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1. Introduction

Games with incomplete information or randomness in the moves of others typically have many decision-
theoretically equivalent formulations of the type space. For example, suppose you believe that your
opponent is going to choose one of two actions with equa probability. Y our beliefs could be "formulated”
in any one of the following two ways: (i) you could believe that your opponent is randomizing with equal
probability; or (ii) you could assign equal probability to your opponent being one of two types - the type
who chooses the first action (non-randomly) or the type who chooses the second action. To players within
the game, the different formulations of the game change neither their beliefs nor their play. These different
formulations are equivalent in terms of "decision-theory” since under each beliefs and payoffs are
unaffected. This paper will formalize this notion of equivalence of type-reformulations, and study an axiom
which requires solution concepts in games to be independent of the formulation of the game used. We then
use this formalization and the axiom to study some of the resultsin the rational learning literature.

Among game theorists there are many who argue forcefully that people do not really use mixed
strategies - instead mixed strategies represent players conjectures. Other game theorists do not mind the
use of mixed strategies. These differing perspectives are really arguments over the appropriate type-
formulation of the game: in the former there are many types of players each choosing a pure strategy; in
the latter there may be only one type of player - one who chooses a mixed strategy.

Simple questions like "is the game in a Nash equilibrium?' or "do players learn to play a Nash
equilibrium™ will be impossible to answer since the answer will depend on the type-formulation under
consderation. Thisis because there is no unambiguous notion of what constitutes the "truth.” Instead it
will be in the eye of the beholder (actually, the game theorist). The true type of a player is ambiguous
because that player's type can encode different amounts of the outcomes of randomizations. How would
one go about determining what players are "truly" doing? Since the different formulations of true player
are not decision-theoretically relevant, they may be hard to test in a"laboratory" in the same manner one
could possibly elicit beliefs'.

For al of the above reasons, one may want to require solution concepts, assumptions or paradoxes
in games to be independent of the formulation of the game used. This independence enables one to avoid
taking a stand on mixed versus pure strategies, or on decision-theoreticaly irrelevant issues. | cal this

'Note well that what we are claiming here has nothing to do with the Allais or other framing
paradoxes. The Allais paradox shows that two different "frames" or ways of presenting information
can lead to different behavior. Here we are considering different frames in the mind of a player that
lead to the same behavior.



axiom TIGER, for "Type-Independence among Games which are Equivalently Re-formulated.” The
message of this paper will be the following: (i) if oneisinterested in satisfying the axiom TIGER, then one
has to move away from concepts of equilibrium in strategies and move instead toward concepts of
equilibrium in beliefs or conjectures; and (ii) even if oneis not interested in satisfying the axiom TIGER
per se, the type-space formulation is a very important and often ignored part of the specification of
incomplete information games.

A review of the recent literature on Bayesian learning in repeated games highlights thisissue. In
the rationdl learning literature there are two broad approaches. The papers of Jordan (1991, '95) and later
Nyarko (1994, '97b) where there is convergence of beliefsto a Nash or subjective equilibrium take the first
approach. The vast majority of the literature, however, follows the second approach and includes Kalai
and Lehrer (19933) (henceforth KL93), Lehrer-Smorodinsky (1997), Nachbar (1997), Sandroni (1995a,b)
and many others. The second group of papersis concerned with the convergence of true strategies to an
equilibrium.

The conclusions of papers by Jordan and Nyarko, which provide results on convergence of beliefs
to an equilibrium, al obey TIGER. On the other hand, to get conditions for convergence to an equilibrium,
the KL93-type papers impose conditions which must hold for each true vector of types of players. Because
the concept of truth is ambiguous, so too is whether the KL93 type assumptions hold for a given game.
The KL93 assumptions may hold for one type-formulation of the game, yet fail in another. Thisis despite
the fact that the formulations are decision-theoretically equivalent. On the positive side, the strength of the
KL93 reault isthe following: if the KL93 assumption holds for a given formulation of the type-space, there
will be convergence to an equilibrium whose meaning is determined by that given formulation of the type-
space. | argue smply that the type-space formulation is ambiguous, and in particular that two reasonable
game theorists can argue about what is the correct formulation for a given game.

This ambiguity in what constitutes the "truth” is also an issue in Nachbar (1997). Nachbar shows
that in some games a paradox may arise from an inherent inconsistency between prediction of the true play
and optimization. Asin KL93, Nachbar's definitions (in particular his definition of prediction) requires
agpecification of the true strategies; it may therefore hold in one game but fail in another equivalent one.

Hence the paradox in Nachbar (1997) violates the axiom TIGER. Furthermore, as we shall show, if one
goes from prediction of true strategies to prediction of beliefs, TIGER will hold. All thisillustrates our first
message: to satisfy TIGER one should use notions of equilibrium of beliefs rather than of true strategies.

Regardless of your stand on whether the axiom TIGER should hold and equilibrium in beliefs is



appropriate, my second message is that the type-space formulation is important?. In Section 6 below |
show that for the KL93-type results to hold, the type-space formulation must be sufficiently coarse -
meaning that a type should not encode too much information. Specifically, | show that for any collection
of equivalent games which are linearly ordered in terms of their type-refinement - from coarsest to finest -
there will exist a critical game such that all coarser games obey the KL 93 type assumptions and all finer
ones will violate it. Similar monotonicity results hold for the Nachbar paradox.

Related to the above, | prove a result which has been the subject of some controversy in
interpreting the KL93 results. Many researchers believe that the KL93 assumptions imply the countability
of the set of types - indeed, this has already appeared in the published literature! Even when a player has
only two actions in each period, the set of possible infinite-horizon playsis uncountable. A restriction to
countably many possible types of play is therefore a strong one. By using the framework of type-
formulations, | am now able to answer the question as regards countability and the KL93 assumptions.
The KL93 assumptions by themselves do not immediately imply countable types. Everything, however,
depends upon the type-formulation. Suppose that we are in what we refer to as the "comprehensive”
formulation of the game, where each player-type chooses a different pure strategy. Then for the KL93
assumption to hold in this formulation, the set of types must be countable.

The paper proceeds asfollows. In Section 2, | provide aleading example illustrating all the issues
discussed in this paper. My call for the use of equilibrium in beliefsis not new in the literature - although
| believe the arguments presented here for the use of equilibrium in beliefs are novel. Section 3 comments
onthisliterature. That section also points out the issues discussed here, as regards a certain arbitrariness
in the specification of the type space, also arisesin the standard definitions of a Bayesian Nash equilibrium.
Section 4 contains basic notation, while Section 5 discusses type-reformulations of a game and presents
the axiom TIGER. Section 6 discusses the rational learning literature. Concluding remarks are presented
in Section 7. Section 8 is Appendix A and contains examples where we compute critical type formulations
for the KL93 assumptions that we mentioned earlier. Appendix B in Section 9, contains all the major

proofs.

%For related work on type-space representations and Bayesian learning, see. Jackson et. al. (1997).
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2. An Exampleto lllustrate Everything

Example 2.1: Consider the following "matching pennies’ stage game:

Player B
LEFT RIGHT
Player A TOP 1-1 -11
BOTTOM | -1,1 1-1

We shall describe two different formulations of the game, differing only in the specification of the

type-space and the behavior strategies chosen. To fix the main ideas we will first discuss the one- period

version of the game. We will then go to the infinite-horizon model and show that the same conclusions are

obtained there, even with "learning."

f1:

f2:

Consider the following two type-formulations for the one-period model:

Player A (resp. B) chooses a behavior strategy which selects actions TOP and BOTTOM (resp.

LEFT and RIGHT) with equal probability. Each player knows the behavior strategy being used
by the other.

Let J* be aredization from a coin-tossing experiment where an outcome from { HEADS, TAILS}

is chosen with equal probability. Hence J* is an element of {HEADS,TAILS}. Let J be another
realization from another coin-tossing experiment where an outcome from { HEADS,TAILS} is
chosen with equal probability, but which is independent of the coin from which 3* was obtained.
At date O Player A istold of J* (and is not informed about ) and player B istold of J* (and is not
informed about J*). We may consider J' to be player A's "type" and 3 to be player B's type.
Suppose that each player knows how the types are drawn. Consider the following play of the
game: Player A chooses TOP or BOTTOM according to as J isHEADS or TAILS. Similarly,
Player B chooses LEFT or RIGHT according to as J* isHEADS or TAILS. (A nicer story isto
think of player as being one of a pair of twins. Each twin has a birthmark which says either
"HEAD" or "TAILS." The twin's birthmark is her "type." Each twin chooses an action as a
function of her type or birthmark as described above. Player B is similarly one of a pair of twins.

A game is an encounter between one twin of A and one twin of B.)



In 1 each player has only one possible type. In 2 each player is one of two possible types. In

f2 all we have doneisto use "types' to encode the outcomes of randomizations. Alternatively, we may

think of typesin f2 as being used to purify the mixed (or randomized) actionsin f1. Note the following:

a

At each date each player's belief about her opponent will assign probability 1/2 to each of the
opponent's actions being played. Thisis true for each player-type and regardless of which of the
two formulations, f1 or f2, isused. Hence, regardless of the formulation, these beliefs of players
form a Nash equilibrium.

