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A Ricardo Model With Economies of Scale'
by Ralph E. Gomory”
Introduction

There are significant and unavoidable technical difficulties in working with
large models having scale economies, and this paper represents an attack on those
difficulties.

Work that has appeared in the last decade has contributed greatly to the
understanding of the theoretical consequences of scale economies for trade theory.
This important recent literature has generally worked with small models, typically
two countries and two goods. In this paper we deal directly with two-country
models having large numbers of traded goods and, consequently, very large
numbers of equilibria. Our model is directly analogous to the classical Ricardo
model but here we will assume economies of scale in place of the classical linear
or diseconomies assumptions.

We will provide algorithms that, even for large problems, select from the
resulting great array of equilibria, those that tend to maximize utility for each
country. Our algorithmic approach will then show that, contrary to what one might
expect, equilibria do not occur just anywhere. Rather they lie in a well defined

! A summary of some of the results of this paper appeared as Gomory [1991].
This paper is a revision of an earlier (09/30/91) version, which was also circulated
as C. V. Starr Economic Research Report RR #92-04. This revision has been
greatly improved by suggestions from William J. Baumol.

2 Alfred P. Sloan Foundation, 630 Fifth Avenue, New York, N.Y. 10111.
The author mentions with pleasure the many contributions of Herbert E. Scarf
without which this paper would not have been written.



2

region of a graph of utility versus relative national income which we will describe.
This region of equilibria has a well defined shape that persists across many
different models and has an economic explanation and significant economic
consequences.

Summary of Results

Though for simplicity in what follows we will often express results in terms
of Country 1, the statements apply, with obvious changes, to Country 2.

Qur main results are:

1. We give simple and rapid algorithms for obtaining from among the very
large number of possible equilibria, those equilibria that are very good for one
country or the other. These chosen equilibria will be shown to approach the best
possible utility for a particular country in large problems. We will see that the best
possible equilibrium for one country is usually poor for the other. The algorithms
will also show that the two countries’ interests are less opposed when their demand
structures are similar, and more opposed when they are dissimilar.

2. In the presence of economies of scale of the type we will specify below,
the set of equilibrium solutions can be described by a region in which these
equilibrium points lie, and which they tend to fill up. The equilibrium points tend
to fill up the solution region in the sense that, given any arbitrarily selected point,
P, in the region, then, with a sufficient number of commodities traded, an

equilibrium point will appear within any preselected distance (however small) from
P.

3. A simple algorithm will be described that allows the calculation of the
boundaries of the region. This calculation gives the specific shape and location of
the region rapidly even for large models.

4, The characteristic shape of the region of equilibria has the following
consequences: ‘

(a) The region always contains a large subregion of equilibria that are
advantageous and often strongly advantageous to Country 1 relative to autarky.
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(b) There is always a central subregion, often a very large one, within which
the interests of the trading parmers are generally opposed. At the center of this
subregion is an area of points that are above autarky for both countries as in the
classical model. However moving to the right in this subregion, which means that
Country 1 captures more and more industries, generally results in further increases
in utility for Country 1 and losses in utility for Country 2. The subregion contains
at its extreme right the utility maximizing point for Country 1, which, as
mentioned above, is usually a very poor point for Country 2.

(c) As Country 1 captures an ever larger share of export industries from
Country 2 there comes a point beyond which any further acquisition of industries
by Country 1 is disadvantageous to both Country 1 and Country 2. It follows from
this that the region of equilibria always contains at the extreme right a subregion
in which there are equilibria that are relatively disadvantageous for both countries.

(d) The region always contains a subregion at whose equilibria Country 1
receives less utility than it would in autarky. This region can sometimes be
substantial in size. This effect is particularly pronounced for the country that is the
larger trading partner.

The results pertaining to the various subregions and the behavior of the
equilibria in them simply can not be obtained for very small problems. This is
because in small problems, for example two-industry models, the subregions
referred to will often be completely empty of equilibria.?

The general picture that will emerge from the analysis of regions and

subregions is one of a considerable range of conflict in the interests of the two
trading parmers.

Assumptions of the Model and of the Related Literature

We will now attempt to relate the foundations of this model to the existing

literature. That literature has employed at least three different models of the nature
of scale economies. '

3Bxperience indicates that for models with six or more industries the
subregions are reasonably populated.
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The first of these, assumes that firms are perfectly competitive, that they
operate as individual entities under constant returns to scale, and that the scale
economies are produced by externalities that benefit the firms within a single
industry in a given country. Under such circumstances prices will, be set at levels
that yield zero profits. This model implies that there will be strong forces making
for specialization and non uniqueness of equilibrium. Examples of work using this
approach include Kemp [1969] and Ethier [1982].

The second widely-used scale economies model assumes them to be internal
to the firm. As is well known, this leads us to expect that the market will be
monopolistic or subject to monopolistic competition, and unless the markets are
perfectly contestable, it is likely to entail non-zero profits. Helpman and Krugman
[1985] have been the leading users of this approach. (see also, e.g., Krugman
[1979] and Helpman [1984]).

The third scale economies model, less widely used, also assumes perfect
competition and externalities. However, in contrast to the first of the models, it
is assumed here that the externalities are not a function of the size of the output
of the industry within a single country. Rather, those externalities are generated
by the industry’s output world wide. In such a case the tendency for extreme
specialization within individual countries disappears and some of the policy
problems that characterize the case of externalities within particular countries also
vanish. This approach was used by Viner [1937], and more recently by Ethier
[1979].

In addition to the work just cited, the 1980’s produced much more. Notably,
the work of Helpman and Krugman and that of Grossman and Helpman have
markedly expanded the field. From all this work we know that scale economies
tend to preclude uniqueness in trade equilibria, and that the several equilibria
obtained are apt to include some that are locally stable. These stable equilibria
may well contain some that are mutually disadvantageous, sometimes substantially
so, relative to some other equilibria, some being even worse than autarky.

The results of this paper are entirely consistent with this literature. We will
however be able to deal directly with large problems and will be able to discuss
their properties, many of which are new. Qur emphasis will be on the region that
we introduce here, and that is needed to encompass the equilibria as the number
of traded commodities grows.
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The model we will use here is a one input two country model with
production functions f;(}), for the ith industry in the jth country, that have
economies of scale. We will also use a zero-profit pricing assumption. As is well
known these assumptions are the ones that can be derived from the first model
described above. They also match quite well the author’s direct observations of
industries containing small numbers of large firms which have do have significant
internal economies at low levels of input but are very competitive with each other
at the higher levels at which they actually operate. At these levels the internal
economies of scale have been realized and the firm’s cost structure tends to be
linear.

Contents of the Sections
The paper is organized as follows:

Section 1 makes some preliminary remarks about the model and introduces
the basic graph that is used throughout the paper.

Section 2 specifies exactly what assumptions are made on our one-input
production functions, gives a precise definition of equilibrium, and shows that the
number of equilibria grows exponentially with problem size. -

Section 3 introduces the normalized variables that facilitate the analysis of
the equilibrium region, discusses perfectly specialized equilibria, and describes the
calculations that produce the boundaries of the equilibrium region, and how they
also select good equilibria.

Section 4 shows the tight relation of the boundary to the equilibrium points
in it by proving that for large problems there are perfectly specialized equilibria
arbitrarily close to every boundary point. One consequence is that the algorithms
previously described approach optimality as the problems become large.

Section 5 describes briefly the actual computational effort required for the

various algorithms. The result is that problems of almost any reasonable size are
in fact conveniently solvable.

Section 6 represents a shift in emphasis away from algorithms and toward
the properties of regions. In this section we show that the whole region fills in
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with perfectly specialized equilibria as the number of goods grows. This opens the
way for a discussion of the economic meaning of the various subregions as we will
know that they are populated with equilibria.

Section 7 introduces non-perfectly specialized equilibria. We show that non-
specialized equilibria always lie under the upper boundary of the region already
determined by the specialized equilibria. Although most non-specialized equilibria
are unstable in the presence of economies of scale, we will discuss conditions
under which stable non-specialized equilibria can exist. We will also indicate why
stable non-specialized equilibria will generally either lie inside the region defined
by the specialized equilibria, or just below its lower boundary.

Section 8 discusses the underlying economic effects that give the region its
characteristic shape. It also includes some significant special cases where an
explicit formula for the shape can be given, and where the properties of the
various subregions become evident.

Section 9 analyses the effect of changing production functions, the effect of
changing country size, and of the structure of demand.

Section 10 develops the economic consequences of the characteristic regional
shape and obtains the results 4a-4d about subregions of equilibria.

Section 11 contains a brief summary and remarks on future directions..



Section 1 - Some Basic Properties and the Basic Graph

Equilibrium points in this model, are virtually the same as in the ordinary
Walras equilibrium model. At each of our many equilibria there are prices and
wages at which supply equals demand for each good. We will use a zero-profit
condition for each active producer, so the wage bill for each active producer
equals the value of goods produced, while for non-producers the profit for entering
into production at these wages and prices, and for low levels of production, is
negative Or zero.

In a linear model, or one with diseconomies of scale, these conditions
would provide a single equilibrium, they lead here, inherently, to many,
Economies of scale tend to provide an advantage to those who are actually
producing over those who are not, resulting in many stable outcomes. This
situation, with its inherent complexity reflected in its many local optima, us an
example of the unavoidable differences between local optimization with convexity
and local optimization in the presence of non-convexities.

Integer variables enter naturally into this model through a set of 0-1
variables, introduced in Section 3, which determine which country is to be a
producer of a given good and which is not. Each pattern of 0’s and 1’s determines
a production pattern which determines one of the many local optima. Finding
production patterns whose associated equilibrium points maximize utility then
becomes an integer programming problem.

The outcomes from a typical model are illustrated by Figure 1.1 which
is based on the data of Table 1.1. Fig.1.1 plots Cobb-Douglas utility on the right
vertical axis against normalized national income* Z, for Country 1 on the
horizontal axis. Each dot in the figure represents an equilibrium point. The large
dots are outcomes in which only one of the two countries is a producer for each
good, these are the perfectly specialized equilibria. The exchange rate w,/w,, or
The ratio of the wages in the two countries,(exchange rate), corresponding to the

4Z,=Y,/(Y,+Y,) where Y| is the national income of Country 1, and Y, is the
national income of Country 2.
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normalized national incomes is plotted on the top horizontal line. The utility
obtained by Country 1 in a state of autarky is marked by the horizontal bar on the
right. This example has nine industries.

There are several aspects of Fig.1.1 worth noting. First we see the large
number of equilibria that are present even in this nine industry model. Second, the
equilibria form an array of points with a rather definite shape which is in fact
characteristic of many models. Thirdly, the upper edge of the array of outcomes
is rather well defined. In the figure it is marked by a dotted line. The equilibria
near this boundary are the ones that do relatively well for Country 1. It is this
boundary line, and the equilibria near it, that we will compute by simple and rapid
calculations in Section 3. Fourth, there is a lower boundary as well as an upper
boundary to the array of perfectly specialized equilibrium points, this lower
boundary can also be computed easily.

Each equilibrium point has a utility for Country 2 as well as for Country 1.
Figure 1.2 shows the utility of Country 2 on the left vertical axis and the utility
of Country 1 on the right as before. The same collection of equilibria is shown as
in Fig 1.1 but now the utility for Country 2 is plotted for each equilibrium point
instead of the utility for Country 1. Each equilibrium point is represented by a
gray dot. Both autarky levels are shown, but only the boundary curves are shown
for Country 1. The horizontal axis is still Z,, and the normalized national income
of Country 2 is Z,=1-Z,. In both figures the utility of each country is normalized
separately so that its greatest utility is 1.

The short vertical bar descending from the upper horizontal axis in both
figures denotes a connection with the classical linear theory, this connection will
be made clearer in Section 3 . There we will introduce the notions of Classical
Level and Classical Point. The Classical Point is the equilibrium point (if there is
one) at which each good is produced only by its cheaper producer. The Classical
Level is the unique exchange rate at which that is possible. There is always a
Classical Level but not always a Classical Point in these models. In all our
diagrams, as in Figs.1.1 and 1.2, the Classical Level is marked by a vertical bar.
The Classical Point is denoted by squares. As there happens to be a Classical Point

in this particular 9-industry model, it is indicated by the gray and black squares in
Fig. 1.2.



Section 2. Existence of Solutions

This paper emphasizes the array of solutions rather than the existence of any
particular one. Nevertheless we need an accurate statement of an existence theorem
and of the conditions assumed on the production functions and utility. Then we
will be able to demonstrate the existence of a vast array of equilibria, and to count
them.

In this model the production functions f;; for good i in Country j will always
have economies of scale. f;;(Z; )/I;; will always be a non-decreasing function of the
labor input /;;. Also the Cobb-Douglas utility function, or its logarithm, will be
used throughout, so for Country j, (j=1,2), we have utility U; given by

d
U~ILy*,; and u~InUs=3, d, Juy,, d,>0, > dymL
with y;; the quantity of the ith good obtained by Country j. It is a well known

consequence of this choice of utility function that Country j spends a constant
fraction d;; of its national income Y; on good i, for all prices p;.

For any pattern of production specialization that assigns a set S; of industries
to Country j to produce, a zero-profit pricing equilibrium is a price vector p;, a set
of wage rates w;, and an allocation /;; of each country’s entire labor supply L,
among the industries in which it participates such that

The supply of the ith good is equal to its demand
en p !'Ej (ieso))-ﬁ',:( L )-Ej diJYf‘Ej d,wil;

and each active industry makes a profit of zero. So
22) p, fL4 J)-le,- ; Jor i€S,.

Although many papers have been written containing quite general existence
theorems for economic models in which production exhibits increasing returns to
scale, some of the conditions required by these existence theorems are not satisfied
in this model, so we need the theorem that follows. We make two assumptions
about the production functions f; ;.

Al. Aside from a possible initial interval in which f;;(; ) is zero, average
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productivity f,(;)/L; is continuous and strictly increasing.
A2. Each country in autarky produces a positive quantity of all goods.

Theorem 2.1: Under these assumptions, there will be a zero-profit pricing
equilibrium for any pattern of specialization in which each of the two countries is
the sole producer of at least one of the goods in which it specializes. Also at all
these equilibria each industry assigned to each country will produce positive
quantities of output.

The proof of this theorem is found in Appendix 2-1 .

If we count up the patterns of specialization of production allowed by
Theorem 2.1 we will find that this existence theorem provides us with 3o2041 41
equilibria in an n-good model.

While the patterns of production at any one of these many equilibria can not
be expected to be stable against large changes that move prices, wages, and output
close to another equilibrium point, they can reasonably be expected to be stable
against sufficiently small changes. This motivates a further mild restriction on the
production functions that is appropriate for economies of scale. We will assume

A3. lim k;->0 £, )/1,;=0.

This zero derivative at the origin ensures that if at a particular equilibrium
point Country j is a non-producer of good i, that non-producing industry would
earn a negative profit in the immediate neighborhood of the equilibrium. A3
asserts that the non-producer’s unit output costs for very low [ would be
unbounded and so could not compete with those of any producer producing at a
fixed finite level. This gives local stability; stability in a much wider sense will be
discussed in Section 9.

