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ABSTRACT.  Games with incomplete information or randomness in the moves of others typically have
many decision-theoretically equivalent formulations of the type space.  These different formulations
correspond to different ways of encoding the realizations of randomizations in the type of a player.
Solution concepts, assumptions or paradoxes in games should be independent of the formulation of the
game used.  I refer to this axiom as TIGER, for "Type Independence among Games which are equivalently
Re-formulated."  Results like convergence of beliefs to a Nash equilibrium (e.g., Jordan (1995)), obey
TIGER.  On the other hand, I show that results on Bayesian Learning and convergence of true play to Nash
equilibrium (e.g., Kalai and Lehrer (1993a)) violate TIGER.  Similarly many of the paradoxes in the
learning literature (e.g., on the possibility of having optimization and prediction at the same time - Nachbar
(1997)) disappear when we require TIGER to hold.  The message is that in games with incomplete
information, (i) the appropriate solution concept is Nash equilibrium of beliefs rather than "true" strategies,
and (ii) the type-space formulation is important for other solution concepts.  As regards (ii), we note that
there is one formulation of the type space under which the Kalai and Lehrer (1993) assumptions always
imply that type space is countable.    
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     Note well that what we are claiming here has nothing to do with the Allais or other framing1

paradoxes.  The Allais paradox shows that two different "frames"  or ways of presenting information
can lead to different behavior.  Here we are considering different frames in the mind of a player that
lead to the same behavior.  
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1. Introduction
Games with incomplete information or randomness in the moves of others typically have many decision-

theoretically equivalent formulations of the type space.  For example, suppose you believe that your

opponent is going to choose one of two actions with equal probability.  Your beliefs could be "formulated"

in any one of the following two ways: (i) you could believe that your opponent is randomizing with equal

probability;  or (ii) you could assign equal probability to your opponent being one of two types - the type

who chooses the first action (non-randomly) or the type who chooses the second action.  To players within

the game, the different formulations of the game change neither their beliefs nor their play.  These different

formulations are equivalent in terms of "decision-theory" since under each beliefs and payoffs are

unaffected.  This paper will formalize this notion of equivalence of type-reformulations, and study an axiom

which requires solution concepts in games to be independent of the formulation of the game used.  We then

use this formalization and the axiom to study some of the results in the rational learning literature.   

Among game theorists there are many who argue forcefully that people do not really use mixed

strategies - instead mixed strategies represent players' conjectures.  Other game theorists do not mind the

use of mixed strategies.  These differing perspectives are really arguments over the appropriate type-

formulation of the game: in the former there are many types of players each choosing a pure strategy; in

the latter there may be only one type of player - one who chooses a mixed strategy.  

Simple questions like "is the game in a Nash equilibrium?"  or "do players learn to play a Nash

equilibrium" will be impossible to answer since the answer will depend on the type-formulation under

consideration.  This is because there is no unambiguous notion of what constitutes the "truth."  Instead it

will be in the eye of the beholder (actually, the game theorist).  The true type of a player is ambiguous

because that player's type can encode different amounts of the outcomes of randomizations.  How would

one go about determining what players are "truly" doing?  Since the different formulations of true player

are not decision-theoretically relevant, they may be hard to test in a "laboratory" in the same manner one

could possibly elicit beliefs . 1

For all of the above reasons, one may want to require solution concepts, assumptions or paradoxes

in games to be independent of the formulation of the game used.  This independence enables one to avoid

taking a stand on mixed versus pure strategies, or on decision-theoretically irrelevant issues.  I call this
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axiom TIGER, for "Type-Independence among Games which are Equivalently Re-formulated."  The

message of this paper will be the following:  (i) if one is interested in satisfying the axiom TIGER, then one

has to move away from concepts of equilibrium in strategies and move instead toward concepts of

equilibrium in beliefs or conjectures; and (ii) even if one is not interested in satisfying the axiom TIGER

per se, the type-space formulation is a very important and often ignored part of the specification of

incomplete information games.

A review of the recent literature on Bayesian learning in repeated games highlights this issue.  In

the rational learning literature there are two broad approaches.  The papers of Jordan (1991, '95) and later

Nyarko (1994, '97b) where there is convergence of beliefs to a  Nash or subjective equilibrium take the first

approach.  The vast majority of the literature, however, follows the second approach and includes Kalai

and Lehrer (1993a) (henceforth KL93), Lehrer-Smorodinsky (1997), Nachbar (1997),  Sandroni (1995a,b)

and many others.  The second group of papers is concerned with the convergence of true strategies to an

equilibrium.

The conclusions of papers by Jordan and Nyarko, which provide results on convergence of beliefs

to an equilibrium, all obey TIGER.  On the other hand, to get conditions for convergence to an equilibrium,

the KL93-type papers impose conditions which must hold for each true vector of types of players.  Because

the concept of  truth is ambiguous, so too is whether the KL93 type assumptions hold for a given game.

The KL93 assumptions may hold for one type-formulation of the game, yet fail in another.  This is despite

the fact that the formulations are decision-theoretically equivalent.  On the positive side, the strength of the

KL93 result is the following: if the KL93 assumption holds for a given formulation of the type-space, there

will be convergence to an equilibrium whose meaning is determined by that given formulation of the type-

space.  I argue simply that the type-space formulation is ambiguous, and in particular that two reasonable

game theorists can argue about what is the correct formulation for a given game.  

This ambiguity in what constitutes the "truth" is also an issue in Nachbar (1997).  Nachbar shows

that in some games a paradox may arise from an inherent inconsistency between prediction of the true play

and optimization.   As in KL93, Nachbar's definitions (in particular his definition of prediction) requires

a specification of the true strategies; it may therefore hold in one game but fail in another equivalent one.

 Hence the paradox in Nachbar (1997) violates the axiom TIGER.  Furthermore, as we shall show, if one

goes from prediction of true strategies to prediction of beliefs, TIGER will hold.  All this illustrates our first

message: to satisfy TIGER one should use notions of equilibrium of beliefs rather than of true strategies.

Regardless of your stand on whether the axiom TIGER should hold and equilibrium in beliefs is



     For related work on type-space representations and Bayesian learning, see.  Jackson et. al. (1997).2
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appropriate, my second message is that the type-space formulation is important .  In Section 6 below I2

show that for the KL93-type results to hold, the type-space formulation must be sufficiently coarse -

meaning that a type should not encode too much information. Specifically, I show that for any collection

of equivalent games which are linearly ordered in terms of their type-refinement - from coarsest to finest -

 there will exist a critical game such that all coarser games obey the KL93 type assumptions and all finer

ones will violate it.  Similar monotonicity results hold for the Nachbar paradox.

Related to the above, I prove a result which has been the subject of some controversy in

interpreting the KL93 results.  Many researchers believe that the KL93 assumptions imply the countability

of the set of types - indeed, this has already appeared in the published literature!  Even when a player has

only two actions in each period, the set of possible infinite-horizon plays is uncountable.  A restriction to

countably many possible types of play is therefore a strong one.  By using the framework of type-

formulations, I am now able to answer the question as regards countability and the KL93  assumptions.

The KL93 assumptions by themselves do not immediately imply countable types.  Everything, however,

depends upon the type-formulation.  Suppose that we are in what we refer to as the "comprehensive"

formulation of the game, where each player-type chooses a different pure strategy.  Then for the KL93

assumption to hold in this formulation, the set of types must be countable. 

The paper proceeds as follows:  In Section 2, I provide a leading example illustrating all the issues

discussed in this paper.  My call for the use of equilibrium in beliefs is not new in the literature - although

I believe the arguments presented here for the use of equilibrium in beliefs are novel.  Section 3 comments

on this literature.  That section also points out the issues discussed here, as regards a certain arbitrariness

in the specification of the type space, also arises in the standard definitions of a Bayesian Nash equilibrium.

Section 4 contains basic notation, while Section 5 discusses type-reformulations of a game and presents

the axiom TIGER.  Section 6 discusses the rational learning literature.  Concluding remarks are presented

in Section 7.  Section 8 is Appendix A and contains examples where we compute critical type formulations

for the KL93 assumptions that we mentioned earlier.   Appendix B in Section 9, contains all the major

proofs.
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2. An Example to Illustrate Everything 
Example 2.1:   Consider the following "matching pennies" stage game:

                          Player B 
LEFT RIGHT

Player A      TOP 1,-1 -1,1

BOTTOM -1,1 1,-1

We shall describe two different formulations of the game, differing only in the specification of the

type-space and the behavior strategies chosen.  To fix the main ideas we will first discuss the one- period

version of the game.  We will then go to the infinite-horizon model and show that the same conclusions are

obtained there,  even with "learning." 

Consider the following two type-formulations for the one-period model:

f1:  Player A (resp. B) chooses a behavior strategy which selects actions TOP and BOTTOM (resp.

LEFT and RIGHT) with equal probability.  Each player knows the behavior strategy being used

by the other. 

f2:   Let J  be a realization from a coin-tossing experiment where an outcome from {HEADS,TAILS}A

is chosen with equal probability.  Hence J  is an element of {HEADS,TAILS}.  Let J  be anotherA B

realization from another coin-tossing experiment where an outcome from {HEADS,TAILS} is

chosen with equal probability, but which is independent of the coin from which J   was obtained.  A

At date 0 Player A is told of J  (and is not informed about J ) and player B is told of J  (and is notA B B 

informed about J ).  We may consider J  to be player A's "type" and J  to be player B's type.A A B

Suppose that each player knows how the types are drawn.  Consider the following play of the

game:  Player A chooses TOP or BOTTOM according to as J  is HEADS or TAILS.  Similarly,A

Player B chooses LEFT or RIGHT according to as J  is HEADS or TAILS.  (A nicer story is toB

think of player as being one of a pair of twins.  Each twin has a birthmark which says either

"HEAD" or "TAILS."  The twin's birthmark is her "type."  Each twin chooses an action as a

function of her type or birthmark as described above.  Player B is similarly one of a pair of twins.

