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Abstract

We presaent a general analysis of the war of attrition in discrete time. In
contrast to the continuous time formulation, the set of equilibria are
sensitive to how the returns to players are treated when they move
simultaneously. When the return from moving alone (leading) in any period is
greater than or equal to the return from moving simulitaneously (tying), we are
able to provide a complete characterization of the set of equilibria in both
infinite and finite horizon games. In general, such a complete
tharacterization would be quite complicated. However, we illustrate with a

number of examples some of the possible equilibrium patterns.



i, Introduction

Many examples of conflict can be modelled as a contest in which the
party that prevails is the one who is willing tno compete for greatest length
of time. The essential characteristics of such contests are that at each
instant of time, each party must decide whether to concede its position (move)
or to expend resources and continue to compete {(wait)., At any instant, the
payoff to a party if it concedes is less than its payoff if the other party
concedes, but if a party is eventually going to be the first to concede, its
payoff is lower the longer it waits. Among theoretical biologiste, this model
of conflict is known as a War of Attrition. It was introduced by Maynard
Smith (1974) to study the evolutionary stability of certain patterns of
behavior in animal conflicts over territory or mates. !

The earliest treatments of the model appeared in the binlogy
literature where it was formulated as a game in continuous time in which the
payoffs to the players are symmetric and common knowledge {e.g., Bishop and
Cannings (197B)). Later authors have extended the basic model in a number of
directions, allowing for various kinds of asymmetries and incomplete
information. These include contests in which the asymmetries are obgervable
{e.g. Maynard Smith and Parker (1974), Parker and Rubenstein (1981)) and
contests in which the asymmetries are private inforwmation {(e.g. Bishop,
Cannings, and Maynard Smith (197B), Nalebuff and Riley (1985)). The model has
also been applied to a number of economic conflicts such as "price wars”
(Kreps and Wilson (1982), Fudenberg and Tirole (1983), Benoit (1985)), the
ERERRREREERRER
anllouinq Selten (1980), a strategy r is said to be evolutionary stable if
(i) r is a best reply to itself and (ii) for any alternative best reply to r,
r is a better reply to r’, the alternative best reply, than r’ is to itself,
Condition (i) implies that an evolutionary stable strategy (ESS) is a

symmetric Nash equilibrium point while condition (ii) is a stability
requirement.



private provision of public goods (Bliss and Nalebuff (1984)), and bargaining
{Ordover and Rubinstein {1983), {sborne (1983)). For the most part, these
authors have formulated their models in continucus time.? A systematic
investigation of the War of Attrition in continucus time can be found in Weiss
and Wilson (19B4) for the cise of complete information and in Wilson (1984)
for the case of incomplete information,

In this paper we provide a general analysis of the War of Attrition
formulated as a game in which (i) the payoffs of both players are common
knowledge and (2) time is discrete. We consider both finite and infinite
horizon games.

There are at least three reasons for analyzing the game in discrete
time. The first and most important reason is to capture the role of ties,
that is, the possibility that both players move (concede) at the same time.
Ties are irrelevant in the continuous time game since, in equilibrium, they
occur with probability zero. In many economic examples, however, the presence
of information lags and discreteness in the decision process imply that, as a
simple descriptive matter, ties can and do occur. They are particularly
likely to ocecur when the conflict is organized as a sequence of bouts or
rounds, as is the case in certain bargaining situations and animal conflicts.
We find that even when the length of a period is short and, as a result, the
probability of a tie is small, the set of equilibria may be quite sensitive to
how the payoffs to ties are treated. The crucial issue is whether a player’s
return from moving together with the other player in 2 period is greater than

ERERHEREERAERS

ZThere are exceptions. Bishop and Cannings (1978) prove an existence theorenm
for finite horizon, discrete time models with symmetric payoffs and use the
model to examine the dynamic stability of the ESS., Hammerstein and Farker
(1982) use & discrete time model to calculate the £55 in a number of numerical
examples., Finally, Ordover and Rubinstein (1985) formulate their model in
discrete time.



or less than his return from moving alone in that period. We establish that
the equilibrium patterns of behavior in games where players try to avoid ties
may not be present at all in games where players prefer to move together
rather than alone. The converse may also he true.

A little reflection suggests that there are a number of examples where
the return from woving alone in a period is not equal to the return from
moving together with the other player in that period. The problem of
bargaining, for instance, suggests an example of a situation in which the
return to a tie is greater than the return to moving alone. If both players
concede their positions in the same round, then they gensrally barpgain to a
compromise settlement in which each party is better off than it would have
been if it had conceded unilaterally, but worse off than it would have been if
it had maintained its position. This is alsc the standard assumption in the
models ip the biology literature.