Condition A3 is satisfied for all production functions of the form f()=el*
with @ >1, as well as by any production function that satisfies the increasing
average productivity condition Al, and is zero for an interval to the right of the
origin. It does not hold for the Ricardo case e/* with o=1, but it does hold if el
is preceded by an interval of zero output.
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Of the 3"-2"*!4-1 equilibria provided by the existence theorem, at least 2°-2,
the perfectly specialized ones, are locally stable in the sense just given. On the
other hand most, though not necessarily all, of the non-specialized (or
intermediate) equilibria are unstable in the sense that a small departure from
equilibrium will, under natural dynamics, bring on a larger departure. This will

be discussed in Section 7.

In the nine industry model of Figs. 1.1 and 1.2 the array of outcomes
contains 510 perfectly specialized equilibria and 19,683 non-specialized ones. The
program that computed them gives all the perfectly specialized equilibria and all
the intermediates provided by the existence theorem.’

We now turn to the analysis of this large array of possible outcomes.

5 There can always be more intermediate equilibria for sufficiently peculiar
production functions.
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Section 3, The Array of Solutions

Dealing with the array of equilibria is facilitated by normalized variables that
allow us to plot all the equilibria in a finite part of the plane. We also introduce
variables x;; that determine the pattern of production and play a key role in the
analysis.

Normalized Variables and the x;;

At any equilibrium point we will have (2.1) and (2.2). Together these imply
that, for each good, expenditure equals wages, so

d‘-’lY"i-di ,2Y2'W1li,1+wzli 2

We now define x; , to be the fraction of the total demand for the ith product
that is spent for product made in Country 1. Similarly x;, is defined to be the
fraction of the total demand for the ith product that is spent for product made in
Country 2.

(B.0) x,,(d,Y, +d V) -wil;

B.1) x,,(d, Y +d,Y)=wl,

From the definition, 0<x;;<1 and x;,+x;,=1. From the x; , we can form
the vectors x, and from the x;, the vector x,, and we will often refer to these two
vectors together as the assignment x.

Since there are no profits, the national incomes of the two countries are
Y,=wL;. We define the normalized national incomes of the two countries to be
Z,=Y ,/(Y,+Y,) and Z,=Y,/(Y,+Y,). Clearly Z,+Z,=1 and 0<Z;<1. The ratio
Z1Z,=Y ,[Y,=(w/w)(L,/L)), so Z,/Z, is proportional to the wage ratio for fixed
country sizes L;. We will also use Z without a subscript to denote the two-vector

Z=(ZI’Z?.)'
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In terms of the normalized national incomes (3.0) and (3.1) become

(B2 x,(d,Z,+d,Z)=l",,Z,

(3.3)  x,,(d;,2,+d,,Z)~1" 12,

Here the l‘i,j are normalized labor variables, [’ .;=1i;/Lj representing the
fraction of the labor force in Country j employed in making product i, and the
expression in parentheses is the normalized total demand.

In what follows we will also need to refer to the actual labor used in
Country j. We denote it by L, fi;=x;(Ly/Z)(d; 1 Z, +d; 2Zy).

One of the conditions for equilibrium is that the assignment of labor
provided by the x;; is in fact a partition of the entire labor force, i.e that Ll*;;=1.

Since
I ;= (% /Z)(di 1 Z, +d; ,Z,) we can sum this for j =1 and j=2 obtaining the identities

« 1
(3.4a) Z;l i E,- z(di,l Z,+d;, Z)x,

. 1
@BS5a) Y 1%, - Z:E’ dy Z,+d,, Zyx,,.

2

The n.a.s.c. for the assignment x to provide a partition of the labor force, is that
x and the normalized national income Z make L;]*;;=1. So the condition is

(B4 Y., Z,+d, Z)x,~Z,

(3.5) Ei @, Z,+d;, Z)X;p=Z,.

(3.4) and (3.5) are in fact linearly dependant and therefore we need only one of
them. This dependence is a consequence of Walras Law, but it can also be seen
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directly by adding the two equations 6. We will use (3.4) and (3.5)
interchangeably and refer to either one as the zero excess labor equation.

(3.4), or equivalently (3.5), links any assignment x to the Z required to
satisfy the excess labor equation. We will refer to that Z as Z(x) In economic
terms, since Z=(Z,,Zy)=(wL,w,L), 7(x) gives the wage rates at which the
production pattern resulting from x exactly uses the labor of both countries.

Equilibria and Integer x

We now look at the conditions that must be met for x to be an equilibrium
point.

For any x, whether it is an equilibrium x or not, the normalized national
income Z(x) required to satisfy the zero excess labor equation (3.4) can be
calculated from (3.4). This x and Z(x) then determine labor quantities r j from
equations (3.2) and (3.3), whose meaning is that the expenditures must match the
wage bills. These labor quantities in turn determine the amounts produced f;;(Z; ).

For x to be an equilibrium point, the zero profit condition (2.2) must also
hold for the f;; and /;; that have been determined from x. This means that there
must be a price p; for ith good at which, for producers j who produce at a positive
level, the value of the goods they supply equals their wage bill.

(3.P) pfiwl;or equivalently pf, ~1"; Z,.

This explicitly determines the price p,. When there is more than one
producer (3.P) requires that both must produce at equal unit cost 1/p;. When there
is only one, that producer’s unit cost determines the price. If condition (3.P) is
met by an x and Z(x) satisfying (3.4), supply equals wage bill equals demand, the
total labor force is used, and x is an equilibrium point.

While most arbitrarily chosen x do not satisty (3.P), all integer (i.e. 0,1) x

6 Adding the two equations is also equivalent to adding all the terms in both
(3.2) and (3.3) which yields 1= )Z, +(Zl2Z, . This implies the useful
relations El,=1 <=> Lf,=1, Bl <1 <=> Tl',>1, and BT, >1
<=>El;,<1.
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do. For integer x there is only one producer of each good who produces at a
positive level, so (3.P) is satisfied automatically. Consequently all integer x are
equilibria. They are of course the perfectly specialized equilibria.

We will see that the perfectly specialized equilibria are the ones that largely
determine the shape of the solution array.

Utility

We will need an expression for utility in terms of x and Z. While we will
derive these utility expressions for Country 1 only, the changes for Country 2 are
straightforward.

The logarithm of Cobb-Douglas utility is the sum of terms involving the
quantity y;, of the ith good Country 1 receives. The y,; can be written as the
product of two terms F; (Z)Qi(x,Z), where Q.(x,Z) is the total quantity of the ith
good produced in the world and F, ,(Z) is the fraction obtained by Country 1. So
the log utility can be written

ul(x,Z) -anl(x,Z) 'E‘- di,llnFu(Z)Qi(x,Z).

Since the goods are all sold at a world price, the fraction going to Country 1 is its
expenditure as a fraction of world expenditure so

d. Yy _ dZ,

F. - .
u® d; \Y,+d;,Y, d;;Z +d,,Z,

The quantity produced is

Qi(x’Z) "'q,"l(xpz) +qi2(x2,Z)
the sum of the quantities q;; produced in each country. The q;; are defined by
q;;(x;,Z)=f1; (; )) where the labor quantity /; is determined by x and Z and is found
from (3.2) and (3.3). Looking at (3.2) and (3.3) we see that Z determines the
world expenditure on good i, and the role of the x;; is to split that world
expenditure between the labor forces of the two countries. In the special case
where one country, for example Country 1, is the sole producer, we have x;;=1,

x;2,=0, and Q«(x,2)=q;,(1,2) +q;,(0,Z)=q; ,(1,Z).
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The full expression for the utility u, is then

d .Z
(3.6) u,(x.2) =E,- di,1mgj:i:jz:{qi.l(x;vzl)+q i,?.(xi,Z'ZZ)}‘

This expression is complicated both in its dependence on the assignment x and on
the normalized national incomes Z. In addition, for equilibrium x, Z and x are
linked to each other through (3.4). This makes it difficult to compare the many
different equilibria except by fully computing each one. Although useful and
suggestive experiments along that line can be done and were done as part of this
work” we will take a different approach in what follows.

We will emphasize perfectly specialized equilibria and the simplifications
that are possible with them. As mentioned earlier, this emphasis will be justified
retrospectively as they are the equilibria that determine the shape of the
equilibrium region.

Utility for Perfectly Specialized Equilibria

If x, and x, are any variables constrained to be either 0 or 1, and if x,=0
implies x,=1 and vice versa, then we always have for any function g(x,,X,) the
tautology g(x;,X,)=x,g(1,0)+x,g(0,1). The variables x, and x, act as a switch
between the two values of g that are the only ones possible with such restricted
variables. The individual terms x;, and x;, of an integer assignment x are of
course variables of this type.

Letting g be successively the individual terms of the sum (3.6), and using
the tautology, gives an expression for utility that is valid for integer x. This is the
linearized utility Lu,.

(3.L) Lu,(x.2) "E.- x;,d;,I0F, 1(Z)q n(L,Z) +xi,2di,11nFi,l(Z)qi.2(1 Zy)-

For integer x only we have Lu(x,Z)= u,(x,Z). The merit of Lu,(x,Z) is that
for fixed Z the expression is now linear in the variables x.

Boundary Calculation Preliminaries

"Computer experiments played a significant role in many parts of this paper.
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The introduction of the concept of boundary turns out to simplify
enormously both the task of searching for high utility equilibria, and of finding the
shape of the equilibrium region.

To find the upper boundary of the array of points (Z,,U,) corresponding to
all perfectly specialized solutions, we might think of defining a function B(Z) to
be the result of fixing Z and then maximizing u,(x,Z) over all integer x subject to
(3.4), i.e. over all perfectly specialized equilibria having that Z value. Finding this
maximal u,(x,Z), for any given Z, would be an integer programming problem, and
the B(Z) values obtained this way would, by definition, be equal to or above the
utility of any perfectly specialized equilibrium point having that Z value. The
collection of points B,(Z), computed in this way for each Z, would form an upper
boundary.

The maximization problem for each fixed Z would have the following
economic interpretation: Once Z is fixed, the expenditure in each country for the
ith good is completely determined. Therefore the fraction F;, of the total
production of the ith good that goes to Country 1 (or Country 2) is also fixed. The
only way to improve the utility that Country 1 gets from the ith good is to increase
the quantity of it that is produced. This can only be done, for integer x, by
assigning its production entirely to the cheaper of the two possible producers. The
labor constraint (3.4) would then prevent this assignment from being made
simultaneously for every good, and the maximization problem would be to find the
best assignment possible subject to that labor constraint.

While this direction and motivation are fandamentally correct, there is still
one difficulty to overcome: precisely as written, equation (3.4) will not usually
have any solution in integer x for an arbitrary Z, much less many different x to
maximize over. This reflects the economic fact that there are equilibria for certain
Z only. To deal with this difficulty we need one more concept, the Classical
Level, which also turns out to be useful in other ways as well.

The Classical Level®
For any Z we can define an assignment x“(Z), which we will call the
classical assignment. The components of x%(Z) are defined by setting x; ;=1 if

3n Gomory[1991] this was referred to as the Ricardo Level.
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q;.1(1,Z)>q; (1 ,Z) while otherwise x; ;=0. This is simply assigning the production
of good i entirely to Country 1 if Country 1 is the cheaper producer at that Z, and
otherwise assigning it entirely to Country 2.

For an arbitrary Z and its x(Z) we will usually not have equality in (3.4).
In fact for Z with very small Z,, which means low wage in Country 1 since
Z,=w,L,, the terms on the right in (3.4a), involving as they do Z,/Z, will be very
large, and the right side of (3.4a) will be greater than 1. Therefore in (3.4) the left
side will be larger than the right. The economic interpretation is simply this: if the
wage is very low in Country 1 and production is assigned to the country that is the
cheaper producer, the resulting demand for labor In Country 1 will outstrip the
supply. Similarly for any xS(Z) with large Z,, which means high wage in Country
1, the terms on the right in (3.4a) will be small, their total will be < 1, so
demand for Country 1’s labor will be less than the supply.

The demand for labor in Country 1 produced by Z and x(Z) is easily seen
to be monotone decreasing as Z, increases, i.e. as wages increase. The individual
terms on the right in (3.4a) only decrease while the x;, switch from 1 to 0, as
Country 1 stops being the cheaper producer in industry after industry. It follows
that there is a unique transition value of Z; which we will call Z, the Classical
Level, that separates those Z, for which demand exceeds the labor supply from
those for which the demand is less than the labor supply®. More formally we
define Z. the Classical Level to be Z.=sup Z; such that if x=x(Z)

Ei (d,, Z,+d;; Z)x,y> Z,.

Below the Classical Level, i.e. Z,<Zc, if x© is used, the demand for labor
outstrips the supply, and for Z, > Z. the demand is Iess than the supply.

For Country 2 the situation is reversed. Below the Classical Level the
demand for labor is less than the supply, if x° is used, and above Z. the demand
exceeds the supply. The behavior at Z itself and the notion of Classical Point, are
both explained in Appendix 3-1.

SWe could also have defined the Classical Level in terms of the increasing
demand for Country 2’s labor. The result would, of course, be the same as can be
seen from the relationships given in footnote 4.
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We are now ready to discuss a complete boundary calculation.

The Boundary B(Z)

In outlining a boundary calculation that involved maximizing over many
equilibria x for a fixed Z, we had encountered the difficulty that, instead of having
many specialized equilibria, there were, for most Z, no equilibria at all.

To deal with this difficulty we relax (3.4) to an inequality, which then has
many solutions for any Z, and define B,(Z) by the integer programming problem,

(3.7) B(Z)-Max, ul(x,Z)-MaxtLul(x,Z) Xo integer,
with Ei {di,lZI+di 222} X;5$ Z,

The inequality assumes the direction shown for Z above the Classical Level
(Z,>Zc) and is reversed for Z below the Classical Level

This relaxation allows underutilization of labor in the country whose labor
is scarce. Consequently maximizing utility for the given Z should push the
inequality very close to equality as the attempt is made to use this valuable labor

In (3.7) we have arbitrarily used the inequality form of (3.5) as the
constraint. Of course we could just as well have chosen (3.4). Since we will often
have occasion to refer to the inequality versions of (3.4) and (3.5) we will refer
to these as (3.4i) and (3.5i). It will always be assumed that these inequalities point
in the proper directions. '

(3.5i) only involves the variables x; ,, but the objective function Lu, involves

10While we have given an economic meaning to the Classical Level, and used
this to choose the proper direction for the inequalities (3.4i) and (3.5). It is also
possible to give a purely mathematical description: Any equation is equivalent to
two inequalities, one = and one <. If we consider the maximization problem (for
some Z) as a linear (not integer) programming problem, one or the other of the
two inequalities will be the binding constraint. This inequality is the one that
should be used for the integer maximization problem for that Z.
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both x;, and x;, If we rewrite'Lu, in terms of the x;, only, using X;,+x;,=1 to
eliminate the x;, we get

(1
(3.8) Lu(x2) =) 4, InF,q, 1(1’Z)+E-x;di,1mql'2( 2
T ‘ 4,,(1,2)

so we can put the maximization problem (3.7) in a good computational form
involving the x;, only. If we use P,(Z) to denote the first sum in (3,8), which is
a function of Z but not of the x;,, and use ¢; ,(Z) to denote d; \In(q; ,(1,Z)/q; ,(1,2))
we obtain

(3.9) B(Z)-Max, P{2D)+Y. %,,¢:,D)

with Y {d,,\Z,+d,,Z)} x,,< Z, and x,, integer.

(3.9) and variants of it will be our basic tool in dealing with equilibrium regions,
so it is worth while to make some observations about its properties. We will use
these observations frequently.

(1) Both the objective function and the inequality are linear in x for fixed Z.