A game is an encounter between one twin of A and one twin of B.)  
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  In f1 each player has only one possible type.  In f2 each player is one of two possible types.  In

f2 all we have done is to use "types" to encode the outcomes of  randomizations.  Alternatively, we may

think of types in f2 as being used to purify the mixed (or randomized) actions in f1. Note the following:

a. At each date each player's belief about her opponent will assign probability 1/2 to each of the

opponent's actions being played.  This is true for each player-type and regardless of which of the

two formulations, f1 or f2, is used.  Hence, regardless of the formulation, these beliefs of players

form a Nash equilibrium. 

b. In  formulation f1 it is immediate that players'  true actions form a Nash equilibrium - there is only

one vector of types, with each player-type mixing at each date with equal probability.  In

formulation f2, each player-type is choosing a pure action.  Since the matching pennies game does

not have a Nash equilibrium in pure strategies, the vector of actions of any vector of player-types

does NOT constitute a Nash equilibrium.  In particular, in f1 "true" play is a Nash equilibrium,

while in f2 it is not!  The answer to the question "are players' actions a Nash equilibrium?" cannot

therefore be answered unambiguously unless a statement is made as to the formulation of the type-

space being used. 

c. To all intents and purposes, the two formulations represent the same "game."   In particular they

are decision-theoretically equivalent (and this will be made precise later).   Suppose these players

are happily playing in the manner described above.  The players are indifferent and oblivious to the

names that will be assigned to them, i.e., whether they are one of one or one of two possible types.

Even though they are content, game theorists, who may disagree as to the type-formulation, may

have lifelong fights as to whether or not they are playing a Nash equilibrium in strategies!  The

notion of what precisely is a type is completely in the mind of the modeler; players may not even

be thinking in terms of types, only actions. 

d. It should be clear that F1N and F2N are not the only formulations of the type-space to the above

game.   Define F3N to be the situation where a fair coin is tossed, if it is HEADS the player plays

first action with probability 2/3 and the second with probability 1/3; and if it is TAILS the player

reverses the probabilities of the two actions.  This is yet another decision-theoretically equivalent

formulation of the game.  

One may be tempted to conclude that in the infinite-horizon model all these problems disappear

because of some sort of "learning."  They do not.  We illustrate this below and provide additional remarks
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pertaining to the rational learning literature.   Consider the following formulations, analogous to f1 and f2:

F1:  Player A (resp. B) chooses a behavior strategy which picks actions TOP and BOTTOM (resp.

LEFT and RIGHT) with equal probability in each period, independently of the past.  Each player

knows the behavior strategy being used by the other. 

F2:   Let J  be a realization from infinitely many independent and identical coin-tossing experimentsA

where an outcome from {HEADS,TAILS} is chosen with equal probability.  Hence J  is anA

element of {HEADS,TAILS} .  Let J  be another realization from an i.i.d sequence of coin-tosses,4 B

{HEADS, TAILS} , which is independent of the sequence from which J   was obtained.  At date4   A

0 Player A is told of the entire sequence J  (and is not informed about J ) and player B is told ofA B

J  (and is not informed about J ).  We may consider J  to be player A's "type" and J  to be playerB A A B

B's type.  Suppose that each player knows how the types are drawn.  Consider the following play

of the game:  at date n Player A looks at the n-th coordinate of her sequence of coin-tosses - if it

is a HEADS she plays her first action, TOP and if it is a TAILS she plays her second action,

BOTTOM.  Similarly, if the n-th element of J  is HEADS player B plays the action LEFT at dateB

n and otherwise she plays action RIGHT.  Suppose further that each player knows that the other

is choosing actions via this rule.

Just as in the one-shot game we have the following: (i)  Regardless of the formulation, the beliefs

of players (of each type) form a Nash equilibrium.  (ii) In formulation F1 players'  true behavior strategies

form a Nash equilibrium.   In formulation F2, each player-type is choosing a pure strategy, the true

strategies (or limit points of continuation true strategies) do not constitute a Nash equilibrium for the (zero

discount factor) infinitely repeated matching pennies game.  (iii) The two formulations are decision-

theoretically equivalent as we mentioned in (c) above.  (iv)  There are a zillions of other equivalent type-

formulations of the game, as in (d).  In the infinite-horizon model, there are further items to be noted:

(v) Absolute Continuity Conditions:   It is easy to show that the ex ante absolute continuity conditions

required to get the Jordan and Nyarko convergence of beliefs results will hold here, regardless of

which formulation, F1 or F2,  is used.  Indeed,   both formulations obey the common prior

assumption.  In Section 6 we show, as this example illustrates,  that the Jordan and Nyarko

assumptions and conclusions obey our axiom TIGER.  The absolute continuity conditions required

in KL93 on the other hand are in ex post terms (i.e., they must hold for each vector of types).
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Formulation F1, with only one vector of types, can be shown to obey the KL93 assumptions (and

hence the KL93 conclusion on convergence of true play).   Formulation F2, with a continuum of

possible types, can be shown to violate the KL93 assumptions and conclusions (beliefs assign

probabilities (1/2,1/2) to each action at each date, while each player-type chooses a pure strategy).

Hence the KL93 assumptions and conclusions violate our axiom TIGER.  

(vi) On Nachbar (1997):  Nachbar (1997) has pointed out that sometimes prediction of the "truth"  and

optimization may be in conflict.  The repeated "matching pennies" game above is an example

covered by the Nachbar paper (indeed it is the leading example used in that paper). His conclusion,

however, depends critically upon the formulation of the game used.  Optimization holds in both

formulations F1 and F2 of the game.   Nachbar's definition of prediction, however, only occurs in

formulation F1.  Hence the conflict between optimization and prediction of the truth occurs under

formulation F2 but does not occur under formulation of F1.  In particular, under formulation F1

the paradox disappears completely.  This shows that the Nachbar paradox violates the axiom

TIGER.   We will show in Section 6 that there if instead we insist on prediction of beliefs then both

optimization and prediction will be easily obtained, and further they will obey TIGER.  

3.  Some more Comments and Related Literature
It has often been suggested to me that the issues relating to the ambiguity in the definition of a type

can somehow be resolved by appealing to the Harsanyi (1967,68) concept of a Bayesian Nash equilibrium

(henceforth BNE).   On the contrary, the problems discussed here are also relevant in the definition and

the use of the BNE concept. Harsanyi's definition a Bayesian-Nash equilibrium presupposes the existence,

for each player i, of a type space T and a mapping N :T 6 F  from that player's type space T   to that player'si i i i i

strategy space F.  The vector of these mappings, {N }   for all the players j are assumed, in the Harsanyi'si j j

definition, to be known by each player, and given this knowledge each player maximizes expected utility.

Harsanyi, however, does not give too much guidance as to what the type space should be.   On one extreme

a type could specify only a player's payoff function (this is related to the notion of a sparse type used in this

paper).  One the other extreme a type could specify an individual's payoff function and behavior strategy

(and beliefs others' payoffs and strategies, and  beliefs about beliefs, etc).  (This is related to the concept

of a comprehensive used in this paper.)  Under the former notion of a type, the concept of a BNE provides

tight predictions on the game (e.g., if the attribute vector is common knowledge the BNE becomes a Nash
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equilibrium).  Under the latter notion of a type, the concept of BNE implies nothing other than expected

payoff maximization given beliefs (so that, e.g.,  if the payoff matrix is common knowledge the only

prediction from a BNE is that players are not using strictly dominated actions).   (See Nyarko (1993) for

details.) The main point of this paper is that care should be taken whenever using a model where "types"

are used to model imperfect information.  Precisely the same caution is required with the Harsanyi BNE!

This paper is also related to the argument over mixed versus pure strategies.  Many have argued

that players do not really use mixed strategies.  Instead they choose certain, non-random actions at each

date.   Mixed strategies then become  representations of the beliefs of players.  This argument has been

made by Harsanyi (1973), Aumann (1987) and many others who study the "decision-theoretic" approaches

to game theory.    This argument has also been eloquently made by Binmore (1991, p.286).  In this paper3

we provide yet another justification for the interpretation of mixed strategies as beliefs:  the need for the

consistency across type formulations, formalized in our main axiom TIGER. 

Our work is related to the main theorems of Aumann and Brandenburger (1995), who provide

epistemic conditions for beliefs or conjectures to be Nash equilibria.  It should be clear that even under the

hypotheses of their main theorems, it is possible for the actual play of the players not to be a Nash

equilibrium even though the beliefs are.  This distinction is captured in formulations F2 as opposed to F1

of Example 2.1.  One could interpret the Aumann and Brandenburger (1995) paper as giving epistemic

conditions for why we should study Nash equilibrium of beliefs as opposed to actual play.  As suggested

in this paper, working with beliefs as opposed to actual play enables one to achieve the consistency

formalized in the axiom TIGER. 

4.  The Repeated Game Structure
I is the finite set of players.  The set A  represents the finite set of actions available to player i ati

each date n=1,2,... , and  A/J A .   /  / AxAx..xA (n-times)  is the set of histories of length N; /   is i,I i
 N   0

the singleton set consisting of the null history, which we denote by h ; //U /   is the set of all finite0 4  n
n=0

histories;  Z / J  A  is the set of infinite histories or play paths.  The projection of z , Z onto the period4
n=1

n coordinate is denoted by  z   while the projection onto the coordinates of periods 1 through n is denotedn

by z(n).  For any i in I, z  and z (n) are the i-th coordinates of z  and z(n) respectively.  Perfect recall isi,n i n
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assumed:  when player i is choosing her date n+1 action she will know the date n history z(n).  The set of

behavior strategies for player i is the set F / {f :/    6 -(A )} and F/J  F  .  The space F is endowed withi i i i,I i

the topology of weak convergence. 

Given any metric space X, we let -(X) denote the set of probability measures defined over (Borel)

subsets of X.  Unless otherwise stated the set -(X) will be endowed with the weak topology.  Given any

f,F, <(f) , -(Z)  denotes the probability distribution over Z induced by f.  A  pure strategy for i is any

behavior strategy which takes values on the vertices of -(A ).i

Each player i in I has an attribute vector which is some element 2  of the set 1 , assumed to be ai i

compact subset of finite dimensional Euclidean space.  u :1 xA6ú  is player i's within-period  continuousi i

and bounded utility function which depends upon her attribute vector, 2 , as well as the vector of actions,i

a , A, chosen by the players.  Each player i knows her own attribute vector 2  but does not necessarilyi

know those of other players, 2  for jÖ i.  Player i has a discount factor which is a known continuous function,j

*:1 6[0,1), of the player i's attribute vector.  Specifically, 1  = 1 x[0,1), where 1  f ú   represents thei i i i
# # Ai

set of stage game payoff vectors and where *:1  6 [0,1) is the projection of 1  onto its second coordinate,i i i

and represents the discount factor.  Any set of this form will be called an attribute vector space for i.