In formulation f1 it isimmediate that players true actions form a Nash equilibrium - thereis only
one vector of types, with each player-type mixing at each date with equal probability. In
formulation f2, each player-type is choosing a pure action. Since the matching pennies game does
not have aNash equilibrium in pure strategies, the vector of actions of any vector of player-types
does NOT constitute a Nash equilibrium. In particular, in f1 "true" play is a Nash equilibrium,
whileinf2itisnot! The answer to the question "are players actions a Nash equilibrium?* cannot
therefore be answered unambiguousdly unless a statement is made as to the formulation of the type-
space being used.

To all intents and purposes, the two formulations represent the same "game." In particular they
are decison-theoreticadly equivalent (and this will be made precise later). Suppose these players
are happily playing in the manner described above. The players are indifferent and oblivious to the
names that will be assigned to them, i.e., whether they are one of one or one of two possible types.
Even though they are content, game theorists, who may disagree as to the type-formulation, may
have lifelong fights as to whether or not they are playing a Nash equilibrium in strategies! The
notion of what precisely is a type is completely in the mind of the modeler; players may not even
be thinking in terms of types, only actions.

It should be clear that FINand F2N are not the only formulations of the type-space to the above
game. Define F3Nto be the situation where afair coin istossed, if it is HEADS the player plays
first action with probability 2/3 and the second with probability 1/3; and if it is TAILS the player
reverses the probabilities of the two actions. Thisis yet another decision-theoretically equivalent

formulation of the game.

One may be tempted to conclude that in the infinite-horizon model al these problems disappear

because of some sort of "learning.” They do not. We illustrate this below and provide additional remarks



pertaining to the rational learning literature. Consider the following formulations, analogous to f1 and f2:

F1:

F2:

Player A (resp. B) chooses a behavior strategy which picks actions TOP and BOTTOM (resp.
LEFT and RIGHT) with equal probability in each period, independently of the past. Each player
knows the behavior strategy being used by the other.

Let I be aredization from infinitely many independent and identical coin-tossing experiments
where an outcome from {HEADS,TAILS} is chosen with equal probability. Hence J* is an
element of {HEADS,TAILS}*. Let F be another redlization from an i.i.d sequence of coin-tosses,
{HEADS, TAILS}*, which isindependent of the sequence from which 3* was obtained. At date
0 Player A istold of the entire sequence J* (and is not informed about F) and player B istold of
J (and is not informed about J%). We may consider J* to be player A's "type" and J to be player
B'stype. Suppose that each player knows how the types are drawn. Consider the following play
of the game: at date n Player A looks at the n-th coordinate of her sequence of coin-tosses - if it
is a HEADS she plays her first action, TOP and if it is a TAILS she plays her second action,
BOTTOM. Similarly, if the n-th element of J* is HEADS player B plays the action LEFT at date
n and otherwise she plays action RIGHT. Suppose further that each player knows that the other

is choosing actions viathisrule.

Just asin the one-shot game we have the following: (i) Regardless of the formulation, the beliefs

of players (of each type) forma Nash equilibrium. (ii) In formulation F1 players true behavior strategies

form a Nash equilibrium. In formulation F2, each player-type is choosing a pure strategy, the true

strategies (or limit points of continuation true strategies) do not constitute a Nash equilibrium for the (zero

discount factor) infinitely repeated matching pennies game. (iii) The two formulations are decision-

theoretically equivalent as we mentioned in (c) above. (iv) There are azillions of other equivalent type-

formulations of the game, asin (d). In theinfinite-horizon model, there are further items to be noted:

(V)

Absolute Continuity Conditions: It iseasy to show that the ex ante absolute continuity conditions
required to get the Jordan and Nyarko convergence of beliefs results will hold here, regardless of
which formulation, F1 or F2, isused. Indeed, both formulations obey the common prior
assumption. In Section 6 we show, as this example illustrates, that the Jordan and Nyarko
assumptions and conclusions obey our axiom TIGER. The absolute continuity conditions required

in KL93 on the other hand are in ex post terms (i.e., they must hold for each vector of types).



Formulation F1, with only one vector of types, can be shown to obey the KL93 assumptions (and
hence the KL93 conclusion on convergence of true play). Formulation F2, with a continuum of
possible types, can be shown to violate the KL93 assumptions and conclusions (beliefs assign
probabilities (1/2,1/2) to each action at each date, while each player-type chooses a pure strategy).
Hence the KL 93 assumptions and conclusions violate our axiom TIGER.

(vi)  OnNachbar (1997): Nachbar (1997) has pointed out that sometimes prediction of the "truth" and
optimization may be in conflict. The repeated "matching pennies’ game above is an example
covered by the Nachbar paper (indeed it isthe leading example used in that paper). His conclusion,
however, depends critically upon the formulation of the game used. Optimization holdsin both
formulations F1 and F2 of the game. Nachbar's definition of prediction, however, only occursin
formulation F1. Hence the conflict between optimization and prediction of the truth occurs under
formulation F2 but does not occur under formulation of F1. In particular, under formulation F1
the paradox disappears completely. This shows that the Nachbar paradox violates the axiom
TIGER. Wewill show in Section 6 that there if instead weinsist on prediction of beliefs then both
optimization and prediction will be easily obtained, and further they will obey TIGER.

3. Some more Comments and Related Literature

It has often been suggested to me that the issues relating to the ambiguity in the definition of a type
can somehow be resolved by appealing to the Harsanyi (1967,68) concept of a Bayesian Nash equilibrium
(henceforth BNE). On the contrary, the problems discussed here are also relevant in the definition and
the use of the BNE concept. Harsanyi's definition a Bayesian-Nash equilibrium presupposes the existence,
for each player i, of atype space T; and amapping N;:T; 6 F, from that player's type space T; to that player's
strategy space F;. The vector of these mappings, { N;}; for all the players are assumed, in the Harsanyi's
definition, to be known by each player, and given this knowledge each player maximizes expected utility.
Harsanyi, however, does not give too much guidance as to what the type space should be.  On one extreme
atype could specify only a player's payoff function (thisis related to the notion of a sparse type used in this
paper). One the other extreme atype could specify an individual's payoff function and behavior strategy
(and beliefs others payoffs and strategies, and beliefs about beliefs, etc). (Thisisrelated to the concept
of acomprehensive used in this paper.) Under the former notion of atype, the concept of a BNE provides

tight predictions on the game (e.g., if the attribute vector is common knowledge the BNE becomes a Nash



equilibrium). Under the latter notion of atype, the concept of BNE implies nothing other than expected
payoff maximization given beliefs (so that, e.g., if the payoff matrix is common knowledge the only
prediction from a BNE isthat players are not using strictly dominated actions). (See Nyarko (1993) for
details) The main point of this paper isthat care should be taken whenever using a model where "types’
are used to model imperfect information. Precisely the same caution is required with the Harsanyi BNE!

This paper is also related to the argument over mixed versus pure strategies. Many have argued
that players do not really use mixed strategies. Instead they choose certain, non-random actions at each
date. Mixed strategies then become representations of the beliefs of players. This argument has been
made by Harsanyi (1973), Aumann (1987) and many others who study the "decision-theoretic" approaches
to gametheory.® Thisargument has also been eloquently made by Binmore (1991, p.286). In this paper
we provide yet another justification for the interpretation of mixed strategies as beliefs: the need for the
consistency across type formulations, formalized in our main axiom TIGER.

Our work is related to the main theorems of Aumann and Brandenburger (1995), who provide

epistemic conditions for beliefs or conjectures to be Nash equilibria. 1t should be clear that even under the

hypotheses of their main theorems, it is possible for the actual play of the players not to be a Nash
equilibrium even though the beliefs are. This distinction is captured in formulations F2 as opposed to F1
of Example 2.1. One could interpret the Aumann and Brandenburger (1995) paper as giving epistemic
conditionsfor why we should study Nash equilibrium of beliefs as opposed to actual play. As suggested
in this paper, working with beliefs as opposed to actual play enables one to achieve the consistency
formalized in the axiom TIGER.

4. The Repeated Game Structure

| isthe finite set of players. The set A, represents the finite set of actions available to player i at
eechdaten=12,..,and A/J ; |A. / N/ AXAX..XA (n-times) isthe set of histories of lengthN; / © is
the singleton set consisting of the null history, which we denote by h% / /Ur_/ " is the set of all finite
histories; Z/ J -, A isthe set of infinite histories or play paths. The projection of z , Z onto the period
n coordinate is denoted by z, while the projection onto the coordinates of periods 1 through n is denoted

by z(n). Foranyiinl, z, and z(n) are the i-th coordinates of z, and z(n) respectively. Perfect recall is

3See Aumann (1987) and Aumann-Bradenburger (1995) for further comments and references.
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assumed: when player i is choosing her date n+1 action she will know the date n history z(n). The set of
behavior drategiesfor playeriistneset /7 {f:/ 6 -(A))} and F/J, , F, . The space F is endowed with

the topology of weak convergence.

Given any metric space X, we let —(X) denote the set of probability measures defined over (Borel)
subsets of X. Unless otherwise stated the set - (X) will be endowed with the weak topology. Given any
f,F, <(f) , -(Z2) denotes the probability distribution over Z induced by f. A pure strategy for i is any
behavior strategy which takes values on the vertices of -(A)).