(2) While the terms in the inequality are always positive, the ¢;, in the
objective function can be either positive or negative. The sign of ¢;, is determined
by the ratio q;,(Z)/q;(Z). If q;, > q;,, OF equivalently, if Country 2 is the
cheaper producer of the world supply c;, will be positive. If Country 1 is the
cheaper producer c;, will be negative.

(3) For any Z above the Classical Level:
(a) Those components x;, of the optimizing x that have x;,=1 must
also have ¢;,>0. For if ¢;, were negative, X;, could be decreased to give a still
better solution.
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(b) In the optimizing x, or even in any feasible x, not all components
X;.2, With ¢; ;>0 can have x;»=1. For an x having that property would be = x in
every x'* component and, above the Classical Level, x€ already violates (3.51).
This is merely a restatement, in terms of (3.9) of one of the properties of the
Classical Level, above the Classical Level, Country 2 does not have the labor to
be the producer of all the goods of which it is the cheaper producer.

The first variant of (3.9) that we will need is the one that uses the x;, in
place of the x,,. This gives, for Z above the Classical Level,

(3.10) B(2)+Max, P(2)+) . x,,¢;1(D)

with Zi{di,lzﬁdmzz}xi’lz Z, and x,, integer.

Again the inequality assumes the direction shown for Z above the Classical Level
and is reversed for Z below the Classical Level.

The P,(Z) of (3.10) is identical with the P,(Z) from (3.9) except for the
substitution of g; , for g; ;. Similarly in the remaining part of the objective function,
the q's have also been interchanged, so 1 =-Cip=d; In(q; ;(1,Z)/q;(1,Z)). In
economic terms the problem (3.10) is to make the best assignment of producers
while being obliged to overutilize the labor in the country whose labor is little
sought after.

We have for (3.10) the translation of the observations (3a) and (3b) above.
For any Z above the Classical Level, the components Xx; | of the optimizing x with
x; 1=0, must also have ¢;1 <0. However not all x;, with negative ¢;, can be 0 in
the optimizing solution or even in any feasible x.

Computation of B(Z)

The By(Z) defined by either (3.9) or (3.10) can be computed by any integer
programming technique. For a single inequality problem such as this, ordinary
dynamic programming is very effective. It allows the computation of a point on
the array boundary without examining the 2" specialized solutions. The dynamic
programming calculation itself is spelled out in Appendix 3-2.



22

Furthermore the dynamic program gives actual integer solutions x so that we
can compute Z(x) from (3.4), and go on to compute utility etc. and hence fully
describes the maximizing equilibria for each Z,. As we will see in Section 4, the
equilibria so attained will be arbitrarily close to the boundary at Z, as the problem
size grows. In practice we find these calculations to be rapid and the resulting
equilibria to be extremely close to the boundary even for very moderate sized
problems, so that we have, in practice, a way of generating almost optimal
equilibria for any specified Z,. We can- then spell out the boundary curve by
computing a regular grid of different Z; from Z,=0to Z,=1, and we will get a
whole series of boundary points and nearby equilibria. Among these points the one
with the largest utility is an equilibrium point that either is the utility maximizing
equilibrium point for Country 1, or is very close, and approaches the best as the
problem size grows. More will be said about the effectiveness of this computation
at the end of this section and in Section 5.

The Boundary B(Z)

There is an even easier calculation that gives a slightly weaker but extremely
useful boundary curve, which we will call B(Z). To get B(Z) we further relax the
problem (3.9) by allowing continuous x;, . It is easily seen that with continuous
variables the maximizing x will always satisfy the inequality in (3.9) as an
equality, so in fact B(Z) is given by maximizing Lu,(x,Z) subject to (3.5), i.e..

(3.9a) Max, Lu(x,Z) =P(Z)+)_ %;,C;,

subject to Y, {di’IZI+d52Z2}xi 2 = Z,

There is of course a problem equivalent to (3.9a) which uses the x; , instead
of the x;, and (3.4) instead of (3.5). We will refer to this version of the problem
as (3.10a).

In (3.9a) we are looking at a particularly simple linear programming
problem with only one equation and upper bounds, 0<x;,<1, on the variables
X;,- The solution technique for such a special linear programming problem or
“continuous knapsack problem” is well known and particularly simple''. (3.9a)

igome useful information on this class of problems is contained in Gomory
and Gilmore [1966].
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can be thought of as filling a space of length Z, with amounts x;,; (not necessarily
integer) of goods. The ith good has length d;,Z,+d;,Z, and value ¢;,; the goal is
to fill the space with the most valuable assortment of goods.

The solution to such a problem is to put in goods in succession in the order
of their value per unit length, which we will call value density. The densest
variable is used first. When its turn comes the amount x;, of each good is
increased from zero until either the amount x;,=1, or the equation (3.5) is
satisfied (i.e., the space is used up), whichever occurs first. If the x;, reaches 1
first, we start again with the next good in order of value density. If for the jth
good the equation is satisfied for some value of x;, < 1, the current values for all
variables x;; are the optimizing solution. Note that x;, is the only variable that is
non-integer in this solution. The variables that preceded it in value density are 1,
and those after it are 0.

This calculation is then repeated for different Z to get the boundary curve.
It is the results of these simple calculations that appear as the dotted lines in our
figures. While this already is a rapid and simple calculation it can be further
improved. (Appendix 3-3).

This calculation too has an economic interpretation. The length d; ,Z, +d;,Z,,
is, for any fixed Z,, proportional to the amount of labor required in Country 2
when Country 2 is the sole producer of the ith good. Similarly the expression for
the value in (3.11) represents the change in utility for Country 1 resulting from
Country 2 becoming the producer instead of Country 1. The industries for which
Country 2 is to be the producer will be selected in the order of value density, those
which yield the greatest improvement in utility per labor hour are chosen first.

If we consider the case of two countries with identical demand structure, i.e.
d; ;=d;,, the length is simply d;, and the density, or change in utility per labor
hour, is ¢; ,/d; ;=1In(q; o(1,Z)/q; 1(1,Z)). Industries i will be chosen in the algorithm
before industry j if In(q;,(1,Z)/q;,(1,Z)) > ln(qj_z(l,Z)lqj_l(l,Z)). In other words
industry i will be chosen before industry j if it has greater comparative advantage.

However when the countries have dissimilar demand structures, the order
of choice is determined by ¢, ,/(d; ,\Z; +d;,Z) =(d; ,/(d; ,Z, +d; ,Z,))In(q; »/q; ;) which
involves q,/q, but also is influenced by the value d; ,/(d; ,Z, +d; ,Z,) which measures
the relative importance of the ith good to Country 1. Roughly speaking when the
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ith good is more important to Country 1 than to Country 2 it will tend to be picked
earlier as Country 1 maximizes its utility. Thus when the countries have non-
identical demand structures, Country 1 will choose a different production pattern
to optimize its utility than Country 2 would have chosen to optimize its utility.

It is also important to realize that while the algorithm maximizes Country
1’s utility by having goods as much as possible produced by the cheaper producer,
all this is within the setting of an assumed fixed Z or fixed exchange rate w,/w,.
As we will see in Section 8, when Z is not fixed, Country 1 can often gain utility
by becoming the producer of goods of which it is the less efficient producer
because acquiring an industry changes Z and improves the exchange rate, giving
it a larger slice of all the world’s goods.

So far we have discussed the continuous variable method only in terms of
obtaining a2 boundary, not in terms of obtaining high utility equilibrium points. Of
course the optimizing x, being non-integer, is usually not itself an equilibrium
point. However equilibria can be obtained by rounding the single non-integer
variable that will appear in the solution to (3.9a) either up or down. It seems clear
that these two equilibria will be close to the boundary for large problems, and in
Section 4 we show that they do in fact approach the boundary as the problem size
grows. This is dealing with an integer programming problem by the time-honored
device of rounding.

Lower Boundaries

While the goal so far has been to find the upper boundary of the array of
perfectly specialized equilibria, exactly the same methods will give us the lower
boundary. If we minimize the objective functions in the problems (3.9) and (3.9a),
instead of maximizing, we will get lower boundaries BL,(Z) and BIL(Z)
corresponding to the two different relaxations. This approach produces the lower
boundaries seen in figures 1.1 and 1.2 and fixes all perfectly specialized equilibria
to be somewhere between these curves.

The Two Methods
The two methods of calculation we have been using, one with integer

variables and (3.4i) and one with continuous variables and the equality (3.4), are
two different relaxations of the original maximization problem described in the
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subsection entitled Boundary Calculation Preliminaries. Both methods seem to have

their advantages in thinking about boundary related problems and both will be used
in the rest of this paper.

We can consider either calculation both from the point of view of generating
boundary curves and from the point of view of finding actual equilibria near those
curves.

Figure 3.1, which is an 8 product model based on Table 3.1, resembles
Figures 1.1 and 1.2 except that the upper boundary B,(Z) has been added for
Country 1. This is the jagged black line'? under the B(Z) curve in Figure 3.1.
B(Z) does follow the location of the integer points more precisely than does B(Z).
However in Fig. 3.2, which is a 17-product model based on Table 3.2 we see that
the two boundary curves are much more alike.

Both calculations can also give us points near their respective boundaries,
the integer calculation does this automatically while the continuous calculation does
this by rounding the non-integer variable up or down. Fig 3.3 is based on Table
3.3 and represents a problem with 27 goods. It shows the B(Z) from the
continuous calculation together with the integer points obtained by the integer
maximization calculation. From the more than 100 million specialized equilibria
in the 27 good model, the calculation has produced the 75 shown in the figure that
are sitting virtually on top of B(Z). If we select from these the one that maximizes
the utility of Country 1, we wiil get a utility value that is within 1/6 of one percent
of the highest point of B(Z), so this equilibrium point is at least within 1/6 of one
percent of the highest utility that can be obtained by Country 1.1

It is also worth noting that the wility to Country 2 is low for any of the
points that are near maximal for Country 1. This is in line with statements 1 and
4b of the introduction.

128, was plotted from the data points using a standard plotting routine to create
the line. The plotting does introduce some systematic distortion as what appear to
be near vertical segments of the boundary in the figure should, in fact, be vertical.

13t is conceivable at this point in the paper that there are mon-specialized
equilibria above B(Z) yielding still higher utilities. However, as mentioned in the
introduction, this possibility is ruled out in Section 7.
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Both calculations appear to have their advantages and to be very effective
in bounding the solution array in actual computation. However the boundary B(Z)
is much smoother and, as we will see later, is easier to deal with theoretically. On
the other hand the integer calculation is capable of producing very many more
actual equilibria near B(Z).

A very good way of combining the strengths of both methods is to use them
together as a sort of coarse and fine microscope. First, using the continuous
method, we obtain an entire boundary, for example B(Z), the upper boundary of
Country 1 in Fig 3.3. Then, in some narrower range of interest, for example near
the maximizing hump of B(Z), we compute the nearby integer points by using the
integer calculation and a fine grid. The result of doing this appears in Fig 3.4
which represents the hump area of Fig. 3.3, from Z,=.55 to Z,=.75, magnified
by a factor of five. There are 119 equilibria computed just in that range by the
integer method'* while rounding the continuous method would produce 11. Using
this technique it is possible to isolate the equilibria in a particular area, for
example the equilibria between near Z,=.625 and Z,=.675 at the very peak of the
hump in figure 3.4 and examine them for their common characteristics.

1“The additional equilibria that appear in Fig. 3.4 and are not in Fig. 3.3 are
the result of using a finer horizontal Z, grid over the narrower horizontal range.
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Section 4 - Convergence to the Boundary

To motivate the convergence discussion that follows we will now indicate
very roughly one interpretation of the results of this section and of Section 6.

In this section, we will see that, under reasonable restrictions, every point
of B(Z) and of B(Z) is approached by equilibrium points as the number of
products in the model increases. Then, in Section 6, we will see that every point
that lies between the upper and lower boundary curves is also approached by
equilibria. Thus the entire shape between the upper and lower boundary curves
eventually fills in with equilibria.

The main assumption behind these results it that as the number of industries
increases, any individual industry represents a decreasing fraction of the national
income.

Our approach will aim at proving these results with minimal complexity. As
a result the estimates will be crude, and the results described here seem to occur
in practice in much smaller problems that these estimates would indicate.

Qutline of the Proof.

Let us consider any point on B(Z), for example the point (Z’, B(Z’)). The
utility B(Z’) is attained by the (generally non-equilibrium) assignment x’ that
solves the maximization problem (3.9a) for Z=Z’. This x’ gives the log utility
u,(x’,Z")= In B(Z'). We will go through three steps to estimate the distance from
the boundary point (Z’,U,(x’,Z’)) to a point (Z,U,(x,Z(x)) associated with an
equilibrium x. For convenience in estimating we will work with points (Z,u,) using
the log utility u, instead of the (equivalent) points (Z,U,), using utility, that appear
in our diagrams.

Step 1 introduces the concept of near equality (n.e.) equilibrium points and
shows that they exist and that their Z-coordinates are always near Z’. For these
n.e. X we give an estimate of |Z’-Z(x)|. Step 2 shows that n.e. equilibria also
have utilities, u,(x,Z(x)) which, while they are of course dependant on the values
of x and Z(x), change only slightly if Z’ is substituted for Z(x). We will estimate
the amount |u,(x,Z’)-u,(x,Z(x)| which is that change. Step 3 shows that, after
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making the substitution of 7' for Z(x) in the utility, some of the n.e. equilibria
then have utility near B(Z"), Le. |(u1(x’,Z’)-u,(x,Z’)| is small. Steps 2 and 3
together imply |u,(x’,Z’)—u1(x,Z(x)| is small, which means that the utility of the
equilibrium point is close to that of B(Z,). This, and the result of Step 1 establishes
nearness in both the Z and U dimensions and completes the proof.

Step 1 - Equilibria With Nearby Z.

Let us assume that we are above the Classical Level, (Z' > Z.). For this
choice of Z' we define a near equality (n.e.) integer equilibrium point x to be an
integer x satisfying (3.5i) for 7 =77 and such that increasing some component Xy »
of x from O to 1 would result in a new x that does not satisfy (3.51).

There are always n.e. equilibria for any choice of Z’ because the optimal
integer solution to (3.9) is n.e., as is the x obtained from rounding down the non-
integer component of the optimizing solution to the continuous problem (3.92).
Both must be n.e. since, as we observed in Section 3, they both have (since we are
above the Classical Level) components that are zero but have positive objective
function entries. If raising one of these components to 1 did not violate (3.5i) it
would produce a still better solutions to (3.9) or to (3.9a) respectively which
would be a contradiction. So these optimal solutions must be n.e., as are many
others."

For n.e. equilibria we can state:

Lemma 4.1:If x is n.e. then

o
Z/ -Z,() < —
where & is the largest of the individual demands d;; and g, which
measures the departure of the demands from identical demands, is defined by

5For example:If we follow the procedure for solving the continuous knapsack
problem, but do not choose the successive pieces in order of value density, instead
choosing at each step any of the remaining pieces that have positive density, the
resulting x, rounded down, will be n.e.
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1
- > Y 4,-d)

g is O for identical demands d;;=d;,, and g=1 for "orthogonal demands"
di'ldi,z":o.

The idea of the proof of Lemma (4.1) is this: Since x is an equilibrium
point, x and Z(x) satisfy the equation (3.5). Since x is n.e., x and Z’ satisfy the
inequality (3.5i). However a change in only one component of x, for instance if
X, » changes from O to 1, causes the changed x and Z’ to violate (3.5i). Therefore
for some value of x,, < 1 the equation (3.5) must be satisfied. So we have a
situation where changing x just a little, i.e. in just one component, allows it to
satisfy (3.5) with Z’ in place of Z(x). This suggests that Z(x) and Z' are also only
a little different from one another.

