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Abstract
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inflict the same sacrifice upon all individuals relative to any strictly increasing and
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1 Introduction

An important criterion of redistributive justice formulated in the realm of income
taxation is the following:

An income tax function should decrease income inequality (in the sense
of relative Lorenz dominance) for any given pre-tax income distribution.

This criterion is typically referred to as the “principle of progressivity”, for it is now
well-known that an income tax function satisfies this principle if, and only if, it is a
progressive tax (that is, its average tax rate is increasing) I This observation may very
well account for the striking fact that all countries (and certainly all OECD countries)
use (statutory) progressive income tax schemes. But a fundamental question remains:
are all progressive tazes equitable?

A reformulation of John Stuart Mill’s famous maxim of income “taxation so as to
inflict equal sacrifice” leads us to another compelling redistributive justice principle:

An income tax function must yield equal sacrifice to all individuals rela-
tive to at least one acceptable social norm (or, a utility function for the
representative agent of the society).

Following Young (1988), we call this maxim “the principle of equal sacrifice” and
contend that it is a useful fairness criterion. True, it is by no means sufficient for
determining “equitable” taxes perforce, for such a determination can only be done
relative to the ‘actual’ social norm that summarizes the preferences of the society,
or even better, relative to the ‘true’ preferences of the individuals. But the principle
is certainly very effective in elucidating “inequitable” taxes, for, by implication, an
income tax function not satisfying the principle of equal sacrifice guarantees unequal
sacrifice relative to any possible social norm (utility function for income), and thus
in particular, relative to the true preferences of the constituents of the society.?

In this note, we attempt to understand the equity properties of progressive in-
come taxes in the light of the principle of equal sacrifice (or put differently, from the
perspective of the doctrine of “ability to pay’ (cf. Musgrave (1985))). An immediate
question is then the following: do all progressive tazx functions satisfy the principle of
* equal sacrifice? We show that the answer is negative by determining a subclass of
progressive taxes which fail to satisfy the principle. Roughly speaking, progressive

1See, for instance, Jakobsson (1976), Fellman (1976), Eichhorn et al. (1984}, and Lambert (1993).

2There is now a small literature on the various aspects of equal sacrifice income taxation: see
Richter (1983), Buchholz ef al. (1987), Young (1987, 1988, 1990), Yaari (1988), Berliant and Gouveia
(1993), Mitra and Ok (1994) and Ok (1995).



taxes which are “sufficiently non-convex on a neighborhood” cannot yield equal sac-
rifice for any concave and strictly increasing utility function.3 This result illustrates
that there is merit in combining the principle of progressivity with the principle of
equal sacrifice to pave way towards a theory of equitable income taxation.

The next question is, of course, whether or not the principles of progressivity and
equal sacrifice are compatible. We find that they are, and establish that all convex
progressive taxes do satisfy the principle of equal sacrifice. These results show that
equal sacrifice under progressive personal income taxation depends heavily upon the

degree of marginal rate progressivity (as opposed to the more conventional average
rate progressivity), and is an issue far from trivial.4

Our results remain silent with respect to a particular subclass of tax functions,
roughly speaking that of “mildly non-convex” tax functions. We show that this class
contains both kinds of the tax functions; those that satisfy the principle of equal
sacrifice and those that do not. Finding out exactly which members of this set are
actually equal sacrifice taxes is of interest, for only then a full characterization of
non-equitable progressive taxes will be achieved. This problem remains open for the

moment.

We proceed by Section 2 where the precise formulations of the key concepts of
the present note are presented. Section 3 states and discusses our main results. It
is in this section we determine some useful subclasses of the sets of progressive equal
sacrifice and progressive unequal sacrifice post-tax functions. The above mentioned
open question is also formally put forth in this section. In Section 4, we discuss the
robustness of our results and find that they are not tight with respect to the relaxation
of technical hypotheses. Potential extensions of our findings are also pointed out in
this section by means of several examples. The final section supplies the proofs of
our main results.