Each player i in | has an attribute vector which is some element 2; of the set 1, assumed to be a
compact subset of finite dimensional Euclidean space. u;:1,xA60 is player i'swithin-period continuous
and bounded utility function which depends upon her attribute vector, 2 ;, as well as the vector of actions,
a , A, chosen by the players. Each player i knows her own attribute vector 2,; but does not necessarily
know those of other players, 2, for jOi. Player i hasadiscount factor which is a known continuous function,
*:1,6[0,1), of the player i's attribute vector. Specifically, 1, = 1,"x[0,1), where 1*  4*' representsthe
st of stage game payoff vectorsand where *:1,; 6 [0,1) is the projection of 1; onto its second coordinate,
and represents the discount factor. Any set of this form will be called an attribute vector space for i.
Define U;:1,xZ60 by U;(2,,2) /37-.[*(2))]™u(2,,z,) and V;:22 xF6U by V,(2,.f) / L U,(2,,2)d<(f).

Each player i is characterized by a type, J, which specifies, anong other things, that player's
attribute vector, 2. A type-space for i isany set T;=1,xT,” where 1, is an attibute vector space and T;*is
acomplete and separable metric space. (Thisdefinition allows T;=1,.) Welet 2,(J) denote the attribute
vector of player i of type J, so that 2 (.) isthe projection of T; onto 1,. A type-space will beany 1/J ;
I, whereT, isatype-spacefor i.

If X isacartesan product X=YxZ and O , —(X), we denote by Marg, O the marginal of Oon'Y.
Define’

S/ I xXFxzZ . D

We shall say that a probability measure p,—(S) respects < if Marg, u(.*3f) = <) for p-ae. (3f),1xF.
An ex ante subjective belief for aplayer i is any probability p; over S which respects <. An ex ante belief

for player i may be constructed from the following three components:

0] (Beliefsabout others) Each player-type J has some belief over the types and behavior strategies

“*The cartesian product of metric spaces will always be endowed with the product topology.
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of others. This defines Marg TxE. Hi(*J) .

(i) (Own Behavior Strategies) Eac-rl1 su-(I:h player-type J chooses some behavior strategy f,(J). This
defines Marg F Mi(*J) .

(ii) (Exantedistribution of types) Each player i has an ex ante distribution over the set of own-

typesin T;. Thisdefines Marg 1 K

The product of the measures in parts (i) and (ii) produces a measure over T_xF conditional on J.
Combining thiswith (iii) resultsin ameasure over TxF. Using the measure <then results in a measure over
S. Thisis player i's ex ante subjective belief. Part (iii) is required primarily for the measure-theoretic
technicalities. One may object to the requirement in (i) on the grounds that players should be expected to
have beliefs over the behavior strategies of others and not over the types of others. This is a valid
objection. We discuss this in Section 5, and argue that this objection supports our use of the our main
axiom, TIGER.

If O, is a probability measure on a complete and separable metric space X, ,for k=1,2,...K, we let
q' =10, denote the product of the measures {Q }X, on the cartesian product 1, X . We impose the

following assumptions on ;:

Assumption 4.1
a. (independence of strategies) Marg F“‘('*‘)) = Jj,lMargF w(*) forpae JJ},.
i

b. (independence of types) Marg, y; =J ; ,[Marg I-“i]'
J

Assumption 4.1 says that player i believes that (a) conditional on players' types, players choose
behavior strategies independently and (b) that players types are drawn independently. The set of beliefs
of playersthat we allow istherefore the set

B(S) = {1 , —(S)*M respects <and satisfies Assumption 4.1 (with p=g; )}. 2
Given any sets { X}, , and {Y;},, and any functions; f:X 6;Y for i,l, we define X/J, X,
Xl J X and f(x;) /7 J 5 f(x). Foreachi,l, define the equivalence class relation, ~k  onF, asfollows:

af, and N, F, f, ~*fNif af, ,F,, <(f,,f,) =<(fNf,). Let F* denote the set of equivalence classes of ~* .
From Kuhn's (1953) Theorem and (Aumann (1964) for the infinite-horizon case) 6 §:-(F;)6

10



F™ such that for any (mixed strategy) N; ,—(F), ¢ f; ,6(N;) and uf,F,, the probability distribution on Z
induced by N, and f; isequal to <(f,,f;). The behavior strategy f; ,6(N;) is said to be realization eguivalent
to the mixed strategy N;,. We refer to f; as the KSR (for "Kuhn Strategic Representation™) of N;,. We shall

write f; = §(N;) when we mean that "f; is any member of the equivalence class of §(N;)."
Fix any subjective belief |, , B(S) of player i. Define
fl = §Marg I:Mi(-)) aij and f' 7 {f},. ©)
i

Under the independence assumption 4.1, each type of player i has the same belief about player jOi equal
to the marginal of i(.) on F. Hencefor i0j, f isthe KSR of the belief of each type of player i about player
j's behavior strategy. Next define

Q) 7 {fi(D.F} (4)

The only difference between f'in (3) and f'(J) in (4) isin thei-th coordinate - the latter conditions on the
type J while the former does not. The behavior strategy f'(J) isthe KSR of player-type J's beliefs. The
behavior strategy vector f' isthe KSR of someone who, like player i, has beliefs given by 1, , but who,
unlike player i, does not observe the own-type J. (To illustrate the difference consider Example 2.1. Let
faosandfg s denotethe strategies chosen by A and B in formulation F1 - randomize at each date with equal
probability - and define f,c=(fa 5 , f505)- [N both formulations F1 and F2, f' =f,5 for all i. In formulation
F1, which has only one vector of types, f'(J) /f,5 Gi; in formulation F2, f(J3)={f,(J), f s} wherej0i and
f.(J) isthe pure strategy determined by J ={ HEADS, TAILS}* as described in example 2.1.)

Fix acollection of ex ante beliefs { 1;}; , and let {f;(J)}; , denote the behavior strategies chosen by
the vector of player-types J={J}, .. We now define adistribution u* , B(S),_the outside observer's belief
induced by {W;}; . Inthe literature thisis often defined as the "true” distribution, and is the measure with

respect to which theorems are proved. The measure | is defined to be the unique element of B(S)
such that Marg TxE W =q,, Marg T xg M In particular, Y isthe ex ante belief of an outside knows
how players choose behavior strategies as a function of their types, and for each i in| has the same ex ante

beliefs about each player i's own-types as player i herself. Definef” to be the KSR of p' not conditioning

on types (and observe that f* below isthe same asf' in (3) above except that " replaces ):
fi / 6Marg E W) aj,l and f° /7 {7}, (5)

J
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Of course the KSR of u* conditioning on types J={J}; , is precisely the vector {f (J)}, of behavior
strategies chosen by those player-types.

5. Equivalent Type-Refor mulations

5.1.  Congder asfixed the following: the set of players|, the attribute vector space, 1, and the space of
actions A (and hence the spaces F and Z). The set G below is the set of all "games' g which can be

constructed given the primitives {1, 1,A}:

G / {g=<I,{w};,, W >* 1 isatype-space; {W},, »J; ,B(S)whereS / IxFxZ; and |" isthe
outside observer belief induced by {1}, }. (6)

Definition 5.1 (Equivalent type-Refinements). Fix any par of tuples g=<I {u}, ,u> and
g\E=<IN{pN}, N> in G. We say that gNis an equivalent type-refinement of g (or g is an equivalent type-
coarsening of gN) and wewrite g\ O g, if thereexist sets {*;},, (each acomplete and separable metric

space) such that ui,l, J3,1;, and ¢, "},

i (type-refinement) IN=1X"; ;
ii. (same own payoffs) 2:(IN =23 when IN=(J,() ;
iil. (same beliefs about others) Marg = LNCFINE(T, Q) /  Marg F-“‘('*‘J);

iv. (same expected own play) Marg £ uN.*J) / Marg £ Mi(-*J); and

V. (same distribution of types) Margl_ N = Marg LR

Definition 5.2: g, G is an equivalent type-reformulation of gN, G if thereexistsag , G such that either

(i) gis an equivaent type-refinement of both g and gNor (i) § is an equivalent type-coarsening of both g and
o\ We then say that g and gNare equivalent, and we write g — g\

The equivalencesin (iii) and (iv) of Definition 5.1 are in the sense of "Kuhn equivalences' defined
inSection4. If gNO g, then atype Jin gissub-divided into other types, with generic member (J,(). Parts
(i) and (iii) require that the new type have the same attribute vector and belief about others as the original
one. This implies that if each player is optimizing then conditional on J , each player-type (J,() is
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indifferent between her own play and the play of player-type (J,GN). Part (iv) requires that after "integrating
out" the (f'swe obtain the same original play. This shows that the role of the type-refinement is to encode
in the new type some information that may be used to pick a realization from what was originaly a
randomization over actions. In summary, if g and gNare two equivalent games, player-types (J,() and J
will have the same payoffs and same beliefs and the games g and g\ only differ in the fact that the (('sare
used in encoding the outcomes of realizations of randomizations. | therefore interpret the games g and g\
as "decision-theoretically" equivalent.

The notion of equivalent type-refinements results in the partial ordering, 0 , on G. A minimal
"refinement”, defined as "sparse” below, is one where atype is the same as a attribute vector, so that the type
has absolutely no realizations of randomizations encoded init. A "maximal” refinement on the other hand,
defined as "comprehensive" below, would require each player to do all the randomizations at date O and
encode them entirely in his’her type. In Example 2.1, formulation F1 is a sparse formulation, while F2 is

a comprehensive formulation.