The timing of investments in the presence of information externalities
{Hendricks {(1984)) suggests an example in which the return to moving
simultaneously may be less than the return to moving alane. Suppose two firms
must decide when to introduce a new product whose profitability is unknown.
Each firwm has an incentive to delay its commitment of capital and to let the
ather firm incur the costs of determining the state of demand. Suppose
further that there is 2 slight first mover advantage so that, if both firms
begin marketing the product in the same period, each firm earns less than it
would have earned had it entered the market by itself, Then, if the
information externalities are sufficiently large, each firm prefers to follow
rather than to lead and to lead rather than to tie.

A second reason for conducting the analysis in discrete time is that

the set of equilibria may not correspond to the equilibria of continuous time



games., In Hendricks and Wilson (1985), we demonstrate that the set of limit
points of the equilibria of a sequence of discrete time games in which time is
partitioned into ever finer intervals is not equivalent to the set of Nash
equilibria of the corresponding game formulated in continuous time. In some
instances the set of equilibria is larger in the continuous time game and in
other instances it is larger in the discrete time game. The differences arise
primarily when the time horizon is finite and can be attributed to the fact
that in continuous time there is no "next" period or "next to last" period.
These results suggest that as long as there is any lag in a player’'s response
to his opponent’s move, it may be preferable to analyze the game in discrete
time.

Finally, formulating the game in discrete time permites a precise
analysis of subgame perfection. This issue ig particularly relevant for
contests in which the horizon is finite and there is an observable asymmetry
betweaen the players. For instance, in certain asymmetric contests? analyzed
in the biology literature, there are generally two evolutionary stable
outcomes, one in which the “strong"” animal always wins {the "weak" animal
concedes immediately) and one in which the weak animal always wins. HWhen the
horizon is finite, the restrictions implied by subgame perfection imply that
the second, paradoxical outcome can be eliminated.? There are a number of
economic applications (e.g. Fudenberg, et. al. (1983)) where the imposition of
subgame perfection also eliminates some equilibrium outcomes.

FEERRRANERERLS

3An asymmetric contest is one in which the animals are in different states aor
roles on different occasions. An EBS is such contests is essentially a
symmetric Bayesian Nash equilibrium ppint.

4Fur gawes with an infinite horizon, a more powerful refinement of the
equilibrium concept may be required to eliminate such equilibria. For
instance, Hammerstein and Parker (1982) assume that the animals make
arbitrarily small “mistakes” in identifying their roles,



In our analysis, we distinguish between two types aof equilibria.
Degenerate equilibria consist of strategy combinations in which one player
moves in period 0 with probability I, while the other player threatens not to
move for a sufficiently damaging length of time. Any other equilibrium is
called nondegenerate. We first establish that, in any nondegenerate
equilibrium, the probabilities of moving, conditional on reaching any periad
after period 0 and before the terminal period T, are determined by piecing
together the solutions to pairs of interrelated difference equations. The
precise structure of these equations depend in part upon the relation between
the returns to the players when they move simultaneously and their returns
when they move alone. In general, the equilibrium distribution functions can
be completely characterized only in the case where the return from leading in
any period is at least as great as the return from tying in the follawing
period.

We then show that, for a solutiopn to these difference equations to be
an equilibrium, it must satisfy a set of terminal conditions. The numher of
nondegénerate equilibria are then determined by establishing the number of
solutions which satisfy these conditions. Normalizing the payoffs so that
each player earns 0 in the terwminal period, a nondegenerate equilibrium exists
in a game with a finite horizon only if the return from leading to both
players becomes negative at approximately the same time. When the horizon is
infinite, however, the terminal conditions imply essentially no restrictions
on the return functions used in most economic applications.

The paper is organized as follows. After introducing our assumptions
and establishing some preliminary results in Sections 2 and 3, we begin our
characterization of nondegenerate equilibria for specific classes of games.

