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ABSTRACT

NONMYOPIC EQUILIBRIA

Steven J. Brams and Donald Wittman

A new concept of equilibrium in normal-form games, based on the
idea that players can look ahead and anticipate where a process may
end up if they are allowed to make an indefinite number of sequential
moves and countermoves from any outcome in a game, is defined and illus-
trated. Unlike the more myopic equilibrium concepts of Nash and
Stackelberg in noncooperative game theory, and bargaining and solution
concepts in cooperative game theory, a nonmyopic equilibrium is a look-
ahead concept that places no arbitrary limit on the extent of bargaining
or kinds of threats that might be made. Among its advantages are that
it (1) coincides with the generally accepted minimax solution to two-
person, zero-sum games with saddlepoints, (2) shows up long-term
stability that more myopic concepts fail to find in other two-person
games, including Prisoners' Dilemma and Chicken, (3) is applicable to
n-person games--with and without coalitions--(4) is calculable by

means of an alogrithm, and (5) is invulnerable to "theory absorption.”
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NONMYOPIC EQUILIBRIA

Steven J. Brams and Donald Wittman

1. TIntroduction

In this paper we shall define a new concept of equilibrium in
normal-form, or matrix, games, based on the idea that players can look
ahead and anticipate where a process might end up if they are allowed
to make an indefinite number of sequential moves and countermoves from

any outcome in a game. We call this concept a nonmyopic equilibrium

and shall show how it differs from the more myopic equilibrium concepts
of Nash and Stackelberg, which consider only unilateral deviations of
players, or single best responses by players to another player's strategy
choice. We shall also point out that solution concepts in cooperative
game theory are encumbered by a similar myopia.

Because the concept of a nonmyopic equilibrium is a rather subtle
one, we shall, after reviewing previous research in Section 2, begin our
analysis by defining it for 2 x 2 ordinal games, in which each player
can rank the four possible outcomes from best to worst. We shall then
show that it exists in 37 of the 78 distinct 2 x 2 games (47 percent),
generally coinciding with pure-strategy Nash equilibria in these games.

But in two of the 37 games, the nonmyopic equilibria do not coincide
with Nash equilibria, or the less myopic Stackelberg and dual Stackelberg
equilibria (to be defined in Section 3) in these games. Significantly,

these nonconforming cases are game theory's most famous--and problematic--



games, Prisoners' Dilemma and Chicken. In both these games, the
"cooperative™ outcome is singled out as stable in tte nonmyopic but
not the Nash or Stackelberg sense, providing a new rationale for its
choice by players who are farsighted.

We compare this rationale with that of metagame theory, in which
the cooperative outcomes of Prisoners' Dilemma and Chicken are stable
in the metagames of these games, but show in Section U4 that metagame
theory's equilibrium predictions are not the same. We also compare
nonmyopic equilibria with other equilibria in games and supergames.

In Section 5 we turn to general two-person (finite) games and prove
several results, including the coincidence of saddlepoints and nonmyopic
equilibria in strictly competitive (zero-sum) games. In nonstrictly
competitive games, we demonstrate the existence of nonmyopic equilibria
that are (1) Pareto-inferior and unique or (2) Pareto-inferior and not
coincidental with Nash.

We also offer in Section 5 a general definition of nonmyopic
equilibria in two-person games, and in Section 6 indicate how coalitions,
and nonmyopic coalition equilibria, can be defined in n-person games.

In addition, we consider problems associated with finding such equilibria
and argue that the computational difficulties should not detract from
the theoretical importance of the concept in understanding bargaining
processes, and its philosophical significance as an uilibrium concept
sustained by, not rendered vulnerable to, "theory absorption™ in dynamic
games.

| Our approach to dealing with the problem of anticipating moves and

countermoves in a game might be interpreted as laying the basis for a



a theory of threats and counterthreats.2 Threats, after all, are designed
to deter opponents from making moves whose ultimate consequences may not
be fully appreciated. We assume in the subsequent analysis that the
players can work out the consequences that are set off by deviations
from a particular outcome, so communication of these, in a strict sense,
is superfluous. In the proverbial real world, however, since we cannot
assume players possess all the information we posit, threats and counter-
threats may reinforce consequences that are not immediately evident to
the players.

More generally, we seek to develop a dynamic theory of strategy
that taps the complex and subtle aspects of bargaining implicit in an
outcome matrix. It may seem a contradiction in terms to make an equi-
librium concept the cornerstone of a dynamic theory, but we believe the
foundation for such a theory must be built on the assumption that a
process ends somewhere (i.e., there is equilibrium), or, if it does not,
the path the process follows in a nonequilibrium state must be specified.
In Section 2 we review some other approaches that have been taken to the

development of a dynamic theory of strategy.

2., Previous Research

It is well known, and was readily admitted by its creators (von
Neumann and Morgenstern [43, pp. 4W-U5]), that game theory is essentially
a static theory. Many efforts have been made to introduce dynamic
elements into the theory. 1In cooperative game theory, for example, a
variety of bargaining-type solutions concepts has been proposed,

following from the pioneering work of Aumann and Maschler [2].



Generally speaking, however, the solution concepts proposed allow
for only limited dynamic interplay, such as "objections" and "countér-
objections” in Aumann and Maschler's bargaining-set solution. Their
concept does not permit subsequent objections to the counterobjections,
and so on, which less myopic bargaining might encompass.

Metagame theory, as developed by Howard [20] , is perhaps the most
significant attempt to introduce bargaining considerations into non-
cooperative games. Essentially, metagame theory provides a rationale
for new equilibria in normal-form games, based on the successive expan-
sion of each player's strategies, conditional on other players' strategies.