Definition 5.3: A g=<I {p},,,>in G isagparse formulationif I, =1, Gi,l, and isacomprehensive
formulation if each (or K'-almost every) player-type in g is choosing a pure strategy.

One can think of integrating out the redlizations of any randomizations which are encoded in a type.
For example, suppose that there are two possible types of Player A, (2 ., (N and (2., (0),each with the
same attribute vector 2 , and each occurring with probability 1/2. This can be collapsed into one type by
integrating out the Csin the following manner: Consider there being only one type, called 2 , , and suppose
that this player-type chooses the (KSR of the) mixed strategy which assigns probability 1/2 to the behavior
strategy chosen by player-type (2 », (N) and probability 1/2 to that chosen by player-type (2., (N . This
operation shows how to construct a sparse formulation for any given game. Next, one can think of an
operation going the other way where one encodes in a type the realizations of all randomizations. This will

produce from any game g an equivalent game which is comprehensive. We therefore obtain the following:
Proposition 5.1: Fix any gameginG. 6 g ,Gand g ,G suchthat g~g~g, gissparseand g is

comprehensive.

Proof: The proof of thisand all other main results appear in Appendix B.A
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We now state our axiom TIGER. A property is any statement pertaining to games which, in any
given game, may be true or false. In particular, a property is a binary relation b:G 6 {0,1}, which assigns
avalue "true" or "false" to each game. All our numbered definitions in Section 6 below implicitly define
aproperty for games. An "assumption”, "conclusion” or "paradox” is a property of games, which may or
may not hold in any particular game. The axiom TIGER below will be a requirement on properties of

games:

Axiom of Type-Independence among Games which are Equivalently Re-formulated , TIGER: A
property of games obeys the axiom TIGER if for each game g , G the property holds for g if and only if

it also holds for all other gamesgN , G which are equivalent to g.

The axiom TIGER is a requirement not only among games which are ordered by 0, but rather

among al games which are equivalent. The following, however, isimmediate:

Proposition 5.2: Let b be a property of games and suppose that b istrueingameg , G if and only if itis
true for all other gamesgN , G for which either g 0 gN or gN 0 g. Then b satisfies TIGER.

5.2. Beliefsover the Types of Others? We now return to an issue brought up in Section 4. One
may argue that it is not appropriate to model players as having beliefs over the types of others. All that
should be important is a player's beliefs about the strategies that will be used by other players. So, suppose
that each player i is not characterized by a ; in B(S), but rather by the following three components: (i)
beliefs about the strategies of others, T , —(F.), common to al types of player i; (ii) the behavior strategy
f,(J) chosen by each player type J ,T;; (iii) the ex ante distribution over the possible own-types of player
i inT;. The above three components do not specify player i's beliefs about the types of other players J; in
T there are many joint distributions over T xF; for which the KSR of the marginal on F, isT/. Given two
games g= <l {p}; .1 >and gh=<I {uN}; ,W'N> in G on the same type space, let us say that g and gNare
strategically equivalent and write g —° g\ if they share the same components (i)-

(iii) above - that is, if for al i inl, (i) Marg F_i”‘ =Marg F_i“iN (il) Marg F}iii(.*J) = Marg F[.ilil\(.*q)
foral J (u-a€); and (iii) Marg Ti“‘

of the interaction between the players. After all, why should it be important for player i to be correct in

= Marg T N Both g and gNare in some sense valid representations

specifying player j'stype? After we have specified i's beliefs about j's behavior strategy, knowledge by i of
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j's type should be "decision-theoretically” irrelevant in some sense. This sense is captured by the
equivalences of Definition 5.1 above. In particular, since Definition 5.1 does not make reference to i's
beliefs about j's type space for j0i, it is easy to see that whenever g —> gN then g — gNin the sense of
Definition 5.1°. This therefore provides further justification for the use of the axiom TIGER: two games
which are strategically equivalent should be considered "equivalent” so TIGER must be imposed on any

property we will use for such games!

6. Rational Learningin Games

In most of the rational learning literature, there are three basic parts: the first assumes that players are
optimizing; the second part imposes an absolute continuity assumption over beliefs; the third part then
shows that these assumptions imply convergence to some sort of equilibrium. We now consider the three
parts formally. The message this section will be the following: (i) for the conclusions of the rational learning
literature to satisfy TIGER, we will have to insist on statements pertaining to equilibrium in beliefs as
opposed to equilibrium in strategies; and (ii) for many of the assumptions and conclusions which violate
TIGER, they hold if the type space is sufficiently coarse and are violated whenever the type space is

sufficient refined (or vice versa).

6.1. Optimization
Definition 6.1: (optimization) The game g=<I {pu},, 1 > , G satisfies optimization if y (M cM°)=1
ai,l, where
M./{(3f,2),S: *(2,(J))>0 and f, maximizes IF_i Vi(2:(J), £, Hdw(*J)} and
M/{(3f,2),S: *(2(J))=0 and Un, z ,,, maximizes 1 A_iui(2 (), Zipea s DA(Fz(n),J)}.

Definition 6.1 requires each player i to be maximizing her subjective expected discounted sum of
utilities with p; probability one. Whenever the discount factor is equal to zero (i.e., on the set M,° above)
player i will be required to maximize her expected utility at each date. Under equivalent type-reformulations,
players beliefs and payoff functions do not change, so the following should be immediate:

*Formally, define f = Tx" with " atrivial singleton set and construct § in G from g by extending g
onto T in the obvious manner. It isthenimmediatethat § Ogand§ OgN sog— g\

15



Proposition 6.1: Definition 6.1, optimization, obeys TIGER.

6.2. The Absolute Continuity Assumptions. Given any two probability measures uNand pO on
some measure pace X, pNis absolutely continuous with respect to WO if for all measurable subsets DT X,
pUN(D)>0 implies that pO(D)>0. We then write uN«quO. pNand pO are mutually absolutely continuous if
MNeO and pO«uN. Fix agame g=<I, {};,, L > , G, and consider the following definitions:

Definition 6.2 (CPA) : g obeys the Common Prior Assumption (CPA) if and only if i, =" Gi ,I.

Definition 6.2* (CPA*) : gobeys the Common Prior Assumption (CPA*) if and only if Gi ,I,

Marng* = Mag W, ai,l.

Definition 6.3 (GGH): g obeysthe generalized Harsanyi consistency condition (GGH), (or ex ante

absolute continuity) if and only if Marg 2,1 « Marg M, Ui,l.

I.x 1.xZ
Definition 6.4 (KL-T): g obeys (KL-T) (or ex post absolute continuity) if and only if u'(l «,.1)=1 where
s/ 1,{3(.3).1*Marg, W' (¥ «Marg , p(*J)} -

The learning results of Jordan (1991,95) use the common prior assumption, (CPA). Condition
(GGH)® is used in the learning results of Nyarko (1994 and 1997b). Assumption (KL-T) is the natural
extension of the KL93 assumption to the model with many types, and delivers the KL93 conclusions for pi*-
amost every J It is easy to see that the common prior assumption implies but is not implied by condition
(GGH). Indeed, (CPA) isdtrictly stronger than (GGH). Further, condition (KL-T) implies but is not implied
by condition (GGH) (for a proof that (KL-T) implies (GGH) see Nyarko (1997b)). Example 2.1
(formulation F2) shows that (GGH) can be true while (KL-T) fails, so (KL-T) is strictly stronger than
(GGH).

The common prior assumption (CPA) (as opposed to (CPA*)) violates TIGER. The problem is that
(CPA) requires each player to get correct the mapping from each other player's type to that player's behavior

® Elsewhere (Nyarko (1997a)) | have defined Condition (GH) "for generalized Harsanyi common
prior assumption” to be where p; and p; are mutually absolutely continuous with respect to each other.
(GGH) above generalizes this latter condition (hence the name "GGH") by first requiring merely
absolute (and not mutual absolute) continuity, and this with respect to marginals.
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strategy. For example fix agame g with two types of each player and suppose that g obeys (CPA). Define
another game exactly the same as the first except that in the new game Player A mis-labels the types of B
. Inparticular, if 3, and J, are the two typesof player B and f(3;) and f(3J;) are the behavior strategies they
use, then in game gN Player A incorrectly believes player-type J; is using f(J;) and player-type J; is using
f(3). It should be clear that the re-labeling is "harmless' and that g and g\ are equivalent games. (Indeed,
this was precisely the discussion at the end of Section 5.) The game g, however, obeys (CPA) while g\
violatesit. Hence (CPA) violates TIGER. For thisreason (CPA) isreally not a good assumption to place
onagame. Assumption (CPA*) gets around this problem: (CPA*) obeys TIGER and implies the Jordan
convergence results which were originally proved with CPA (see Propositions 6.2 and 6.5 below) .