Define U :1 xZ6ú  by U (2 ,z) /3 [*(2 )] u (2 ,z ) and V :2 xF6ú  by V (2 ,f) / I  U (2 ,z)d<(f).i i i i n=1 i i i i n i i i i Z i i
4 n-1

Each player i is characterized by a type, J, which specifies, among other things, that player'si

attribute vector, 2 .  A type-space for i is any set T =1 xT  where 1  is an attibute vector space and  T  isi i i i i i
# #

a complete and separable metric space.  (This definition allows T =1 .)  We let 2 (J) denote the attributei i i i

vector of player i of type J, so that 2 (.) is the projection of T  onto 1 .  A type-space will be any I/Ji i i i  i,I

I  , where T   is a type-space for i.i i

If X is a cartesian product X=YxZ and 0 , -(X),  we denote by Marg  0 the marginal of 0 on Y.Y

Define4

S  /  I  x F x Z   . (1)

We shall say that a probability measure µ,-(S) respects <   if Marg  µ(.*J,f)  = <(f) for µ-a.e.  (J,f),IxF.Z

An ex ante subjective belief for a player i is any probability µ  over S  which respects <.  An ex ante beliefi

for player i may be constructed from the following three components:  

(i)  (Beliefs about others)  Each player-type J  has some belief over the types and behavior strategiesi
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 of others.  This defines Marg            µ (.*J) .i i                                                            T x F-i -i

(ii) (Own Behavior Strategies)  Each such player-type J chooses some behavior strategy f (J). Thisi i i

defines Marg      µ (.*J) .i i          Fi

(iii ) (Ex ante distribution of types)   Each player i has an ex ante distribution over the set of own-

         types in T .  This defines Marg     µ .i i                                             Ti

The product of the measures in parts (i) and (ii) produces a measure over T xF conditional on J.-i i

Combining this with (iii) results in a measure over TxF.  Using the measure < then results in a measure over

S.  This is player i's ex ante subjective belief.  Part (iii) is required primarily for the measure-theoretic

technicalities.  One may object to the requirement in (i) on the grounds that players should be expected to

have beliefs over the behavior strategies of others and not over the types of others.  This is a valid

objection. We discuss this in Section 5, and argue that this objection supports our use of the our main

axiom, TIGER.  

If 0  is a probability measure on a complete and separable metric space X ,for k=1,2,...K, we letk k

q 0  denote the product of the measures {0 }  on the cartesian product J X .  We impose theK K K
k =1 k k k=1 k=1 k

following assumptions on µ :i

Assumption 4.1 
 a. (independence of  strategies)  Marg      µ (. * J)    =    J Marg       µ (. * J)    for µ  a.e.   J={J} .i  j,I i j i j j,I                                                                 F                                     Fj   

b. (independence of  types)  Marg  µ  =J [Marg     µ ].I i  j,I i                                                                                 I j

Assumption 4.1 says that player i believes that (a) conditional on players' types, players choose

behavior strategies independently and (b) that players' types are drawn independently.  The set of beliefs

of players that we allow is therefore the set

B(S) = {µ , -(S)*µ respects < and satisfies Assumption 4.1 (with µ=µ  )}. (2)i

Given any sets {X }  and {Y } , and any functions  f :X  6 Y  for i,I, we define X/J X ,i i,I i i,I i i i i,I i

X /J X , and f (x ) / J f (x).  For each i,I, define the equivalence class relation, ~  , on F  as follows:-i jÖ i j -i -i jÖ i j j i
 k

ú f  and f N , F , f  ~  f N if ú f  ,F , <(f ,f ) =<(f N,f ). Let F  denote the set of equivalence classes of  ~  .i i i i i -i -i i -i i -i i
 k ~ k  k

From Kuhn's (1953) Theorem and (Aumann (1964) for the infinite-horizon case) õ6:-(F )6i i
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F  such that for any (mixed strategy) N  ,-(F ), ú  f  ,6(N ) and ú f ,F , the probability distribution on Zi i i i i -i -i
~k

induced by N  and f  is equal to <(f ,f ).  The behavior strategy f,6(N ) is said to be realization equivalenti -i i -i i i

to the mixed strategy N .  We refer to f  as the KSR (for "Kuhn Strategic Representation") of N .  We shalli i i

write f  = 6(N ) when we mean that "f  is any member of the equivalence class of 6(N )." i i i i

Fix any subjective belief µ  , B(S) of player i.  Define i

f   = 6(Marg     µ (.)) ú i,j    and    f   /  {f } . (3)j i j j,I
i  i i

                                                                        Fj  

Under the independence assumption 4.1, each type of player i has the same belief about player jÖ i equal

to the marginal of µ(.) on F.  Hence for iÖ j, f   is the KSR of the belief of each type of player i about playeri j j
i

j's behavior strategy.  Next define

f (J) / {f (J),f }  , (4)i i
i i i -i

The only difference between  f  in (3) and f (J)  in (4) is in the i-th coordinate - the latter conditions on thei i
i

type J while the former does not.  The behavior strategy f (J)  is the KSR of player-type J's beliefs.  Thei i i
i

behavior strategy vector f   is the KSR of someone who, like player i, has  beliefs given by µ  , but who,i
i

unlike player i, does not observe the own-type J.  (To illustrate the difference consider Example 2.1.  Leti

f  and f   denote the strategies chosen by A and B in formulation F1 - randomize at each date with equalA,0.5 B,0.5

probability - and define f =(f  , f ).  In both formulations F1 and F2,  f  = f   for all i. In formulation0.5 A,0.5 B,0.5 0.5
i

F1, which has only one vector of types, f (J) /f  ú i; in formulation F2,  f (J)={f (J), f } where jÖ i andi i
i 0.5 i i i j,0.5

f (J) is the pure strategy determined by J ={HEADS,TAILS}  as described in example 2.1.)i i i
4

Fix a collection of ex ante beliefs {µ }   and let {f (J)}   denote the behavior strategies chosen byi i,I i i i,I

the vector of player-types J={J} .  We now define a distribution µ  , B(S), the outside observer's beliefi i,I
*

induced by {µ } .  In the literature this is often defined as the "true" distribution, and is the measure withi i,I

respect to which theorems are proved.  The measure µ  is defined to be the unique element of B(S)* 

such that Marg   µ  = q  Marg          µ .  In particular, µ  is the ex ante belief of an outside knows            i,I i
* *

                         TxF                         T xF  i i

how players choose behavior strategies as a function of their types, and for each i in I  has the same ex ante

beliefs about each player i's own-types as player i herself.  Define f  to be the KSR of µ  not conditioning* *

on types (and observe that f  below is the same as f  in (3) above except that µ  replaces µ ):* i *
i

                  f  /  6(Marg      µ  ) ú j,I             and            f   /  {f } . (5)j j j,I
* *  * *

                                                                Fj
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Of course the KSR of µ  conditioning on types J={J}  is precisely the vector {f (J)}  of behavior*
i i,I i i i,I  

strategies chosen by those player-types.

5.  Equivalent Type-Reformulations
5.1. Consider as fixed the following: the set of players I, the attribute vector space, 1 , and the space of

actions A (and hence the spaces  F  and Z).  The set G below is the set of all "games" g which can be

constructed given the primitives {I, 1 ,A}:
 

G  /  {g= <I , {µ } , µ  >*  I   is a type-space;  {µ }  , J B(S) where S / IxFxZ; and µ  is the i i,I i i,I i,I
* *

outside observer belief induced by {µ }   }.  (6)i i,I

Definition 5.1 (Equivalent type-Refinements).  Fix any pair of tuples g=<I ,{µ } ,µ > andi i,I
*

gN=<IN,{µN} ,µ N> in G. We say that  gN is an equivalent type-refinement of g (or g is an equivalent type-i i,I
*

coarsening of gN)  and we write  gN  ö  g, if  there exist sets  {' }   (each a complete and separable metrici i,I

space) such that ú i,I, J,I , and (,' , i i i i

i. (type-refinement) IN=I x'   ;i i i

ii. (same own payoffs)  2 (JN) = 2 (J)   when JN=(J,()  ;i i i i i i i

iii. (same beliefs about others)  Marg       µ N(.*JN=(J,())  /     Marg      µ (.*J); i i i i i i                                                                         F                                               F-i -i

iv. (same expected own play) Marg      µ N(.*J)  /  Marg      µ (.*J);  and i i i i                                                                        F                                Fi i

v. (same distribution of types) Marg     µ N  = Marg      µ  . i i         I                      Ii i

Definition 5.2: g, G is an equivalent type-reformulation of gN, G if there exists a g , G such that either^

(i) g is an equivalent type-refinement of both g and gN or (ii) g is an equivalent type-coarsening of both g and^ ^

gN.  We then say that g and gN are equivalent, and we write g - gN.  

The equivalences in (iii) and (iv) of Definition 5.1 are in the sense of "Kuhn equivalences" defined

in Section 4.  If gN ö  g , then a type J in g is sub-divided into other types, with generic member (J,().  Partsi i i

(ii) and (iii) require that the new type have the same attribute vector and belief about others as the original

one.  This implies that if each player is optimizing then conditional on J , each player-type (J,() isi i i
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indifferent between her own play and the play of player-type (J,(N).  Part (iv) requires that after "integratingi i

out" the ('s we obtain the same original play.  This shows that the role of the type-refinement is to encodei

in the new type some information that may be used to pick a realization from what was originally a

randomization over actions.  In summary,  if g and gN are two equivalent games, player-types (J,() and Ji i i

will have the same payoffs and same beliefs and the games g and gN only differ in the fact that the ( 's arei

used in encoding the outcomes of realizations of randomizations.   I therefore interpret the games g and gN

as "decision-theoretically" equivalent.

The notion of equivalent type-refinements results in the partial ordering, ö  , on G.  A minimal

"refinement", defined as "sparse" below, is one where a type is the same as a attribute vector, so that the type

has absolutely no realizations of randomizations encoded in it.  A "maximal" refinement on the other hand,

defined as "comprehensive" below, would require each player to do all the randomizations at date 0 and

encode them entirely in his/her type.  In Example 2.1, formulation F1 is a sparse formulation, while F2 is

a comprehensive formulation. 

Definition 5.3: A g= <I ,{µ } ,µ > in G is a sparse formulation if I  = 1  ú i,I,   and is a comprehensivei i,I i i
*

formulation if each (or µ -almost every) player-type in g is choosing a pure strategy.*

One can think of  integrating out the realizations of any randomizations which are encoded in a type.