The theory is innovative but tends to be cumbersome because the
conditional calculations of players quickly produce a veritable explosion
of strategies, requiring an analysis of very lérge matrix games
indeed. (Just how large can be seen from Howard's [23] analysis of the
"general metagames” of Prisoners’' Dilemma.) Moreover, the theory is
largely developed only for two-person games. Also, the meaningfulness
of metaequilibria in the play of a game has been questioned (Harsanyi
[17] ; Howard [21]), Howard [22] has sought to extend his original
theory by introducing various "stability-reinforcing" properties which,
in our opinion, point up the difficulties of developing a dynamic theory
within his framework. The dynamic theory is further elaborated and
illustrated in Howard [24].

Research on differential games, stimulated by Isaacs [25], has
been an area of recent ferment. Unfortunately, there are no compelling
solution concepts that have meaningful interpretations in a variety of

differential games. Indeed, the notion of a "solution" in a differential



game is itself controversial (Isaacs [26]). Related to work on differen-
tial games are dynamic-process models of the kind developed by Kramer
[g§ﬁj§ﬂ, in which paths or trajectories are found in electoral-competi-
tion situations that demonstrate party/candidate convergence under
specified conditions. But here, too, the parties/candidates are very
myopic and do not consider future moves.

Our work is perhaps closer in spirit to Cyert and DeGroot [6,7,8]
and Marschak and Selten [32], who consider sequential responses to moves.
However, Cyert and DeGroot artifiecially limit the number of responses,
and Marschak and Selten do not consider the nature of the equilibria.

We will réturn to their work later in our paper.

Finally, supergames have been used to analyze the extended play of
different games in order to determine optimal strategies in a series of
trials. Taylor [42], for example, has analyzed supergames of Prisoners'’
Dilemma, but the results tend to be quite sensitive to such parameters
as the discount rate of players. Additionally, repeated trials of a
single game hardly capture the intricacies of many real-life bargaining
situations. We shall, however, briefly compare in Section 3 the pro-
posed nonmyopic equilibrium with equilibrium concepts that have been
suggested for supergames.

In a capsule review, of course, we cannot do justice to all the
interesting and important work on dynamic approaches to strategic
analysis. Moreover, our criticisms of the work cited are not meant to
suggest that we have solutions to all the specific problems to which
we alluded. Our point rather is that there remain problems in the

development of an adequate dynamic theory of strategy.



We close this section by specifying three criteria that we think
an adequate dynamic theory should satisfy:
1. It should be nonmyopic--there shouid be no arbitrary limitation
on the extent of conjecturing, or where it may lead.

2. There should be readily calculable solutions--those for which

an algorithm can be specified--that indicate where the process
will end up. If such equilibria do not always exist, conditions
for their existence should be given.
3. The concept of a solution should be general--applicable to both
two-person and n-person games, with and without coalitions.
We would also add a fourth and less tangible criterion: the concept
of a solution should be interpretable and meaningful in a variety of
contexts. It is hard to operationalize this criterion, but perhaps
two measures of a solution's usefulness are that it (1) coincide with
solution concepts that are generally accepted (e.g., minimax in two-
person, zero-sum games with saddlepoints), and (2) offer new insights
into games with no generally accepted solutions (e.g., two-person,

nonzero-sum games) .

3. Nonmyopic Equilibria and Related Concepts

We begin by offering an intuitive idea of the equilibrium concept
we shall shortly define formally. The idea is that players look ahead
and ascertain where, from any outcome in an outcome matrix, they will
end up if they depart from this starting outcome. Comparing the final
outcome with the starting outcome, if they are better off at the starting
outcome--taking account of their departures, possible responses to their

departures, and so on--they will not depart in the first place. In



this case, the starting outcome will be an equilibrium in an extended,
or nonmyopic, sense, This sense implies that, in a game of complete
information, players act on an extended notion of rationality: they
not only prefer better to worse outcomes but, in addition, base their
comparisons on the assumption that all players will make optimal depar-
tures, looking ahead, in a strictly alternating sequence.

It is not necessary to assume that the sequential departures
(first row, then column, etc.) are physical moves. Rather, they may
go on in the minds of the players, tracing out the consequences of their
possible departures, and stopping them--or not starting them in the
first place--when they anticipate they will end up worse off. Thus,
the nonmyopic equilibrium we shall define can be interpreted as an
outcome stable in the face of either physical moves or (putative)
threats and counterthreats.

Although it is not necessary to assume that the sequential depar-
tures are physical, we would argue that sequential physical moves are
a more accurate description of real-world behavior than simultaneous
choices (possibly repeated in a supergame). As a case in point, the
Iranian hostage crisis of 1979-80 did not involve simultaneous decisions
by Iran and the United States; rather, each side responded to the other,
trying to anticipate where each move might lead.

In effect, our sequential-move analysis can be seen as a discrete
analog of a continuous game, wherein behavior in past plays of the game
éontinuously determines possible moves available in the present. To
make these ideas more concrete in the discrete case, consider a 2 x 2

game, in which there are two players, each of whom has just two strat-



egies. For convenience, assume that each player's best outcome is
indicated by "4," next best by "3," next worst by "2," and worst by
"1." Thus, the higher the number, the better the outcome, but the
numbers indicate only an ordinal ranking, not cardinal utilities, that
the players associate with the outcomes.