If one distribution is absolutely continuous with respect to another distribution over a product space,
then the same will be true of their marginal distributions. Coarsening a type-space is similar to the operation
of going from ajoint to amargina distribution. It is therefore not surprising that if condition (GGH) (resp.
(KL-T)) holdsin agame and we coarsen the type-formulation, condition (GGH) (resp. (KL-T)) will continue
to hold. Thedifficulty liesin going from one type-formulation to afiner one. Indeed, Example 2.1 shows
that (KL-T) may hold in one game (as in F1) but may be violated when the type-formulation is refined (as
in F2)- so (KL-T) violates TIGER. This does not happen with (GGH), however, and in particular (GGH)
obeys TIGER. Thisis because player i's beliefs about others are independent of i's type, and i'stype is the
only type used in the statement of (GGH) - in particular, under (GGH) player-type J only has to be "correct”
(in terms of absolute continuity) about the average play of others, and beliefs about average play do not
change with i'stype or with the type formulation. Similar reasoning shows why assumption (CPA*) obeys
TIGER. Condition (KL-T) on the other hand conditions on the true vector of types, which will change as the
types, and hence type-formulations, change. In particular, under (KL-T) player-type J hasto be "correct"
(in terms of absolute continuity) about the true play of others, and this true play will change with the type
formulation. The ambiguity of the notion of what is a true type leads to the failure of (KL-T) to satisfy

TIGER. Formally we have the following two results:

Proposition 6.2: (a) (CPA*) obeys TIGER; (b) condition (GGH) obeys TIGER; (c) condition (KL-T)
violates TIGER,; and (d) (CPA) violates TIGER.

Proposition 6.3 (Monotonicity in (KL-T)): Fix any gin G and suppose that g obeys (KL-T). Then all
equivalent type-coarsenings of g also obey (KL-T).
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Proposition 6.3 implies that given any chain of equivalent games linearly ordered by 0 from
coarsest to most refined’, there will exist a critical game such that all coarser ones obey (KL-T) and all finer
onesviolateit (or else either al obey or al violate (KL-T)). Examples8.1 and 8.2 in Appendix A compute
such critical gamesin two different chains of games. Example 8.1 provides a chain of games g,, 9y, -..., 04
where g, for k<4 has a countable type-space and g, an uncountable type-space. The game g, will satisfy
(KL-T) for k<4 and will violateit for k=4. This suggests a connection between condition (KL-T) and the
countability of the type-space. Indeed, we have the following:

Proposition 6.4 ((KL-T) and the Countability of the Type-space): Fix any game g= <1 ,{p}; ,1"> in G with
at least two players. Suppose g obeys (KL-T) and iscomprehensive. Then the set of playsis countable: i.e.,
there exists a countable subset M of Z such that the event { T=(Jf,z) in S* z , M} has | and ; probability
oneliinl. If, in addition, each vector of types results in a different play path, then the type-space must be

countable.

In F2 of Ex. 2.1 each player-type chooses a pure strategy at each date. Proposition 6.4 therefore
impliesthat (KL-T) cannot hold for that example. When the type-formulation is not comprehensive, so each
type does not choose a pure strategy at each date, it is possible to have a model with uncountably many types
which satisfy the Kalai and Lehrer assumption®. Proposition 5.1, however, then shows that the “game” can
always be equivalently reformulated so that in the new game each player-type chooses a pure strategy. In
that case, as Example 2.1 indicates, the notion of exactly what a type is becomes ambiguous, asis whether

or not assumption (KL-T) holds.

6.3. The Convergence Results of Jordan, KL 93 and Nyarko. The norm 22denotes the total
variation norm on —(2); i.e., givenp, q,-(2), 2-9q27/ Sup*p(E)-q(E)*, where the supremum is over Borel
measurable subsets E of Z. Fix any attribute vector 2 /{2 },,,1. Define ui,l,

Ni(2,) 7 {f=3 ;,f,,F:f, , argmax V,(2,,f;,0)} and NQ)7/1,,N); (7)

By "linearly ordered by ...." we mean that we can index the games by k in [0,1] such that k$kN
impliesg, $ g, (or vice versa).

8A very nice example to this effect was independently provided to me by R. Smorodinsky (1995)
while this paper was undergoing revision.
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ND(2) 7 {<N,-(2): 6 f,N(2) with <N=<(f)}. (8)
SE.(2) /{f =3, ,f,F:ti,l, 6(f/)yum » F withfi =f suchthat
() f, , argmax V,(2,.f;,0) and (i) 2(f) - <(f') 2# ,} and SEQ2) 7 SE,(2). (9)

N(2) isthe set of Nash equilibrium behavior strategy profiles for the complete information game
with attribute vector 2. ND(2) is the set of all distributions of play that can be generated by some Nash
equilibrium behavior strategy profile. SE (2) (resp. SE(2)) is the set of subjective ,-equilibria (resp.
subjective equilibria). One can show that ND(2) isequal to the set of all distributionsinduced by some f
» SE(2). (The définitions on subjective equilibria are taken from Kalai-Lehrer (1993b). See also Battigali
et. a. (1988) and (1992).)

Given any history h , /, and any behavior strategy f; , F, for i,l, define the continuation strategy
fin asfollows: ahN, 7, f;(hN = f,(hhN) where hhNis the concatenation of h and N Analogously, given
f={f},, ,Fandh, 7/, definef,, Fbyf,(hN) =f(hhN) GhN, /. Given asequence {X.}n-; in SOme metric
space X and aset P T X, write x,6° Pif every cluster point of {x.} -, liesinthe set P

FixagameginG and let f, f(J={f,(J)};, and f" beasineqg.'s(3) - (5). When the common prior
assumption holds, either (CPA) or (CPA), f' =f =f (i andj. Define

Syrtn 7 {T=(3f,2),S: f = =f 0i,j and ', 6°N(2)}. (20)
The set S, 1S the set where the limit points of KSR's of beliefs of the future given the past (and not

conditioning on types) lie in the set of Nash equilibrium strategies of the underlying complete information
game of the realized attribute vector 2 .

Next define
Shyako / W1CD1 C, (11)
where w 7/ {(3f,2),S: IimNG42<(f‘Z(N))— <(f*Z(N))2—-O ai,l}; (12
CD / 1,,CD; with CD, 7/ {(3fz2),S: <(f‘Z(N)) 6°ND(2)} ui,l; and (13)
c/71,,CG withC 7{3f2,S: f‘Z(N) 6°N;(2))} ui,l. (14)

The set W isthe event where each player i's beliefs, |, about the future, { zy,1,Zy2.---} , given the past, z(N),

(and not conditioning on own-types) "merge" with those of W (and hence with each other) as the date N
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tends to infinity. The set CD is the set where limit points of each player's beliefs about the future play
conditional on the past (again, not conditioning on own-types) is the same as the play of some Nash
equilibrium. The set C isthe set wherefor eachi , |, cluster points of the continuation strategies of player
i's KSR of beliefs not conditioning on own-types, f', liein the set N;(2,). In particular®, if f*=
(f* £.%) ,F issuch acluster point then f* is a best-responseto f;* for the player with attribute vector 2, .
Finally, define
Sk / {T=(3f,2),S:0,>0, 6N=N(,,T) such that G4n$N, f,,(J liesin SE (2)}. (15)

Theset Sy, isthe set of sample pathswhere G ,>0 (the continuation of) the strategies of players eventually
liein the set of subjective ,-equilibria of the game with the realized attribute vector, 2.

The results in Proposition 6.5 below are the main results of Jordan (1995), Kalai and Lehrer
(1993a), and Nyarko (1997b). The result we state for Jordan is a dight generalization of Jordan (1995),
relaxing the assumption (CPA) he used to the weaker assumption (CPA*) - the proof appears in the
Appendix B. Immediately following this, we record in Proposition 6.6 the fact that the Jordan and Nyarko
results satisfy TIGER, while the Kalai and Lehrer result violatesit (asis easily seen from formulations F1

versus F2 of Example 2.1).

Proposition 6.5: Fix any game g=<T, {p},, W >inG.
(@) (Jordan): Suppose g satisfies optimization (6.1) and (CPA’) . Then

M (Saoraan) = 1. (16)
(b) (Nyarko): Suppose g satisfies optimization (6.1) and (GGH). Then

M (Syaro) = 1. 17
(© (Kalai and Lehrer): Suppose g satisfies optimization (6.1) and (KL-T). Then

' (Sk)=1. (18)

Proposition 6.6: (a) The conclusion of Jordan (1995), and in particular eqg. (16), obeys TIGER.

*Notethat CO 1 {(3f,2),S: f ) 6°N(2)}. Instead, the former set contains the latter, usually
strictly. In particular C is not the set where continuation of KSR of beliefs are Nash equilibria. The
difference is the same as the difference between Nash and subjective Nash equilibria, and is due to the
fact that on the set C players are allowed to have different (limit) beliefs about play off the equilibrium
path.
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(b) The conclusion of Nyarko (1997b), and in particular eqg. (17), obeys TIGER.
(© The conclusion of Kalai and Lehrer (1993) , and in particular eg. (18), violates TIGER.

The lemma below indicates an entire class of properties of games which will obey TIGER. The

lemmais used in the proof of parts (a) and (b) of Proposition 6.6.

Lemma 6.1: FixanysetsD, f1,xZandD f1 xZand any numbersk andK foriinl. Definethe
property b, for i in| and the property b" asfollows: g=<I, {j}, , i >in G satisfiesb if and only if
W (Dy)=k; ; and g satisfiesb” if and only if 0'(D)=k’. Thenb" and each b; satisfy TIGER.

In the monotonicity result below we use the definition of SE (2) of (9) where we insist that the f;"s

of that definition are equal to the beliefs of player i about j.

