growth.

The model also provides an analytical framework for estimating the re-
sponse of input demands to changes in relative prices, exogenous technical
change, and other exogenous variables that may shift the production or cost .
function. Since a clear distinction is drawn between variable and quasi-fixed
inputs due to the presence of adjustment costs, the short-, intermediate- and
long-run responses of output, factors of production and productivity growth
can be estimated. (Of course, the approach does not impose the existence
of adjustment costs and quasi-fixity, but rather leaves that to be determined
empirically.) The class of models reviewed also allows for non-static expec-
tations and non-separability among the quasi-fixed factors of production. It
is therefore possible to estimate possible substitution or complementaries in
the short-, intermediate- and long-runs among various types of capital such
as physical, R&D and human capital.

It is also possible to formulate and estimate an appropriate measure of
capacity utilization consistent with the underlying production technology.
Moreover, the model allows for the decision on depreciation rates of various
quasi-fixed factors of production such as physical and R&D capital to be
endogenous. We note, however, that models in which the depreciation rate
is constant are included as special cases. The framework thus allows for the
econometric testing of the constancy hypothesis. Estimating the depreciation
rates permits generating consistent capital stock series which may differ from
the official estimates. It also allows the decomposition of gross investments
of various types of capital into the net and replacement investments. The
time profiles of these two types of investment have important analytical and
policy implications.

To illustrate the workings of the model, we have discussed briefly some
empirical results from several studies based on the dynamic factor demand
model. These examples indicate how it is possible to account for the influ-
ences of scale, relative price movements, the rate of innovation due to R&D
efforts and R&D spillovers, and financial decisions concerning the level of
debt and dividend payouts on the production structure and technical change.
The overall conclusion reached from these examples is that the econometric
modeling approach allows us to identify the contribution of a complex and of-
ten competing set of forces that shape productivity growth, and to test their
significance statistically. Generally speaking, the empirical results based on
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dynamic factor demand models suggest that the estimated rate of techno-
logical change is often much smaller and smoother than the conventionally
measured total factor productivity growth. Also, there is evidence of sub-
stantial degree of interrelatedness embedded in the production process of
the firm that could not be captured using simple formulations of the firm’s
technology. The evidence from several studies suggests that some factors of
production such as physical and R&D capital are quasi-fixed in the short-run.
Also, there is evidence that economies of scale characterizes the production
process in some industries and that the elasticity of factor substitution is
often much smaller than unity. Investment in R&D is an integral part of
the production structure and often significantly contributes to a reduction
in cost. In addition R&D spillovers among firms, industries and economies
often reduce the cost of production of the recipient. Dynamic factor demand
models also permit studying the production and financial decisions of the
firm in a consistent framework and to analyze the effect of taxes and other
exogenous policy instruments on these decisions.

To illustrate how estimates of important characteristics of the production
process can be affected by various forms of misspecification a Monte Carlo
study was undertaken. The results suggest, in particular, that estimates of
the rate of technical change are sensitive to misspecification of the expecta-
tion formation process, to misspecification regarding whether or not the firms
is in temporary or long-run equilibrium, and to misspecifications of the func-
tional form of the cost/production function including scale. The exhibited
sensitivity of technical change (and other model characteristics) to misspecifi-
cation suggests that adopting simple specifications for reasons of convenience
may result in serious estimation biases. This points to the importance of
specification testing in the estimation of the cost/production functions and
derived factor demands. Dynamic factor demand models provide a general
framework for carrying out specification tests, and yield important insights
in the complexity of the production decisions.