A proof along these lines is given in Appendix 4-1.

Step 2 - Equilibria With u,(x,Z’) Near u,(x,Z(x))

Since we now know that Z(x) is near Z’ for any n.e. equilibrium, we can
show that u,(x,Z(x)) is near u,(x,Z’) by bounding the derivative of u; with respect
to Z,. In Appendix 4-2 we show that the derivative at any point Z is bounded by

@1 M@y - L. 2@
z  Z

m m

Here 2’ ,=min(Z’,,Z’,), and a(Z’)=max o #Z), with each o, =1 ;' )] /1

i,j" M,
which is the ratio of marginal to average productmty evaluated at the labor level

required to be sole producer.
If we combine this bound with Lemma 4.1 we have:

Lemma 4.2: If x is n.e. then

| uy(,2)-uyx,20) | < 2MED,
-8

where Z’ lies between Z(x) and Z’. This completes Step 2.
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Step 3 - Bquilibria With u,(x,Z") Near u x,Z")

Since Z’ is above the Classical Level the variables appearing at a positive
level in the solution x’ to (3.9a) will have positive ¢;,. If we round the one non-
integer variable in x’ down to obtain an integer solution x, we can decrease the log
utility at most by an amount equal to the largest c;,. The ¢;, are given by

. (1
9, (1LZx) o if R(Z)=maxiunq,g( ,Z(x))l
q;,(1,Z(x)) q;,(L,Z(x)
that decrease must be < SR(Z’). This gives

0< u,(x",Z")-u(x,.Z) <8 R(Z.

R will be large if for the given Z’, in some industry, Country 2 can produce a
much greater quantity as sole producer than Country 1 as sole producer.

42) c,=d,In

Now consider any integer x that is at least as good as X, as an integer
solution to (3.9). Both the maximizing integer solution and the rounded solution
X, itself are examples of such x. For such an x

4.3) u,(x,Z2) < w(x,Z’) < wy(x',Z') so 0 <u,(x’,Z)u(x,27) =
OR(Z).

This completes the three steps of the proof for Z’ above the Classical
Level.

Theorem and Corollaries

For Z’ below the Classical Level we need only switch to using the x;; and
the argument will proceed in exactly the same way.

If we put together (4.3) and lemmas (4.1) and (4.2) we can state the
following theorem:

Theorem 4: If Z’,B(Z’) is any point of B(Z) then, provided g is not 0, thereisa
perfectly specialized equilibrium point x with | Z’-Z,(x)| < &/1-g and |u(x’,Z’)-
u,(x,Z(x))| =< §{R(Z")+M(Z"}.

Remarks on the theorem:
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(1) The theorem can be restated in terms of the utility itself as supplying an
equilibrium x with | Z’-Z,(x) | <8/1-g and with e*®*M < B(Z")/U (x,Z(x)) <&’®*™,

(2) Since B{(Z) <B(Z) the theorem holds with B,(Z’) in place of B(Z’).

(3) since M involves Z, or Z, in its denominator, and R tends to be large for
extreme exchange rates, both M and R will tend to be large and provide weaker
bounds as we approach either Z,=0 or Z, =0. Slower convergence in these areas
is in fact visible in most of our diagrams.

In the course of our proof we have also proven the following corollary.

Corollary 4.1: The equilibria produced by the two maximization algorithms are
among the perfectly specialized equilibria x mentioned in Theorem 4.

The theorem gives us a rough feeling for the distance of our maximizing
points from the boundary, however in practice this seems to be a gross
overestimate. However our main purpose here is to show convergence rather than
estimate its rate, so we will continue in that direction.

Theorem 4 relates any boundary point to a nearby integer solution in terms
of the parameters of the given problem. However it can also tell us what happens
as problems get large under reasonable circumstances.

Consider a sequence of problems with increasing numbers of goods, each
of which absorbs a decreasing fraction of the national income. Let us denote the
various parameters appearing in the theorem as it is applied to the mth problem by
8.,R,, and gm. When these are known and Z is specified we have M,,.

Then we have the following Corollary:

Corollary 4.2: Let P, be a sequence of problems with bounded parameters
R_,1/(1-g,), and M,,, and with §_->0. Then, for any Z’, and any ¢ there is an
m sufficiently large that the point Z’,B_(Z’) on the mth boundary curve will have
an integer equilibrium point within € of (Z’,InB_(Z’)) in both coordinates.

It is also immediate that under these circumstances the equilibria produced
by our two maximization methods would also be within e.
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Let us discuss briefly whether the parameters of a sequence of reasonable
models would remain bounded as assumed in the corollary. We will simply assume
that the models do not converge on "orthogonal demands" so that 1/(1-g,) remains
bounded. o and R depend on the production functions, and if o and R are
bounded, so is M. If we assume that the production functions that appear with
increasing m are not radically different from those before them, we would expect
the various production ratios that make up these parameters to vary in value but
remain bounded unless they are being evaluated at ever increasing labor levels.
However the largest possible labor input into any one production function will be
bounded if individual industry sizes remain bounded, so under that rather
reasonable condition the parameters would remain bounded.

We next discuss the condition §_->0. If in the sequence of problems the
size of Country 1 remained bounded for all m, the amount of labor in some of the
active industries would have to approach zero as m became very large, so we will
assume that Country 1’s size increases unboundedly with m. Now if the demand
for any one good remained above a fixed percentage of the total demand, the labor
force of that industry would also increase unboundedly. Therefore it is reasonable
to assume that each individual demand decreases toward zero, which motivates our
assumption §™->0.

For example if the sequence of problems was produced by adding new
industries one at a time to an existing model, the new industries being roughly the
scale of those that preceded, and also enlarging the labor force at the same time
by adding the labor for the new industry, the conditions of the corollary would be
met, and we would see integer points approach every point of the boundary as m
increased, and we would see the results of our maximization calculations approach
the boundary as well.
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Section 5 - Some Remarks on Computation

One of the contributions of this paper is to provide methods for determining
the boundaries of the region of equilibria for large problems, and also to find from
the enormous number of equilibria, those giving high utility to one country or the
other. In the course of the paper so far we have used phrases like "simple
calculation” or "easy algorithm" and have shown figures displaying the results of
various calculations. This has included boundary calculations, calculations to
obtain good equilibria, calculations showing all perfectly specialized equilibria, and
calculations that obtain, in addition to the perfectly specialized equilibria, the
extremely numerous intermediate equilibria provided by the existence theorem. We
will pause here for a moment to be more concrete in a practical sense about the
amount of computation required to solve these problems.

The various computations referred to in the text up to this point were all run
on the author’s home computer,'®. All programs were written in Basic by the
author and are very far from optimal.

Typical run times are:
(1) For a boundary curve B(Z) made from 60 grid points:
7 industries 1.68 minutes, 17 industries 1.80 minutes, 27 industries 1.97 minutes,
37 industries 2.16 minutes.
(2) For B/(Z) and its nearby integer points, 60 grid points:
7 industries 3.8 minutes, 17 industries 9.17 minutes, 27 industries 15.3 minutes,

37 industries 20.8 minutes.

(3) For obtaining all the approximately 8000 perfectly specialized equilibria
points in the 13 industry model in Fig. 6.1, 8 minutes.

(4) For the computation with roughly 19000 intermediate equilibria in Fig
1.1 about 5 hours. '

Computations (1) and (2) grow slowly (linearly in this range of model sizes)

*An IBM PC Model 80
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with the number of industries. They are also linear in the number of grid points.
Computations (3) and (4) of course grow exponentially with the number of
industries, and it is this exponential growth that we have circumvented with our
algorithms.
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Section 6 - Filling In

We will now turn our attention to the region itself rather than to its
boundary. We will show that under the same circumstances as in Section 4, the
various perfectly specialized equilibria not only approach the upper boundary but

entirely fill out the space between the upper and lower boundaries as the number
of goods grows.

We start the proof with the following lemma which is immediate from the
linear programming point of view. As usual we will assume Z’, > Z¢

Lemma 6.1: Let B(Z’) and BL(Z’) be the values of the upper and lower boundary
curves for some Z'. Then for any intermediate value V, BL(ZY< V < B(Z),
there is a feasible (non-maximizing} solution x to (3.9a), with at most two non-
integer components, for which the value of the objective function (the log utility)
is v=InV.

Proof: Let us add to the maximization problem (3.9a) the linear constraint
Lu,(x,Z’) <v. The problem now has two constraints, so the x that attains the linear

programming maximum value, which is v, will have at most two variables that are
neither 0 or 1.

Let x’ now be that optimizing x with its two non-integer components X’j2
and x’,. The solution x’ satisfies (3.5) as an equality so that the integer point
obtained by rounding up both x’;, and x’,, to 1 can not satisfy (3.5i), while the
x obtained by rounding them both down clearly does. It follows that either x itself
or one of the two x’s obtained by rounding one component up and one down has
the n.e. property, and Lemma(4.1) applies to that x, as does Lemma(4.2)

Consequehtly we have for this x

7' -Zo) <> and

l1-g
ul(xz’)-ui(x,Z(x))ls—f-_"—&f.
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To bound the difference between v=u(x’,Z’) and u,(x,Z’) we simply
observe that the change in Lu, produced by changing the terms x’;, and x’, , can
not exceed 26R, so |v-u,(x,Z’)| <26R.

Putting together these three elements we have proved

Theorem 6. If (V,Z’) is any point between B(Z’) and B,(Z’), then, provided g
is not 1, there is an integer equilibrium point x with |Z,(x)-Z’,| <4/1-g and with
|v-u,(x,Z(x)) | <62R+M).

And we have a similar corollary:

Corollary: Let P, be a sequence of problems with bounded parameters R_,1/(1-
g.), and M., and with 6,->0. Then, for any Z’, and any ¢ there is an m
sufficiently large that any point (Z’,V) between B (Z) and B, (Z) will have an
integer equilibrium point within ¢ of (Z’,v) in both coordinates.

The fill in effect is already clearly visible in Fig. 6.1 which plots all the
perfectly specialized equilibria from the 13 product model based on Table 6.1.

Because of the fill in effect we can discuss various parts of the region of
between the upper and lower boundary curves with confidence that they will be
populated with equilibria.
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Section 7: Non-Specialized Equilibria’

So far we have worked entirely with integer solutions, that is to say with
perfectly specialized solutions. Some justification for this approach can be seen
from the following theorem.

Theorem 7.1: Let x be any equilibrium solution, whether specialized or not. Let
Z(x) be the corresponding Z and u,(x,Z) the utility of x to Country 1, then

Ux2) < BfZ)< B@)

So all the equilibrium points, not just the specialized ones, lie under the
upper boundary curves. Intermediate equilibria, however, can lie below the lower
boundary curve as is clear from Figs. 1.1 and 1.2.

We now turn to the proof of Theorem 7.1. The idea of the proof is to
compare the utility at x, which for our intermediate x is not the same as the
linearized utility, with the linearized utility of rounded versions of x. We will use
the following lemma to help us compare the utility at x, to the utility of a more
rounded version of x.

Lemma 7.1: Let x be an intermediate equilibrium point with associated national
income Z(x). Let q; (x;;,Z(x)) and q; 2(%;2,Z(x)) be the quantities of the ith good
produced in the two countries. Then QX Z(X) + qaXi2,Z(x)) = Min(
qi,l(lsZ(x))’ qi,z(l,Z(X)) )-

This lemma states that either country, as the sole producer of good i, a¢ the
demand and wage levels of the equilibrium point x, will produce more than the two
countries together at the equilibrium point x. The lemma does not assert that more
would be produced if one country were actually the sole producer. For if that were
to happen, we would have a normalized national income different from Z(x), with
different wages and therefore possibly a different outcome. It also important to
realize that the lemma does not assert that for any 0<x; ;<1 the inequality holds,

but only for those x; , that are part of an equilibrium x. Without that restriction the

"The results of this section are not needed for the analysis in Sections 8-11
except for the implicit use throughout of Theorem 7.1 which asserts that there are
no non-specialized equilibria above the region of perfectly specialized equilibria.
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result is not true.

Proof: At the equilibrium x, using (3.P), we have for each i prices and wages such
that

7.1) pifi =w;l;, and pifi,2=wili.2

If we form the ratio of the two expressions in (7.1) and use the relations
£, (i 1) =1 (X1, Z(x)) and L =x,(L/Z)(d; 1 Z,+d; 2 Z,), together with similar
relations for f, and [, we obtain Qi 1 (%51, Z(X))q; 2(X; 2, Z(X)) = X /X, or
equivalently

(7.2) qi,l(xi,l L Z(x))/ X1 = qi,l(xi,?.a Z(x))/ Xi2= C.
Since x;;+x;,=1, G (.1, 2(x)) + q;2(%;2,Z(x)) = C.

Since the q’s are the quantities produced and the x;; are proportional to the
amounts of labor at the fixed Z=Z(x), the production economies of scale
conditions assert that the first ratio in (7.2) grows with x; ; and the second with x; ,
SO

qi,l(lsz(x))/ 1 = qi,l(xi,l’Z(x))/ X1 = C= Qi,l(x‘..uz(x)) + Qi.z(xi,z,z(x))-

This proves the inequality of the Lemma for g;,, and the reasoning for q;, is the
same.

In the remaining part of the proof of Theorem 7.1 we assume, as usual, that
Z(x) is above the Classical Level.

Let us consider the integer equilibrium point x’ obtained from x by rounding
down all the non-integer x;, to 0. Since all the coefficients in the inequality are
non-negative and x satisfies (3.5), x’ satisfies (3.51) and therefore is a feasible
solution to (3.9). We will compare u,(x’,Z(x)) with the utility of x.

Since the maximum value of the objective function in (3.9) is InB(Z(x)) we
already have InB(Z(x))=u,(x’,Z(x)). If we can show that u,(x’,Z(x)) is =
u,(x,Z(x)), we would have InB(Z(x)) =u,(x’,Z(x)) =>u,(x,Z(x)) which would prove
the theorem.
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To compare the values of u,(x,Z(x)) and u(x’,Z(x)) we look at the
individual terms in the two u, expressions. Using z as a dummy variable, the
terms are of the form

d; InF(Z(x))Q(2.Z(x)) with
dmZ(x)

dmZ(x) +d, QZ(x)

Q,‘(Z’Z(x)) 'qi.l(z,"pz(x)) +q,‘ 'z(z,' 'zz(x)) .

The F term is the same whether z=x or z=x'. However if we compare the
results of putting the components of x and of x’ into the z of the second term we
note that whenever the components of x and x’ are different, because of the
rounding, the x* components are always 0 or 1 while the x components come from
an intermediate equilibrium point. So the conditions of Lemma 7.1 are fulfilled
and we will always get an equal or larger result from the x’ component. This
shows that u,(x’,Z(x)) is = u,(x,Z(x)) which establishes the theorem.

F(Z())~

Properties of Non-specialized Equilibria

Non-specialized equilibria are harder to analyze than are the specialized
ones. Fortunately they are connected by the theorem we have just stated. In
addition, our empirical work, of which Fig (1.1) and Fig (1.2) are examples,
shows the generally lower utility of non-specialized equilibria.