Proposition 6.7 (Monotonicity): Fix any gin G and suppose that g obeys the KL93 conclusion in eg.

(18). Then the conclusion also holds for all equivalent type-coarsenings of g.

6.4. On Nachbar (1997). The conclusion of Nachbar (1997) is that there is an inherent conflict

between prediction and optimization when the strategy space is sufficiently rich. The definition of
optimizationisasin (6.1). We now define prediction. Given any history h of length R<4 say, the cylinder
set C(h) is the subset of all play paths z in Z whose first R elements equal h. The definition below is an

absolute continuity condition over cylinder sets.

Definition 6.5: The game g in G obeys Ex Post Local Absolute Continuity (EPLAC) if and only if for
every hinH, and W' -ae. J={J};,, <f(J)(C(h))>0implies <(f'(J))(C(n)) > 0.

Given any ,>0 and any integer R and any f and fNin F, f issaid to (,.R-play like fN if for all histories
h of length Ror less, *<(f)(C(h)) - <(fN(C(h)) * # ,. Define

Sp /{T:(J,f,z),S: u,>0, Gi,l, U integersR 6N=N(,,RT) st. in$N, £, (I (,.R-playslike f‘z(n)(;l)}.
(19)
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Definition 6.6: (Nachbar Prediction): The game gin G obeys Nachbar prediction if and only if
(i) g satisfiesEPLAC; and (ii)
H(Sp)=1. (20)

Definition 6.7: (The Nachbar Paradox). Thegameg , G satisfies the Nachbar Paradox if it is not the case
that g obeys both optimization (6.1) and Nachbar Prediction.

Nachbar (1997) argued that in games where the strategy sets are sufficiently rich there is an inherent
conflict between optimization and prediction in the sense of the definition above. Asillustrated in Example
2.1, aaufficiently rich strategy set requires a sufficiently refined type-space. In particular, in that example
under formulation F1 prediction and optimization hold, while under formulation F2, optimization holds but
prediction fails. In particular F2, the more refined space, obeys the Nachbar paradox while F1 violates it.

Among other things thisimplies the following:

Proposition 6.8: The Nachbar paradox violates TIGER.

We also have the following monotonicity result:

Proposition 6.9 (M onotonicity): Fix gand gNin G withgNO g. (a) If the Nachbar paradox holds for g
then it also holds for g\ and (b) if g\ violates the Nachbar paradox (i.e. if g\ satisfies optimization and

prediction) then so too does g.

Proposition 6.9 above is proved with the aid of the following two lemmas which may be of interest
intheir ownright. Thefirst, Lemma6.2 below, showsthat EPLAC obeys TIGER, which is interesting when
compared to the failure of (KL-T) to satisfy TIGER™:

19AlIthough (EPLAC), ex post local absolute continuity of P with respect to p;, obeys TIGER, it is
easy to see that ex post local mutual absolute continuity - L; with respect to ; for all i and j - does not
obey TIGER. Indeed consider Example 2.1. Under F1 al players beliefs are mutually absolutely
continuous with respect to each other (indeed the common prior assumption holds in that case).
Consider now, however, F2 and fix avector of types J=(J, , k). Player A of type J, assigns
probability one to one particular date 1 action that she, Player A, will choose while player B assigns
equal probability to both the actions of Player A. The players beliefs, conditional on their types, are not
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Lemma6.2: (EPLAC) satisfies TIGER.
Lemma6.3: Fix gand gNin G withgNO g. Thenif the property in (20) holdsin g\ it also holdsin g.

The Nachbar paper asks whether true play can be predicted. We have argued that there may
be problems with the notion of the "truth” here, and in particular that the Nachbar paradox violates TIGER.
Instead of asking whether there is prediction of the truth, we could ask whether there is prediction of beliefs.

Define the set Spg as follows:

Ses /{ T=(3f,2),S: (,>0,0 integersR N=N(,,RT) st. un$N, ', (,,R-playslikef, Ui ,I} (21)

Observe that thisis the same as the set where Nachbar's concept of prediction occurs (see Sy in
(19)) except that we use beliefs ', and f., in place of true strategies and beliefs conditional on own-types,
f,y(J and f',,(J), respectively. Here it may be useful to stress again that f,, (J) and £, represent the
same beliefs over F;, the Strategies of others; the only difference is as regards beliefs about own strategies -
the latter conditions on own-types J while the other does not. It is easy to seethat onthe set Sy, for large
enough n, f, (,,R-playslikef,, ,dij,I Henceignoring beliefs about own play, over time players make
approximately the same predictions about the future play. For example at any period n sufficiently large,
playersi and j will have approximately the same beliefs about the which action a third player k will choose
inthe next period. Thisis not exactly prediction of beliefs - indeed we have not modeled what i thinks about
what j believes. It ishowever prediction beliefsin the sense that i and j will have the same beliefs about any
third player k. Analogoudly to Definition 6.6 we therefore have:

Definition 6.8: (Prediction of beliefs): The game g in G obeys prediction of beliefs if and only if (i) g
satisfies EPLAC; and (ii)
W (See) = 1. (22)

From Lemmas 6.1 and 6.2 the following is immediate:

locally mutually absolutely continuous in F2. Hence ex post local mutual absolute continuity does not
satisfy TIGER.
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Proposition 6.10: Prediction of beliefs obeys TIGER.

To give an indication of how prediction of beliefs can be obtained, we note that condition (GGH)
implies prediction of beliefs™. (To see this apply Proposition 6.5b and observe that W ¥ Sp5).  In
particular, both formulations F1 and F2 of example 2.1 obey Prediction of Beliefs. When we move from
strategies to beliefs, the Nachbar "paradox” disappears, and instead, under (GGH), we very easily obtain

both prediction and optimization!

7. Conclusion

Jordan (1996) states that a notable shortcoming of Bayesian learning models is that "convergence
occurs at the level of expectations and not necessarily at the level of actual strategies.”" This paper shows
that this should not be considered a shortcoming. Instead, if we want our results to be consistent in the sense
of obeying TIGER, we can make statements only at the level of expectations or beliefs. Ambiguitiesin what
constitutes the "truth" force us away from statements on true strategies and toward statements on
expectations.

What isthe correct type-formulation? Thereisno "correct” type-formulation. We advocate neither
the sparse nor the comprehensive formulation. If you believe that people really do not mix, then you are
advocating the comprehensive formulation. But then the Nachbar paradox holds (see formulation F2 of
Example 2.1). On the other hand if you adopt the sparse formulation, you must deal with the arguments
of those who insist that people do not mix. In Section 6 we showed that there is usualy a critical type-
formulation such that the KL93 assumptions and conclusions hold for al coarser formulations and fail to
hold for all finer formulations. In that case you may define what is the correct formulation in terms of
whether you want the KL93 conclusonsto hold. Insummary, if oneis not willing to move to concepts like
equilibrium in beliefs which satisfy TIGER, there is no obvious "correct” type-formulation. The best type-
formulation, as with beauty, may lie in the eye of the beholder.

“An alternate definition of prediction of beliefs would replace condition (ii) of Definition 6.8 with
W(W)=1 where Wisasin (12). Since W f Sy thisresultsin a stronger notion of prediction of beliefs.
This stronger definition also obeys TIGER, and also follows from condition (GGH).
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8. Appendix A: Examples

Example 8.1: (A critical g for (KL-T)): Letl, A and1 beasinthe matching pennies game of Example 2.1.
We now definefor eachk =0,1,2,3,... .4, agamed‘ , G. Defineg’and g* beformulations F1 and F2,
respectively, of Example 2.1. For 1#k<4, define T / {HEADS, TAILS}¥, and suppose that the typesin T
are generated via k independent tosses of afair coin. The behavior strategy of player-type J={J,, J, ...,
J} , T¥ ingamed isasfollows: At date n # k, choose the first action (TOP for i=A and LEFT for i=B)
if 3, =HEADS, and the second action otherwise; and at date n > k, randomize over both actions with equal

probability. This defines the game g*. It is easy to check that the collection of games{§ }.., are all
equivdentwithg 0 g“* 0 ¢ 0 ¢ fordl k. Thereisalso obviously a weak-topology sense™ in which
the g“s converge to g*. One can also check that the game ¢¢ satisfies (KL-T) Uk < 4, and violates (KL-T)

for k=4. g*inthiscaseisa"critical" g, as mentioned in Section 6, for the given chain of games. A

Example 8.2: (A critical g for (KL-T)): Letl, A and 1 be asin the matching pennies game of Example
2.1. We now define for each k in[0,4] agamed® , G. Each of these games will be equivalent and will
have exactly the same type-space. Further, there will exist a critical k (actually k=1) such that (KL-T) will
hold for each k > 1 but will fail for eechk # 1. The example will also be such that if k and kNare close, then
the games g and g will also be close in the weak-topology sense mentioned in Example 8.1.