For example, suppose that there are two possible types of Player A, (2 , (N) and  (2 , (O),each with theA A

same attribute vector 2  and each  occurring with probability 1/2.  This can be collapsed into one type byA

integrating out the ('s in the following manner:  Consider there being only one type, called 2  , and supposeA

that this player-type chooses the (KSR of the) mixed strategy which assigns probability 1/2 to the behavior 

strategy chosen by player-type (2 , (N) and probability 1/2 to that chosen by player-type   (2 , (N) .  ThisA A

operation shows how to construct a sparse formulation for any given game.  Next, one can  think of an

operation going the other way where one encodes in a type the realizations  of all randomizations.  This will

produce from any game g an equivalent game which is comprehensive.  We therefore obtain the following:

Proposition 5.1:  Fix any game g in G.  õ  g ,G and  ḡ  ,G such that g ~ g ~ ḡ, g is sparse and ḡ is

comprehensive.

Proof: The proof of this and all other main results appear in Appendix B.Ä
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We now state our axiom TIGER.  A property is any statement pertaining to games which, in any

given game, may be true or false.  In particular, a property is a binary relation b:G 6 {0,1}, which assigns

a value "true" or "false"  to each game.  All our numbered definitions in Section 6 below implicitly define

a property for games.  An "assumption", "conclusion" or "paradox" is a property of games, which may or

may not hold in any particular game.  The axiom TIGER below will be a requirement on properties of

games:  

Axiom of Type-Independence among Games which are Equivalently Re-formulated , TIGER:  A

property of games obeys the axiom TIGER if for each game g , G the property holds for g if and only if

it also holds for all other games gN , G which are equivalent to g.  

The axiom TIGER is a requirement not only among games which are ordered by  ö , but rather

among all games which are equivalent.  The following, however, is immediate: 

Proposition 5.2: Let b be a property of games and suppose that b is true in game g , G if and only if it is

true for all other games gN , G for which either g  ö  gN  or gN  ö  g.  Then b satisfies TIGER.

5.2.  Beliefs over the Types of Others? We now return to an issue brought up in Section 4. One

may argue that it is not appropriate to model players as having beliefs over the types of others.  All that

should be important is a player's beliefs about the strategies that will be used by other players.   So, suppose

that each player i is not characterized by a µ  in B(S), but rather by the following three components: (i)i

beliefs about the strategies of others, f̄  , -(F ), common to all types of player i;  (ii) the behavior strategy-i -i
i

f (J) chosen by each player type J ,T ; (iii) the ex ante distribution over the possible own-types of playeri i i i

i in T .  The above three components do not specify player i's beliefs about the types of other players J  ini -i

T : there are many joint distributions over T xF  for which the KSR of the marginal on F  is f̄ .  Given two-i -i -i -i -i
i

games g= <I ,{µ } ,µ >and gN=<I ,{µN} ,µ N>  in G on the same type space , let us say that g and gN arei i,I i i,I
* *

strategically equivalent and write g -   gN  if they share the same components (i)-S

(iii) above - that is, if for all i in I,  (i) Marg     µ   =Marg      µ N; (ii) Marg     µ (.*J) = Marg     µ N(.*J) i i i i i i                                             F                  F                         F                           F-i -i i i

for all J (µ -a.e);  and (iii) Marg    µ  = Marg     µ N. Both g and gN are in some sense valid representationsi i i i T                  Ti i

of the interaction between the players.  After all, why should it be important for player i to be correct in

specifying player j's type?  After we have specified i's beliefs about j's behavior strategy, knowledge by i of



     Formally, define T = Tx' with ' a trivial singleton set and construct g in G from g by extending g5 ^ ^

onto T  in the obvious manner.  It is then immediate that g  ö g and g  ö gN, so g - gN.  ^ ^ ^
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j's type should be "decision-theoretically" irrelevant in some sense.  This sense is captured by the

equivalences of Definition 5.1 above.  In particular, since Definition 5.1 does not make reference to i's

beliefs about j's type space for jÖ i, it is easy to see that whenever g -   gN  then g - gN in the sense ofS

Definition 5.1 . This therefore provides further justification for the use of the axiom TIGER:  two games5

which are strategically equivalent should be considered "equivalent" so TIGER must be imposed on any

property we will use for such games!  

6.  Rational Learning in Games
In most of the rational learning literature, there are three basic parts: the first assumes that players are

optimizing; the second part imposes an absolute continuity assumption over beliefs; the third part then

shows that these assumptions  imply convergence to some sort of equilibrium.  We now consider the three

parts formally.  The message this section will be the following: (i) for the conclusions of the rational learning

literature to satisfy TIGER, we will have to insist on statements pertaining to equilibrium in beliefs as

opposed to equilibrium in strategies; and (ii) for many of the assumptions and conclusions which violate

TIGER, they hold if the type space is sufficiently coarse and are violated whenever the type space is

sufficient refined (or vice versa). 

6.1.  Optimization

Definition 6.1:  (optimization)  The game g=<I ,{µ } , µ  > , G satisfies optimization if µ (M cM )=1i i,I i i i
* 0

ú i,I, where 

M/{(J,f,z),S: *(2 (J))>0 and f  maximizes  I     V (2 (J), f  , @)dµ (. * J)} andi i i i i i i i -i  i i                                                                                       F-i

M /{(J,f,z),S: *(2 (J))=0 and ún, z  maximizes  I     u (2 (J), z  , @)dµ (. * z(n),J)}.i i i i i,n+1 i i i -i,n+1  i i
0

                                                                                                              A-i

Definition 6.1 requires each player i to be maximizing her subjective expected discounted sum of

utilities with µ  probability one.  Whenever the discount factor is equal to zero (i.e., on the set M  above)i i
0

player i will be required to maximize her expected utility at each date. Under equivalent type-reformulations,

players' beliefs and payoff functions do not change, so the following should be immediate:



      Elsewhere  (Nyarko (1997a)) I have defined Condition (GH) "for generalized Harsanyi common6

prior assumption" to be where µ  and µ  are mutually absolutely continuous with respect to each other. i j

(GGH) above generalizes this latter condition (hence the name "GGH") by first requiring merely
absolute  (and not mutual absolute) continuity, and this with respect to marginals. 
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Proposition 6.1:  Definition 6.1, optimization, obeys TIGER. 

6.2. The Absolute Continuity Assumptions.  Given any two probability measures µN and µO on

some measure space X, µN is absolutely continuous with respect to µO if for all measurable subsets Df X,

µN(D)>0 implies that µO(D)>0.  We then write µN«µO.  µN and µO are mutually absolutely continuous if

µN«µO and µO«µN.  Fix a game g=<I , {µ } , µ  > , G, and consider the following definitions:i i,I
*

Definition 6.2  (CPA) :  g obeys  the Common Prior Assumption (CPA)   if and only if µ   = µ   ú i ,I.i
*

Definition 6.2*  (CPA*) :  g obeys  the Common Prior Assumption  (CPA*)   if and only if ú i ,I, 

Marg      µ       =     Marg      µ  , ú i,I.*
i          F                            F

Definition 6.3 (GGH):  g obeys the generalized Harsanyi consistency condition  (GGH), (or ex ante

absolute continuity) if and only if  Marg          µ       «     Marg          µ  , ú i,I.*
i                                                                 I x Z                           I xZi i

Definition 6.4 (KL-T):  g obeys (KL-T) (or ex post absolute continuity) if and only if µ (I )=1 where*
KL-T

I  / 1 {J=(J,J ),I *Marg  µ (.*J) « Marg  µ (.*J)}.KL-T  i,I i -i Z Z i i
*

The learning results of Jordan (1991,95)  use the common prior assumption, (CPA).  Condition

(GGH)  is used in the learning results of Nyarko (1994 and 1997b).  Assumption (KL-T) is the natural6

extension of the KL93 assumption to the model with many types, and delivers the KL93 conclusions for µ*-

almost every J.  It is easy to see that the common prior assumption implies but is not implied by condition

(GGH).  Indeed, (CPA) is strictly stronger than (GGH).  Further, condition (KL-T) implies but is not implied

by condition (GGH) (for a proof that (KL-T) implies (GGH)  see Nyarko (1997b)).  Example 2.1

(formulation F2) shows that (GGH) can be true while (KL-T) fails, so  (KL-T) is strictly  stronger than

(GGH).

The common prior assumption (CPA) (as opposed to (CPA*)) violates TIGER.  The problem is that

(CPA) requires each player to get correct the mapping from each other player's type to that player's behavior
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strategy.  For example fix a game g with two types of each player and suppose that g obeys (CPA).  Define

another game exactly the same as the first except that in the new game Player A mis-labels the types of B

.  In particular, if J̄ and J  are the two types of player B and f(J̄ )  and f(J ) are the behavior strategies theyB B B B
^ ^

use, then in game gN Player A incorrectly believes player-type J̄  is using f(J ) and player-type J  is usingB B B
^ ^

f(J̄).  It should be clear that the re-labeling is "harmless" and that g and gN are equivalent games.  (Indeed,B

this was precisely the discussion at the end of Section 5.)  The game g, however,  obeys (CPA) while gN

violates it.  Hence (CPA) violates TIGER.  For this reason (CPA)  is really not a good assumption to place

on a game.   Assumption (CPA*) gets around this problem: (CPA*) obeys TIGER and implies the Jordan

convergence results which were originally proved with CPA (see Propositions 6.2 and 6.5 below) . 

  If one distribution is absolutely continuous with respect to another distribution over a product space,

then the same will be true of their marginal distributions.  Coarsening a type-space is similar to the operation

of going from a joint to a marginal distribution.  It is therefore not surprising that if condition  (GGH) (resp.

(KL-T)) holds in a game and we coarsen the type-formulation, condition (GGH) (resp.  (KL-T)) will continue

to hold.  The difficulty lies in going from one type-formulation to a finer one.  Indeed, Example 2.1 shows

that (KL-T) may hold in one game (as in F1) but may be violated when the type-formulation is refined  (as

in F2)- so (KL-T) violates TIGER.  This does not happen with (GGH), however, and in particular (GGH)

obeys TIGER.  This is because player i's beliefs about others are independent of i's type, and i's type is the

only type used in the statement of (GGH) - in particular, under (GGH) player-type J only has to be "correct"i

(in terms of absolute continuity) about the average play of others;  and beliefs about average play do not

change with i's type or with the type formulation.  Similar reasoning shows why assumption (CPA*) obeys

TIGER. Condition (KL-T) on the other hand conditions on the true vector of types, which will change as the

types, and hence type-formulations, change.  In particular, under (KL-T) player-type J has to be "correct"i

(in terms of absolute continuity) about the true play of others, and this true play will change with the type

formulation.   The ambiguity of the notion of what is a true type leads to the failure of (KL-T) to satisfy

TIGER.  Formally we have the following two results: 

Proposition 6.2: (a)  (CPA*) obeys TIGER; (b)  condition (GGH) obeys TIGER; (c) condition (KL-T)

violates TIGER; and (d) (CPA) violates TIGER.