However, mixed equilibria exist, they are numerous, and they have their
own interesting properties. Mixed equilibria in the presence of economies of scale
are usually unstable, in the sense that a departure from such an equilibrium tends
to increase under reasonable dynamics. If one country increases its scale of
production, it can produce at a lower cost, and therefore tends to produce still
more etc. etc. However this is not always so, and it is important to realize that
there are stable non-specialized equilibria as well.

There are two reasons why we cannot ignore the possibility of stable
intermediate solutions.

(1) The classical Ricardo model will often have as part of its sole solution,
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one good that is produced in both countries. Therefore we should expect that in
the model discussed here we may see stable intermediate equilibria when we have
production functions e; /* with ¢ sufficiently close to 1.

(2) While we know that all intermediate equilibria are under the upper
boundary of our region, and that some are under the lower boundary, we do not
discriminate in these remarks between those that are unstable, as most are, and
those that are stable. It would be interesting to know if the stable intermediates are
all in or near the region. If this were to be so, we could regard the region as being
the locus of all stable outcomes, the stable intermediates as well as the perfectly
specialized equilibria.

We will discuss a few special cases of intermediate equilibria and return to
the question just raised at the end of this section.

Loan Curves and the Simplest Case

The simplest case of a mixed equilibrium is the case in which only one
good, say x, is produced in both countries. Let x(x; 1)=(x,,,x”) where x’ is a fixed
n-1 vector of 0's and 1’s representing the x; ;. If we take x, ; as a parameter which
varies from zero to 1, then for each value of x, , we have an x and therefore can
compute the national incomes from (3.4) and then the utilities. The result will be
a curve connecting the perfectly specialized points x(1) and x(0). An example is
the dashed line in figure (7.1)."®

With isolated exceptions the points along this curve are not equilibrium
points since the two producers are not producing at the same unit cost. However
the points can be given an economic interpretation. Imagine that output from both
countries in industry 1 is sold at the world market price. The lower cost producer
(say Country 1) will have an income from sales that exceeds his wage bill, while

¥This figure is based on Table (7.1). It is a six product model, and the loan
curve connects the points x,=(1,0,0,1,0,1) and x,=(1,1,0,1,0,1). One effect of
using a smail model is to make the figures more readable, another is that the small
number of goods produces large swings in national income after the shift of a
single industry. Note that the production functions used here, and described in
Table 7.1, are different from those of previous tables. They have less output for
low labor levels.
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the higher cost producer (Country 2) will have an income that doesn’t cover his
wage bill. Country 1 places its profit in an international bank and Country 2
borrows from the same institution to cover its wage bill. This arrangement will
correspond to the computed points, and we will therefore refer to them as loan
points or loan solutions. If the loan is non-zero these are non-equilibrium points
and, are subject to market forces, described below, that will cause movement away
from these points.

For each Z along such a loan curve, one country or the other will be
producing at a lower unit cost. In figure (7.2) the curves of figure (7.1) have been
redrawn with the dark part of each curve showing the cheaper producer. The point
at which the curve switches from dark to light is a point of equal unit costs and
hence an equilibrium point.

In Fig (7.2) there is a single transition point, and hence a single equilibrium
point along each curve. This is what one might expect intuitively since as x,
increases from O toward 1 Country 1 would generally become a cheaper producer
of good 1 because of economies of scale, while Country 2 becomes more
expensive, and this is in fact the commonest case.

If we define prices that cover costs for each country separately by
pi1 =Wl /(1) and p =W, /fi (i ») we would expect a plot of the p’s versus
X, 1 to look something like fig (7.3) which is in fact that plot for the loan curve of
Fig.(7.1). For x, , near zero p, , should be very large, and for x, ; near 1 p, ; will
be very large. Also p, , should generally (but not always) decrease with increasing
labor to produce a single crossing point, p;;=p;, where we would have
equilibrium and a price p=p; ;=P

The single equilibrium would in fact be the only case if the quantities
produced were given by q,(x, ;,Z") and q,(x,5,Z") for some fixed Z’ as in Lemma
7.1 above. Here however we are dealing, not with a fixed Z’, but with a varying
Z(x(x,,)). Or equivalently we are dealing with a wage rate that varies as x,,
varies. Because of this the possible outcomes are more complex and multiple
intersections and multiple equilibria can occur. Fig.(7.4) and its p plot (7.5)
provide an example®. |

¥This figure is based on Table 7.2, and the curve connects x;=(1,1,0,1,0,1)
and x,=(1,1,1,1,0,1) . Table 7.2 differs from Table 7.1 only in the data on the
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In any case the behavior of the p,,; and p,, in each coming down from
unboundedly large values at one end of the interval to finite ones at the other, does
force the number of intersections of the two price curves, and therefore the
number of equilibrium points, to be odd in every case.

We can also associate a rough (Marshallian) dynamics with Figs (7.3) and
(7.5). To the left of the intersection in figure (7.3) Country 2 is the lower cost
producer. Country 2 can therefore cover its labor costs and more, and still sell at
a price lower than County 1, which at that price can not cover the wages of all its
workers. This creates a situation where Country 2 will be motivated and able to
increase production and get a larger share of the demand, (increase X, ,, decrease
X,.1), while Country 1, which can not even pay all its work force, must reduce it
and lose share, (decrease x, ;,increase X, ). These directions of change are shown
by the arrows in Fig.(7.3).

These conventions for dynamics can be applied in the same way to the
general situation. We will assume that at each Z the producer j with the lower
price curve will increase x,; while the other producer is obliged to decrease. A
handy result of this convention is that direction arrows on a curve reverse as the
curve passes through a (simple) equilibrium.

In fig (7.3) these dynamics give the intuitively plausible result. The Country
1 producer will not cover his labor costs until he is operating at the scale that gives
the equilibrium point, but thereafter he can profitably increase, The Country 2
producer does well until his production is brought down to the equilibrium point,
after which these dynamics would cause collapse. We will call an equilibrium,
such as that of figure (7.3), in which all arrows point away from the equilibrium
point, an unstable equilibrium. :

Unstable equilibria such as the one illustrated in (7.2) and (7.3) play a role
in measuring how large a scale Country 1 must reach before it can compete with
Country 2.

However in Fig (7.5) with its triple of equilibria, the first and third points
are unstable but at the second one the arrows all point toward the equilibrium

third product. There has been a change in demand for this product but, more
significantly, the production exponent has been reduced to near 1.



43

point. We will call such a point stable. From these conventions and our previous
remarks we have at once the following theorem.

Theorem 7.2: The number of intermediate equilibria is always odd. If the
intersections are numbered in order of increasing x, ; the odd numbered ones are
unstable and the even numbered ones are stable.

Some light on when the different cases occur is given by the following pair
of theorems which are both proved in Appendix 7-1.

For production functions of the form ei,jl“‘i, ;> 1, the following holds.

Theorem 7.3: If qm(l,Z(x))2q,,2(1,Z(x)) for both x(0) and x(1). or if
q,,,(l,Z(x))Sq,'z(l,Z(x)) for both x(0) and x(1), then there is only one
intermediate solution x(x,), 0<x;<1, and it is unstable.

In words, the theorem asserts that if one country or the other is the cheaper
producer over the range 0<x,,<1, we have the simple outcome. There is only

one non-specialized equilibrium for the product and that one equilibrium is
unstable.

That the condition of Theorem 7.3 can not be wholly dispensed with, and
that in its absence there are instances of multiple equilibria, is shown by the
following partial converse:

Theorem 7.4: If the condition of Theorem 7.3 is not met, there are always
multiple equilibria for values of the production exponent o; sufficiently close to 1.

This implies that in these cases there are stable equilibria. Here we have
returned to our earlier remarks and to the situation which approximates the linear
Ricardo model, and we do have the appropriate stable equilibrium.

Stable Equilibria and the Equilibrium Region

If we think directly about this situation, or alternatively examine the proofs
in Appendix 7-1, we will realize that the force that stabilizes the inherently
unstable intermediate equilibria is wage change. If Country 1 increases output of
the ith good from an intermediate equilibrium, its economies of scale increase, but
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so do the wages in Country 1, and this produces a slight counter-effect to the
economies of scale. In a small model, one with only a few industries, this counter
effect can be large, but in a large model, the change in one industry can have only
a small effect on the wage rate, and therefore stability will require correspondingly
weak economies of scale, i.e. a production function in that industry that is close
to linear. This is reflected in the condition that the o; in Theorem 7.4 must be near
1.

Although we have seen in our graphs that non-specialized equilibria can be
below the lower boundary of the region of specialized equilibria, we can now
make a plausible case that szable non-specialized equilibria will all lie above or
near the lower boundary.

The argument depends on the near-linearity of the production functions
required for stability. If x represents any intermediate equilibrium with relative
national incomes Z(x), the linearized wility for that x, as for any x, will lie
between B(Z(x)) and BL(Z(x)), the upper and lower boundary points corresponding
to Z(x). With economies of scale, the true wtility for x, will of course have a
different, and generally lower, value. However, for an absolutely linear production
function, the true utility is in fact underestimated by the linearized utility® so its
value would be = BL(Z(x)). Therefore it is plausible that for a nearly linear
production function, the true utility would be either larger than the linearized
utility, or at worst, very slightly lower, and therefore be either above or just below
BL(Z(x)).

Putting these pieces together, we would expect a stable intermediate
equilibrium x in a large model to require almost linear production functions in the
industries where it has stable intermediate solutions. It would therefore have a
utility either above or just below the value obtained by the linearized utility for
that x. Therefore the stable intermediates would either be in the equilibrium region
or just below its lower boundary. In the latter case they would converge to the
lower boundary as the problem size becomes large.

In the extreme, if we imagine a problem where the small deviation in one
industry affects the wage rate in the country not at all, we would -require truly

2The relevant observation here is that log(xK,+(1-x)K,) = xlogK, + (1-
x)logK,. :
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linear production functions for's'tability, and the resulting equilibria would in fact
lie in the equilibrium region.

While this is only a plausible argument, it is one that can be made rigorous
for a very large class of production functions, and this is planned for a future

paper.
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Section 8. The General Shape of the Region and Some Special Cases

General Shape of the Region

The many?' numerical examples that have been examined all show the same
characteristic region shape that is seen in Figures 1.1,1.2,3.1,3.2,3.3,6.1, 7.1,
8.1, 8.2, and 9.1. These characteristics are, for Country 1:

(1) a steady rise in the height of the upper boundary over a range from
Z,=0 to some Z; value to the right of Z¢ .

(2) To the right of Z. a height for the upper boundary that is above the
autarky level.

(3) A point of maximum utility to the right of Z. followed by a descent of
the upper boundary to the autarky level

(4) Upper and lower boundaries coinciding at Z, =0 and Z;=1.
For Country 2 we have of course an equivalent set of statements.

These characteristics are not accidental but derive from the fundamentals of
the economic situation being portrayed. We will now interpret the continuous
variable calculation in economic terms to show how the characteristic upper
boundary shape reflects the underlying economics.?

First consider a very small relative national income Z; The maximization
problem (3.10a) contains the equation (3.4). Both the maximizing and minimizing
solutions to (3.10a) will have all but one variable at 0 or a 1. To satisfy (3.4) for
sufficiently small Z, almost all x;, can only be zero. So both B(Z) and BL(Z) will

2 At the time of writing more than 80.

22 In Gomory and Baumol[1992] we prove rigorously that not only all these
characteristics but some important additional ones hold for significant classes of
models.
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be near 0. In economic terms, for small Z;, Country 1, for very small Z;, can be
the producer of only a very few goods comprising a small fraction of world
expenditure. Since Country 1’s population is fully employed in making these
goods, its wage is determined by the small total world expenditure on these goods
spread over its entire work force. This results in a very low wage, or equivalently
a very poor exchange rate. With this low wage rate and small Z,, Country 1 gets
a small fraction, F,, = d,,Z,/d; Z;+d;,Z;), of any good produced in either
country. So Country 1 has very low total utility.

We will next discuss the reasons that this utility increases with increasing Z,.
If we consider the boundary for slightly larger Z, we add more of some industry
to Country 1, (increase the non-integer x,, term). Since we are well below the
Classical Level Z, the industry that is being added by the algorithm will be an
industry in which Country 1 is, at Z, the lower cost producer. Keeping this in
mind we can see that there are three effects on the linearized utility function

Lu,(x,2)= (%14 I0F; (D, (LZ) +X;00; I0F, (Z)g; 5 (1,Z)).
which are produced by increasing Z;

(1) Since the industry being acquired (industry k) is now producing goods
at a lower cost, ¢ ; > Gy, , Country 1’s utility improves.

(2) Since its relative national income has gone up, all the F;, are larger so
Country 1 gets a larger fraction F;, of everything produced in either country.

(3) The wage in Country 2 has gone down and the wage in Country 1 has
gone up, so the q;, associated with positive x;, have gotten bigger and the q;,
associated with positive x; ; have gotten smaller. This affects utility by raising the
cost of Country 1’s products and lowering the cost of Country 2’s products. These
two effects clearly work against each other, and we will assume here what is both
plausible and also proved for a wide class of functions in Gomory and
Baumol[1992], that the dominant effects are (1) and (2). Since both (1) and 2)
improve utility, utility increases monotonically.

At Z_ the algorithm can for the first time no longer find terms that are
positive in the objective function, and therefore Country 1 starts to acquire
industries in which it is the higher cost producer, consequently effect (1) changes
sign and now has a negative effect on utility, becoming more and more negative
as Z, increases further. Effect (2) remains positive, but the fraction F;, increases
more slowly with larger Z. Eventually (1) overwhelms (2) and the utility curve
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turns down.

Finally, for Z, near 1, Country 1 will be the producer of most goods. The
fraction of world production of these goods that Country 1 gets is near 1. Country
1 is now producing most goods and keeping almost all of the production of those
goods. So, with the exception of the few goods being made in Country 2 and
consumed in Country 1, Country 2’s existence has little impact on Country 1. In
particular Country 2 provides an almost negligible market for Country 1. Country
1 has almost “"returned to autarky". For this reason both boundary curves
approaches the autarky level.”

We have given plausibie reasons that explain the observed upward slope of
Country 1’s upper boundary, why it turns down somewhere to the right of Z, and
why it then descends to the autarky level. So we have explained characteristics (1),
(3), and (4). If we knew that the boundary was above the autarky level at Z-on
its way up to its maximum, we would then have a plausible reason why the
boundary would be above autarky everywhere to the right of Z., which is the
observed characteristic (2).

That the utility at Z. should exceed the utility in autarky is intuitively
plausible since at Z¢ the optimal x will be able to assign production always to the
cheaper producer, while exactly using up the labor supply. All but one of these
producers, having an x;;=1, will have the benefits of making the entire world
supply. It is in fact easy to prove this result in a number of different ways™.

BA more careful analysis of this "return to autarky" effect is given in
Appendix 9-1.

%Qne proof is based on the Ricardo model. Let us define for a particular
model M the associated linear model M;. M; is the same as M except that the f;;
are replaced by linear production functions e;;l with ¢ =E L The P;;
entering into the constant (f;(I’;)/';)) is the labor level needed to make the world
supply of good i in Country j at the Classical Level Z.. At Z. (only) the
maximization problem (3.10a) is completely unchanged by this change of
production functions, so the maximizing utility for the two models is the same at
Zc. But we know that in M,, the Ricardo model, this utility value is greater than
the utility in autarky for M. The distribution of labor among the industries in
autarky is the same in both models, but the utility in autarky for M exceeds the
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Very similar arguments can be made to explain the monotone increase of the
lower boundary and its eventual turn down to the right of Z..