However, estimation of dynamic factor demand models is often challeng-
ing. These models are often complex and the estimation of these models re-
quires considerable effort. Nonetheless, in order to measure technical change
properly and to capture the dynamics of the adjustment of factor demands,
and to analyze effects of relative prices and other exogenous variables such
as taxes, subsidies, R&D spillovers, etc., on factor demand and productivity
growth, the dynamic factor demand modeling framework presented in this
paper is an important tool of analysis.
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A Appendix: Supplementary Material for Sec-
tion 2

Derivation of the Expressions in Equation (2.4). Differentiation of
F(aY,V,X,AX, T+ §) =0 wr.t. § yields

k. OF Oa BF
: Al
[Z 5(av) ] 96 T ar " (A1)
The formula on the r.h.s. of the first equation in (2.4) now follows im-
mediately form the above expression, observing that ¢ = 1 for § =

The formulae on the rh.s. of the second and third equation of (2.4) are
obtained analogously by differentiating F(Y,bV,bX,bAX,T + §) = 0 and
F(cY, &V, kX, kAX,T) =0 w.r.t. § and x, respectively. [ |

Derivation of the Expressions in Equation (2.6). Substitution of (2.5)
into (2.1) and differentiating w.r.t. Z =V, X, AX, T yields

oF OF of

—— L = AX,T. .

57 Y 32 Z=V,X,AX,T (A.2)
Substitution of those expressions into (2.4) then gives the expressions in
(2.6). m

Derivation of the Expressions in Equation (2.35). To derive the ap-
proximate expression for input based technical change in (2.35) assume, e.g.,
that In(M,) = ln(M (Y., L., X;,AX,,T;)) is approximately linear quadratic
in In(Y;), In(L,), In(X;), In(AX;), and T; = 7 (and that AX; > 0). It then
follows from Diewert’s (1976) quadratic approximation lemma that

In(M) —In(M-_,) (A-3)
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] Aln(AX.)
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By (2.7) and (2.10) we have
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Recall that V. = (M., L)). Substitution of the above expressions into
(A 3), rearranging terms, and premultiplying with (E},’l +§.‘r"_1’1) /2 with
3Y, = M, /C, yields

M, + XX w,_ 1) (A.4)
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with w, = 234 / (E},’l +“s‘.‘,/_1’1) . Assuming that 3%, = 5¥_,, we obtain the

expression given in (2.35). |
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Derivation of the Expressions in Equations (2.39) and (2.40). We
make use of the following lemma in deriving the decompositions of the con-
ventional measure of total factor productivity growth in continuous time
given in equations (2.39) and (2.40).

Lemma A.1 : Suppose

r

Z;(a*/a ;(aj/a)nj, (A.5)
r48

N=e Z(ﬁf/ﬁ*)m — 2 _(B;/B)n;, (A.6)
i=1 j=1

with a* = Ele af, a =25 = k.8, 8= ’"+3 . Then
At =20 4 (1—e)p’ = (0 — p*) + (0" — %) (A7)

where p® = TF (o) /o), pt = T (B8, n* = Tja(as/a)n; and
7’ = r+s(6g/5)7b Furthermore

k
u =t =3 (8 /8) ~ (af /") (A.8)

= Z(ﬁ:/ﬁ*)(#i — 1%
Z P — o)/ 8% (s = p®),

and
o =1 = S16/8) (st + jg;;(ﬂj/ﬁ)m (A9)
= g(ﬁg/ﬁ -n")
- ;[(6 Bl(ns — %) + ;i(ﬁ,-/ﬁ)(nj — ).
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Proof. Clearly
N=egpl—nP=(—Dp'+ (1 —p) + (& —1*) - (0" —n*). (A.10)

Observing that A\ = u® — n* we immediately obtain (A.7) from the above
equation. The first expressions on the r.h.s. of (A.9) follows directly from the
definitions of n® and n*. The second expression is seen to hold observing that
S1+8(8;/8) = 1. The third expression on the r.h.s. of (A.9) is now readily

j=1
seen to reduce to the second expression, observing that 37_, (a;/8)(n;—n°) =
(a/B8) Tl (a;/a)n; — (¢/B)n® = 0. The expressions on the r.h.s. of (A.8)

are seen to hold analogously. [ |

The decomposition in (2.39) and (2.40) now follows from {2.25) and (2.32)
and the above lemma with