Proposition 6.3 (Monotonicity in (KL-T)):  Fix any g in G and suppose that g obeys (KL-T).  Then all

equivalent type-coarsenings of g also obey (KL-T).



     By "linearly ordered by ...."  we mean that we can index the games by k in [0,1] such that k$kN7

implies g   $ g  (or vice versa).   k kN

     A very nice example to this effect was independently provided to me by R. Smorodinsky (1995)8

while this paper was undergoing revision.  
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Proposition 6.3 implies that given any chain of equivalent games linearly ordered by ö   from

coarsest to most refined , there will exist a critical game such that all coarser ones obey (KL-T)  and all finer7

ones violate it (or else either all obey or all violate (KL-T)).  Examples 8.1 and 8.2  in Appendix A compute

such critical games in two different chains of games.  Example 8.1  provides a chain of games g , g , ...., g1 2 4

where g  for k<4 has a countable type-space and g  an uncountable type-space.  The game g  will satisfyk 4 k

(KL-T) for k<4 and will violate it for k=4.  This suggests a connection between condition (KL-T) and the

countability of the type-space.  Indeed, we have the following: 

Proposition 6.4 ((KL-T) and the Countability of the Type-space):  Fix any game g= <I ,{µ } ,µ > in G withi i,I
*

at least two players.  Suppose g obeys (KL-T)  and is comprehensive.  Then the set of plays is countable: i.e.,

there exists a countable subset M of Z such that the event {T=(J,f,z) in S* z , M}  has µ  and µ  probability*
i

one ú i in I.  If, in addition, each vector of types results in a different play path, then the type-space must be

countable.  

In F2 of Ex. 2.1 each player-type chooses a pure strategy at each date.  Proposition 6.4 therefore

implies that (KL-T) cannot hold for that example. When the type-formulation is not comprehensive, so each

type does not choose a pure strategy at each date, it is possible to have a model with uncountably many types

which satisfy the Kalai and Lehrer assumption .  Proposition 5.1, however, then shows that the “game” can8

always be equivalently reformulated so that in the new game each player-type chooses a pure strategy.  In

that case, as Example 2.1 indicates, the notion of exactly what a type is becomes ambiguous, as is whether

or not assumption (KL-T) holds.  

6.3.  The Convergence Results of Jordan, KL93 and Nyarko.  The norm 2.2 denotes the total

variation norm on -(Z); i.e., given p, q,-(Z), 2p-q2 / Sup * p(E)-q(E) * , where the supremum is over BorelE

measurable subsets E of Z.  Fix any attribute vector  2 /{2 } ,1 .  Define  ú i,I, i  i,I 

N (2 ) / {f=J f,F: f  , argmax  V (2 ,f , @ )}        and     N(2 ) / 1 N (2 ) ; (7)i i  j,I j i i i -i    i,I i i
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ND(2 )  / {<N ,-(Z):  õ  f,N(2 ) with <N =<(f)}. (8)

SE (2 ) / {f =J f,F: ú i,I, õ (f )  , F   with f  = f  such that ,  j,I j j 1#j#n i i
i i

(i) f  , argmax  V (2 ,f , @ )  and (ii)   2<(f) - <(f ) 2 # , } and SE(2 ) / SE (2 ). (9)i i i -i   0
i i

N(2 ) is the set of Nash equilibrium behavior strategy profiles for the complete information game

with attribute vector 2 .  ND(2 ) is the set of all distributions of play that can be generated by some Nash

equilibrium behavior strategy profile. SE (2 ) (resp. SE(2 )) is the set of subjective ,-equilibria (resp.,

subjective equilibria).  One can show that ND(2 ) is equal to the set of all distributions induced by some f

, SE(2 ).  (The definitions on subjective equilibria are taken from Kalai-Lehrer (1993b). See also Battigali

et. al. (1988)  and (1992).)

 Given any history h , / , and any behavior strategy f , F   for i,I, define the continuation strategyi  i

f   as follows:  úhN ,  / , f (hN) = f (hhN)  where hhN is the concatenation of h and hN.  Analogously, giveni,h i,h i

f={f}   , F and h , / , define f , F by f (hN) = f(hhN) úhN , / .  Given a sequence  {x }  in some metrici i,I h h n n=1
4

space X and a set  P f X, write x 6  P if every cluster point of {x }  lies in the set P.  n n n=1
c 4

Fix a game g in G and let f ,  f(J)={f (J)}  and f  be as in eq.'s (3) - (5).  When the common priori *
i i i,I 

assumption holds, either (CPA) or (CPA ) , f  = f  = f   ú i and j.  Define*  i j *

S  / {T=(J,f,z),S: f  = f  = f  ú i,j  and  f   6  N(2 )}.  (10)Jordan z(n)
i j * * c

The set  S   is the set where the limit points of KSR's of beliefs of the future given the past (and notJordan

conditioning on types) lie in the set of Nash equilibrium strategies of the underlying complete information

game of the realized attribute vector 2 .  

Next define 

S  / W1CD1  C , (11)Nyarko 

where W   /  {(J,f,z),S: lim 2 <(f ) -  <(f )2=0 ú i,I}; (12)N64 z(N) z(N)
i *

CD  / 1  CD     with    CD  / {(J,f,z),S: <(f ) 6  ND(2 )}   ú i,I;    and (13) i,I i i z(N)
i c

       C   /  1  C       with  C   / {(J,f,z),S: f  6  N (2 )}    ú i,I . (14) i,I i i z(N) i i
i c

The set W is the event where each player i's' beliefs, µ,  about the future, {z ,z ,...}, given the past, z(N),i N+1 N+2

(and not conditioning on own-types) "merge" with those of µ  (and hence with each other) as the date N*



      Note that C Ö  1 {(J,f,z),S: f  6  N(2 )}.  Instead, the former set contains the latter, usually9
 i,I z(N)

i c

strictly.  In particular C is not the set where continuation of KSR of beliefs are Nash equilibria.  The
difference is the same as the difference between Nash and subjective Nash equilibria, and is due to the
fact that on the set C players are allowed to have different (limit) beliefs about play off the equilibrium
path.  
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tends to infinity.  The set CD is the set where limit points of each player's beliefs about the future play

conditional on the past (again, not conditioning on own-types) is the same as the play of some Nash

equilibrium.  The set C is the set where for each i , I, cluster points of the continuation strategies of  player   

i's KSR of beliefs not conditioning on own-types, f , lie in the set N (2 ).  In particular , if  f  = i 9 4
i i

(f  ,f ),F  is such a cluster point then f  is a best-response to f  for the player with attribute vector 2 .  i -i i -i i
4 4 4 4

Finally, define 

S  /  {T=(J,f,z),S: ú,>0, õN=N(,,T) such that ún$N, f (J) lies in SE (2 )}. (15)KL  z(n) ,

The set  S   is the set of sample paths where ú,>0 (the continuation of) the strategies of  players eventuallyKL

lie in the set of subjective ,-equilibria of the game with the realized attribute vector,  2 .  

The results in Proposition 6.5 below are the main results of Jordan (1995), Kalai and Lehrer

(1993a), and Nyarko (1997b). The result we state for Jordan is a slight generalization of Jordan (1995),

relaxing the assumption (CPA) he used to the weaker assumption (CPA*) - the proof appears in the

Appendix B.  Immediately following this, we record in Proposition 6.6 the fact that the Jordan and Nyarko

results satisfy TIGER, while the Kalai and Lehrer result violates it (as is easily seen from formulations F1

versus F2 of Example 2.1).

Proposition  6.5:  Fix any game g=<T, {µ } , µ > in G.  i i,I
*

(a) (Jordan):   Suppose g satisfies optimization (6.1) and (CPA ) .  Then *

µ (S ) = 1. (16)*
Jordan

(b) (Nyarko):   Suppose g satisfies optimization (6.1) and (GGH).  Then

 µ (S ) = 1. (17)*
Nyarko

(c) (Kalai and Lehrer):  Suppose g satisfies optimization (6.1) and (KL-T).  Then 

µ (S )=1. (18)*
KL

Proposition 6.6: (a) The conclusion of Jordan (1995), and in particular eq. (16), obeys TIGER.
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(b) The conclusion of Nyarko (1997b), and in particular eq. (17), obeys TIGER.

(c) The conclusion of Kalai and Lehrer (1993) , and in particular eq.  (18), violates TIGER.

The lemma below indicates an entire class of properties of games which will obey TIGER.  The

lemma is used in the proof of parts (a) and (b) of Proposition 6.6.  

Lemma  6.1:  Fix any sets D  f 1  x Z and D  f 1  x Z and any numbers k  and k  for i in I.  Define thei i i
* *

property b   for i in I and the property b  as follows:  g= <I , {µ } , µ  > in G satisfies b   if and only ifi i i,I i
* *

µ (D )=k  ; and g satisfies b   if and only if µ (D )=k .  Then b   and each b  satisfy TIGER.i i i i
* * * * *

In the monotonicity result below we use the definition of SE (2 )  of (9) where we insist that the f 's,  j
i

of that definition are equal to the beliefs of player i about j.

Proposition 6.7 (Monotonicity):   Fix any g in G and suppose that g obeys  the KL93 conclusion in eq.

(18).  Then the conclusion also holds for all equivalent type-coarsenings of  g.  

6.4.  On Nachbar (1997).  The conclusion of Nachbar (1997)  is that there is an inherent conflict

between prediction and optimization when the strategy space is sufficiently rich.  The definition of

optimization is as in (6.1).  We now define prediction.  Given any history h of length R<4 say, the cylinder

set C(h) is the subset of all play paths z in Z whose first R elements equal h.  The definition below is an

absolute continuity condition over cylinder sets. 