Define for each k and eachiiinl, T / [0,1]*. ThetypesinT;* are generated viathe distribution
over [0,1]* equal to the countably infinite product of uniform distributions over [0,1]. Defined n=1,2,....
andkin [0,4],

Yo = (VW (n+1)?) . (23)
The behavior strategy of player i of type J*={J,;, 3, ,3; ,..} , T isdefined asfollows: the
probability that she assigns to her first action (TOP for i=A and LEFT for i=B) at date n is

12 + )y if I ,[01/2)

W@ =, 3" ey (24)

12T see this, define the game g~ to be the game g* re-defined on the type space T;= { HEADS,
TAILS}* in the obvious manner: given any type J in T, in game g¥, ignore the coordinates k+1, k+2,....
and proceed just asin game g . Next for each J,T and k#4, define <, to be
equal to <(f(J), the play induced by the vector of types Jin game g*. Then it iseasy to see that for
each J <(J convergesto <,(J in the weak topology.
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The probability assigned to her second action at date n is therefore 1-f; (J). We suppose that each player
knows that thisis how the types and behavior strategies are generated. Each player observes her own type
but not the types of others. The probability that player i assigns to the event that player jOi chooses her first
actionis (1/2)[1/2+) ,J + (V2)[LV2-) ] = /2. Each player is therefore indifferent between each of her
two actions, so the behavior strategies just defined are best-responses to each other.

When k=4, ) ,,=0 so each player-type is randomizing with probabilities 1/2 and 1/2 at each date.
When k=0, ) ,,=1/2 s0 each player is choosing a pure strategy, which depends on her type. Hence, the cases
k=4 and k=0 correspond to formulations F1 and F2 respectively of Example 2.1. For each k00, each
player-type's behavior strategy randomizes over her actions at each date with probabilities which converge,
as the date n6 4, to the vector (1/2,1/2). The speed with which the probabilities converge to (1/2,1/2) is
increasing in k. For (KL-T) to hold, this convergence must be sufficiently fast. It turns out that in the above
example, the critical k for whichthisistrueisk=1. In particular, when k # 1, the rate of convergenceis so
slow that (KL-T) failsto hold. To see this, define ", to be the ratio of the true probability of player i
choosing agiven action at date n to the probability assigned by the beliefs of jOi to that action (which, of

course, is 1/2):

wooo g fn (3)(L2) if the first action occurs at date n (25)
o [1-f;, (3)]1/(1/2)  if the second action occurs at date n

Then 37, (1-")? = 3p(1-2f,(J))?* =437,)%x = 35, U(n+1) X Thissumisfinite for k>1

and isinfinite for k #1. Applying (Shiryayev, Cor. 4 of p. 499), then shows that condition (KL-T) holds for

k >1 and failsfor k #1. A

9. Appendix B: Proofs

Proof of Proposition 5.1: Fix any g= <I ,{p}, ;) > in G. To obtain agin G which is sparse and
equivaent to g, define 1 =1 and define the behavior strategy of player-type J = 2 ; to be KSR of the marginal
onF of pi(.*2;). In particular, the sparse formulation, g, is obtained by integrating out any randomization
that was in the original typesin g.

ToobtainagNin G which is comprehensive and equivalent to g, one needs to perform at date -1

(i.e., before the game begins), all the possible future randomizations, and encode them in the type. The
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details of this are as follows: Define */[0,1]* , TN T,x", and TNeJ; ;N Let Unif[0,1] be the uniform
distribution over [0,1] and define > / qi_,Unif[0,1]. We will later construct the behavior
strategy, f;(JN), of each player-type JNin game g\ Define 1 H(Y (resp. 1 £(IN) ) to be the probability

measure on F (resp. on F) that assigns probability oneto f(Y (resp. f;(JIN)). A unique W'N, B(TNKFxZ) may
be constructed with the following three components: () Margnt'N = (Margr ) q J,;, ;

(b) Marg - NN = ]f(J\b ; and (¢) Marg ; WN*NF) = <(f). Similarly, aunique N, B(TNFxZ)
may be constructed using the components (a) and (c) above, replacing &~ with ; and 1 Nwith puN,;and
replacing (b) with the requirement that Marg: WN.*N=(3 Q) = (Marg F, Hi(*J) q ]Ti(J’\D .

We now construct the {f,(IN};,, used above. Fixanyiinland J ,T,. Since/ is countable we can
write 7 /{h*,n* % ...}. Then for any integer m, f,(J)(") is a probability measure over A showing how
player-type J in game g chooses actions in history h™. Since A, isfinite we may consider it an
ordered set, A={ af%:llz _____ HA, with #A, the cardinality of A;. Fix an m and let Supp f;(J)(h™) be the
support of f,(J)(h™), similarly ordered. For each"h ,H, partition the unit interval [0,1] into distinct
exhaustive sub-intervals with the Rth sub-interval having lebesgue measure equal to the probability assigned
by f,(J)(h™ to the Rth action in Supp f,(J)(h™). Let —;(J,h™) denote this ordered set of sub-intervals. Each
member of —(J,h") isassociated with aunique actionin A,. For any IN= (J, G 1, G 2. G,--.) > T:Ndefine f;(IN)
by requiring it to choose in history h™ the action associated with the Rth member of —;(J,h™), whereRisthe
unique integer such that (, lies in the R.th member of —;(J,h™).

We have completed the construction of gN=<TN{ N}, ,,'N> . It should be obvious that it satisfies

the conclusions of this proposition with g\=g. A

Proof of Proposition 6.1: Fix any two games g and gNin G and suppose that g\0g. Let *;, J and IN=
(3,() for  , " beasin Definition 5.1. In particular, J and IN are two generic types in g and gN
respectively, which share the same attribute vector. From the independence assumption 4.1 these two
player-typeswill also share the same beliefs about others. From condition 5.1(iv) the behavior strategy of
player type Jin game g is equal to the KSR of the mixed strategy obtained by some randomization over the
behavior strategies over player-types (J,() for (,5. Standard arguments show that player-type J 's
behavior strategy is a best-response for her if and only if thisis the case for all those of player-types (J,()
for (G , " (except possibly a set with zero probability). Hence optimization occursin g if and only if it

occursin g\ Proposition 5.2 therefore this proves the proposition. A
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Proof of Proposition 6.2: (a) Thisfollowsimmediately from the fact that if g —gNthen the ex ante beliefs
over F will be the same in both games g and g\
(b) Fix any g=<I {W}; ,.L'> and gN=<IN{\}; ,,u'N> in G and suppose that gNJ g. Suppose g obeys
(GGH). By definition TN=Tx" for some *. It iseasy to verify that if one probability measure is absolutely
continuous with respect to another on the cartesian product of two spaces then the sameiis
true of their marginals. Hence if g\ obeys (GGH), Marg Tx 21 «Marg TXZ W; Ui,l, so g obeys (GGH).

Next, suppose g obeys (GGH). Then, Marg,)” « Marg,|,; . Since b and yNand also i and (i N
share the same marginal on Z, thisimplies that

Marg,u'N «Marg,uN. (26)

Following each history each player chooses an action independently of the others. So, recalling the notation
of egn's (4) and (5), for each date N history hy = (a,...,&\),

WN{h} N = J 2o [N () @ w5 () (@1pe)] (27)
NP} *IN - = I 535N () @ )T () (@3] (28)
WN{h}) = I 55 ()@ )] (h)(@i )], and (29)
Ny} ) = 3 255 [ () (@ DI (o) (@ )] - (30)

Define

rN(q,\D/ u*l\({h,\,}*\]l\b ’ U\]N,TiN and ry / H*’\({hN})
KN} IN uN{ hy})

: (31)

whenever the denominators of these expressions are positive, and define them to be equal to zero otherwise.
Eq.'s (27) - (30) imply that GN, hy , HY, and IN, T,;Nsuch that p,N{ h})00 and pN{ hy} *IN0O,
M = In(AN. (32)
It is easy to see that ry is the Radon-Nikodym derivative of Marg, u'Nwith respect to Marg, uNwhen the
two measures are restricted to HY. Hence, using Shiryayev ((1984), Theorem 2, p.495), (26) implies that
there exists an r, such that limyg, 1y =1, which is finite with probability one with respect to p'Nand N
From (32) thisin turn implies that
limygs (AN =714 . (33)
We will now argue that for each N and i'Na.e. N
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Marg WNCIN «Marg , WNCIN. (34)

To show this assume, per absurdem, that for some hy, and for a set of IN's with p'N positive probability, the
following istrue: (i) (27) is positive and (ii) (28) is zero. Noting that the productsin (27) and (28) share
some common terms, (i) implies that (29) is positive while (ii) implies that (30) is zero. Thisis a
contradiction to (26), which proves (34).

It is also easy to see that ry(JN) is the Radon-Nikodym derivative of Marg, u'N.*JN) with respect
to Marg, uN.*IN) when the two measures are restricted to HY. Eq.'s (33) and (34) and the Shiryayev result
mentioned earlier then imply that Marg ' N.* IN) «MarguN.*JIN) for w'Na.e. IN. Since by
definition u'Nand N have the same marginal on T;N, we conclude that Marg TiNxZ“*N «Marg TNZ LN
So gNobeys (GGH). A

Proof of Proposition 6.3: Fix any two gamesg= <l {p}; ,> and g\=<IN{pN}; ,,'N> in G and suppose
that gNO g. Then, following the notation of Section 5, we may write TN=Tx". Fix anyi in | and define for
each (3O=(3J, G, J;, (), thefollowing measureson Z: P'(*J(Q/Marg,u'N.*J Q) and
P (*3Q/ Marg, uN.*3J,( ) (and note that the latter depends on (J Q) only through (J,()). Suppose gN
obeys (KL-T). Then P (*3Q «P (*3(Q for u" amost every (J Q) in TN. We may integrate out the ('s
conditional on J to conclude that

LP(*JQdu(*) « EP(*3Qdu(*) , fory amost every J. (35)

The left hand side of (35) is equal to Marg ; W'N.*J). From the definition of 1, the marginals of u* and of
K on Tx®; arethe same, so the right hand side of (35) isequal to Marg , wN.*J ). Hence,

Marg ; W'N.*J « Marg , iiN(.*J), so g obeys (GGH).A
Proof of Proposition 6.4: We begin with the following claims:

Claim 1: A probability measure can assign positive probability to at most countably many distinct mutually
digoint sets.