A\ = TFP/TFP, M =)\*,

’u'a - Ya /Ya, ‘u,b :Yb /Yb,

= E'JF, ot =F /R,
e=plr=m+n,s=mn,and

ui =Y: /Y, a =pl'y;, fori=1,..,k

B = (8G/dY.)Y,,
@ =PZV3'
_ B; =p; V;
M+m =Xg /X; Dpym = CIXXI for Il = 1, ey Nl

 Bum=(-0G/0X)X,
Mimin = Xt/ Xt Brmin=(-0G/0 X)) X forl=1,.,n

n =V, /V; forj=1,...m

with

k k
ot = Yai=R', f=YfF=R
i=1 i=1

m-+n m-+2n

6 = S a=C", f=7Y B=C
i=1 =1
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Derivation of the Expressions in Equations (2.43) and (2.44). To
derive the decomposition in (2.43) and (2.44) recall that for 7 = ¢,¢t — 1:

AlnYS = \;s*’am (Ya), _ (A.11)

z-»l

AlmFY = ZSV Aln(Vy;) + En:sf;Aln(Xﬂ).
=1
Analogously define for 7 = ¢,¢t — 1:
AlnY)?" = Zs"mn Yai), (A.12)
AlnFM™ = stmn Vi) + Zs ‘A In(Xy) + Zs XAIn(AXy).
Furthermore define for 7 =£,¢t — 1:

k
AInTFP, =AY —AlnFY =5 s%AIn(Yy) (A.13)

i=1

- sl AIn(Vy) — ZS A ln( Xy}

i=1

M o= plAlmYYT - Al FYT = pot Zsy/_\ln Vi) (A.14)
— fjg‘;;. In(Vy;) Zs ‘Aln(Xy) — Zs X AIn(AXy).
j=1
Given (2.28) we then have
AITFP, = % [AnTFP} + AmTFP™]. (A.15)
Furthermore, given (2.35) we have

% (F + 25 ) = (X + X, (A.16)

1
2
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observing that 3%, g,, = 1/p;, where pt denotes the scale elasticity, and
observing that in light of (2.41) g,; = p; ' 55..

We next utilize the above lemma to decompose AlnTFP] forr =t a.nd
T =1t~ 1 based on (A.13) and (A.14). To this effect define

X = AWmTFF, =T
1 = AlnY?, p=AhYY,
" = AlmF*, g*=AWlF)".

Furthermore define € = p7!, r =m+n, s = n, and

= Aln(Y:), af = phYa, fori=1,...,k
ﬁ 3GT/3YH) iy
n; = Aln(V;) vJ forj=1,...,m
6 pTJVrJ
Mim = Ahl(Xﬂ) Oppmm = X-,-[ for | = 1, 1
B — (oG j0X,) X
M+mi4n = A]-n(Ath) ﬁl+m+n = (_BGT/aAX‘rE)AXTl for i = 1,...,n

with
k k
OS* = Za: = R;"j ﬁ* = Zﬁ: = RT,
=1 =1

m+n m-t2n

a = ZO{J C:_, ﬁ"—"Zﬁj:C
j=1 Jj=1

Applying the above lemma to (A.13) and {A.14), and recalling the defini-
tion of the respective shares in (2.35) and (2.36) then gives the following
decomposition: '

AIMTFF = XN +4(1-1/p)AlnYY” (A.17)
+(AmY™ - AlnY")+ (AlnFY" ~ Aln F "
with
AlnY» -~ AlnY/?" (A.18)
k 3—; - BGT aY‘T'i Yri
> (( R/ ) ) (Aln(Yy) ~ AlnY™")
i=1 T
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Aln FY™ — Aln F&7

n ((-0G, /90X~ cX) X,

= 5 (( / cl ) l) (Aln(Xy) — Aln F{™)
=1 i '
= ((_aG., /agXﬂ) Axﬂ) (Aln(AXy) — AlnFfT).
i1=1 T

The decomposition in (2.43) and (2.44) now follows upon substitution of the
above decomposition of AlnTFF] into (A.15) and utilizing (A.16). |
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B Appendix: Supplementary Material for Sec-
tion 3

B.1 Interpretation of Optimality Conditions

For a further interpretation of the first order conditions (3.9) and (3.10) for
the quasi-fixed factors K, and R, given in Section 3.1.1 denote the normalized
variable cost function corresponding to the variable inputs (only) as

gr = Q(Pf, q-fa)f‘raKf—laRT—I:AK‘F:ARHTT)
= M+ (pf)’L'r

We can then rewrite (3.7) as
G, =g, — (qTI_{)fK?.