Definition 6.5: The game g in G obeys Ex Post  Local Absolute Continuity (EPLAC)  if and only  if for

every h in H, and µ  -a.e.  J={J} ,  <(f(J))(C(h))>0 implies <(f (J ))(C(h)) > 0. * i
i i,I i

Given any ,>0 and any integer R, and any f and fN in F, f is said to (,,R)-play like fN  if for all histories

h of length R or less, *<(f)(C(h)) - <(fN)(C(h)) * # ,.  Define

S   / {T=(J,f,z),S: ú,>0, ú i,I, ú  integers R, õN=N(,,R,T) s.t. ún$N, f (J)   (,,R)-plays like  f (J)}.P z(n) z(n) i
i

(19)



     Although (EPLAC), ex post local absolute continuity of µ  with respect to µ , obeys TIGER, it is10 * 
i

easy to see that ex post local mutual absolute continuity - µ  with respect to µ  for all i and j - does noti j

obey TIGER.  Indeed consider Example 2.1. Under F1 all players' beliefs are mutually absolutely
continuous with respect to each other (indeed the common prior assumption holds in that case). 
Consider now, however,  F2 and fix a vector of types J=(J  , J ).  Player A of type J  assignsA B A

probability one to one particular date 1 action that she, Player A, will choose while player B assigns
equal probability to both the actions of Player A.  The players' beliefs, conditional on their types, are not
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 Definition 6.6:  (Nachbar Prediction):  The game g in G obeys Nachbar prediction if and only if 

(i) g satisfies EPLAC;  and  (ii) 

  µ (S ) = 1 . (20)*
P

Definition 6.7:  (The Nachbar Paradox).  The game g , G satisfies the Nachbar Paradox if it is not the case

that g obeys both optimization (6.1) and Nachbar Prediction.  

Nachbar (1997) argued that in games where the strategy sets are sufficiently rich there is an inherent

conflict between optimization and prediction in the sense of the definition above.  As illustrated in Example

2.1, a sufficiently rich strategy set requires a sufficiently refined type-space.  In particular, in that example

under formulation F1 prediction and optimization hold, while under formulation F2, optimization holds but

prediction fails.  In particular F2, the more refined space, obeys the Nachbar paradox while F1 violates it.

Among other things this implies the following: 

Proposition 6.8:   The Nachbar paradox violates TIGER.  

We also have the following monotonicity result: 

Proposition 6.9 (Monotonicity):  Fix g and gN in G with gN ö  g.  (a)  If the Nachbar paradox holds for g

then it also holds for gN; and (b) if gN violates the Nachbar paradox (i.e. if gN satisfies optimization and

prediction) then so too does g.  

Proposition 6.9 above is proved with the aid of the following two lemmas which may be of interest

in their own right.  The first, Lemma 6.2 below, shows that EPLAC obeys TIGER, which is interesting when

compared to the failure of (KL-T) to satisfy TIGER : 10



locally mutually absolutely continuous in F2.  Hence ex post local mutual absolute continuity does not
satisfy TIGER. 
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Lemma 6.2:   (EPLAC) satisfies TIGER.

Lemma 6.3:  Fix g and gN in G with gN ö  g.  Then if the property in (20) holds in gN, it also holds in g.

The Nachbar paper asks whether true play can be predicted.  We have argued that there may

be problems with the notion of the "truth" here, and in particular that the Nachbar paradox violates TIGER.

Instead of asking whether there is prediction of the truth, we could ask whether there is prediction of beliefs.

 Define the set S  as follows:PB

S  /{T=(J,f,z),S: ú,>0,ú  integers R, õN=N(,,R,T) s.t. ún$N, f   (,,R)-plays like f  , ú i,I}.(21)PB z(n) z(n)
* i

Observe that this is the same as the set where Nachbar's concept of prediction occurs (see S  inP

(19)) except that we use beliefs f  and f  in place of  true strategies and beliefs conditional on own-types,* i
z(n) z(n)

f (J) and f (J), respectively.  Here it may be useful to stress again that f (J) and f   represent thez(n) z(n) i z(n) i z(n)
i i i

same beliefs over F , the strategies of others;  the only difference is as regards beliefs about own strategies --i

the latter conditions on own-types J while the other does not.  It is easy to see that on the set  S ,  for largei PB

enough n,  f   (,,R)-plays like f  , ú i,j,I    Hence ignoring beliefs about own play, over time players makei j
z(n) z(n)

approximately the same predictions about the future play.  For example at any period n sufficiently large,

players i and j will have approximately the same beliefs about the which action a third player k will choose

in the next period.  This is not exactly prediction of beliefs - indeed we have not modeled what i thinks about

what j believes.  It is however prediction beliefs in the sense that i and j will have the same beliefs about any

third player k.  Analogously to Definition 6.6 we therefore have:

Definition 6.8:  (Prediction of beliefs):  The game g in G obeys prediction of beliefs if and only if (i) g

satisfies EPLAC;  and  (ii) 

  µ (S ) = 1 . (22)*
PB

From Lemmas 6.1 and 6.2 the following is immediate: 



     An alternate definition of prediction of beliefs would replace condition (ii) of Definition 6.8 with11

µ (W)=1  where W is as in (12).  Since W f S  this results in a stronger notion of prediction of beliefs. *
PB

This stronger definition also obeys TIGER, and also follows from condition (GGH).  

24

Proposition 6.10:   Prediction of beliefs obeys TIGER.

To give an indication of how prediction of beliefs can be obtained, we note that condition (GGH)

implies prediction of beliefs .  (To see this apply Proposition 6.5b and observe that W f S ).   In11
PB

particular, both formulations F1 and F2 of example 2.1 obey Prediction of Beliefs.   When we move from

strategies to beliefs, the Nachbar "paradox" disappears, and instead, under (GGH), we very easily obtain

both prediction and optimization!

7.  Conclusion
  Jordan (1996) states that a notable shortcoming of Bayesian learning models is that "convergence

occurs at the level of expectations and not necessarily at the level of actual strategies."  This paper shows

that this should not be considered a shortcoming.  Instead, if we want our results to be consistent in the sense

of obeying TIGER, we can make statements only at the level of expectations or beliefs.  Ambiguities in what

constitutes the "truth" force us away from statements on true strategies and toward statements on

expectations. 

What is the correct type-formulation?  There is no "correct" type-formulation.  We advocate neither

the sparse nor the comprehensive formulation.  If you believe that people really do not mix, then you are

advocating the comprehensive formulation.  But then the Nachbar paradox holds (see formulation F2 of

Example 2.1).  On the other hand if you adopt the sparse formulation, you must deal with the arguments

of those who insist that people do not mix.  In Section 6 we showed that there is usually a critical type-

formulation such that the KL93 assumptions and conclusions hold for all coarser formulations and fail to

hold for all finer formulations.  In that case you may define what is the correct formulation in terms of

whether you want the KL93 conclusions to hold.  In summary, if one is not willing to move to concepts like

equilibrium in beliefs which satisfy TIGER, there is no obvious "correct" type-formulation. The best type-

formulation, as with beauty, may lie in the eye of the beholder.  



     To see this, define the game ḡ  to be the game g  re-defined on the type space T = {HEADS,12 k k
i

TAILS}  in the obvious manner:  given any type J in T  in game ḡ , ignore the coordinates k+1, k+2,....4 k
i i

and proceed just as in game g  .  Next for each J,T and k#4, define <  to bek
k

equal to <(f(J)),  the play induced by the vector of types J in game g .  Then it is easy to see that fork

each J, < (J) converges to < (J) in the weak topology.  k 4
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8.  Appendix A:  Examples
Example 8.1: (A critical g for (KL-T)):  Let I, A and 1  be as in the matching pennies game of Example 2.1.

We now define for each k = 0,1,2,3,... ,4, a game g   ,  G.   Define g  and g   be formulations  F1 and F2,k 0  4

respectively, of Example 2.1. For 1#k<4, define T  / {HEADS,TAILS} , and suppose that the types in Ti i
k k k

are generated via k independent tosses of a fair coin.  The behavior strategy of player-type J={J , J  ,...,i i,1 i,2

J } , T   in game g  is as follows:  At date n # k, choose the first action (TOP for i=A and LEFT for i=B)i,k i
k k

if J =HEADS, and the second action otherwise;  and at date n > k, randomize over both actions with equali,n

probability. This defines the game g .  It is easy to check that the collection of games {g }   are allk k 4
k=1

equivalent with g  ö   g   ö   g    ö   g    for all k.  There is also obviously a weak-topology sense  in which4 k+1 k 0 12

the g 's converge to g .  One can also check that the game g  satisfies (KL-T) úk < 4, and violates (KL-T)k 4 k

for k=4.  g  in this case is a "critical" g, as mentioned in Section 6, for the given chain of games.  Ä4

Example  8.2: (A critical g for (KL-T)):  Let I, A and 1  be as in the matching pennies game of Example

2.1.  We now define for each k in [0,4] a game g   ,  G.  Each of these games will be equivalent and willk

have exactly the same type-space.  Further, there will exist a critical k (actually k=1) such that (KL-T) will

hold for each k > 1 but will fail for each k # 1.  The example will also be such that if k and kN are close, then

the games g  and g  will also be close in the weak-topology sense mentioned in Example 8.1. k kN

Define for each k and each i in I, T  / [0,1] .  The types in T  are generated via the distributioni  i 
k 4 k 

over [0,1]   equal to the countably infinite product of uniform distributions over [0,1].  Define ú  n=1,2,....4

and k in  [0,4],

)    =  (1/2)(1/(n+1) )  . (23)n,k
k/2

The behavior strategy of  player i of type J  = {J , J  , J  , ...}  , T   is defined as follows:  thei i,1 i,2 i,3 i  
k k k k k

probability that she assigns to her first action (TOP for i=A and LEFT for i=B) at date n is  

                                                           1/2   +  )       if   J    , [0,1/2)  n,k i
n

f  (J )   =   {   (24)i,n i                                                              1/2   -  )       if   J    , [1/2, 1]  .n,k i
n
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The probability assigned to her second action at date n is therefore 1-f (J).  We suppose that each playeri,n i

knows that this is how the types and behavior strategies are generated.  Each player observes her own type

but not the types of others.  The probability that player i assigns to the event that player jÖ i chooses her first

action is  (1/2)[1/2 + ) ] + (1/2)[1/2 - ) ] = 1/2.  Each player is therefore indifferent between each of hern,k n,k

two actions, so the behavior strategies just defined are best-responses to each other.