After these rough arguments we next discuss some significant special cases
where explicit formulae can be obtained for the boundary curve so that the shape
of the equilibrium region is obtained in a very direct way.

Special Case - Consistent Comparative Advantage

We consider identical demands, d; ;=d;,, and production function p;(})=e;; I*
for a fixed exponent . The fixed exponent « is needed to give consistent
comparative advantage between the two countries over a wide range of exchange
rates (or equivalently over a wide range of Z). To see this we write the expression
for comparative advantage, forming the ratio of output for each country taken as
sole producer for goods i and j, at some arbitrary relative national income Z. The
expression is [f, ,(J; 1)/ (5 DVIE (4 D/ 25 )], Since the labor used in the ith
industry is the world demand divided by the wage rate the term in the first square
bracket is (e; /e;)(Wo/w,)* and since « if fixed the entire expression is
(e;1/€;)/(e; 1/e;2). As this is independent of Z, comparative advantage does not
change with Z.

With consistent comparative advantage, we might reasonably expect some
simplification in the maximization algorithm since the various industries might be
expected to enter the maximization calculation in some fixed order for all Z. We
will see that when we also have identical demands this is indeed the case.

In the maximization problem (3.9a) the utility u,(x,Z) consists of two parts,
one independent of x and one dependent on it. The independent part is, for our
special case,

utility in autarky of M because at the autarky labor level, the production functions
in M are below the linearized ones, since economies of scale give us
£,(0 ) < (6,;(: )/ Ma; ;. Thus in M Country 1's maximizing utility at Z¢ exceeds
M, ’s utility in autarky at Z., and therefore, a fortiori, exceeds its utility in autarky
in M. The same argument holds for Country 2.
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14

Ld,
Y. dl.'llnqul.fEi di,llnzl+zi di,llnei'l(_z_'-_)
1

1 1]
- K+(a—1)ln-z—1 where K=Ei d,-’lln e,-'l(d,- ,L1) .

We can recognize K as Country 1’s utility in autarky UM,

The x dependant part, over which we maximize, is

. e Z o
X xud:.‘llng-‘ﬁ - xi.zdi,iln—i"z"(b]'—zz" which is
91 e, (LyJZ)"

Z; ely
(8'2) (Eixiﬂdi.l) ln;i; + Eixizdi,lln 2 )

[ 1
ei,lL1

For symmetric demands and any feasible x, the sum in parentheses is, from
(3.5), exactly Z,=(1-Z,), so it is only the second sum in (8.2) that depends on x.

Z ¢ Ly
(8:3) «(1-Z)ln 1—lz «3 x,,d, In—2=
1

ei,lL:

The maximization problem we are left with is one with overall knapsack length (1-
Z,), objective function coefficients dillln(emL“z/ei,,L“'), individual piece lengths
d; Z,+d;,Z,=d;,, and therefore, value densities In(e; ,.L*¥/e, L*"). Since this is
independent of Z (this is the algorithmic result of having consistent comparative
advantage), we can solve this once for all Z, either in the dynamic programming
case or in the continuous knapsack case. If we denote the outcome of this
maximization by Knap(Z) we have for the utility in this special case
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Z
u (x,2)= {an“l+(a~1)ln—Zl-+ a(1-Z)ln 1_‘2)} + Knap(2).

1 1

Since in Knap(Z) we are solving a knapsack problem of length (1-Z,) we can
express the resulting value as a average value density d(Z,) times the knapsack
length (1-Z,). d(Z,) will increase monotonically as Z, increases and the length of
the knapsack decreases, and will be bounded above and below by the greatest and
least possible value densities In(e; J.*%/e; ,L*"). Upon rearranging terms we get for
the utility in the consistent comparative advantage case

A 1.4, 1 0z,
@84) U@D=-U"Z (=) (——=) [exp((1-Z)d(Z)).
zZ, (1-Z)
If d(Z,) varies slowly with Z;, as it will unless the value densities are very
different from each other, this is close to a simple formula giving the boundary
shape. The shape is illustrated by an eight country example in Fig.8.1. The

formula will apply exactly for competition between identical countries which we
discuss next.

ial - Identical ntri nd Consisten mparative Advantage

Competition among identical countries is non-trivial in this model, and can
produce many different equilibrium outcomes. In the identical country case with
production functions e /*=¢, ,/* and L,=L,, the objective function coefficients in
Knap(Z,) will all be 0, so d(Z) will be 0. The resulting boundary curve is then
given exactly by the formula

_y74 _1_Z, 1 (l-zl)a
U@-U4z, Zl) ( (1_21)) }

and is plotted in Figure 8.2 for a=1.5.

In this situation the lower boundary curve calculation is the same as the
upper; they both have objective function 0. It follows that the upper and lower
boundary curves coincide, so the curve of Figure 8.2 must have all the integer
equilibria directly on it.

The curve of Figure 8.2, based on the formula, exhibits every aspect of the
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characteristic boundary shape, a shape from which (8.4) can also deviate only
slightly.

Even in this special case with the region collapsed to a single line the
various regions mentioned in the introduction (4a-d) are all plainly present in
simple form. The subregions (4a) and (4d) that are respectively advantageous and
disadvantageous relative to autarky can be read off from the location of the
horizontal autarky bars. Beyond the two humps are the two subregions (4c) that
are relatively disadvantageous to both countries. In particular the region of
opposed interests for Country 1, 4¢ in the introduction, is the curve from the point
below the maximum for Country 2 up to Country 1’s maximum, so the interests
of the two countries are strictly opposed over that entire range, with the maximum
for Country 1 being a rather poor outcome for Country 2.
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Section 9, General Properties of the Model

Production Functions and Stability
Economies of scale can be thought of as having two distinguishable effects.

The first is what might be referred to as a "barrier to entry” effect. If
substantial sunk costs are required for entry into the industry, this gives a
producing country an advantage over a nonproducing one. In our model this aspect
of economies of scale shows itself in the low end of the production functions as
little output for the labor input. It is this aspect of the production functions that
forces a high level of activity before the non-producer can hope to compete with
the producer, and (through the condition A3 of Section 2) eliminates the possibility
of incremental entries.

In real life these barriers to entry come from many sources aside from the
obvious possibility of economies of scale in manufacturing. Examples are
knowledge and expertise in the manufacturing process, the largely experience born
ability to design a manufacturable product, knowledge of and experience with
marketing channels, knowledge of customer needs, and even knowledge of and
being known to particular customers. Much knowledge can only be obtained by
doing, and there will be period of doing poorly through inexperience for any new
entrant. In addition, especially in the case of industries in different countries,
there is the question of infrastructure. If one industry is flourishing in Country 1,
and non-existent in Country 2, a large part of the difficulty in entry will be to find
the people or companies who can build plants of the proper type, and supply parts,
specialized instruments, and specialized support services. While some of this can
be imported, some cannot, and working at a distance is often not the same as
working close by.

All of these factors and many more can make entry into a new industry a
large sunk commitment now in exchange for a return that is both distant and
inherently uncertain, And that uncertainty too is part of the barrier to entry. All
these factors can be thought of as contributing to the shape of the low end of the
production function.

The second aspect of economies of scale is the advantage that larger scale
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may give one producer over another when both are active in the industry. In this
model this is reflected in the shape of the production functions for larger labor
quantities.

The two aspects of economies of scale are quite separable, one can have a
strong barrier to entry and weak large scale economies in a single production
function, or vice versa, or any other combination. Keeping these points in mind
we will state and then interpret the following theorem which at this point is quite
straightforward.

Theorem 9.1;: Let M, and M, be two different n-industry models with the same
demands d';;=d%; and with production functions f;;(;;) that are the same for
quantities of labor above the autarky level, i.e. for [;>d;;L;. Then the perfectly
specialized equilibria and the boundary curves are the same for both models.

Proof: For any integer x the resulting Z(x) will be the same in both models,
since the equations (3.4) or (3.5) only involve the demands and not the production
functions. Thus the integer equilibria are the same pairs (x,Z(x)) in both models,
and these in turn determine the labor quantities ;. These labor quantities are
above the autarky level, which means that the production functions have the same
outputs, so for perfectly specialized equilibria the outputs are also the same in both
models. These outputs in turn determine the coefficients in the linearized utility,
so these too are the same in both models, and these in turn determine the
boundaries. This completes the proof.

Although the points and the boundaries are the same what does change as the
production functions change from M, to M, is the impediment to entry. If the
change from model 1 is to new production functions that rise sharply near 0, the
impediment to entry can be made as feeble as we wish. On the other hand if the
new production functions are zero till near the autarky level and then jump rapidly
back to the production curves of M;, we have an extremely strong impediment to

entry.
Identical and Non-Identical Demand Structures

Any production assignment x determines a Z(x), and worldwide production
quantities Q; of each good. The utility ratio U,/U, resulting from x is
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I i{Fi,lQi} %
I (F,,Q)%

If we have identical demands, i.e. d;;=d;,, we have F,,=Z, and Fi,=2,
so (9.1) becomes U,/U,=Z,/Z,. This means that, for fixed Z, the utility of one
country for any production pattern is a fixed constant times the utility of the other.

©9.1) UJU,-

The consequences of this are: The x that maximizes Country 1's utility also
maximizes Country 2's utility, so the same assignments yield the upper and lower
boundaries in both countries. Equilibria on the upper boundary for Country 1 are
on the upper boundary of Country 2. Equilibria near the upper boundary of
Country 1 are near the upper boundary of Country 2. More generally, for fixed
Z, if any x gives Country 1 p percent of the utility that it would attain at the upper
boundary, it also gives Country 2 that same percent of its maximal utility.

In economic terms identical demands mean that the rivalry between the two
countries is confined to the determination of Z, once Z is fixed a production
pattern or equilibrium point that is good for one is good for the other.

This benign property of the identical demands does not carry over to the
non-identical demand case. There countries will put different weights on different
elements of the objective functions and the production plan (even for fixed Z) that
is best for one is generally not best for the other.

This is clearly illustrated in Figures 9-1 and 9-2 both of which are based on
a 37 good model. We first show, in Fig 9-1, a symmetrized version of the model,
i.e. the d;, and d;, of the model have both been replaced by (d;; + d;2)/2 so that
it has become a model with identical demands. Using a fine grid we have
computed a large number of maximizing equilibria around the hump area of
Country 1 using the integer programming method. We see, as we would expect,
that the corresponding utilities for Country 2 are on or near its upper boundary.
However, if we return to the original unsymmetrized problem and repeat the
calculation, we can see in Fig. 9-2 that the utilities for Country 2 have moved
down sharply from its upper boundary. This is true even though the g-value of the
model, g=1/2 &; |d; -d;,|, is only .187 on a scale in which identical demands
measure O and orthogonal demands measure 1.
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The Effect of Country Size

In any model, let us substitute for Country 2 a smaller Country 2 with the
same demands for each good, and the same production functions, but having a
smaller labor force L,.

The change in L, does not affect equations (3.4),(3.2), and (3.3). Any
specialized equilibrium point x will yield the same Z from (3.4) and the same [;;
from (3.2) and (3.3) as before. However the I';,, which are normalized labor
variables, will be multiplied by a smaller L, to get the actual labor I, 5. This means
smaller guantities q;, will be produced of every good made by Country 2, while
the fraction F;, of that good going to Country 1 remains the same since the F;
depend only on d;; and Z. Therefore at every equilibrium point Country 1’s utility
is diminished in every term that represents a good made by Country 2.

The smaller L, will cause all specialized solutions for Country 1, with the
exception of autarky, to decrease in utility, so autarky becomes relatively more
attractive for Country 1 as Country 2 gets smaller. These size effects are quite
strong, for example in the model represented by Figs 1.1 and 1.2, Country 2 is
twice the size of Country 1 and it has a very significant region of equilibria below
its autarky level, while Country 1 does much better. In Fig. 6.1 the size relations
of the countries are reversed and Country 1 has a large region of points below
autarky while the below autarky region of the smaller Country 2 is quite limited.
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Section 10 - Economic Conseguences of the Characteristic Regional Shape

As promised in the introduction we have given algorithms for the selection
of good equilibria, and for obtaining the boundaries of the region of equilibria. We
have shown that the equilibrium region tends to fill up with equilibrium points as
the problem becomes large. It remains to review the conclusions (4a)-(4d) of the
introduction about the economic consequences of the characteristic regional shape.

We have done this already for the special case of competition between
identical countries. Here we will discuss the general case and the consequences of
the characteristic shape. Much of what follows will be evident from our previous
discussions but it seems worthwhile to pull the various observations together here.
We will use Figures 10.1, 10.2 and 10.3, which are all based on Table 6.1, to
illustrate the discussion.

Relations to _Autar

Statement (4a) of the introduction asserts the existence of a subregion of
equilibria that are advantageous for Country 1 relative to autarky. In Fig. 10.1 we
have drawn a horizontal line at the autarky level creating a subregion ABC above
autarky. For Country 2 in Fig 10.2 the subregion ABC covers an even wider
range. Since the upper boundary is known to be above the autarky level at Z,
such subregions will always exist.

Similarly (4d) asserts that there are subregions that are worse than autarky.
These subregions are the complementary subregions ABD. In Fig. 10.1, this is

large, in Fig.10.2, it is small. These regions show the size effects mentioned in
Section 9.

Centered around Z.. there is always a subregion of points that are better than
autarky for both countries. In Fig 10.1 all of the region to the right of B is above
autarky, and in Fig 10.2 all of the region to the left of A. Since the point B In
Fig.10.1 lies to the left of the point A in Fig.10.2, there is an interval on the Z-
axis which is both to the right of B and to the left of A. All points above this
interval belong to a subregion in which both countries are above autarky. This is
the area BP,P,P; in Fig.1 and the similar area AP,P,P; in Fig. 10.2. However,
even in the unlikely event of the B for Country 1 being to the right of the A for
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Country 2, there would always be, in large problems, equilibria in the immediate
vicinity of Z. that are above autarky for both countries. This is because the
arguments of Section 8 have shown the upper boundaries of both countries to be
above the autarky level at Zc.

Opposed_and Not Opposed National Interests

Next we return to the notion of opposed national interests as discussed in
(4b). In Fig 10.3 we have drawn a vertical line L, through the point where the
upper boundary of Country 1 ceases its monotone rise. We have a similar line L,
for Country 2. The two lines cut out a region of generally opposing national
interests in the following sense. Let Ly be a third line between L, L, at relative
national income level Z, intersecting the equilibrium region for Country 1 in
segment S, and the equilibrium region of Country 2 in S,. If Z, increases, which
means that Country 1 produces a larger fraction of the world’s goods, S, will
generally move up and S, will move down. The utility values for equilibria on S,
will therefore generally move up and the corresponding utilities for Country 2 will
generally move down. So over this large region centered on Z¢ an increase in

the utility for Country 1 is generally associated with a decrease in utility for
Country 2.

If, in Fig.(10.3) we continue to move L; beyond L, and toward Z,=1, (this
is marked by L’; in Fig. 10.3), both boundaries of Country 1 will eventually turn
down. The two boundaries of Country 2 are also monotone decreasing here so we
have entered a subregion of equilibria which are increasingly bad for both
countries. Equivalently, in this subregion, it is generally in the best interest of both
countries for Country 1 to decrease its normalized national income. Clearly there
is a second subregion of this type the other end of the diagram. This discussion
then gives a more precise meaning to statement (4c).