2. Preliminaries

By a post-taz function, we mean a continuous, right differentiable and surjective
function f : Ry — Ry (that associates to pre-tax income Z a post-tax income f(x))
such that the following conditions hold:

(A1) f(0) =0and 0 < f(z) <z forallz> 0,

37This observation is by no means inconsequential from a practical point of view. For example,
one can check that Turkish (statutory) personal income tax was “sufficiently non-convex” around
TL 25,000,000 between 1981 and 1985 to guarantee (by Theorem 1) that it was a progressive but
not an equal sacrifice income tax (cf. OECD (1986), p. 286.) See also Example 1.

41991 U.S. Federal (Statutory) Income Tax is, therefore, found to be respecting the principle of
equal sacrifice by virtue of its marginal rate progressivity (see footnote 5).



(A2) 0 < fi(z) <1 for all :BIZ 0,

(A3) z — f(z)/z is a Lipschitz continuous mapping near origin; that is, there
exists (y, K) € R}, such that

=)

- — fL(0)| < Kz for all z € (0,y].

The set of all post-tax functions are denoted by F. (Notice that, given a post-tax
function f € F, the tax liability levied on income level = > 0 is t(z) := = — flz).)

(A1) is a fairly standard assumption positing that zero income earners do not
pay any taxes and that if one earns a positive income, he/she has to pay a positive
amount of taxes which must be less than his/her taxable income. (A2} is also quite
standard and assures that a higher income earner pays a higher level of taxes than
a lower income earner and that the ranking of taxpayers by pre-tax income and
post-tax income is the same. (In other words, by virtue of (A2), we focus only on
non-confiscatory taxation schemes. Such tax functions are sometimes referred to as
incentive preserving in the literature (cf. Fei (1981), Eichhorn et ol. (1984) and Ok
(1995)).)

In the literature on income taxation, analyses are typically conducted in terms of
differentiable tax functions. Although there is nothing wrong with the differentiabil-
ity assumption, it clearly makes it difficult to relate the study to the actual taxation
practice since the statutory income taxes are typically designed as continuous piece-
wise linear functions.® On the other hand, if one concentrates only on continuous
piecewise linear tax functions, then relating the analysis to the existing literature on
income taxation becomes a problem. By assuming only right differentiability of f(.)
and (A3), our framework covers both smooth tax functions and continuous piecewise
linear tax functions as special cases. Therefore, although they are a bit tedious to
state, these assumptions should be viewed as weak regularity conditions which allow
for a definitive generality of analysis.®

A post-tax function f € F is said to be progressive if the average post-tax
function z — f(z)/x is decreasing. One can easily show that a concave (marginal

SFor example, 1991 U.S. Federal Income Tax for single persons was of the following form:

0.15z, 0 <z < 20250
t(x) = ¢ 0.28z —2632.5, 20250 <z < 49300 .
0.31z — 4111.5, 49300 <=z
The associated post-tax function is of course given by f(z) = x — t(z) for all z > 0.
5We shall, in fact, later demonstrate that {A3) is not a necessary condition for our results to
hold.



rate progressive) post-tax function is progressive but the converse statement does not
hold.” We shall denote the class of all progressive post—tax functions by JFP™.

By an equal sacrifice post-tax function, we mean a post-tax function f € F such
that '
Je>0:Vz > 0: [ulz) —u(f(z)) = d] (1)

holds for at least one concave and strictly increasing utility function z: Ry, — R.8
This definition is identical to that of Young (1988) except that Young requires (1) to
be satisfied by a continuous and strictly increasing utility function. But Ok (1995)
shows that any f € F is, in fact, an equal sacrifice post-tax function with Young’s
definition. Therefore, demanding the concavity of the utility function of the individ-
nals is essential to the theory (cf. Mitra and Ok (1994)). Moreover, the assumption
of decreasing marginal utility is almost exclusively made in the related public finance
literature. By virtue of the usual arguments favoring risk averse behavior, we feel
that it is a well-justified assumption.

The above definition of equal sacrifice taxation is best interpreted by considering
u(.} as standing for the preferences of a representative agent of the society, and thus
acting as a social norm (cf. Musgrave (1959) and Young (1990)). We stress that this
interpretation saves the principle of equal sacrifice from necessitating interpersonal
utility comparisons.