When k=4, ) =0 so each player-type is randomizing with probabilities 1/2 and 1/2 at each date.n,k

When k=0, ) =1/2 so each player is choosing a pure strategy, which depends on her type.  Hence, the casesn,k

k=4   and k=0 correspond to formulations F1 and F2 respectively of Example 2.1.  For each kÖ0, each

player-type's behavior strategy randomizes over her actions at each date with probabilities which converge,

as the date n6 4, to the vector (1/2,1/2).  The speed with which the probabilities converge to (1/2,1/2) is

increasing in k.  For (KL-T) to hold, this convergence must be sufficiently fast.  It turns out that in the above

example, the critical k for which this is true is k=1.  In particular, when k # 1, the rate of convergence is so

slow that (KL-T) fails to hold.  To see this, define "  to be the ratio of the true probability of player ii,n 

choosing a given action at date n to the probability assigned by the beliefs of  jÖ i  to that action (which, of 

course, is 1/2): 

                   f  (J )/(1/2)    if the first action occurs at date n i,n i"    =     {  (25)i,n                       [1-f  (J )]/(1/2)    if the second action occurs at date n i,n i

Then  3  (1-" )    =    3  (1- 2f  (J ))    = 4 3  )   =  3  1/(n+1) .  This sum is finite for k>14 2 4 2 4 2 4 k
n=1 i,n n=1 i,n i n=1  n,k n=1

and is infinite for k #1.  Applying (Shiryayev, Cor. 4 of p. 499), then shows that condition (KL-T) holds for

k >1 and fails for k #1.  Ä

9.  Appendix B: Proofs
Proof of Proposition 5.1:  Fix any g= <I ,{µ } ,µ > in G.  To obtain a g in G which is sparse andi i,I

*

equivalent to g, define I=1  and define the behavior strategy of player-type J = 2  to be KSR of the marginali i

on F of µ (.*2 ).  In particular, the sparse formulation, g, is obtained by integrating out any randomizationi i i

that was in the original types in g.  

To obtain a gN in G  which is comprehensive and equivalent to g, one needs to perform at date -1

(i.e., before the game begins), all the possible future randomizations, and encode them in the type.  The
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details of this are as follows:  Define ' /[0,1] , T N/T x'    and TN=J T N.  Let Unif[0,1] be the uniformi i i i i i
4  

distribution over [0,1] and define > / q Unif[0,1].  We will later construct the behavior i k=1
4

strategy, f (JN), of each player-type JN in game gN.  Define 1          (resp.  1            ) to be the probabilityi i i                                                          f(JN)               f (JN) i i

measure on F (resp. on F)  that assigns probability one to f(JN) (resp. f (JN)).  A unique µ N, B(TNxFxZ) mayi i i
*

be constructed with the following three components:  (a)  Marg µ N  = (Marg  µ ) q  J  > ;  TN T i,I i
* *

(b)  Marg  µ N(.*JN) = 1        ;  and (c)  Marg  µ N(.*JN,f) = <(f).  Similarly, a unique µ N, B(TNxFxZ) F Z i
* *

                                     f(JN)
may be constructed using the components (a) and (c) above, replacing µ  with µ  and µ N with µ N, and* *

i i

replacing (b) with the requirement that Marg  µ N(.*JN=(J,())  = (Marg      µ (.*J))  q  1          .                  F i i                                                                                                                F                    f (JN)-i i i 
   We now construct the {f(JN)}   used above.  Fix any i in I and J ,T .  Since /  is countable we cani i i,I i i

write //{h ,h ,h ,....}.  Then for any integer m, f (J)(h ) is a probability measure over A  showing how1 2 3 m
i i i

player-type J in game g chooses actions in history h  .  Since A  is finite we may consider it ani i
m

ordered set, A ={a }                , with #A  the cardinality of A .  Fix an m and let Supp f (J)(h ) be thei i,R i i i i
m

                                         R=1,2,...,#Ai

support of f (J)(h ), similarly ordered.  For each h  ,H, partition the unit interval [0,1] into distincti i
m m

exhaustive sub-intervals with the R-th sub-interval having lebesgue measure equal to the probability assigned

by f(J)(h ) to the R-th action in Supp f (J)(h ).  Let - (J,h ) denote this ordered set of sub-intervals.  Eachi i i i i i
m m m

member of - (J,h ) is associated with a unique action in A.  For any JN= (J,( ,( ,( ,...) ,T N define f (JN)i i i i i i,1 i,2 i,3 i i i
m

by requiring it to choose in history h  the action associated with the R-th member of - (J,h ), where R is them m
i i

unique integer such that (  lies in the R-th member of - (J,h ). i,m i i
m

We have completed the construction of gN=<TN,{µN} ,µ N> .  It should be obvious that it satisfiesi i,I
*

the conclusions of this proposition with gN= ḡ.  Ä

Proof of Proposition 6.1:  Fix any two games g and gN in G and suppose that gNö g.  Let '  , J and JN =i i i

(J,( )  for (  , '  be as in Definition 5.1.  In particular, J and JN are two generic types in g and gNi i i i i i

respectively, which share the same attribute vector.  From the independence assumption 4.1 these two

player-types will also share the same beliefs about others.  From condition 5.1(iv) the behavior strategy of

player type J in game g is equal to the KSR of the mixed strategy obtained by some randomization over thei

behavior strategies over player-types (J,() for (,' .  Standard arguments show that player-type J 'si i i i i

behavior strategy is a best-response for her if and only if this is the case for all those of player-types (J,()i i

for (   , '  (except possibly a set with zero probability).  Hence optimization occurs in g if and only if iti i

occurs in gN.  Proposition 5.2 therefore this proves the proposition. Ä
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Proof of Proposition 6.2:  (a) This follows immediately from the fact that if g -gN then the ex ante beliefs

over F will be the same in both games g and gN.  

(b) Fix any g =<I ,{µ } ,µ > and gN =<IN,{µ N} ,µ N> in G and suppose that gNö g.  Suppose g obeysi i,I i i,I
* *

(GGH).  By definition TN=Tx' for some '.  It is easy to verify that if one probability measure is absolutely

continuous with respect to another on the cartesian product of two spaces then the same is

true of their marginals.  Hence if gN obeys (GGH), Marg           µ  « Marg          µ  ú i,I, so g obeys (GGH).*
i                                                                                         T x Z                 T xZ  i i

Next, suppose g obeys (GGH).  Then, Marg µ  « Marg µ  .  Since µ  and µ N and also µ  and µ NZ Z i i i
* * *

share the same marginal on Z, this implies that

Marg µ N   « Marg µ N . (26)Z Z i
*

Following each history each player chooses an action independently of the others.  So, recalling the notation

of eqn's (4) and (5), for each date N history h  = (a ,...,a ),  N 1 N

µ N({h }*JN) = J  [f (JN)(h )(a )][f (h )(a )] , (27)* N-1 *
N i n=0 i i n i,n+1 -i n -i,n+1

µ N({h }*JN) = J [f (JN)(h )(a )][f (h )(a )] , (28)i N i n=0 i i n i,n+1 -i n -i,n+1
N-1 i

µ N({h }) = J [f (h )(a )][f (h )(a )] ,  and (29)* N-1 i *
N n=0 i n i,n+1 -i n -i,n+1

µ N({h }) = J  [f (h )(a )][f (h )(a )] . (30)i N n=0 i n i,n+1 -i n -i,n+1
N-1 i i

Define 

                                        µ N({h }*JN)                                               µ N({h })* *
N i N           r (JN) /                           ,   úJN,T N     and     r   /                       , (31)N i i i N

               µ N({h }*JN)                                               µ N({h })i N i i N

whenever the denominators of these expressions are positive, and define them to be equal to zero otherwise.

Eq.'s (27) - (30) imply that úN, h  , H , and JN,T N such that µ N({h })Ö0 and  µ N({h }*JN)Ö0,N i i i N i N i
N

r  = r (JN). (32)N N i

It is easy to see that r  is the Radon-Nikodym derivative of Marg  µ N with respect to Marg  µ N when theN Z Z i
*

two measures are restricted to H .  Hence, using Shiryayev ((1984), Theorem 2, p.495), (26) implies thatN

there exists an r  such that lim  r  = r   which is finite with probability one with respect to µ N and µ N.4 N64 N 4 i
*

From (32) this in turn implies that 

lim  r (JN) = r  . (33)N64 N i 4

We will now argue that for each N and µ N a.e. JN, *
i
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Marg        µ N(.*JN)     « Marg  µ N(.*JN). (34)*
i            i i                                             H                                 HN N

To show this assume, per absurdem, that for some h  and for a set of JN 's with µ N positive probability, theN i
*

following is true: (i) (27) is positive and (ii) (28) is zero.  Noting that the products in (27) and (28) share

some common terms, (i) implies that (29) is positive while (ii) implies that (30) is zero.  This is a

contradiction to (26), which proves (34).  

It is also easy to see that r (JN) is the Radon-Nikodym derivative of Marg  µ N(.*JN) with respectN i Z i
*

to Marg  µN(.*JN) when the two measures are restricted to H .  Eq.'s (33) and (34) and the Shiryayev resultZ i i
N

mentioned earlier then imply that Marg µ N(.*JN) «Marg µ N(.*JN) for µ N a.e. JN .  Since byZ i Z i i i
* *

definition µ N and µ N have the same marginal on T N, we conclude that Marg           µ N « Marg             µ N* *
i i i         T NxZ                  T NxZi i

So gN obeys (GGH).  Ä

Proof of Proposition 6.3:  Fix any two games g= <I ,{µ} ,µ >  and gN=<IN,{µN} ,µ N> in G and supposei i,I i i,I
* *

that gN ö  g.  Then, following the notation of Section 5, we may write TN=Tx'.  Fix any i in I and define for

each (J,()=(J , (, J , ( ), the following measures on Z:  P (.*J,()/Marg µ N(.*J,() and i i -i -i Z
* *

P (.*J,()/  Marg   µN(.*J,( ) (and note that the latter depends on (J,() only through (J ,()).  Suppose gNi Z i i i i i

obeys (KL-T).  Then   P (.*J,()  « P  (.*J,() for µ  almost every (J,() in TN.  We may integrate out the ('s* *
i

conditional on J, to conclude that  

I P (.*J,()dµ (.*J)  «  I P (.*J,()dµ (.*J)  ,   for µ  almost every  J . (35)' ' i
* *  * *

The left hand side of (35) is equal to Marg  µ N(.*J).  From the definition of µ , the marginals of µ  and ofZ
* * *

µ   on  T x'   are the same, so the right hand side of (35) is equal to  Marg  µ N(.*J ).  Hence, i i i Z i i

Marg  µ N(.*J) « Marg  µ N(.*J), so g obeys (GGH).ÄZ Z i i
*

Proof of Proposition 6.4:  We begin with the following claims:

Claim 1:  A probability measure can assign positive probability to at most countably many distinct mutually

disjoint sets.  