How can the look-ahead idea underlying a nonmyopic equilibrium be

formalized for 2 x 2 games (see Figure 1)? For each outeome; one con-

FIGURE 1

2 X 2 GAME

(alaaz) (dl9d2)
(by,by)  (cg,c))

ducts a test to ascertain where departures by row (R) and colum (C),

from any starting outcome, will terminate (if anywhere). 1In the out-

come matrix of Figure 1, outcomes subscripted by 1 are R's, outcomes
subscripted by 2 are C's, and preferences are assumed to be strict.
Without loss of generality, let (al,az) be the starting outcome.
Moves first by R, then by C, and so forth, from this outcome can be
represented by a game in extensive form, or game tree, as shown in
Figure 2. A "final outcome™ on the game tree is reached when the player
with the next move has no inéentive to move and so stays at that outcome.
To determine whether an outcome is final, it is necessary to work
backward up the game tree. Consider R's move at (cl,cz). Whether R

prefers (dl’dz) (i.e., d3> cg) or (el,ez) (i.e., ;P d;), call his



FIGURE 2

GAME TREE FOR MOVES, STARTING WITH R, FROM (a,ap)

R at (al,az)

Stay Move

(al,az) C at (bl’bZ)
Stay Move
(bl’bZ) R at (cl,cz)

Staz///\\\\f?ve

(Clscz) (dl’dZ)

preferred outcome (xl,xz). Substitute (xl,xz) for the endpoint of the
second-to-bottom "Move" branch emanating from "C at (by,bs)."

Working backward again, one would then compare (bl’bZ) with (xl’XZ)
Call the outcome which C prefers in this comparison (yl,yz). This out-
come would then move up to a final comparison with (al,az) by R.
Whichever outcome "survived" this comparison would be the surviving
outcome, which we label (z;,z;), at the top, or root, of the tree.

To determine whether (Zl=22) is a final outcome, or the process
is intransitive, one has to ascertain whether the surviving outcome
would indeed terminate the process of moves and countermoves. A simple

test suffices: (27,22) is a final outcome if, moving from the top

of the game tree of Figure 2 to the bottom, a player at any branch (node)
will stay because, by doing so, he obtains his best outcome. Clearly,
if a; = 4 or e, = 4, R will have no incentive to move from (al,az) or
(Cl’CZ)’ respectively; and if b2 = 4, C will have no incentive to move

from (b1=b2)' Similarly, although we do not show a move by C in the
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game tree of Figure 2 from (dl’dZ) back to (al,a2), which would complete
the cycle, such a move would not occur if d2 = U, giving C his best
outcome at (dl’d2)°

In sum, for an outcome to be final, two conditions must be met:

1. That outcome survives: the backward comparisons of the game-tree

analysis eliminate all other outcomes.

2. There is termination: there exists a node in the game tree such

that the player with the next move can ensure his best outcome by
staying at it.
Basically, Condition 2 is needed to guarantee that the process
is not intransitive--that is, would not cycle back to (al,az). Given
this is the case, Condition 1 gives an algorithm for finding the
rational outcome the players will choose when they look ahead.

It is important to note that the final outcome will not necessarily
be where the process would terminate simply because it is best for the
player with the next move. For example, if (dl,d2) = (1,4), the second
condition would be satisfied, but the process would never reach this
outcome. The reason is that (dl,dz) would be eliminated by (cl,c2) as
the surviving outcome since, necessarily, Cl:’ dl = 1 in the comparison
at the bottom of the game tree in Figure 2. Whether (cl,cz), (bl’bZ)’
or (al,az) would then emerge as the (final) surviving outcome would
depend on the players' preferences for the other outcomes.

If Condition 2 is not met, an extension of the game tree of Figure
2 to include the repetition of moves in a cycle could lead to surviving
outcomes different from those given by ending the tree at (dl’dZ)' For

example, an extension of the tree from, say, (dl,d2) back to (al,az)
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could switch the surviving outcome from (dl,d2) to (al,az), rendering
the claim for either outcome as "final" a tenuous one. To avoid

making the final outcome dependent on where the tree analysis stops,

and therefore essentially arbitrary, we insist that there be termination:
only if the process assuredly reaches an outcome best for a player with
the next move--before cyecling--will the surviving outcome bé indis-
putably final.

If there is no cyeling, and hence no intransitivity, because
Condition 2 is satisfied, the backward comparisons we have specified
will allow the players to determine at what node the process will stay.
If the process stays immediately at the starting outcome, (al,az), R
would have no incentive to depart initially; otherwise he would, and
(a;,ay) would not be a nonmyopic equilibrium.

More formally, an outcome (al,az) is a nonmyopic equilibrium for R

in a 2 x 2 ordinal game iff (if and only if) the final outcome, as
determined by backward comparisons starting from (dl’dg) in the game
tree of Figure 2, is (al,a2). Analogous comparisons, starting with a

first move by C at (al,a2), define a nonmyopic equilibrium for C. We

say that (al,az) is a nonmyopic equilibrium iff it is a nonmyopic

equilibrium for both R and C. Clearly, a departure from such an outcome
by either player weuld lead him to an unequivocally worse outcome.

Note that if (al,a2) is not a nonmyopic equilibrium, the final
outcome that could be triggered by an initial move by either R or C
might be (b;,b5), (cl,02), or (dl,d2), given the process is not intran-
sitive. Whichever outcome it is, it will be preferred by the departing
player to (al,a2), for otherwise he would not have departed from (al,a2)

in the first place.
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The process, however, will not reach a final outcome if Condition
2 is not satisfied and it is, therefore, always rational to move at each
node, including (dl,d2) if R departs initially. Although one cannot
say in the case of such an intransitivity that R would do unequivocally
worse if he departed from (al,a2), he would certainly not be any better
off if the process cycled completely. More important, however, is the
fact that there is no stable outcome if cyeling occurs, for it may
continue indefinitely. Indeed, if (al,a2) is not a nonmyopic equilib-
rium because it is in a cyele, neither is any other outcome in the cycle.