We consider in Section 4 the class of games in which the return from ieading



in any period for each player is at least as great as his return from tying in
the following period. We show that any nondegenerate equilibrium must have
one of three possible patterns. Either it is fully mixed, in which case both
players move with positive probability conditional on reaching any period
before some period t¥; or it is alterpating, in which case, conditional on
reaching any pericd before period t*, one player moves with positive
probability if and only if the period is even while the other player moves
with positive probability if and only if the period is oddy or it is hybrid,
in which case it has & fully mixed pattern up to some period { whereupon it
changes to an alternating pattern until some period t*. 1In all three cases,
once period t* is reached, both players wait until period T with certainty.
When the horizon is finite, we show that, generically, the terminal
conditions for an equilibrium imply the existence of at most one (fully mixed)
nondegenerate equilibrium. For symmetric games, this corresponds to a
symmetric equilibrium. For a class of (nongeneric) games, the terminal
conditions imply not only the existence of a unique fully mixed equilibriunm,
but also the existence of a one parameter family of alternating equilibria
and, for each period f between 0 and t*, a one parameter family of hybrid
equilibria., When the horizon iw infinite and the (normalized) return to
leading converges to zero, t* ig equal to ® and all of these egquilibria exist.
In Bection §, we examine the implications for the set of equilibria
when the the return from tying in any period t exceeds the return from leading
in that period. We show that if the return from tying is sufficiently large,
the incentive to wait in order to move together with the other player may
eliminate the alternating equilibria of Section 4, and in their place, a class

of coordinating equilibria may appear. In these equilibria, both players wmove

with positive probability conditional on reaching some periods and with



probability ¢ in other perinds.

We then turn our attention to the existence and uniqueness af the
nondegenerate equilibria for these games. We demonstrate that, if the return
to tying is sufficiently high, the difference equations describing a fully
mixed equilibrium may be stable. This in turn leads to two possibilities.
First, if the horizon is infinite, there way be a continuum of fully mixed
equilibria. Second, if the horizon is finite (and the payoffs are not
gtationary), there may be no fully mixed equilibrium. Fipally, we present an
example of a finite horizon game with asymmetric payoffs in which there is no
nondegenerate equilibrium at all, even though the terminal conditions of
Section 3 are satisfied.

One of the implications of the results of Section 3 is that all
nondegenerate equilibria are subgame perfect. In Section &, we turn our
attention to the implications of subgawme perfection for two degenerate
equilibrium outcomes. We show that the terminal conditions which are
necessary for the existence of nondegenerate equilibria are both necessary and
sufficient for both degenerate equilibrium outcomes to be subgame perfect. I+
these conditions are not satisfied, there is a period in which the return from
leading to one of the players is positive while the return from leading to the
other player is negative. In this case, the only outcome which is subgame
perfect is for the first player to move immediately.

We conclude with some remarks on the relation between the discrete

time and continuous time formulations of these ganmes.

2. The Model
Two players, a and b, wust decide when to make a single move in some

perind t between 0 and T (0 ¢ ¥ { ®). Upon reaching any period



t e {t {T:te {0,1,2,...3}, both players must simultaneously decide whaether
to move or to wait. In what follows, i, k, s, t, t‘, etc, will refer to
nonnegative integers, o to any arbitrary player and 8 to the other player.
The payoffs to the players depend upon which player moves first and the period
in which he moves. If player « moves first in period t, he is called the
leader and earns a return Au(t). If player 8 moves first in period t, player
4 becomes the follower and earns a return B«(t). 14 both players move
simultaneously in period t, they are said to tie, and the return to player «
is Ca(t). 1f neither player moves before period T, then player & earns return
0.9

The specific class of games we study is an extensive form
representation in discrete time of a generalization of the “war of attrition®.

It is defined by the following assumption.

At {a) For & = a,bt
(i} Ru(t) > Aa(t+1) for O ¢ty t+1 C Ty
(11) B (t+1) > A (t)  for 0 ¢ t, t+l ¢ Ty
(iii) B«(t) > Laitd for t < T.
(k) If T = o, then there is a K ¢ ® such that

Iﬂatt)l,lﬂa(t)i|lﬂa(t}l 2K far 0 ¢{ t (oo,

Condition (i) states that the return from leading decreases with time.

Condition {ii) states that the return from following in period t+1 exceeds the

FEEERSHEREEENH

5The return to player « in period T might reflect his payaff from some
continuation game. In this case, we are implicitly assuming that (i) the
payoffs have been normalized so that the equilibrium payoff in that game is 0
for each player and (ii) upon reaching period T, both players play their
equilibrium strategies. Otherwise, we are simply assuming that payoffs have
been normalized so that the return to each player if neither ever moves is O.



return from leading in period t. Condition (iii) states that the return from
tying in period t is less than the return from following in peried t. There
are no restrictions on the relation bhetween Aa and C, or on any of the return
functions relative to the terminal payoff 0. Together these conditions imply
that, in any period, each player prefers to wait for the other player to wove,
but, if forced to move first, would rather move sooner than later. Condition
(b) is required to guarantee that payoffs are well defined in games with an
intinite horizon.