The theory we have developed tells us that the various subregions we have
mentioned are in fact all well populated with equilibria for large problems. This
is also illustrated in Fig 10.4. This contrasts with Fig 10.5, a two country model
in which the two perfectly specialized equilibria would not even suggest the
existence of the various regions.
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Section 11. Extensions and Summary

In the more policy oriented Gomory and Baumol [1992] we extend this work
in several directions. These includes some very strong results on gains from trade,
the analysis of the case where some industries have economies and some have
diseconomies, and a rigorous treatment of the characteristic shape.

What we have seen here is that there is a well defined equilibrium region
and that we can calculate its boundaries, and also obtain equilibria that are close
to utility maximizing. We have also seen that for large models the equilibrium
region fills in completely with equilibrium points. We have observed that there is
a characteristic regional shape that extends over a very large range of models and
have given an economic rationale for that characteristic shape and discussed its
economic consequences. The picture that emerges is one of @ considerable range
of conflict in the interests of the two trading partners.



References

Ethier, Wilfred J., "Internationally Decreasing Costs and World Trade,"
Journal of International Economics, (9), 1979, 1-24

Ethier, Wilfred J, "Decreasing Costs in International Trade and Frank

Graham’s Argument for Protection," Econometrica, (50), September 1982, 1243-
1268

Gilmore, P. C. and Gomory, R. E., "The Theory and Computation of
Knapsack Functions", Operations Research, November-December, 1966,
Vol. 14, No. 6, pp. 1045-1074.pp. 469-479.

Gomory, Raiph E., "A Ricardo Model with Economies of Scale”,
Proceedings of the National Academy of Sciences, U.S.A., 1991, Vol. 88, Issue
18, pp. 8267-8271.

Helpman, Elhanan, "Increasing Returns, Imperfect Markets, and Trade
Theory," in Jones, Ronald W. and Kenen, Peter B., (eds.) Handbook of
International Economics, Volume I, Amsterdam: North Holland, 1984, 325-365

Helpman, Elhanan and Krugman, P. R., Market Structure and Foreign

Trade, Cambridge, Mass.: MIT Press, 1985.

Kemp, M. C., The Pure Theory of International Trade, Englewood Cliffs:
Prentice Hall, 1969.

Krugman, Paul R., "Increasing Returns, Monopolistic Competition and
International Trade," Journal of International Economics, (9), 1979, 469-479

Viner, Jacob, Studies in the Theory of International Trade, New York:
Harper and Brothers, 1937



Uzl i1 | |

wl/w2

P o1

0.2 0_4.__’ 0.6 0.8 7



1/18/31/2

wl/w2

UL




3.1

Fig.

wl/w2

4

1

1/41/3 1/2

0] < .
5 ™ ' J Id - T
| ' ' -~ b
e’ ~ T
\Qﬂ\ \\\ u
. ’ <
\\ \\
\\ Q.‘ \\
/ . 4
7, U4 —
- ’ \Q
of ¢ /
B / Py ] \
I
1 ) |
- \ o e -_~
e %,
\ .-Voooo/ 7
.
o’ : /
N PN
" h Y
- . Ifh oo/ .
N S
-NY
<
,ouﬂﬁ
> -
1:1. “ :}ﬂ
AN 1/3.
= -
//Ii 0/1.
~ um w,
~
e /1/ o-o/
“ o/ —
| A XN
M3
/z, N
~N ,/
T za/
3 »
|
¥ | 1 1 n”_

-

0.4

0.2



Fig. 3.2

1/4/3 1/2 1 2 3 wl/w2
T\ | 12 { { Ul
<
- TN~ - 1
~
\
\‘ 8
e —— - \
- \
7 \\
1’, "\\ ‘\
y ot \\
I' \\\ \‘ 1.6
I, \\ \
Autr 2 _ f . )
Y N
J Aur ¢+ = 4
Y ,’ -
P
Y/ it
7
V/ /, -q2
’I
/”
| ] | | 0
0.2 0.4 0.6 0.8 /




wl/w?2

U1l




0.954

0

0

.85+

L

.91

Fig. 3¢

——— .,
— -

- -~
- - .~ [ ] \. eo® ""-.\
L J ** [ 4 ~
-~ %s o e % ‘... -
. [ ] LR
a7 . . ~o
-
L ) -~
i ‘a f ~
s ® *,‘\
’ L
r, @
o d

.55

0.6 0.65 . 0.7

.75



1/41/3

Fig. 6.1

1/2

2

34 wl/w2

oy |

L 1

U1

o m o e

_—

e o mr e -

_—

e o mr e -

_—

el ey o mr e e

T

e o mr e -

_—

A



Fig.7.1

1/41/3 1/2 3 4 wl/w2
1 | T o1
ST <1
- - I,. . * \\.
- il ,o‘b - - N
- -« 7 A
* * ,. L ] A
- L « . [N
b i /I * T T *
« \\JP "‘!..c ®« \, = ’,J -.\\ o 8
; * *s .,, “o.
. N ; ge “‘\s

4 F4 - 6
P *
Fd
4 -
K g
Vs r4
z .I”
I‘Jd’,
s o
7 o, %0
z i [
PR WAk
£ 7 «
s eopef
o4 ofl’
A o
’ e
’
. o
-
/4
s




Fig.7.4

1/41/3 1/2 1 2 34 wi/w2
g2 T 1 ! 11 o1




Fig .

7.3

-
L2l

0.2 0.4

0.6




1/41/3

Fig. 7.4

1/2

2 34wl/w2

U7

U1




Fig . S
: g
Put ?(,Z.
4--
AN
31
: Pl.?o
2--
,{ o
7
P‘Jl
1-.. .
0.2 0.4 0.6 0.8

X1



Fig. a7-1.1

0.8

0.6+

0.2




Fig. A7-1.2

'1.25-

0.75-

0.25+

0.2

e




¥pag < o

Fig. Sg:\

wl/w2

4

1

1/41/3 1/2




8/[3 k‘&we

1/41/3 1/2




37{,@5 YK T L W al Y A =o

Fig. 9. |
1/4/3 1/2 1 2 3 4 wl/w2




f;j7a

Juee L CYe 7S o= 9T

1/4/3 1/2 1 2

6 oo 28T




/3,0

1/41/3  1/2 1 2 34 wl/w2

| | | | | 1 U1
zZ,
= ,J-.fl-"'-. - 1
- "'h\
7 N
rd .
rd A Y
I, N
A%
/’ .
// \
\
" 1% N
' 4 o o =
[ - ~
. ol RN o
7 -’ ~
’ - Mo
rd ,’ ~
r'd ”, -
I’ s
4
- AL B Aur ) _11-6
7/ 7’
r'd /
Fd rd
V4 V4
Fd ’
7/ r4
/ /
,/ ,I
- ’ ’ =4
L4 ’
4 s
AUT' 2. I, /,
| I /
7z rd
V4 7
! Fg
Fd 4
= ’I ,I - 2
Vi 7’
V4 ”
’ -
, rd
” ;’
’/ P
] /,, _-"”
/’—"'
- | | | |

0.2 0.4 0.6 0.8 Z



/3{3

Fig. 10.2
1/41/3 1/2 1 2 34 wl/w2
U2| | i | ] 1 11 U1
ZC-
1l =1
8- Pl -.8
I
.6p Aar/_-J.s
R
C
LA 74
_iuT'l A B
2 -2
D



/X(P

Fig. [0:3

1/41/3 1/2 1 2 34 wl/w2
1

ll LI g1
z, ,

0.2 0.4 0.6 0.8 Z



3p

1/41/3

Fig. 10.Y

1/2

1

2

34 wl/w2

U2}

U1l




Dk() f

1/4/3 1/2

wl/w2

Ul




TABLE 1.1

PRODUCTS

1 2 3 4 5 6 1 8 9
C1 Demands 0.10 0.10 0.21 0.14 0.22 0.04 0.06 0.13 0.07
C2 Demands 0.05 0.21 0.11 0.15 0.23 0.07 0.08 0.10 0.20
Production 1.30 1.50 1.70 1.90 2.00 2.00 2.10 2.00 1.61
Exponents
C1 Efficiencies 0.52 0.71 0.91 0.92 1.01 1.23 1.30 1.02 0.30
C2 Efficiencies 1.00 1.02 0.70 0.94 1.24 0.60 0.70 0.77 0.50

C1 - Labor Supply 4 C2 - Labor Supply 8

Production Function ey I

! The demands in all Tables are renormalized to total 1 in actual computation.



TABLE 3.1

PRODUCTS

2 3 4 5 6 7 8
C] Demands 0.05 0.20 0.12 0.15 0.22 0.08 0.08 0.10
C2 Demands 0.12 0.10 0.20 0.15 0.20 0.05 0.08 0.15
Production 1.00 1.50 1.70 1.90 2.00 2.00 2.1¢ 2.00
Exponents
C1 Efficiencies 1.00 1.00 0.70 0.90 1.20 1.30 1.10 0.77
C2 Efficiences 0.50 1.00 0.60 0.90 1.00 1.20 1.30 1.02

C1 - Labor Supply 2

C2 - Labor Supply 2

Production Function ey I
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TABLE 7.1

PRODUCTS

1 2 3 4 5 6
C1 Demands 0.10 0.20 0.20 0.15 0.25 0.10
C2 Demands 0.15 0.15 0.25 0.15 0.25 0.05
Production 1.15 1.50 1.70 1.90 2.00 2.00
Exponents
C1 Efficiencies 1.00 1.00 0.70 0.90 1.20 1.30
C2 Efficiencies 0.50 1.00 0.60 0.90 1.00 1.20

C1 - Labor Supply 2 C2 - Labor Supply 1

Production Function e; 1 ¥ f,({), f()=g(x), x=1/(.6 d;; L), g(x)=1x >1, g(x)=x"x <=1.



TABLE 7.2

PRODUCTS 1 2 3 4 5 6
C1 Demands 0.10 0.20 0.20 0.15 0.25 0.10
C2 Demands 0.15 0.15 0.20 0.20 0.25 0.05
Production 1.15 1.50 1.10 1.90 2.00 2.00
Exponents

C1 Efficiencies 1.00 1.00 0.70 0.90 1.20 1.30
C2 Efficiencies 0.50 £.00 0.70 0.90 1.00 1.20

C1 - Labor Supply 2

Production Function e I ™ f,(), f()=g(x), x=1/(.6 d;; Ly, gx)=1x >1, g(x)=x'x <=1.

C2 - Labor Supply 1



Appendix 2-1

Proof of Theorem 2.1

We will use the assumptions on autarky and on the production functions
from Section 2. We will start by proving a simpler theorem.

Theorem Al: There is an equilibrium point in which Country 1 is the sole
producer of any proper non-empty subset of products S;, with the others, S,, being
solely produced by Country 2.

Proof: At a zero profit equilibrium point we must have wages, prices and quantities
of labor satisfying the condition that demand equal total wages, so, for any
arbitrary choice of w=(w,,w,) we can find the corresponding [; satisfying that
condition. For 1S, we use

(AL1) dwL, +di;wl, = wl,;
and for ieS, we use the similar equation
(A12) d,,wL;+d, w, L2 =wyl,.

To satisfy the equilibrium conditions we also need a price p;. If there is positive
output of product i, and only one producer which is the situation here, we can get

a price by dividing total demand (or total wages) by the amount produced, provided
this 1s not zero.

However [, for either country as sole producer can not be less than the
corresponding labor level in autarky as the expression for [, is Ld;; H(w,/w,)L,d;,
= [,; and in autarky it is P =L,d;,. Since there was a positive output in autarky
(one of the Theorem Al assumptions) there is some output when either country is
the sole producer as well. So we will always be able to compute a price.

However for arbitrary w, and w, the [, resulting from (A1.1) and (A1.2) will not
generally add up to L,, so we will have to show that w can be chosen to do that.

Using (Al.1) we see that if w, is sufficiently large relative to w,, any [,
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alone, ieS,, will exceed L,. Also for very small wy/w,, [, for any i€S, , will
exceed L,.

We need one further observation. Summing over all i gives
(AL3) Zwd, L;+w,d,,L,=w,L" + w,L"

Where the L, are the total amounts of labor demanded in each country. It follows
immediately from (Al 3) that L°>L, implies L°,<L,, L°,>L, implies L°,<L,,, and
LP =L, implies L°,

Since for w, sufficiently small L° >L,, and for w, sufficiently small L°,<L,
there is some intermediate value of w,/w, with L°=L,. We have just seen that the
same equality then holds for Country 2. We have now shown that all the conditions
for an equilibrium point can be met, so we have proved Theorem Al.

If we can extend the proof to cover the cases where there are goods produced
by both countries, we will have proved Theorem 2.1. In fact after an initial lemma
required to show a unique labor level and price when both countries are producers,
the proof will proceed in the same way as above.

Let us consider a good i for which, in the specialization being considered,
both countries are producers. Let x;, be the fraction of the total demand that goes
as wages to labor in Country 1, while x;, is the fraction going to country 2.
Clearly x,,+x;,=1. Also, once w=(w;, w,) is given, the x;; uniquely determine the
labor levels [;; in each country. In terms of x then we can state the following
lemma:

Lemma Al: For any choice of w=(w,, w,) fhere is a unique x(W)=(x;,,X;;) and
price p; such that pf; ;=w1, ; and p/f, ,=w,1, ,. Furthermore x,(w), and hence the labor
levels determined by x, depend continuously on w.

To prove this we need a preliminary remark: The autarky labor levels in both
countries are provided by x* ,=d;,w,L,/(d;,w,L,+d;,w,L,) and
X%, 5=d; ,W,L,/(d; ,w,L+d, ,w,L,). Since there is, by assumption, positive output in
both countries at these labor levels, it follows that if x;;<x% , then x;,>x" , so there

is positive output in Country 2 and if x;,< x*, there is positive output in Country
1.
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For any x yielding positive production levels in both countries we can obtain
different candidate prices for the two producers by defining p, by pifi=wili,
=x;,(d; ,w,L,+d; ,w,L,) and p, by pzfi,2=wlli.2=xi,2(di,lw1L1+di,2w2L2)' These prices give
zero profit to both producers. However they are not generally equal and we must
show that there is an x for which they are equal.

Let X%, be the fraction of total demand that just covers the set up cost of
Country 1, i.e.x’, ,=sup x;; f;;(x;,)=0, and let x°,, be the fraction of total demand
that just covers the set up cost of Country 2. Let x;, approach x%;, from above.
Certainly then p, is well defined and in fact as x;; approaches x*,; p, becomes
arbitrarily large. However for these x values p, is also well defined because X;; ,
being near x*, must be below the Country 1 autarky level, and therefore the
corresponding X, , is above the Country 2 autarky level and also provides positive
output. Consequently we have well defined p, and p, with p, >p, . If we increase
X;, the labor and output from Country 1 increase continuously and monotonically
while labor and output from Country 2 decrease continuously and monotonically.
Finally for x;, such that x;, approaches x%,, from above, we have p, becoming
arbitrarily large. Hence for some unique in-between x, we must have p,;=p,.

This x is the x of the lemma. Its continuous dependence on w follows
directly from the continuity of the production functions, the continuity in the

dependence of total demand on w, and the monotone behavior of the p’s as
functions of x.