Finally, let us emphasize that if a post-tax function is an equal sacrifice post-tax,
all we know is the existence of a well-behaved utility function relative to which every-
one sacrifices equally. Since this utility function may not be a good approximation of
the agents’ true preferences for income, one cannot conclude that an equal sacrifice
' post-tax is, in fact, vertically equitable. However, if a post-tax function is not equal
sacrifice, then we can infer that it cannot inflict the same sacrifice upon everyone
relative to any sensible utility function. It follows that there is a clear sense in which
such taxes are vertically inequitable. Therefore, the principle of equal sacrifice is not
an inclusion principle identifying the equitable taxes, but is an exclusion principle
determining the inequitable taxes from the perspective of ability to pay doctrine.

3z/4, 0«1
TDefine f € F as f(z) = { (z/4)+1/2, 1<z <2 . One can easily check that z — f(z)/x
z/2, 2<z

defines an everywhere decreasing mapping while f(.) is not concave around 2.
80ne can easily show that (1) holds for some concave and strictly increasing u : Ryqy — R if
and only if

e > 0: Vx> 0: [v(z) = ev(f(z))]]
holds for some concave and strictly increasing v : Ry — R. Therefore, an equal sacrifice post-tax

function can be thought of as both an equal absolute sacrifice and an equal proportional sacrifice
post-tax function.



3. Results

Ther_e seems to be a consensus that the concept of progressive taxation carries a
considerable degree of egalitarianism with it. Almost all countries use progressive
(sta'tutor.y) taxation schemes and this widespread usage is usually justified on the
basis of income inequality aversion. (See Lambert (1993) for an extensive survey.)
Ir}dec?d, it is well known that a progressive post-tax function maps a pre-tax incom.e
distribution to a more equal post-tax distribution (in the sense of relative Lorenz

dOIIliH&IlCﬂ). Therefore, all progressive post-tax functions are inequality reducing,

v Ll L ot 1 0 20T

test based on the principle of equal sacrifice; the question is if all progressive post-
tax functions are equal sacrifice. If the answer to this question was yes, then one
would conclude that the principle of equal sacrifice is a very weak principle in that
it is not useful in further refining the broad class of progressive taxes on the basis of
redistributive justice. On the other hand, if the answer was no, then this would mean
that the principle of equal sacrifice can be effectively used in assessing the normative
properties of progressive taxation.

This appears to be a natural way of making use of the principle of equal sacrifice.
Tt seems to us that the reason why this question is not at all addressed in the literature
is because the analysis of Samuelson (147, p. 227) is taken to imply that the principle
of equal sacrifice has no selective power.? Many authors appear to indicate that any
progressive post-tax function can be equal sacrifice with respect to a strictly increasing
and concave utility function u(.) with a relative risk aversion coefficient greater than
1. Our first result identifies a subclass of progressive post-tax functions which are
not equal sacrifice, and hence, shows that this contention is unwarranted.

Theorem 1. Let f € FP8. If there exists 7o >y >0 such that y > f(zo) and

Filmo) f1(f(zo)) > Fi(y)s

then there does mot exist a strictly increasing and concave utility function v : Ry —

R such that
Je>0: [Vz > 0: [u(z) —u(f(z)) = c]}.*°

9Put precisely, what Samuelson (1947) proves is the following: Given a post-tax function f € F
and a concave and strictly increasing utility function u: R4 — R satisfying (1), f(.) is progressive
if and only if

v, (z — f(2))(z — f(=))
+ >1 forallz>0.
wy (f(@)f(=) -
But his observation is far from clarifying under what conditions (1) can be satisfied for a given

f € F (cf. Mitra and Ok (1994)).
10The theorem remains intact if we drop the assuraptions of surjectivity of f(.) and (A3); these
properties are not used in the proof of Theorem 1 given in Section 5.
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To deal with the converse of this theorem we need to study the progressive post-
tax functions f € F*™ such that

Vg > 0: [vy € [f(z), ) : [f (@) fi(F(=)) < Fr @)l (2)

Unfortunately, even condition (2) is not strong enough to guarantee the existence of
a strictly increasing and concave utility function u(.) such that (1) holds. However,
if we assume a slightly stronger condition than (2), namely that

Ve > 0: vy € [f(z),2) : [fi (=) < Fi(y)] (3)

we obtain a definitive answer:

Theorem 2. Let f € F. If (3) holds, then f(.) is an equal sacrifice post-tax
function.