Define furthermore )
R2=R:=(I-6"R,

analogously to K¢ as the vector of “old” stocks left over at the end of the
period from R, _;, and observe that

(I = 6R)E,qR, /(1 +7y41) = E/[OR2., [OR g% /(1 + rrs)

and DR? +1/0K; = 0. In light of the above definition of ¢ we can then
rewrite (3.9) and (3.10) as

dg, JOK?®
—E. gKf (1+rT+1)+ET(q§)aTi’1 (14 7rr41)
OR°
+E; (Qf)'*gf{fl (L4 7711)

8G e,

K T T+1

= — 1

o +{BAK., Eoar. /¢ +T”“)}’

g, 0K |
5% “/(1+m)+a () ---+-1-/(1+r7+1)

oR. OR,
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0
+B, (g7 e / (14 7res
R 3GT 6G1-+1

q; +{3ART aART+1/(1+TT+1}
The above reformulation of the stochastic Euler equations (3.9) and (3.10)
shows that — although not immediately obvious — the two sets of first order
conditions have the same basic structure. They have the following economic
interpretation: The optimizing firm invests in the quasi-fixed factors K and R
until, at the margin (and properly discounted), the reduction in the variable
cost g, plus the increase in the value of the “old” stocks, equals the acquisition
price, plus current period adjustment costs, minus the expected adjustment
cost that would have occurred if the investment were undertaken in the next
period (rather than the current one).

For further interpretation, assume that the (relative) prices and the dis-

count rate are constant. Assume further that not only the depreciation rates

of the quasi-fixed factors, but also those of the quasi-fixed factors K are
exogenously given and constant, so that

0K, /0K, = (I - 6K), 8K?,,/0R, =0,
aRe,, /0K, =0, OR?,,/OR, = (I — 6F),

Finally assumne that both K and R can be varied without adjustment cost.
In this case the above Euler equations reduce to the usual long-run first order
conditions

ET BKT q (TI+6T )7
99-11 g R
-E, on. ¢ (rI + 87,

which equate the respective reductions of the variable cost with the respective
rental prices.

B.2 Some Mathematical Derivations

Derivation of the Total Factor Productivity Decompositions Dis-
cussed in Section 3.1.2. The discussion assumes that the Divisia index
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for aggregate output Y°, aggregate input F*, and total factor productivity
TFP is defined as in Section 2.2 with X = [K', /) and V = [M, L’]". Let

G =G5 ¢, Y, X, X,t) = M + (p")'L - (¢¥YK®

be the continuous time analog of (3.7). Furthermore, let

__ 8Gy; v_ 3 _ (0G/oV)Y;
% = 3—}’;5’ T YT B R

¥ = p}/VJ SK° g’ K}

3 c ! C

I <2 G <R

: ax, C’ PToax, ¢

with R = 8 (8G/0Y;)Y; and C = G(p*,¢¥,Y, X, X, t) — T4(8G/3X,) X, —
(060G /X)) X,. Analogously to the discussion in Section 2.2 consider the
following alternative index for aggregate output, say Y, defined by

)
Y _Y
i = fo

i=1
Furthermore, consider the following index for aggregate input, say F°, defined
by

—X Xl X Xl

Z

By arguments similar to those in Section 2.2 it is readily seen that we can
write the growth accounting equation for input based technical change as

F m_ j _,,OK
FAEDILE T B TR

i=1 J 1

- b

A = —1£_£

ye pv’

observing that Y%, g, = 1/p, where p denotes the scale elasticity. Further-
more, analogous argumentation as in Section 2.2 and utilizing Lemma A.1
yields the following decomposition of the conventional measure of total factor
productivity growth in continuous time:

- b a b b . a
TFP Yy (Y'Y F F
Trp = Tyt (W‘W) +(ﬁ“ﬁ)
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with

aG/aY v, Y
(?f??)