Our principal interest, however, is in equilibrium outcomes; we
assume that disequilibrium outcomes contribute negligible value to the
players as they pass through them. For example, if payoffs are a func-
tion of time, and moves through the disequilibrium ouft comes are per day
while moves in equilibrium are per year, it is the equilibrium solution,
if it exists, that is consequential for the players.

Our notion of a nonmyopic equilibrium differs racically from more
myopic concepts. Consider that of Nash [36] and Stackelberg (as des-
cribed in Henderson and Quandt [18, pp. 229-231]). An outcome is a

Nash equilibrium if neither player (in a two-person game, which is what

we shall focus on here), by departing unilaterally, can improve the

outcome for himself.3 An outcome is a Stackelberg equilibrium if neither

player, after anticipating the best response of the other (follower)

to his (the leader's) choice of a strategy, can obtain a better outcome
for himself--each player alternately being considered the leader, who
departs initially, in the test. If the equilibrium is the same whichever
player is considered the leader (follower), the outcome is a dual

Stackelberg equilibrium.
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Stackelberg's concept is clearly less myopic than Nash's, but it
does not allow for best responses to best responses, and so on. Its
restriction of best responses--to just one by the follower--is arbitrary
in games in which subsequent responses are rational.

Moreover, Stackelberg's concept assumes responses to an initial

strategy choice of a leader, whereas the nonmyopic concept assumes

possible departures from an outcome.® Put another way, in ascertaining
nonmyopic equilibria, players are assumed to be at a particular outcome

(based on previous strategy choices), or to consider the possibility

of being at that outcome.

To assess this outcome's long-run stability, players evaluate the
consequences of departures from it, or that of other outcomes to which
they might move sequentially in a series of steps. The process starts
at an oufcome, perhaps a status quo point, and stability depends on where
sequential departures may move the process. It should be stressed that
departures are assumed not to be simultaneous but rather alternating,
which we think mirrors the reality of most bargaining processes, wherein
players react successively--not instantaneously--to each other's choices.

The concept of a nonmyopic equilibrium differs in another sig-
nificant way from Stackelberg's concept. Leaving aside the fact that
an outcome, rather than a strategy,-is the starting point, a nonmyopic
equilibrium does not simply extend Stackelberg to an endless series of

(myopic) best responses. Departures are triggered by a full anticipa-

tion of how each player at each stage will respond, vis-a-vis his present

outcome and his anticipation of the entire chain of consequences set

off by each (rational) departure.
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This calculation, unlike that for a parlor game like chess, has
ramifications for the extended play of all games in which sequential
physical or mental moves are possible. Of course, constructing a
normal-form representation of chess, not to mention finding nonmyopic
equilibria in it, is well-nigh impossible, but in principle the concept
of a nonmyopic equilibirum is defined for this game.

Recently, a similar equilibrium concept was proposed by Marschak
and Selten [32], based on an "extended response function" that speci-
fies the outcome of a sequence of deviations by some player from any
outcome., Marschak and Selten show that there may not exist response
functions in games with certain desirable properties--for example, that
they are "restabilizing," or rationality-preserving.

In our view, the significant problem is not to find "reasonable"
response functions but rather to define rationality in terms of survival
and termination conditions and ask what outcomes in games (if any) will
be stable in the look-ahead sense. Marschak and Selten offer no explicit
definition of rational behavior but instead analyze response functions
in supergames, which seem to us an unnecessary complication,

Supergame equilibria are also studied in Aumann [1l], Friedman [12,
13,14,15] , and Roth and Murnigham [39] , among other places. Essentially,
these are Nash equilibria in a supergame--that is, a game comprising
repeated plays of the same (constituent) game--in which constituent
game strategies are assumed to be chosen simultaneously by the players
in each play of the constituent games. (The Nash equilibria in the
supergame are not necessarily Nash equilibria in the constituent games

strung together.) This, of course, is a very different concept of
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stability from that based on sequential moves of players, looking a
i
ahead, in a single game.

Cyert and DeGroot [6] make this point emphatically in justifying
their own sequential model, but they offer a solution only in a duopoly
(two-person) game in which the number of periods (plays) is known in
advance. These restrictions remain unaltered in their more sophisti-
cated learning models (Cyert and DeGroot [7,8]). By comparison, we
assume an indefinite number of sequential moves (dependent on the game
being played) in the determination of equilibria. Moreover, the con-
cept we have formally defined for 2 x 2 games is readily generalizable
to general two-person as well as n-person games in normal form, about
which we shall say more later.

A recent and still different approach to modeling game dynamics,
utilizing summary measures of past outcomes, is developed in Smale [41],

but it is based on very different assumptions from ours.

4, Classification of Nonmyopic Equilibria in 2 x 2 Games

A complete enumeration of the 78 distinet 2 x 2 ordinal games in
which preferences are strict is given in Rapoport and Guyer [§Z] and
Brams [5]. These games are distinct in the sense that no interchange
of strategies by R or C, or interchange of players, or both, will
transform one of the 78 games into any other.