Theorems 1 and 2 remain silent with respect to the progressive post-tax functions
which satisfy (2) but does not satisfy (3). In the next section, we shall show that such
post-tax functions may or may not satisfy (1). The characterization of such post-tax
functions which satisfy the principle of equal sacrifice (preferably by a set of easily
checkable conditions) stands as an open problem at the moment.

4. Examples

Theorems 1 and 2 together give a very practical way of checking if a given post-tax
function is equal sacrifice or not.!* Our first example illustrates the applicabilility of
these results to the actual taxation practice.

Example 1. Define

0.9z, 0<z<80
flzsa) =< ar+(72—-80a), 80<z <90 ,
0.7z + (10 +9), 90<¢z

and notice that for any « € (0,1), f(.; @) € F. Moreover, f(.; &) is a progressive post-
tax function if and only if & € (0,0.9). Now, one can easily check that if f(90; «) > 80,
then (2) holds. So let £(90; ) = 10a+ 72 < 80; that is, o < 0.8. Choose zo = 90 and

11 Although our primary focus in this paper is on progressive post-tax functions, we note that
Theorems 1 and 2 remain valid if we replace FP™¥ by F in their statements.



notice that, for any y € [f(90;a);90). C (80,90), we have f}(90; ) f1.(f(90; @); @) >
fi(y; o) if and only if 0.9(0.7) = 0.63 > . Thus, one concludes that

Jz > 0: [Ty € (f(z;0),2) : [fi(z;0) f1(flz;0); @) < Fily; )]

if and only if & € {0, 0.63). Therefore, in view of Theorem 1, f(.; ) is a progressive
post-tax function which is not equal sacrifice as long as 0 < a < 0.63. Conversely, if
0.7 < a < 0.9, then by Theorem 2, f(.; @) is a progressive tax which inflicts the same
sacrifice upon all income levels relative to a strictly increasing and concave utility
function. The indeterminacy region for « corresponding to the case where (2) holds
but (3) does not, is [0.63,0.7). As noted above, whether f(z; @) with 0.63 < a < 0.7
is equal sacrifice or not is an open question.!? O

In the next to examples, we shall demonstrate that a progressive post-tax function
which satisfies (2) but does not satisfy (3) may or may not be an equal sacrifice post-
tax function. Therefore, it is proved that the subclass of 7P™°¢ where Theorems 1 and
2 are silent contain both equal sacrifice and unequal sacrifice post-tax functions. In
other words, the converse of neither Theorem 1 nor Theorem 2 holds true: Example 2
illustrates that a progressive post-tax function that does not satisfy the antecedent of
Theorem 1 can be unequal sacrifice; and Example 3 shows that a progressive post-tax
function can be equal sacrifice without being concave (that is, without satisfying (3)).

Example 2. (Lindsey II)'3 Let

01, fo<z<1

h(z) = 0.04, if z € Useqoza,..08l + 00 L+ lng_i)
"] 0.05, if 2 € Ugeqa,. o0l + 1550 1+ 355)
0.04, if2< =,

and define .
flz) = /0 h{u)du for all z > 0.

It easily follows that f € F. One can also directly verify that, for any z > 0,
J5 h(u)du > zh(z) so that f € FPE, Here we find that max, ;50 h(z)h(z) < minyq h(y)
so that (2) is trivially satisfied {while (3), of course, fails). We claim that f(.) is not

oz, z€{0,b)
12More generally, let f € F be defined by f(z) := { az+8, =z & [b,b2) .If and only if
azz+ 0y, z € [bg,00)
o3bo + 82 < by and ap < a3, the hypothesis of Theorem 1 holds, and thus, under these conditions
one can conclude that f{.) is not an equal sacrifice post-tax function. On the other hand, if o1 >
a3 > a3, then Theorem 2 entails that f(.) is equal sacrifice. '
13This interesting example is communicated to us by Professor John Lindsey II; we gratefully
acknowledge our debt to him.