Proof of Claim 1:  Let P be a probability measure on a measure space (S ,T).  Fix an index set Q and let0

{N }   be any collection of mutually disjoint measurable subsets of  S  with P(N )>0 úq,Q.   Define forq q,Q 0 q

any integer k>0, Q  / {q,Q*P(N )>1/k}.  Q   cannot contain more than k distinct elements Q, for otherwisek q k
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the total probability of the union of N    over q,Q   would exceed 1.  Since Q = U Q   this shows that Qq k k=1 k
4

must be countable. //

Claim 2:  Let ":T  6 Z  and $:T   6  Z  be two Borel measurable functions.  Let B = B  q  B   be any product1 2 1 2

measure on T xT .  Then there exists a countable set R such that if J/{(J,J) , T xT  * "(J)=$(J)óR},1 2 1 2 1 2 1 2

then B(J)=0.

Proof of Claim 2:  Let ", $ and B be as in the claim.  Define R/ {z in Z* B ($ (z))>0}.   If zÖzN then 2
-1

$ (z) and  $ (zN) are disjoint.  Hence from Claim 1, R is countable.  With this R, let J then be as in the-1 -1

conclusion of this claim (Claim 2).  Define J(J) = {J in T  * (J,J) , J}.  We proceed to show that1 2 2 1 2

B (J(J)) = 0  úJ in T . (36)2 1 1 1

So fix any J in T .  Clearly (36) holds if J(J) is empty.  So suppose J(J) is non-empty.  Then "(J)óR.  This1 1 1 1 1

implies first that J(J) =  {J*"(J)=$(J)} = $ ("(J))  and also that B ($ ("(J))=0.  Hence, eq. (36) again1 2 1 2 1 2 1
-1 -1

holds.  Eq. (36) and the fact that B is a product measure in turn proves that B(J)=0. //

Proof of Proposition 6.4 (Cont'd):   By assumption there are at last two players, 1 and 2 say.  Let z:S 6Í
Z  be the random variable on S which defines the play path z in each state T in S.  Fix any J,T  and J,T1 1 2 2

and define A(J)/{z̄,Z : µ ({z=z̄}*J)>0} and C(J)/{z̄ ,Z : µ ({z=z̄}*J)>0}.  From Claim 1, A(J) and1 1 Í 1 2 2 Í 2 1
    

C(J) are both countable so we may write A(J)={" (J)," (J)," (J),...} and  C(J)={H (J),2 1 1 1 1 2 2
1 2 3 1

H (J),H (J),...}.   Next,  define úJ ={J}  in T  and ú integers m, $ (J )/ H (J) and B(J )/{$ (J ), 2 3 m m 1
2 2 -1 j jÖ1 -1 -1   2 -1 -1

$  (J ), $ (J ),...}.  One may check that we may order the points in the sets so that for each R and m, "  and2 3 R
-1  -1

H  (and hence $ ) are measurable functions of their arguments.  Fix any R and m.  Note that $ (J )m m m
-1

depends on J  only through J.  Apply Claim 2 with B = (Marg     µ ) q  (Marg   µ ), "="  and $=$ , and-1 2         
* * R m

            T                     T1 2

let R   f Z  be the countable set obtained from that claim.  Define Q  = U  R .  Then Q  is countable R , m  R , m
R,m=1,2,...

and 

µ ({J={J} * " (J) = $ (J ) ó  Q  for some R and m}) = 0. (37)* R m
i i,I 1  -1

By assumption the game is comprehensive.  Hence úJ , T there exists a unique play path z(J) in Z resulting

from that vector of types.  Also µ ({z=z(J)}*J) = 1.  So if J={J} ,T , then µ ({z=z(J)}*J ) >0 ú i,I,* Í i i,I KL-T i Í i

which in turn implies that z(J)="(J)=$ (J ) for some R and m.  By assumption µ (T )=1, so (37) impliesR m *
1  -1 KL-T

that µ ({J={J} * z(J)ó  Q  }) = 0, from which the proposition follows.  Ä*
i i,I
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Proof of Proposition 6.5: (a) Fix any g=<I ,{µ } ,µ  > in G.    Suppose that g obeys (6.1) and (CPA*).i i,I
*

Define another game gN=<I N,{µ N} , µ N> where we suppose each player's beliefs equal the "true" i i,I
*

distribution µ :  in particular, set T N=T  , µ N = µ  ú i in I, and µ N equal to the outside observer distribution* * *
i i i

induced by {µ N}  .  It should be clear that µ  = µ N  and that the game gN obeys the common priori i,I
* *

assumption (CPA).   Since g obeys (CPA ) and under the independence assumption 4.1 beliefs about others*

are independent of own-types, the belief of each player-type J  is the same in g as it is in gN.  Hence, sincei

g obeys optimization (6.1) so too does gN.   The game gN therefore satisfies the conditions of Proposition

6.5(a), so the conclusion of that proposition holds for gN.  Since µ  = µ N  and f  = f N, that conclusion also* * * *

holds in g, which is what we seek to prove.  Ä

Proof of Proposition 6.6:Any two equivalent games will have the same ex ante true play f  and ex ante*

beliefs f  for i in I.  The proof of parts (a) and (b) therefore follows from Lemma 6.1.Äi

Proof of Lemma 6.1:  Fix any g= <I ,{µ } , µ  > and gN=<IN,{µN} ,µ N> in G and suppose that gN öi i,I i i,I
* *

g.  Then µ and µN have the same marginal on 1 .  From the independence assumption 4.1 and 5.1(iii) andi i i

(iv) we conclude that conditional on 2 , µ  and µ   have the same distribution over F and therefore over Z.i i i

Hence µ  and µ   have the same marginal distribution on 1 xZ.  This implies µ (D)=µ (D) for any Dfi i i i i

1  xZ, so g obeys b  if and only if gN does.  Apply Proposition 5.2 to conclude that b  satisfies TIGER.i i i

Similar arguments imply that b  obeys TIGER.  Ä*

Proof of Proposition 6.7:  Fix any g= <I ,{µ } ,µ > and gN=<IN,{µN} ,µ N> in G and suppose that gN öi i,I i i,I
* *

g.  Then, following the notation of Section 5, we may write TN=Tx'.  We concentrate on game gN for now.

Fix any i in I, , > 0 and date n.  Define SN(i,,,n) = {T in SN* 2 <(f (J,())  -  <(f (J,())2 # ,} .  Thez(n) z(n) i i
i

inequality below follows from the fact that the left hand side is less than , on  SN(i,,,n), and, since < is a

probability, is less than one on SN(i,,,n) :c

2 <(f (J,())  -  <(f (J,())2 # ,  +  1 (38)z(n) z(n) i i
i

                                                                                                 SN(i,,,n)c

(where the superscript c denotes the "complement" of the set and 1  is the indicator function on X).  HenceX 

upon integrating over ( with respect to µ N(.*J) and noting that µ N and µ N have the same marginal over ' ,* *
i i

we may conclude that 
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 2I <(f (J,())dµ N(.*J)  -  I <(f (J,())dµ N(.*J)2  # ,  +  µ N(SN(i,,,n)  *J,z(n)). (39)     z(n)       z(n) i i i i
* i * c

                 '                                       'i                                                                                                                                          

Suppose that gN obeys the KL93 conclusion.  Then 1 = µ N(SN ) = µ N(1  1  c  1  SN(i,,,n)).  This* * 4
KL i,I ,>0 N=1 n$N

implies that for each i and , > 0 , µ N(SN(i,,,n)) 6 1 as n 6 4.  So from (39) we conclude that *

µ N(1  1 c  1  {2 I    <(f (J,())dµ N(.*J)  -  I   <(f (J,()) dµ N(.*J)2 # ,  }) = 1. (40)* 4 * i
i,I ,>0 N=1 n$N z(n) z(n) i i i i                                         ' '                                                               i

This is precisely the statement that g obeys the KL93 conclusion.  Ä

Proof of Proposition 6.9:   (a)  From Proposition 6.1 and Lemma 6.2  we know that optimization and

EPLAC obey TIGER.  The required monotonicity therefore follows from the monotonicity result of Lemma

6.3.  (b)   The statement in (b) is the counter-positive of (a).  Ä

Proof of Lemma 6.2: Fix any g= <I ,{µ} ,µ > and gN=<IN,{µN} ,µ N> in G and suppose that gN ö  g.  Leti i,I i i,I
* *

J (respectively (J,()) denote a generic type vector in g (resp. gN).  We continue the proof in two steps, (a)

and (b) below.  Applying Proposition 5.2 then proves this lemma.

 (a)  If  gN satisfies EPLAC then so too does g:   Suppose gN satisfies EPLAC.  Fix any h,H and J,T and

suppose that <(f(J))(C(h))>0.  Then there exists a set of ('s with µ N-positive probability such that*

<(f(J,())(C(h))>0.  Since gN satisfies EPLAC, this implies that  <(f (J ,())(C(h))>0, for a set of ( 's with µ N-i *
i i i

positive probability.  Integrating out the ( 's implies that <(f (J ))(C(h)) > 0.  So g satisfies EPLAC.  (b)i i
i 

If g satisfies EPLAC then so too does gN:   It is easy to see EPLAC holds in any game  gN  if for that

game for µ N almost every  (J,()=(J,J ,(,( ), for each n=0,1,2, ..., and for each history h of length n that*
i -i i -i

occurs with µ N(.*J,() positive probability,*

 

f(J,()(h)({z =a}) >0   implies   f  (J,()(h)({z =a}) > 0     úa in A. (41)n+1 i i n+1
^ ^ ^i

So fix any such n, h and a=(a,a ) ,A.  Suppose that the first inequality of (41) holds for a set of (J,()'s  with^ ^ ^
i -i

positive µ N probability.  Since f(J,()(h)({z =a}) = [f (J()(h)({z =a })] .[f (J ,( )(h)({z =a })],*
n+1 i i, i i,n+1 i -i -i -i -i,n+1 -i

^ ^ ^

this implies that 

f (J()(h)({z =a }) >0 .      (42)i i, i i,n+1 i
^
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Next, integrating the first inequality of (41) over ( implies that f(J)(h)({z =a})  > 0, so if g satisfiesn+1
^

EPLAC then f(J )(h)({z =a}) > 0, and in particular  f (J)(h)({z =a }) >0.  Since i's beliefs about j arei i
i n+1 i -i,n+1 -i

^ ^

independent of i's type, this implies that f (J,()(h)({z =a  }) >0.  Combining this with (42) implies thei
i i -i,n+1 -i

^

right hand side of (41) .  So gN obeys EPLAC.Ä

Proof of Lemma 6.3:  The proof is almost identical to the proof of Proposition 6.7 so is omitted.  Ä
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