Proof of Claim 1: Let P be a probability measure on a measure space (S, T). Fix anindex set Q and let
{Ng} 4.0 beany collection of mutually disjoint measurable subsets of S, with P(N,)>0(q,Q. Define for
any integer k>0, Q, 7/ {q,Q*P(N)>1/k}. Q, cannot contain more than k distinct elements Q, for otherwise
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the total probability of the union of N, over q,Q, would exceed 1. Since Q = U¢_,Q, thisshowsthat Q

must be countable. //

Clam2: Let'"T,6 Z and$T, 6 Z betwo Bord measurable functions. Let B =B, q B, be any product
measure on T,XT,. Then there exists a countable set R such that if J/{(3,9) , T, XT, * "(3)=HJ)0R},
then B(J)=0.

Proof of Claim 2: Let ", $and B be asinthe claim. Define R/ {zinZ* B,($(2))>0}. If z0zNthen
$'(2) and $*(zN) are digoint. Hence from Claim 1, R is countable. With this R, let J then be asin the
conclusion of thisclaim (Claim 2). DefineJ(J) ={J3inT,* (J,3) , J}. We proceed to show that

B,(J(J3))=0 0uJinT,. (36)
Sofixany J inT,. Clearly(36) holdsif J(J) isempty. So suppose JJ,) isnon-empty. Then *"(J)6R. This
impliesfirs that JJ) = {J*""(3)=H3I)} = $("'(J)) and also that B,($*("*(J))=0. Hence, eq. (36) again
holds. Eg. (36) and the fact that B is a product measure in turn proves that B(J)=0. //

Proof of Proposition 6.4 (Cont'd): By assumption there are at last two players, 1 and 2 say. Let z:S 6
Z bethe random variable on S which defines the play path zineach state T in S. Fixany 3 ,T,and 3,,T,
and define A(3)/{z ,Z : ,({z=z}*J)>0} and C(I)/{z ,Z: p,({z=2}*3)>0}. From Claim 1, A(J) and
C(J) are both countable so we may write A(J)={""(J),"*(d),"*(J),..} and C{I)E{H(JI),
H(3),H(3),...}. Next, define 13,={J}o, in T, and Gintegers m, $"(J,)/ H"(J) and B(I)/{$(Jy),
$(3y), $¥(J)....}. Onemay check that we may order the pointsin the sets so that for each Rand m, **® and
H" (and hence $") are measurable functions of their arguments. Fix any Rand m. Note that $"(J,)
depends on J, only through J,. Apply Claim 2 with B = (Marg Tlp*) q (Marg sz*), "=""and $=F", and
and

W{I{T} (3 =$"(3y 6 Q for someRand m}) = 0. (37)

By assumption the game is comprehensive. HenceuJ , T there exists a unique play path z(J) in Z resulting
from that vector of types. Also W'({z=2(J}*I = 1. Soif F{I}, T, thenpy{z=2(I}*J) >0, I,
whichin turn impliesthat z(J="3)=$"(J,) for someRand m. By assumption (T, .1)=1, so (37) implies
that W' ({ ={ J},.* 2(I6 Q }) = 0, from which the proposition follows. A
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Proof of Proposition 6.5: (a) Fix any g=<I {W}; .1 >inG. Supposethat g obeys (6.1) and (CPA*).
Define another game gh\=<I N{uN,; ,, 'N> where we suppose each player's beliefs equa the "true"
digtribution W': in particular, set T;N=T,, wN= " Gi in 1, and p'Nequal to the outside observer distribution
induced by { N, . It should be clear that p° = i N and that the game gN obeys the common prior
assumption (CPA). Since g obeys (CPA") and under the independence assumption 4.1 beliefs about others
are independent of own-types, the belief of each player-type J isthesameingasitising\ Hence, since
g obeys optimization (6.1) so too doesg\N The game gNtherefore satisfies the conditions of Proposition
6.5(a), so the conclusion of that proposition holds for g\ Sincet” = w'N and f* = f'N, that conclusion also
holdsin g, which is what we seek to prove. A

Proof of Proposition 6.6: Any two equivalent games will have the same ex ante true play f* and ex ante

beliefsf' for i inl. The proof of parts (a) and (b) therefore follows from Lemma 6.1.A

Proof of Lemma 6.1: Fix any g= <l {W};,, & >and g\=<IN{pN}, ,,'N>in G and suppose that g\ O

g. Then, and N have the same marginal on 1,. From the independence assumption 4.1 and 5.1(iii) and
(iv) we conclude that conditional on2;, y; and 1; have the same distribution over F and therefore over Z.
Hence y; and 1; have the same marginal distribution on 1,xZ. Thisimplies y,(D)=w;(D) for any Df

1, xZ, so g obeys b if and only if gNdoes. Apply Proposition 5.2 to conclude that b satisfies TIGER.
Similar argumentsimply that b" obeys TIGER. A

Proof of Proposition 6.7: Fix any g= <l ,{ }; ,,"> and ghNe<I N{ uN}; ,u'N> in G and suppose that gNO
g. Then, following the notation of Section 5, we may write TN=Tx". We concentrate on game g\ for now.
Fix anyiinl, ,>0and date n. Define SNi,,,n) ={T in SN 2<(f,,(3Q) - (f,(J.Q)2# .} . The
inequality below follows from the fact that the left hand side islessthan , on SN, ,,n), and, since<isa
probability, is less than one on SN(, ,,n)"

2<(f,(3Q) - <(fun(1.Q)2# , + %l\(i, 0% (38)

(where the superscript ¢ denotes the "complement” of the set and 1, is the indicator function on X). Hence
upon integrating over (with respect to u'N.*J) and noting that "N and N have the same marginal over *;,

we may conclude that
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2, <(ipAOIND - b Lo OIMND2# . + WNSNGL0*Izm). (39)

Suppose that g\ obeys the KL93 conclusion. Then 1= p'NSN) = W'N1; ;1 .o Cpey 1 nen SN, 5,0)). This
implies that for eachi and , > 0, W'NSN(,,,n)) 6 1 asn 6 4. So from (39) we conclude that

N1 soCher Lo {20 0 (E(3 Q)N - ! ((3.Q)) duN*I2# , }) = 1. (40)
Thisis precisely the statement that g obeys the KL93 conclusion. A

Proof of Proposition 6.9: (a) From Proposition 6.1 and Lemma 6.2 we know that optimization and
EPLAC obey TIGER. The required monotonicity therefore follows from the monotonicity result of Lemma
6.3. (b) The statement in (b) is the counter-positive of (a). A

Proof of Lemma 6.2: Fix any g= <l {p}; ,)'> and g\=<I N{ N}, ,,u’'N> in G and suppose that gNO g. Let
J(respectively (J () denote a generic type vector in g (resp. g\). We continue the proof in two steps, (a)
and (b) below. Applying Proposition 5.2 then proves this lemma.
€)] If gNsatisfies EPLAC then so too doesg:  Suppose g\ satisfiesEPLAC. Fix any h,H and J,T and
suppose that <(f(J)(C(h))>0. Then there exists a set of (s with W N-positive probability such that
<(f(3Q)(C(h))>0. Since g\satisfies EPLAC, thisimpliesthat <(f'(J,())(C(h))>0, for aset of ('swith u'\-
positive probability. Integrating out the ('s implies that <(f' (3 ))(C(h)) > 0. So g satisfiesEPLAC. (b)
If g satisfies EPLAC then so too doesgh It is easy to see EPLAC holdsin any game gN if for that
game for w'Nalmost every (J(=(3,3;,G, (), for eachn=0,1,2, ..., and for each history h of length n that
occurs with W'N.*J, () positive probability,

fAOM({z..=8) >0 implies f (3, ()(N({z.,=8})>0 uainA. (41)
Sofix any suchn, hand&=@4a)) ,A. Suppose that the first inequality of (41) holds for aset of (J ()'s with

positive N probability. Since f(3Q(h)({z,:=8}) = [fi( O z ni=a})] [Fi(I G Zipa=a})],
thisimplies that

(A OM({zm=a}) >0. (42)
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Next, integrating the first inequality of (41) over (implies that f(J(h)({z...=a}) > 0, so if g satisfies
EPLAC thenf(J)(h)({z..=8) > 0, and in particular f'(J)(h)({z,...=a}) >0. Sincei's beliefs about j are
independent of i's type, thisimplies that (3, ()(h)({z ...=a; }) >0. Combining this with (42) implies the
right hand side of (41) . So gNobeys EPLAC.A

Proof of Lemma 6.3: The proof is almost identical to the proof of Proposition 6.7 so is omitted. A
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