an equal sacrifice post-tax function. Assume, by way of contradiction, that (1) holds
for some strictly increasing and concave u : Ry — R. Then, upon iteration, we
must have u(z) = u(f™(z)) + nc, and hence,

o, () ='u’+(f"'(z))dn(m) forallz >0andn € {...,~1,0,1,..} (4)

where d,,(z) := (f*)'.(z) for all > 0 and n € Z, and where the right differentiability
of u(.) follows from its hypothesized concavity.!* Now define

k-1 1, if kis odd

sp=f (1 + W) for all k € {1,...,99}, and nyx = { 0, ifkiseven

Choosing z € {f ™ (s&), f ™ (sk+1)} and n = ng in (4), we obtain, for all k €
{1,...,98}, |

W, (F7™(58)) = )y (8k)dny (F 7™ (sx)) and u (F 7™ (sk41)) = Uy (Sk41)dny (F 7™ (8841))-

By concavity of u(.) and the fact that f™™*(sg41) > f~™*(sk), we thus have

dn (7™ (58) o wilsen) o
dnk(f—"k(sm))z () for all k € {1,...,98}. (5)

On the other hand, choosing first n = ngg— 1 and x = f~"971(sg9), and then n = ngg
and z = f~"(s1) in (4), we have u/, (f ™" (s99)) = !\ (599)de—1(f "1 (500));
and o, (77 (s1)) = v, (81)dnge (f™*(s1)), respectively. Thus, by concavity of u(.)
and the fact that f~™+1(sg) < f77F1(1) = f™(f(1)) = f"*(s1), we have

drgo—1(f " (509)) o i (s1)
dngg(f_ngg(sl)) N uil-(SQQ) '

Combining this with (5) yields that

— 9 dne (f 7™ (k) \ dnge—1{f 1! {500)) (98 wy (k1)) ¥il(s1)
A (kl;ll dﬂk(f_nk(3k+1))) drge (£ (51)) = kl;ll !y (sx) )“’+(899) =t

. : dny (F~™%(s5)) o .
But by direct computation, 7=t 5 (s::,x)) is found to be equal to 355 = 0.8 if k €

{1,3,..,97} and 1if k € {2,4,...,98} so that A = (0.8)%(1/0.04) = 0.00044 < 1, a
contradiction. We conclude that f(.} is not an equal sacrifice post-tax function. O

l4For any function ¢ : Ry — R and any n € {0,1,...}, we define the nth iterate of ¢ as the
function p™(z) := (po---oy)(z) for all £ > 0, where the composition operator is applied n times.



Example 3. Define

3z/4, f0<z<l
g(z) =4 (z/4)+(1/2), fl<z<2 .
z/2, f2<z

While proving Theorem 2 in Section 5, we shall show that, for any f € F, the iteration
sequence f™(x)/ ( ff,_(O))n converges in Ry, and, for any ¢ > 0, v : Ry — R defined
as
. —c e =)
u(z) := oz 77.(0) log lim o) for all z > 0,

satisfies u(z) —u(f(z)) = ¢ for all z > 0. Therefore, since that g € FP™°¢ can easily be
checked, showing that lim,_, (%)ﬂ g™(.) is a concave and strictly increasing function
is enough to conclude that it is, in fact, an equal sacrifice post-tax function. Now,
for n € {3,4, ...} we have

(", if0<z<1
(4) B=+13), ifl<z<2
e (O GE) -+, if2 <2 < g7}(2)

(A @) = | o e
N7 (1 () +Y), @) <z <)
D) @ <a<o)

| g— " 379 otherwise.

Observe that, for each n, (%)" g*(.) is concave on [0, g~"(2)] and that {g7"(2)}32.; is
a strictly increasing sequence such that lim, ..o ¢"(2) = limy_eo 2"+l — oo, There-
fore, limpnoo (%) g™(.) is concave on [0,1] U [1,2] U UZ,[2,97™(2)] = [0,00). On

the other hand, notice that D [lim, . (%)n g*(z)] > 0 for all z € [0,2] so that

limg, 00 (%)ng"(.) is strictly increasing on [0, 2]. Let z;,z, € ¢71([0,2]) and z3 > 1.