E —0G /0K, — 1+r)q¢ K;) (&_F_ﬂ)

el
|
3
I
‘-‘F’J M M

R, Fe

aG/aR —cl )R)(&_F_“)

+2

i

+2

5
J( 8G/8RJ
(% )(

observing that & = (r4+6%)¢¥, cf = (r+6%)¢" and with K*° = (1-65)K. ®

)
)

(-oG/0 K:)
[}
l

Derivation of the Expressions in Equations (3.18). The optimal de-
mands for the quasi-fixed factors K; and R; given in (3.18) are the solution
of the set of Euler equations (3.17), where the solution space is taken to be
the class of processes that are of mean exponential order less that (1+ )2,
Solving (3.17) is a standard problem in the optimal control literature. Rather
than to solve (3.17) directly, we derive those expressions here, e.g., as a spe-
cial case of Theorem 3.1 given in Subsection 3.2.2. Let

x,=[£],  az|oxxoexel g%k O | (B
R; OxgR ORR 0 Api
and define
B=8B, G=A+(2+r)B, (B.2)
and (r=t,t+1,...)

(1+7)a, =~ [ (ke + axcr Ty + axrpf +gf (1+ 7+ axro)}¥ 7

[ag + carrTy + arLpl + af(r + 5R)]?£1/p-

} (B.3)
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Is is now readily seen that (3.17) can be rewritten as
-BX: 1+ GX, - (1+7r)B'X,._1=(1+7)g,, (B.4)

i.e., (3.17) is a special case of the difference equation system (3.27). Applying
Theorem 3.1 in Section 3.2.2, and observing that g, = g, yields the following
solution for X;:

Xe = MX;+(I-M)X,1, X'=A"4q, (B.5)
A = (I-M)HrI+M)BM/(1+T)

where M satisfies the quadratic matrix equation
~B(I-MyP*+G(UI-M)~(1+7rB =0, (B.6)

and where B(I — M) is symmetric.
Upon substitution of (B.2) into (B.6) the quadratic matrix equation for
M reduces to (3.19), i.e.,

BM?+ (A+rB)M — A=0. (B.7)
Solving this equation for A4 yields

A = BM(rI+ M)(I - M)™! (B.8)
(I — M’y Y(rl + M')(BMY,

where the second expression follows from the symmetry of A. Since B = B =
B the symmetry of B(I — M) implies that also BM is symmetric. Thus a
comparison of (B.8) with the expression for A4 in (B.5) yields A = A/(1 +7).
The expression for X, in (B.5) thus reduces to

Xe=MX;+(I-M)X,.1, X} =AY 14r)a, (B.9)

which is equivalent to the expression given for K, and R, in (3.18). [ |

B.3 Extension of the Reparameterization Approach for
a General Class of Models

In the following we extend the discussion of the re-parameterization given in
Section 3.2.2.
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Based on (3.32) we can re-paramterize the model in terms of M and B,
and estimate M and B rather than the original model parameters G and
B. According to Theorem 3.1 the matrix § = B(I ~ M) is symmetric. To
impose the symmetry of S we may also express G in terms of § and B as

G=S+(1+r)BS'B, (B.10)

and estimate S and B. To this effect we would then also rewrite (3.30) in
the new parametrization. Observing that M A= MDBM/(1+7) ! =
(1+r)(DB)and (I -~ M)= B~!S we obtain from (3.30):

X, = (1+7r)(DB) '+ B 5Xe, (B.11)
Jt — DZ(I + D)—(T_H-l)g.r,
7=t

D = (1+nBS!-1L

Inspection of the optimal control solution (3.30) or (B.11) for X; shows
its dependence on g, = Ei¢,, i.e., its dependence on conditional expectations
of the forcing variables ¢, for 7 =t,¢t+1,... So far we have not specified the
process for the forcing variables. Taking guidance from the optimal control
models considered by Epstein and Yatchew (1985) and Madan and Prucha
(1989) we now assume that*

¢r = m + Hyw, + Hogr +T5gr11, (B.12)

where the w; and ¢; are determined by an autoregressive process:

P
g wi) = v+ 2 8ilg s wi] + & (B.13)

i=1

We assume that this process is of mean exponential order less than (1 +7)/2,

with the &’s distributed i.i.d. with zero means and finite variances. We
assume furthermore that w, and ¢, are known at time ¢, and that the elements

#4The specifications considered in those papers are slightly less general than that con-
sidered here, in that those papers consider particular specifications of the underlying tech-
nology. In the model considered by Madan and Prucha (1989) the elements of w, may be
thought of as representing current factor costs such as wages, and the elements of ¢; may
be thought of as representing after tax acquisition prices. Also, in that paper I, and I,
represent selector matrices, and IIj represents (I — 6) times a selector matrix.
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of m, 11, I1, and H; are functions of known constants, and/or elements of G
and B (or S and B), and/or of parameters identified through other aspects
of the model.