With lemma Al proved we can repeat the reasoning of Theorem Al.
Equations A1.1 and A1.2 still hold for the good or goods that are produced by each
country alone. A1.3 holds because we can get it by summing the relations

(ALT)  x;; (W Lyd +wlod ) = wil;,
(A127) X5 (WiLd;#WoLod; o) = Wl

over all i. Since the demand for labor in each country is continuous, and the labor
demanded and since for w, sufficiently small L°,>L,, and for w, sufficiently small
LP <L, there is once again an intermediate value of w,/w, with equality of labor
demanded and total labor supply both countries. Since we have established the
existence of prices already for each w, this proves the extended theorem.



Appendix 3-1

Classical Point

If we assume that the more efficient producer of each good is its producer,
i.e. we use the assignment x, we have a monotone decrease in the demand for
Country 1’s labor as Z, increases, therefore the left side of (3.4) decreases
monotonically. This decrease in continuous except at the points where
q;(1,Z)=q; (1,Z). At these points, given our definition of x, Country 1 loses an
industry and therefore the demand for labor in Country 1 takes a downward jump.
At such a point the left side of (3.4) is continuous from the right only. If, in the
course of such a downward jump, the left side in (3.4) passes from > Z, to £ Z,
the Classical Level, Z. must be at that Z.

Therefore there are basic possibilities: (1) Z. is at a point of continuity, or (2) it
is at a point of discontinuity.

1) Continuity: In this case the classical assignment x© exactly uses up the labor
forces of the two countries and provides an equilibrium point where each good is

being produced by the more efficient producer. We call this equilibrium point the
Classical Point.

2) Discontinuity: This case is more complicated. However, except by a rare
accident, no equilibrium solution with the properties of the Classical Point is
possible. However to allow for such accidents we need to treat two cases:(i) There
is only one industry that switches at Z,. and (ii) there are two or more industries
switching.

Case (i-a): The jump is to a value strictly < Z,. This is the common case and
the case in which there cannot be a Classical Point. For if x“(Z) satisfied (3.4) we
would not have the left hand side in (3.4) < Z,. (i-b). The jump is to a value which
is =Z,. Here we have the same conditions as the continuous case, and we have a
Classical Point,

Case (ii): This case can be considered as a sequence of switches of type (1).
If there is some order in which the downward leaps can be arranged that causes
one of the leaps to end at Z,, this then determines a Classical Point similar to (i-b).
The industries that have switched are assigned to Country 2 and the not yet
switched industries are assigned to Country 1. If there are different orderings that
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have this property, there could even be more than one Classical Point. Much more
common would be the case where there is no arrangement of leaps that exactly
strike Z, and in this case there is no Classical Point.



Appendix 3-2

Dvnamic Programming

The dynamic programming recursion for an n-piece knapsack problem with
total length L, piece lengths /; and piece values v; is

$o(s)=0
¢m(s)=M3X(¢m-l(s),¢m-1(s‘li) +v,) 0<s<L.

If we apply this to (3.9) the /; for a given Z, would be (d,,Z,+d;,Z,), total
length would be Z,=1-Z, and the v, would be d, In(q;,(1,Z)/q; ,(1.Z).

The condition ¢,(s)=0 simply sets the starting values at (. Each successive
¢, gives the best value that can be obtained for length s using only the first m
pieces. The ¢ are related to the ¢, , through the recursion which simply says that
the best that can be done at length s with m pieces is either done not using the mth
piece, this is the first term after Max, or it is done using it, the second term. ¢(s)

then gives the maximizing value with n pieces which is the value of the objective
function.

To determine the actual x that gives that value requires recording, when
calculating ¢_(s), whether or not the mth piece was used at that s. Then it is
possible to backtrack from ¢ (L) and find out how the value was obtained which
gave ¢,(L). The maximizing x is then given by x;, = 0 if the ith piece was not
used, x;, =1 if the ith piece was used.

In actual calculation L is usually divided up into a uniform grid of P points
s;» $;=0 and s,=L. The lengths /, must then be rounded up or down since for use in
the recursion they must fit the grid. Rounding down, which was used in all the
calculations of this paper, may introduce some slightly inadmissible combinations,
that only fit in because of the rounding, but it will give a B,(Z) that is too high and
therefore is always a valid boundary.

An x that satisfies the inequality (3.51) in (3.9) will always have its
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equilibrium value Z(x)>Z', if through rounding down, an optimizing X is obtained
that doesn’t satisfy (3.51), x,Z(x) is still a legitimate equilibrium point, but Z(x)
may be slightly <Z. However it is still a nearby and valid equilibrium point.

'See the italicized remark n Appendix 4-1.



Appendix 3-3

Improved Knapsack Calculation

While the straightforward knapsack calculation for some finite grid of Z’s
gives a very rapid and simple calculation for each Z value, the calculations can be
further refined in the direction of requiring only one calculation per linear
programming basis, rather than one calculation per grid point. In visualizing this

refinement it is useful to keep in mind a plot of value density versus Z, for each
of the goods.

The value density is, from 3.11,

(1
d llnq"z( L)
©q;,,(1,2)
di,lzl+di,lz?.

We can plot the various curves v; against Z,. If two curves intersect each
other then their density order changes, otherwise it does not.

V'.(Z) =

Let us imagine that for some Z; we have the solution and the non-integer
variable is the kth one. Then Z, can be increased without changing the form of the
solution until either x, , becomes 1 (or 0) or until one of the v; equals the ith one.
For all Z, in this range the value of the knapsack problem is obtained with virtually
no effort. Until one of these events occurs the Xx;, that are 1 remain 1, those that
are O remain 0, and only x, , changes to maintain the equality (3.5) in (3.9a). If the
. event that occurs first is that x, , becomes 1 (or 0), then we actually have an integer
solution, and therefore an equilibrium point, lying on the bounding curve. At this
point a new X, , (the densest of the 0 valued variables) is introduced at a level of
zero and the calculation continues with further increases in Z,. If the first event that
occurs is that another density curve crosses the current ith one then there is always
one simple choice to be made and after that the calculation continues as before. We
will give one illustrative example. Suppose the jth density curve crosses the kth
curve in an upward direction. If we set x,,=0 and all the other x;, as before, we
will get a value for x;, that would enable it to satisfy (3.5). If x;, is <1 it is the
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new non-integer variable and the calculation continues. If it is >1, then the
calculation continues but now with x;, =1 and x;, still the non-integer variable.

By iterating In this way, all Z values can be exhausted using only a finite
series of intervals within which the calculation is essentially unchanged.
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Appendix 4-1

Proof of Lemma 4,1.

Using first the zero excess labor inequality (3.51) involving x and Z’, and then the
n.e. property on the component X, , gives two inequalities.

(Z.-..k d; (X)) Z{ +(Ei.~k d; %) Zé < 2,

z, < Qi %) Z{‘L(Em d, %) Z£+dk,lzi +duZ§

Using the equilibrium point x,Z(x) in (3.5) gives the equality

O dm) 2@+, dp%n) 2,0 = Z,().

Subtracting the equality from the inequalities, rearranging terms, and using
Z+72,=1 gives

0<(Z',-Z,(x))i-1 ‘(E,- di_lxm—z:i d, %, N<Z,(x)d, \+Z,()dy

Since the expression in braces can never be positive this tells us that Z,(x) is
greater than Z’,, which is often a useful thing to know. Using & to replace d,, and
d, , and rearranging gives

8
1 _E,- (di,l ~d; )%,

The term on the right is maximized when the sﬁm in the denominator is as
large as possible. That largest possible value for x;, that are 0 or 1 is

0 <ZX —Z{s

g=Y,(d,,-d,)) i such that (d,~d;) > O
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so that we have

0 < Zl(x)—Z{s —é—
1-g

This very nearly establishes the lemma. We need only convert g to the equivalent
and more usable form used in the text. If we add up all the terms (d;;-d;,) for
which d, , <d;,, we get a negative sum -g’. However if we add up all the terms both
positive and negative we get Ld;;-%:d;; = 1-1 = 0. This shows that g-g’=0, and
therefore g=g’. It follows that

E,- Idi,l-dx',zl =g+8-28

and therefore that g, which we can regard as a measure of the departure from
identical demands, is given by

1
g = EE, Idi,l_ i,zl-

For the interesting special case of two countries with equal demands g is always
0. To get a g of 1 requires "orthogonal demands”

¥.dd, -0

i il

In any other case g is always strictly less than 1.
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Appendix 4-2

Proof of Lemma 4.2

To bound the derivative of u,(x,Z) with respect to Z, we differentiate u, obtaining

dul di.2
@1 —-Y . d,
dzl i"'Z.(d,,2,+d,,Z,)

“Zx d { 1,2 1 :1} Z, "2 ” 511‘2&_}
A Z,

2 f,
The first sum consists of 1/Z, multiplied by terms

d. 14:17,2
— % < Max(d. d.,)<d.  +d.
d, Z,+d,Z 2S ui)Shut

so this sum is certainly boundcd by 2/Z,.

The second part of the expression involves the production functions and their
derivatives. These are evaluated at the labor levels /= [;(1,Z;) required when

Country j is the sole producer. If we take an individual term from the first sum of
the second part

xudi,z i,ILlf i1
2
Z i
and insert /; in the numerator and denominator and introduce the notation

ai,l([)=f’i,1 ([)l/fm(l) we obtain

xtl i2 l,l fll 11
iL1°
z: L, fa z2

Where the inequality is due to the fact that d;,L; is the labor level in autarky in
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Country 1 and is always < than J;,. There is a similar inequality for each term of
the second sum.

Since the two sums in the second part of the expression have opposite signs
their total contribution is rather crudely overestimated by oU(Z)/(Z,)?, where a(Z,)
= max 0;;(Z,) and Z,=min(Z,,Z,). So we can bound the derivative at any point Z,
by

L

a(Z
Mz - Lo 2&
Z, 1
This bound involves only Z and the «;; The ; are the ratios of marginal to
average cost. This ends the proof of Lemma 4.2

Some intuitive feeling for the properties of the o ; comes from the following
observation: For production functions f()=ki*, £ (Di/f()=a. for all L It is also true
that if f(/) has increasing returns to scale, o(l) is 2 1 for all L. This suggests that
we can think of £(DI/f(J) as a sort of generalized exponent.
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Appendix 7-1

Proof of Theorems 7.3 and 7.4

Proof of Theorem 7.3

In the notation of section 7 equilibria are the points where

(A4.1) qI(Xm),Z(X))/ql(Xl’z,Z(X)): Xm/}{u: xu/l'xu
and the x referred to in Z(x) is x(X, ;).

Since the variable x;; splits the labor supply for industry i between two
countries we always have [(X;;,Z)=x; #,(1,Z). So for production functions of the
form e; [ we have a4 (X Z)=(x, D)™ q1(1.Z). So (A4.1) becomes

X e dL2E)  Ey

(
1 X, 4 2(1 Z(x)) 1 —X; )

or equivalently

012Z@) ety Fia

*

(44.2) {
qm(l,Z(x) 1 _xl,l
We will refer to the left hand side in (A4.2) as L(x, ;) and the right hand side
as R(x,,) and we will plot L and R versus x,; in fig A4.1. We are essentially

plotting p, and p, since if we look back to (1) we can see that L>R is equivalent
to p;<p, and L<R is equivalent to p,>p,.

In Fig. A7-1.1 the condition of theorem 7.3 is that L(x,,) should either be

below 1 throughout the interval 0<x,,<1 or always above it. In fig A4.1 we take
the first case.

In Fig. A7-1.1 the right hand side starts at 0 with slope 1 and moves up
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toward infinity. Also since both R(x,,) and its slope are monotone increasing the
intersection of the tangent line to this curve with the vertical line x,,;=1, which is
1 for x,,=0, always is above 1 for x,, >0.

Next we need some similar statements about L(x, ;). Now

{M}Ua-l_(f}é)lh-l( Zl(x) )¢I¢-1
q,,(1,Z(x)) e L 1-Z,(x)

Clearly 1(x,,) is monotone increasing because Z,(x) is. To see that the derivative
of L(x,,) is monotone increasing as well we will explicitly solve (3.4) or (3.5) for
Z(x)/(1-Z(x)) and establish that its derivative is monotone. If we use

D1,1=Ei>1 x,,d;, and D1,2=Zf>1 X145
we obtain

Z(x)  Dy,+dix,
1-Z,(x) (1-D, )-d, x,

with derivative

D 1,2d1,1 *dx,z(l -D, )

((-D, ) _dl,lxl.l)z

and this last is clearly positive and monotone increasing. Since L(x,,) is a constant
times Z(x)/(1-Z(x)) raised to a power of one or more, its derivative has the same
property.

With this preparation we can assert that only a single intersection of L and
R is possible. Suppose otherwise. Then at the second intersection the derivative of
L(x,,) must equal or exceed that of R(x,,). Since this derivative is monotone
increasing L(x,,) must thereafter lie above the line tangent to R(x,,) at that
intersection point. Therefore its intersection with the vertical line x, , is above that
of the tangent line and therefore >1 contradicting the assumption L(x, )<1. This
ends the proof of Theorem 7.3

Proof of Theorem 7.4

This proof is quite similar. We now assume L(0)<1 and L(1)>1, and we
abbreviate o/((a-1) to B. Clearly as o->1,  becomes very large. The value of x,
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that gives L(x,,)=1 is obtained by finding the x,, value that makes L(x, )" =1,
and this value c is independent of f. In the diagram fig (A4.2) we see the effect of
letting o->1. Since B becomes very large L will be as close to 0 as desired until
nearly at x; ;=c. As it approaches x, ;=c it rapidly rises to 1 and then immediately
to very large values. With c fixed and o sufficiently near 1 we can be sure of a
first intersection between L and R with a height near 0, and another with its X, ;
coordinate near c.This intersection will be just before ¢ ( as in the diagram) or just
after ¢ depending on whether c is to the left or to the right of 1/2. Of course, since
there are an odd total number of intersections there will be still others. This proves
Theorem 7.4
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Appendix 9-1

_ Return to Autarchy

We will prove that both the upper and lower boundary curves approaches the
autarchy level as Z,->1.

Equation (3.5) is satisfied by the non-integer x that optimizes (3.9a) for any
given Z. As Z,->1 and Z,->0, X, d; X, ,, which is the coefficient of Z, in (3.5) must
approach 0. The optimizing solution x consists of x;, that are 0 or 1 except for one
term the jth. For X, d; x;, to approach O all the integer terms will have to be 0 and
therefore x;, will be given by

Z

toom— 2
2

! d,i,lzl'”‘ij 2

which approaches 0 as Z, -> 1.

The ith term in the utility is
49-1.1) x.d,,F,q,,(1,2) + x 24 10F; 1q,(1,2)
L4, ,Z,+d,,Z,

LWL g g1, )

Z, Z,

Clearly the F,; approach 1 as Z,->1 and the q;; term approaches the autarchy
quantity as Z,->1. Since all the x;, are 1 except x;; which approaches 1, the x;,
terms alone sum to the utility value in autarky. Also all the x,,=0 except for X,
which approaches zero. It only remains to show that the second term in (A9-1.1)
approaches 0 also for i=j.. This actually requires some assumption on the
production functions because if the production of the jth good grows in some
explosive fashion with additional labor, the quantity of goods produced overwhelm
their decreasing marginal utility and this alone could boost Country 1’s utility to
a very high level. However the rate of growth required in to do this is in f;, is quite
extreme. This possibility can be excluded by the assumption that productivity
growth is less than exponential i.e. f()/e’->0 as I grows very large. This is enough
to make the second term approach O also for i=j. All this then gives the autarchy

where qi,1=j;.l(




value to the utility as Z,->1.

The reasoning about the lower boundary is almost exactly the same.
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