Then (z1,z3) = (g7 (a), g~ (b)) for some a,b € [0,2] such that b > a. Thus by strict

monotonicity of lim, e (%)n g™(.) on [0,2],

 Jitnnmoo (£)” g"(@2) = Hlimnco (3)" ¢"(97'(0) = limao Eg g (®)
> limpco %ngn(ﬂ)
3 lim, oo (§) 97(97(a))
= 3lim, e %%ngn(zl)

so we learn that lim,_,o (i)n g™(.) is strictly increasing on g~*([0,2]). But then, by an _

3
easy induction argument, it follows that lim,_,. (%)n g"(.) must be strictly increasing
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on lim, . g7*([0,2]) = [0, 00). We conclude that g(.) is an equal sacrifice post-tax
function.’® O '

Our final example is about the robustness of our findings with respect to the
boundary condition (A3). One can easily check that (A3} is not necessary for Theorem
1. Indeed, the proof of Theorem 1 given in the next section makes no reference to
this assumption. On the other hand, since this assumption is used crucially in the
proof of Theorem 2, it is not at all clear if it is necessary for this result. The following
example shows that it is not. Therefore, Theorem 2 is also not tight with respect to
the relaxation of (A3).

Example 4. Define

[ Bz —(Bz%/2), 0<z <1
/(@) "{ fz/(z + 1), 1<z

F(.) is a differentiable, surjective and concave function which satisfies (A1) and (A2).
Since, for any K > 0, there exists zo > 0 such that |8 — f(x)/z| = Bz/2+/z > K=z
for all z € (0,zp), it is clear that f(.) does not satisfy (A3). We claim that f(.)
satisfies (1), however. Let us first note that if lim,_., f*(z)/8" € (0,00) then, for
any ¢ > 0,

u(z) = (1;;6) log lim f"'(nx) for all z > 0,

defines a concave and strictly increasing utility function such that u(z) — u(f(z)) =
¢ for all £ > 0. (The detailed proof of this assertion is given in the next Sec-
tion.) Therefore, all we have to show to conclude that f(.) is equal sacrifice is that
limﬂ_,oo f*(z)/B" € (0,00) for all z > 0. Now, for any z > 0, lim,_c f*(z)/8" =

=2 i (z)/Bf"(z) € (0,00) if and only if 52.o(1— "1 (a)/Bf™ () converges (cf.
Theorem 4 of Knopp (1990), p. 220).'° But

fj (1 - J;]: ‘“)) \/f"(:n for all z € [0, 1,

n=0

15This example establishes that a progressive but not concave post-tax function may be equal
sacrifice. In fact, even a convex post-tax function can be equal sacrifice; in & private communication,
Professor John Lindsey II showed that the post-tax function f(z) = 1(z — alog(l + z)) with
a € (1,1/10) is equal sacrifice yielding with respect to a concave and strictly increasing utility
function. But, if one insists that an ‘admissible’ utility function for income is differentiable in an
arbitrary neighborhood of origin, then we have a very strong result: Almost all non-concave post-tax
functions are not equal sacrifice! (See Corollary 3.8 of Mitra and Ok (1994).)

16Notice that, by strict concavity of f(.), € + f(z)/z is strictly decreasing, and this implies
that 8 > ... > f"*Yz)/f*(z) > ... > f(z)/= for any = > 0 and positive integer n. Therefore,
lim, oo f(2)/8" = [1os F*TH2)/Bf"(z) € [0,00) is guaranteed for any z > 0; all we have to
check is that H:’:D Frti(z)/Bf{(x) > 0 for all z > 0.
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so that choosing z = 1 and noting that

fr) < L% for all n € {0,1,...},

we learn that %4 1/ (1) < oo, and therefore lim, . f*(1)/8" > 0. By the mono-
tonicity of £(.), limp—e f™(.)/8" is a non-decreasing function, and hence by the pre-
vious observation, we must have lim, o f™(z)/8" > 0 for all z > 1. Finally, let