In computing Jy = D 3%, (1 + D)~ ~*1g_ we assume that expectations
on w; and g; are formed rationally. In light of (B.13) those expectations for
T =t,t+1,... will be linear functions of current and lagged values of w, and
gt {up to lags of order p — 1). Consequently J; must be of the form

r—1
Jo=a+ Y Bl ). (B.14)
i=0

In principle we can express the vector  and the matrices ..., Bp—1 In terms
of v, ©4,...,.8,, «, I1,,, I, II; and D. However, this leads to rather complex
expressions. Consequently, following Epstein and Yatchew (1985) and Madan
and Prucha (1989) we may again try a re-parameterization where the vector
v and the matrices ©,,...,8, are expressed in terms of «, fi,..., Bp—1, 7, 11,
I, IT; and D. As demonstrated below, this leads to the following expressions
for v and @4,...,0,:

v = ID(a—n), T=/{g+D[I,0) , (B.15)
61 = F{(I + D)ﬁo - D[Hq,ﬂw] - ,81} 5
QO = I'{I+D)Bi_1-86}, i=2,..,p,

where 3, = 0 and where we have assumed implicitly that T is nonsingular .

In total, the re-parameterized model now consists of the quasi-fixed factor
demand equations (B.11), with J; defined by (B.14), and where [g]_,, w}_,] is
given by (B.13) and v, ©,,...,0, by (B.15). Additionally, as in the example
considered in Section 3.2.1, the model] can be augmented by demand equa-
tions for variable factors, etc. The discussion concerning actual econometric
estimation of the factor demand equations given with the example of Section
3.2.1 also applies here.

In the following we now demonstrate that (B.15) holds indeed. The proof
uses techniques analogous to those used by Epstein and Yatchew (1985).
Their setup is contained as a special case of the model considered here.
Recall that D = (1+7)(I — M')™' — I and M = I — VAV~!. Consequently
D =V"1®V'— I with ® = (1+r)A~1. (Since A is a diagonal matrix whose
diagonal elements are less than (1+7)'/2 in modulus, ® is a diagonal matrix

82



where the diagonal elements are greater than (1 + r)/? in modulus.) It is
now readily seen that

D(I+ D)~ ZI+D (B.16)
Recalling that a, = E;¢, it follows from (B.11), (B.12) and (B.16)that

o0 [se}
J, = DY (I+D)y""*hg = D(I+ D) ZI+D Say,, (B.17)

T=t

= DI+ D) Z (I+ D)~ [71' + oy Brwies + I Eegey s + ﬂ;EtQt+s+1]

— - [DI,0 [ |

+D(I + D)~ iI+D *[, + (I + D)II%, 1 ][E‘q‘*“].

s=0

Observing that FyE1q1.s = Eiqys and E By ywey, = Eauy,, it follows
further that

_ _ * Evgein
EtJt+1 = 7 [antol [ Etwt+1 :I (B]'S)
R —s * Eiqeysi1

+D(I + D) sgo(f + D)~*[ll, + (I + D)IT}, 1] [ Espons |

Since D(I + D) ! = (I + D)"'D and

Eigi Gt—i
20|y e] 2 @19
it is now readily seen that

Jy—(I+ D) 'E.Jy (B.20)

- - +oriepr s orimn [ 1

+[D(] + D)™T;, 0] [ g}ﬂi }

= [ - +D)Yx+[D{I + D)1, 0]
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+D(I + D)~ { [, TL] + [IT;, 0] } [ ii ]