0f the 78 games, 37 (47 percent) have nonmyopic equilibria, in
all of which--except one--the equilibrium is unique. These games can
be divided into three mutually exc%usive classes:

I. 21 no-conflict games (57 percent). These games all have one




16

outcome mutually best for both players [(4,4)], so neither player has
an incentive to depart from it. All Class I equilibria are also pure—'
strategy Nash equilibria.5

II. 9 games (24 percent) in which one player obtains his best

outcome but the other does not. An example is game 36 in Rapoport and

Guyer [37] and Brams [5], which is shown in Figure 3 with its nonmyopic

FIGURE 3

CLASS II GAME

(2,9 G.D

(1, 3) =pe(4,2)

equilibrium circled. Obviously, since (2,4) is C's best outcome, R
is the only player with a possible incentive to depart from (2,4).
Should R move the process to (1,3), C would have no incentive to move
it to (4,2), because this is R's best outcome and he therefore would
not be motivated to move from it. Since (4,2) is only C's next-worst
outcome, he would have no incentive to move from (1,3). But now R
would have no incentive to move to (1,3) in the first place, so (2,4)
is a nonmyopic equilibrium.

In this manner, the backward reasoning described in Section 3
establishes (aj,ap) = (2,4) as the surviving outcome, which is also
final because there would be termination at (4,2) if this outcome were
reached. However, since departures from (2,4) would be irrational for
for both players, this outcome is a nonmyopic equilibrium. All Class

II nonmyopic equilibria are also pure-strategy Nash equilibria.
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ITII. 7 games (19 percent) in which neither player obtains his

best outcome, Five of these games are shown in Figure 2 (games 7-11

in Rapoport and Guyer [37] ; games 16-20 in Brams [5]). If either

FIGURE

FIVE CLASS TIIT GAMES

ﬂ@-"cw) G+  |Go—>wn |G+
(2,%) (1,1 (i%“) 2,1 (1,4 (2,2) (i{H) 3,1

%+, 1)

¢

L% 3,2

player departs from the nonmyopic equilibria in any of these games,
the outcome reached would not only terminate the process but also be
best for the other player. Because this terminal outcome is inferior
to the starting outcome for the initially departing player, he would not
be motivated to depart from it. The nonmyopic equilibrium in each of
these five games is also a pure-strategy Nash equilibrium,

The remaining two games in Class III are the most interesting for
two reasons: (1) a nonmyopic equilibrium in each of these games is
not a pure-strategy Nash equilibrium; (ii) despite the extensive dis-
cussion of these games in the literature, there is no generally agreed-
upon "solution" to either.

Consider first the game shown in Figure 5, which is called Prisoners’
Dilemma and has a rich and colorful history (Brams [4, chs. 4 and 8, and

citations therein]). The reason (2,2) is a nonmyopic equilibrium in
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FIGURE 5

PRISONERS' DILEMMA

C

m ‘(4,1
R v )
(1,4

this game is the same as that given for the five games in Figure Y.

By comparison, outcome (3,3) is a nonmyopic equilibrium because if,
say, R departed from it, the terminal outcome reached would be (1,4),
as shown by the arrows in Figure 5, which is inferior for R.

In fact, however, the penultimate outcome reached, (2,2), would
have its own "finality," because it itself is a nonmyopic equilibrium.
In either event, comparing (3;3) with either (2,2) or (1,4) for R, R
would have no incentive to depart from (3,3), and neither of course
would C because of the symmetry of the game. Hence, (3,3), as well as
(2,2), is a nonmyopic equilibrium in Prisoners; Dilemma; however, only
(2,2) is a pure-strategy Nash equilibrium, in addition to being a (dual)
Stackelberg equilibrium. Moreover, note that from (1,4) or (4,1) the
process would move to (2,2), not (3,3), making (2,2) the absorbing
equilibrium in this game: from any outcome except the other nonmyopic
equilibrium [(3,3)], (2,2) would be the outcome to which the process
would gravitate in a series of moves and countermoves by the players.

The last game in Class III, shown in Figure 6, is known in the
literature as Chicken. Tt has a unique nonmyopic equilibrium, (3,3),
which is not also a pure-strategy Nash equilibrium. Neither is it a

dual Stackelberg equilibrium: if R is the leader, the equilibrium is
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FIGURE 6

CHICKEN

(4,2)=—>(1,1)

(4,2); if C is the leader, the equilibrium is (2,4). Each of these
Stackelberg equilibria is also a Nash equilibrium because, from each
neither player would have an incentive to depart unilaterally.

As shown by the arrows in Figure 6, the terminal outcome that would
be reached if R departed initially from (3,3) is (2,4), which is inferior
for him, Similarly, by the symmetry of the game, C has no incentive to
depart from (3,3), so this is a nonmyobic equilibriuﬁ but, like (3,3) in
Prisoners' Dilemma, it does not absorb other outcomes.

It is worth pointing out that if we relax our assumption of strictly
alternating departures from an outcome, and instead allow players to
backtrack or not respond, then the nonmyopic equilibrium in games like
Chicken might not be sustained. Specifically, assume a player moves
the process in Chicken to, say, (1,1), but it is not incumbent on the
second playér to move next. To the contrary, the second player can
respond by not moving, hoping to force the first player to backtrack
to a previous (and more favorable) outcome than one he (the second
player) can achieve by making the next move himself. Backtracking, of
course, implies that moves are not irrevocable--one can renege on a
commitment; permitting it would leave indeterminate whether a player

can force a new response by another.
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We prefer to assume that, perhaps for reasons external to the game,
each player can always force a new move, different from the preceding
one, unless the game terminates at that move. To be sure, one player
may be more powerful than another, and therefore able to hold out longer
at (1,1), forcing the other player back. But then the other player
should be able to recognize this fact before he makes his initial move.
To avoid complications like this, based on information not contained in
the outcome matrix, we assume that preferences alone dictate moves, and
moves always occur in an alternating sequence.