% :=max{z € [0, 1) : lim f*(z)/8" =0}

which is well-defined since limp—oo f™(-}/8" is a concave function (being the limit of a
convergent sequence of concave functions), and thus, is continuous on (0,1). If £ > 0,
using again the monotonicity of the limit function, we see that lim, . f*(.)/6" van-
ishes on [0, &) and is strictly positive on (£, 1], and this implies that lim, .o f"(.)/8"
is not concave around Z, a contradiction. Therefore, & = 0 and lim, . f*(z)/6" > 0
for all z € (0,1] as well, and the claim is proved.'” O

5. Proofs

Proof of Theorem 1
Assume the hypothesis of the theorem, and let

u(z) —u{f(z)) =c forallz >0,

for some ¢ > 0 and v : Ry — R which is strictly increasing and concave. Then, for
any z > 0 and € > 0,

u(z +€) —u(f(z +€)) = u(z) — u(f(z))
so that by the Taylor’s expansion from the right
uz+e) —u(z) = ul(f(z+e)) —u(f(z))

= u(f(z) + fi(z)e +o(€)) — u(f(z))

171n effect, this example establishes the fact that (A3) is not necessary for limp_,oo f*(z)/6" €
(0, 00) for all £ > 0. The following result due to Seneta (1969) gives necessary and sufficient condi-
tions for this convergence to hold: lim, . f*(z)/8" € (0, 00) for all z > 0 if, and only if,

[ ()

(A3), of course, implies this integral condition, but not conversely. (In the case of the above example,

R (8-7(3))da=5)
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where lim,;p = o9} — (. Therefore, for any z > 0 and € > 0,
u(z +¢) —u(z) _ (fi(m)f + 0(6)) (U(f(ﬂ?) + fi(z)e + o(e)) — U(f(m)))
€ € filz)e+o(e) '

By letting € | 0 (and recalling that u(.) is right differentiable since it is concave) we
obtain

(z)

u!

u(x) = fi (zhely

(f for all z > 0. (6)
Since xp > y and u(.) is concave, v/ (y) >

z))
. (z0) and (6) yields
0)

o (F(9)) > ( B8 (1(eo). )
Letting = = f(z) in (6), v/, (f(z0)} = fL{f(z0))u,.(F*(x0)) and so (7) gives
o (F)) 2 (“‘”}f(g (%”) o, (F(0)). ®)

But since f(zo) < y and f(.) is strictly increasing, f*(zo) < f(y) and by concavity of
u(), w, (F2(z0)) > ', (F(y)). Therefore, (8) gives

o (o)) > (L) o (g2

and this contradicts the hypothesis that f} (y) < fi(zo)f}(f(20)).

Proof of Theorem 2

Let f € F and assume that (3) holds. Since f(.) is continuous and right differentiable
on R, by an obvious modification of the mean value theorem, for any b > a > 0,

|£(5) — fla)l < f1{€)(b—a) for some £ € (a,b).

But by hypothesis (A2), £, (£) < 1 so that we obtain |f(b} — f(a)| < (b — a) for all
b > a > 0. It immediately follows that f is absolutely continuous. Therefore, we may
apply the second fundamental theorem of calculus for Lebesque integral to write, for
any a > 0,

fl@)=fla)+ [ “Fl(H)dt forallz>a. (©)

Suppose that there exist zg > 0 and y > 0 such that zo > y and f}(zo) > fi(y)-
Since 0 < f(zo) < To, we have lim, . f*(xo) = 0, and therefore, there must exist a
positive integer np such that y € [f™+!(zo), f™(z0)). Applying (3) at = = f™(zo),
we then have

Fie(f™ (o)) < f1{y) < filmo).

12



But this is impossible, for by applying (3) successively,

Fimo) < FilF(mo)) < fLlf (o)) < -+ < FLlf™ (o).

We therefore conclude that fi{z) < fi(y) whenever 0 < y < z; that is, fi(.) is
decreasing on (0, 00). But then, in view of (9) and a well-known characterization of
concavity (cf. Theorem A of Roberts and Varberg (1973), p. 9-10), we may conclude
that f(.) is concave on (a,co) for any a > 0. It follows that f(.) is concave on (0, c0).