+E[D(I+D)—1H* 0]0:.1 { i~ ]

i=1 Wi

Alternatively, using the expression for J, given in (B.14) and argumenta-
tion analogous to that above yields

J—= I+ D) EJ (B.21)
= [I- (I + D) Ya — (I + D) Gyr

+Z [@ (I+ D) 1[6091+1+}31+1]] [ qr—i J

W—s

The expressions in (B.15) are now obtained by comparing the “matrices of
coefficients” in (B.20) and (B.21). Fore exarnple, comparing the “intercepts”
yields

[[ —(I+ D) Mr+ DU+ D) I, 0lv = [I — (I + D)~ (I + D) Fov,
which implies
v=TD(a~), T ={f+D,0)}"
Comparing the “matrices of coefficients” next to lg;, w;]’ yields
D(I + D)™ { [, Wy) + [I13, 0101 } = 8o — (T + D) }501 + il

which implies
0, = F{(I + D)ﬁo - D{Hmnw] - ﬁl}

The expressions for the remaining ©,’s in (B.15) are found analogously. W
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C Appendix: Supplementary Material for Sec-
tion 5 '

In this appendix we give the specific equations for the “true” model used to
generate the data for the Monte Carlo study discussed in Section 5. We use
the same notation as in Section 3.2.1. Furthermore, it proves helful to denote
with X; = [K}, R;] the vector of the quasi-fixed factors. We assume that
relative prices and output are generated according to the following simple
first order autoregressive processes:

P = poL+ pLpi, +0f, (C.1)
g = pox +okal, + 0,
@' = por+piraly + i,
Y: = pov +pivYeor + 1,

with (nF,n/,nf,nY) distributed i.i.d. multivariate normal. Given expecta-

tions are formed rationally the factor demand equations are given by

1
M, = ao+agKiy+arRiq 4+ oyY,+orT; — aaLL(PtLF (C.2)

1 1
+'2‘aKK(Kt-1)2 +ogpK 1Ry + EQ’RR(Rt—l)2

+‘opy K1Y+ apy B 1 Yy
1 1
+§aKK(AKt)2 + QQRR(ARt)z + E;M
Ly = ap+oppl +orxKi 1+ orpRiy + apyY + ef

and

AX,={B™' +(1+rn)C-rB|""} (C.3)

g+ OfLKf_z%ﬁ? + (1 +r+ aKoKo)fE%ff; + C)CKY?%

1-p11 l-p1x l-p1p 1-p1y
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N b 7
piL opr |pf — 2%
[ 14+ POK
+{B 1+1+T[C—1+T P1KB] 1} e T KK[Qt plx]
1K | 0
147 ltr—prga| [0
+{B7'+ [C - } 147 Ry [,R
{ PR Lm—n—(l—éi)[%—f%]
+{B‘1+1+T[C 1+r—p1y } aky Vi — 2%
Py | ey Y- 25

+BTICX o + [ e }
t—1 ER .

t

The innovations (eM,eF, eX, eff} are assumed to be distributed iid multi-

variate normal. (The innovation processes (77,0, nff,n{) and (e}, ¢f  €f', ¢ )
are taken to be independent.) For simplicity we assume that

K} = —agox K-, (C.4)

that is, the depreciation rate of capital §% = 1 + agox is constant. Gross
investment in capital and R&D is given by

I¥ =K, - K¢, IF=R,— (1 - &§"R,.1. (C.5)

The derivation of the above factor demand equations utilizes Theorem 3.1
and is analogous to the derivation in Section 3.2.1. In analogy to the study
by Prucha and Nadiri (1996) the data are generated for the period 1960 to
1980, with the initial values as in the data set for that study. For each Monte
Carlo trial we first obtained random drawings for the innovations and then
solve (C.1) - (C.5) to generate data for pf, ¢f, ¢ff, Vi, My, Ly, Kiy Ry, KY,
IX and IF.

To estimate the above model in the case where the depreciation rate of
capital is assumed to be unknown we express K; as

t—1
Kt = Za}{aKItIi'i + a}(oKKO (0-6)

=0

and substitute this expression into (C.2) - (C.5). The model is then estimated
using the approach discussed in Prucha (1997). -
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