Chicken contains two competitive pure-strategy Nash equilibria,
(4,2) and (2,4), one best for R and the other best for C. This is why
the cooperative (3,3) outcome in Chicken, as well as Prisoners' Dilemma,
has been so difficult to justify as a solution: it is unstable (in a
myopic sense), and there exist pure-strategy Nash equilibria which are
not. In Prisoners' Dilemma, the claim of (2,2) as a solution also rests
on the fact that it is the product of dominant strategy choices by both
players, even if it is inferior for both to (3,3).

Taking a more farsighted view, however, the (3,3) outcome in both
Prisoners' Dilemma and Chicken is stable--though not uniquely so in
Prisoners' ‘Dilemma--but it does not absorb other outcomes, making it,
in a sense, only locally stable. Strikingly, these two games, long
considered pathological because the obvious compromise solution, (3,3),
is not a Nash equilibrium, are the only ones in which nonmyopic equi-
libria do not coincide with pure-strategy Nash equilibria. The abiding
interest shown by theorists in these two games seems to stem from an

implicit recognition that cooperation can somehow be justified. But
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how? Nonmyopic equilibria that allow for the possibility of sequential
moves and countermoves offer one justification.

It should be noted that (3,3) is also in equilibrium in the meta-
games of Prisoners' Dilemma and Chicken, but so too are (2,2) in Prisoners'
Dilemma, and (%,2) and (2,4) in Chicken. Also, in the metagame of
Chicken, (3,3) is associated with a dominated strategy of one player,
rendering it controversial as a solution (Harsanyi [17] ; Howard [24];
see Brams [4, ch. 5] for a review of the controversy). By contrast,
(3,3) is the unique nonmyopic equilibrium in the game of Chicken.

To summarize, the 37 2 x 2 games containing at least one nonmyopic
equilibrium can be assigned to three disjoint classes, depending on the
ranking the players associate with these equilibria. The large majority
of these games (81 percent) are no-conflict games, or games in which
one player but not the other obtains his best outcome at the nonmyoﬁic
equilibrium. The seven games in which neither player obtains his hest
outcome include Prisoners’ Dilemma and Chicken, which are the only 2 x 2
games to have nonmyopic equilibria which are not also Nash (though

Prisoners’' Dilemma has a second nonmyopic equilibrium which is Nash).

5. General Two-Person Games

We shall not attempt to classify nonmyopic equilibria in m x n
games, where m® 2 or n» 2 or both, and there are thus more than four
outcomes that can be ranked by the players. Instead, we shall prove
four theorems (and one lemma) about general two-person finite games,
two of which are restricted to strictly competitive (or zero-sum) games.

A strictly competitive game is one in which the best outcome for
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one player is worst for the other, the next-best for one is next-worst
for the other, and so on. If the players associate cardinal utilities
with the outcomes, a game is zero-sum if the sum of the utilities, or
payoffs to each player, is zero at each outcome.

An example of a strictly competitive game is the last one shown
in Figure Y4, which has a unique nonmyopic equilibrium., This outcome
is also a saddlepoint, because for R the minimum of the row (2) is
also the maximum of the column in which it falls. Since R cannot do
better by switching to his second strategy, nor can C do better by
switching to his second strategy, this outcome is also a Nash equilibrium.

To prove our first results about strictly competitive games, we

first prove

LEMMA: In a finite, two-person, strictly competitive game, a

player will depart from an outcome only if it is immediately better

for him,
PROOF: Without loss of generality, assume it is R who departs
initially, and the outcome to which he departs is worse for himself

(solid line in Figure 7). Then either (i) C will not depart subsequently

FIGURE 7

DEPARTURES BY PLAYERS IN A STRICTLY COMPETITIVE GAME

A
+R . c
l' i s - R e ® ®
R . S Rational first move by R
L L (Theorem 2)
‘\\\\R‘\\\\‘ Irrational first move by R
~ < (Theorem 1)
C>~No "".
+C i T~~~ R
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or (ii) C will depart subsequently if he can anticipate the process
will terminate at an outcome better for himself (dashed lines in

Figure 7). In either case, R would end up worse by departing ini-
tially to an’inferior outcome. Hence, he should not consider departing
unless his initial departure leads to an immediately better outeome

for himself, Q,E.D.

THEOREM 1: If a finite, two-person, strictly competitive game

contains a saddlepoint, it is a nonmyopic equilibrium.

PROOF: By the definition of a saddlepoint, any departure by R
or C will immediately lead to an inferior outcome. The outcome at
which the process terminates, whether reached after the first departure
or subsequently (i.e., at endpoint of solid line, or one of dashed
lines, in Figure 7), will be inferior to the saddlepoint from the
proof of Lemma, so the saddlepoint is a nonmyopic equilibrium. Q.E.D.

THEOREM 2: In a finite, two-person, strictly competitive game, an

initial departure (say, by R), and a subsequent departure (by C), bracket

the ranks of the outcome at which the process terminates (if it does).

PROOF: By Lemma, R will depart from a starting outcome, and C
from the subsequent outcome, only if both do immediately better after
each move (dotted line in Figure 7). Clearly, a terminal outcome will
not exceed the first-departure outcome (for R), because C, looking ahead,
would otherwise have terminated the process at this outcome; and it
will not fall below the second-departure outcome (for C), because R,
looking ahead, would otherwise not have made his initial departure that
would then allow C to make a subsequent departure, worse for R than

the starting outcome. Therefore, the first two moves from the starting
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outcome by each player establish the upper and lower limits within
which the final outcome will fall. @Q.E.D.