Now let f (0) = § and define, for any = > 0,
_ M=) . 1
Ga(z) := B foralln € {0,1,..} and G(z):= lim Ga(x),

where f%(z) = z, and for any n > 1, f*(.) is the nth iterate of f(.) (see footnote 14).
Assume for the moment that G(z) € (0,00) for all z > 0, and, for any ¢ > 0, define
the function v : R4+ — R as

-—C
log 8

First thing to note is that G(.) is the limit function of a convergent sequence of
concave functions, and hence, it is concave on (0,00). This implies that u(.) is a
concave function. Moreover, for all z > 0,

e @) R i O W RO A )
o B log nl}_x)lgo o iog ﬁlog (ﬁ ,}Lr& o ) = log lim —-= —¢,

that is, u(f(z)) = u(z) — c.

We next claim that G{.) is, in fact, strictly increasing. Since f7(.) is strictly
increasing for each n, G(.) must be non-decreasing, and hence G/, (z) > Ofor all z > 0.
But by (A1), G(0) = 0, and hence, that G(z) > 0 for all z > 0 implies that there exists
y > 0 such that G', (y) > 0. Then, by concavity of G(.), G'(z) > 0 for all z € (0,y);
that is G(.) is strictly increasing on (0,y). Now, let z;,z; € f~((0,y)) and z2 > 21.
Then, ; = f~!(a) and zy = f~1(b) for some a,b € (0,y) such that b > a. Since
G satisfies G(f(z)) = AG(z) for all z > 0, we have G(f~'(b)) = G(b) > G(a) =
BG(f~'(a)) since G(.) is known to be strictly increasing on (0, ). Thus, G( FHe)) =
G(zz) > G(z;) = G(f*(a)) proving that G(.) is strictly increasing on F7H(0,9)).
By induction, it follows that G(.) is strictly increasing on f"((0,y)) for all n €
{0,1, ...} which, in turn, implies that G{(.) is strictly increasing on U f(0,y) =
(0, limy, oo f(3)). But by (A2), --- > f~2(y) > f{y) > y so that {f"(y)};Zo
is a strictly increasing sequence. If {f~"(y)}3% was bounded, then we would have
lim,_..o f™(y) = M for some M > 0, and by continuity of f~!(.) and (AZ2), we would
obtain the following contradiction:

Jim () = lim fE ) = £ im ) = £ M) > M

—00

u(z) == logG(z) forall z> 0.
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Therefore, {f™{y)}>2, cannot be bounded, and we conclude that lim, ., f~"*(y) =
oo. Consequently, G(.), and thus u(.), is strictly increasing on (0, co).

The above analysis shows that the proof of Theorem 2 will be complete if we can
show that G(z) € (0, 00). Let = > 0 be arbitrary. We have, for all n € {0,1, ...},

M) _ fUrE) fU @) flm)
g Bfr(z) Bfz) T P

@) _ (5 R@)
G(z) = lim, =, ‘(Eo ﬁf“(:ﬂ))

so that

Therefore, G(z) € (0, 00) if and only if

e nH(f) € (0, 00). | (10)

Since f(.) is concave, t — f(t)/t is decreasing. Moreover, lim,_o f(¢)/t = 5, and
hence f*(z)/8f" () < 1 for each n. Consequently, by Theorem 4 of Knopp (1990),
p. 220, (10) holds if and only if

(- e) )

is convergent. By (A3) and the fact that lim, . f"(z) = 0, there must exist an
integer N and K > 0 such that

‘f (=) ﬁ‘ < Kf*(z) whenever n > N

and thus,

o f““(-'r)) n(
1- = 2 [t (12)
S0-gra) <5 %
We shall next show that > f*(z) is convergent. Let v € (5,1). Notice that since
{f*Y(z)/f*(x)}2, is a decreasing sequence converging to 3, there exists an integer
L such that

n> L implies f**(z) < vf*(z). (13)

Of course, there must exist an integer ny such that fE(z) < 4™z so that by (13),
fi+l(z) < 4™+, This can immediately be generalized to

frH (@) <™ty forall £=1,2,...,

14



and therefore, we must have

oo o0
3 M) <z ¥yt < oo
n=L

£=1

Combining this observation with (12}, we learn that the series in (11) is convergent.
As noted earlier, this proves (10) and hence completes the proof.
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