We have shown that if a finite, two-person, strictly competitive
game contains a saddlepoint, it is a nonmyopic equilibrium (Theorem 1);
if an outcome in such a game is not a saddlepoint, departures by R and
C will "zig and zag,” but they will never terminate at an outcome that
exceeds the top of the first zig or that falls below the bottom of the
subsequent zag (Theorem 2)., Because R can always ensure the maximum
of his row minima (maximin)--by moving to the row containing it--and
C an ensure his corresponding minimax, the zigs and the zags will
necessarily stay within these bounds in a strictly competitive game.

We are unable to characterize, in any simple way, nonmyopic equi-
libria in general two-person, finite games, or even the kind of path
that departures from a nonequilibrium outcome might follow in such a
game. However, it is possible to establish certain existence results,
which do not obtain in 2 x 2 games, that show nonmyopie equilibria
are not immune from the social pathologies that can afflict Nash
equilibria.

THEOREM 3: 1In general two-person, finite games, a unique nonmyopic

equilibrium may be Pareto-inferior.

PROOF: The game in Figure 8 contains a unique nonmyopic equilib-
rium, (2,2): should R or C depart from (2,2) to a (1,4) or (4,1) out-
come, respectively--as indicated by the arrows--this outcome would be
terminal and inferior for the departing player. Outcome (2,2) is
Pareto-inferior because two outcomes, (4,3) and (3,4), are preferred
by both players. It can readily be established that neither (4,3) nor
(3,4)~-or any other outcomes--are nonmyopic equilibria (see Definition

below). Q.E.D.
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FIGURE 8

GAME WITH UNIQUE NONMYOPIC EQUILIBRIUM THAT IS PARETO-INFERIOR

c
(2.2 = ,1) =+,
V

R 1@1,.%) (2,2) (4+,3)

(1,4%) (3,%) (1,1)

It is useful to recall that of the 78 2 x 2 games, Prisoners’
Dilemma is the only game that contains a nonmyopic.equilibrium, (2,2),
that is Pareto-inferior. However, because (3,3) is also a nonmyopic
equilibrium in Prisoners’' Dilemma, (2,2) is not unique--as it is the
unique nonmyopic equilibrium in the game in Figure 8.

The 3 x 3 game in Figure 8 raises the question of how we determine
what, if any, outcomes are nonmyopic equilibria in games larger than
2 x 2. 1In general, the following algorithm can be applied to two-

person, finite games:

DEFINITION: A starting outcome (al,a2) is a nonmyopic equilibrium

if it is final: (1) the surviving outcome, as determined by backward

comparisons for each of the game trees defined by initial departures of

R and C, is (aj,ay); and (2) departures from (al,a2) always lead to a

terminal outcome best for the player with the next move.

A few things impliecit in this definition should be clarified. First,
we assume that each game tree, starting with an initial departure by
either R or C, specifies all possible ways of reaching each outcome in

a sequence of moves by the two players. Second, we assume there is no
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repetition of outcomes in the game tree; the repetition of an outcome
defines a cycle, and should it be rational to return to an outcome
because Condition 2 above is not satisfied, then we assume that outcome
cannot be final. Third, we assume, as before, that the tree is analyzed
from the bottom up, and the final outcome is the one that survives all
comparisons, given the process is not intransitive.

Naturaliy, even for games only somewhat larger than 2 x 2, the
number of branches, and hence paths to be investigated, on expanded
versions of the game tree shown in Figure 2 enormously increases the
difficulty of finding nonmyopic equilibria. The reader can test his
checking skills by verifying the existence of the two nonmyopic equi-
libria we claim exist in the example that constitutes the proof of

THEOREM 4: In general two-person, finite games, nonmyopic equi-

libria may be Pareto-inferior and not pure-strategy Nash.

PROOF: It can be demonstrated that the two circled outcomes in

the game in Figure 9 are the only nonmyopic equilibria in this game,

FIGURE 9

GAME WITH PARETO-INFERIOR, NONMYOPIC EQUILIBRIUM THAT IS NOT NASH

D D (LW

(1,%) (2,2) (4, 3) (1,

(1,4 (3.1 (1,1) (1,4)

1) 1) (4,1




Unlike the Pareto-inferior nonmyopic equilibrium in the game in Figure
8, (3,2) is not a pure-strategy Nash equilibrium [though (2,2) is].
Q.E.D.

We have now established that not only may nonmyopic equilibria be
unique and Pareto-inferior (Theorem 3) but also that Pareto-inferior

equilibria may be distinct from Nash (Theorem 4).

6. TIs a New Equilibrium Concept Needed?

At first blush, it may seem terribly demanding to require of
players that they plot out the consegquences of each and every move
they can make if one departs from an outcome in the matrix. But ~
is it? We know that such activities as bicyecle riding and billiards
require awesome mathematical-physical calculations, if made explicit,
to sustain one's balance or make a good shot, but human beings make
these kinds of calculations, implicitly, in acts they perform every day.

So at a cognitive level in games, we believe, especially when the
consequences, as in Chicken, may be disastrous for both players. As
Theodore Sorenson described American deliberations in the Cuban missile
crisis, which has been modeled as a game of Chicken (Brams [3]),

We discussed what the Soviet reaction would be to any possible

move by the United States, what our reaction with them would have

to be to that Soviet reaction, and so on, trying to follow each of
those roads to their ultimate conclusion (quoted in Holsti, Brody,

and North [19]).

Nonmyopic equilibria, in our opinion, furnish a new basis both
for studying dynamic behavior in games and for determining stable out-
comes in the face of an anticipated series of sequential moves by the

players, looking ahead. In terms of the criteria we suggested earlier,

they are (1) nonmyopic, in the sense of imposing no arbitrary limitation
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on the extent of conjecturing or where it may lead, (2) calculable by
means of an algorithm, and (3) general, being applicable to all normal-
form games, including those with more than two players, as described
below.

We would also contend that nonmyopic equilibria meet the fourth,
less tangible criterion of being readily interpretable, in a variety
of contexts, wherein the thinking of players extends over time. This
concept, it will be recalled, coincides with a saddlepoint in two-
person, strictly determined games, which is generally agreed
to be the most compelling solution concept in game theory.

Moreover, these equilibria depend only on preferences, making them
less demanding than many cooperative solution concepts in game theory that
require that cardinal utilities be associated with outcomes. Indeed,
even the noncooperative notion of mixed strategies in two-person, zero-
sum games without a saddlepoint assumes cardinal-utility calculations.

In our previous analysis, we assumed two-person games of complete
information in which players not only have full knowledge of the strat-
egies and outcomes but also can make anticipatory strategic calculations
of the consequences of all possible moves and countermoves. In prin-
ciple, these calculations can be extended to n-person games, though' we
acknowledge the practical difficulty of checking the consequences of
all possible moves and countermoves by more than two players.

Coalitions, whose members adopt joint strategies, have a natural
interpretation in the nonmyopic framework. Define a coalition to be a
subset of k2 2 players in an n-person game (k<& n) whose strategy set

is given by the Cartesian product of individual coalition-member
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strategies. In the sequential-move analysis, its members would make

simultaneous moves in the k dimensions, or axes, they define. A

question yet to be explored is under what circumstances coalitions are
more effective than individual players in inducing favorable nonmyopic
equilibria for their members, or in upsetting equilibria that are
stable when coalitions cannot form.

In n-person games, with or without coalitions, the problems of
finding nonmyopic equilibria are magnified. It seems unlikely that
there exist efficient algorithms, akin to linear-programming algorithms
for finding minimax solutions, that can rapidly locate nonmyopic equi-
libria. In fact, we conjecture that the problem of finding nonmyopic
equilibria is NP-complete (Garey and Johnson [16]), and only an exhaus-
tive search of virtually all paths through an outcome matrix, from each
outcome to every other, can settle the question of where (if anywhere)
the process will terminate when players make optimal look-ahead choices.
In fact, it appears that the computer will be indispensable in finding
nonmyopic equilibria in specific games much larger than 2 x 2.

Despite these practical difficulties, we believe that the theoretical
concept of a nonmyopic equilibrium is an important one. Philosophically,
it offers an approach to understanding implications of "theory absorption,"
as originally propounded by Morgenstern [B] and analyzed and reviewed
most recently in Dacey [9]. The underlying idea is that once players
have accepted a theory, and act on the basis of it, their behavior
may change from what it was before there was feedback from the theory
to its object of study. In particular, an understanding of the theory

may destroy the predictions it makes, which is a fact that has also been
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noted by Lefebvre [31] and whose recognition in the economic sphere has
given rise to the "rational expectations" school of thought (Kantor [27]).
This school, in our view, has been encumbered by its undue reliance on
myopic equilibrium concepts, which are vulnerable to theory absorption.
Nonmyopic equilibria, we contend, are stable in the face of theory
absorption. Rather than being vulnerable to moves and countermoves, as
are pure-strategy Nash and Stackelberg equilibria, nonmyopic equilibria
are sustained by the very information that no sequence of departures can
lead to a better stable outcome for the departing player(s), and, if
preferences are strict, will always be worse. Nonmyopic equilibria are
thus "absorption-proof"--given the alternating, nonretractable moves we have
specified are possible~-and henece provide a stronger conceptual foundation
on which to build a theory of rational expectations than do other equilibria.
We indicated earlier that sequential choices in games might take
the form of either physical moves or verbal moves, such as threats and
promises. Whatever form they take, we think nonmyopic equilibria offer
unique insight into the stability, or lack thereof, of outcomes in

ongoing games, wherein play does not abruptly terminate after strategy

choices have been made. Most real-life games, we submit, are ongoing,
and static equilibrium concepts say little about their stability.

As important as the stability of an outcome, however, is the
dynamics of a game, including the possible paths bargaining and nego-
tiation processes might follow as moves and countermoves are contemplated
or chosen. The nonmyopic viewpoint provides both a concept of stability
and contingent calculations for understanding exactly how (if at all)

stability is achieved in a dynamic game. In our opinion, it is a denial



of rationality to freeze the outcome of a game when it is not in the
interest of players to think outcomes are static, and the strategy

choices that lead to them are irrevocable.

31
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FOOTNOTES

We are grateful to Morton D. Davis, Marek Hessel, Laura Scalia,
and Philip D. Straffin Jr. for valuable comments on an earlier
draft of this paper.

For parallel work on threats, see Schelling [40], Moulin [34}, and
Laffond and Moulin [3d].

See Rosenthal [§§J for an interesting variation on Nash.

The concept of a sophisticated equilibrium, proposed by Farquharson

[10] and recently discussed by Moulin [35] and Ferejohn, Grether,
and McKelvey [1l1l], is found by the successive elimination of domi-
nated strategies in a normal-form game. It has certain desirable
properties, especially in the implementation of social choice func-
tions. However, like Nash and Stackelberg, this equilibrium concept
is not relevant to assessing the consequences set off by sequential
moves and countermoves of players from outcomes, as opposed to

their choosing different strategies.

It should be noted that 9 of the 78 games (12 percent) do not have
pure-strategy Nash equilibria; since their mixed-strategy equilibria
(assuming their payoffs are cardinal) do not have an obvious non-
myopic equilibrium counterpart, we do not consider them here in

comparing different equilibria in the 2 x 2 games.
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