The game in extensive form is illustrated in Figure 1. Since the
payoffs are determined as soon as one of the players moves, the information
sets of each player can be indexed by the period in which a decision is to be
made. In each period t, player a must choose between moving M and waiting W,
A pure strategy for player « is then a function B 10,0, T-13 3 {H,H}.b A

T~

behavior strategy for player 2 is a sequence r, = {ratt)}t,é of

&

Bernoulli probability distributions aover (M,W}, where ru(t) denotes the
probability that player « moves in period t conditional on neither player

moving before period t. Finally, for any behavior strategy r,_ and any periad

o
t, we may define F(t;[a) = ] - Iﬁaotl-ru(k)) to be the probability that

player & moves in or hefore period t./

Because of the special structure of the game tree, the payoéf to

FRERFRFFHRRERE

Sne adopt the convention that if 7 = ®, then {0,...,7T-1} represents the
nonnegative integers,

"Note that & distribution function F is associated with a unique r only if

Fit) ¢ 1 for all £t < T, On the other hand, any distribution function F with
support on {0,...,T} is generated by some behavior strategy r.
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player a depends only on the combination (F(-;ga),F(-;gb)). To ease
notation, therefore, we will define the payoff functions directly in terms of
the distribution functions, suppressing explicit reference to the underlying
behavior strategy. Thus we will Bipress F(tl[a) as Fﬂ(t) and sometimes refer
to Fg as the strategy of player 8 when in fact we are refarring to the
underlying family of behavior strategies which generate Fﬂ.

Let Gult) = Fatt)-Fa(t-i) represent the probability that player «
moves exactly in period t and let t represent the distribution with
qait) = 1. Then the payoff to player « from moving in periond ¢, given the

striategy FB’ is
t-1 ; :

(2.1) Patt,FB) = Ej=0 quj)qﬂfj} + catt)qn(t) * LI-Fgtt)IA (b)),
The payoff from waiting until pericd T is
(2.2) P T,F = Y-da (i) ()

: a'lv g EETAT ARAA AR
The expected payoff to player « from the strategy combination (Fi,Fb) is

T

(2,3) Pu(Fa!Fb) = lt=olgltIPylt,Fgl,

A strategy combination (r},r}) is an equilibrium if
P“(F(-;[:),F(-;gzi) 2 Pa(F("[a)'F(';tz)) for all strategies r,
¢ = a,b and o # A,

We will also be interested in identifying those strategy combinations

which satisfy backwards induction. For any behavior strategy L 1ot

FUistar =0 for j Ct and Flityry =1 - Kl U-r, (k) for
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t$i<T. For §2t, F(jst,r,) is the probability that player « moves in

or before period j, conditional on neither player moving before period t.

Then a pair of behavior strategies ([i,gb) is a subgame perfect equilibrium

if Pu(F(-;t,[:),F(-;t,gz)) 2 P“ts(-;t,ga>,F(-;t,;§)) for all

strategies Lqr &= a,b and « # 8.

3. Characterization of Equilibria; Preliminary Results

In this section we establish some properties of the equilibrium
strategy combination for any game which satisfies Assumption Al. We begin by
distinguishing between two kinds of equilibria. A degenerate equilibrium is
one in which one of the players moves with certainty in period 0. Any other
equilibrium is called nondegenerate. We then establish in Lemma 3.2 that if
the squilibrium is nondegenerate, there is no period t prior to period T by
which either player plins to move with certainty. Since this implies that
every inforwmation set is reached in a nondegenerate squilibrium, we note that
any such equilibrium is necessarily subgame perfect. This result is presented
as Theorem 3.1. Finally, we investigate some of the terminzl conditions which
any nondegenerate equilibrium strategy must satisfy. Defining Ty to be the
garliest period in which Aa(t) {0, we establish that for generic payoffs
{i.e. Au(rﬂl ¥ 0), either (a) the horizon is infinite and both players
eventually move with probability 1 or (b) there is an interval of periods from
Ty to T in which neither player plans to move. The implications for the
support of the strategies when the payoffs are nongeneric are slightly more
complicated and are presented in Lemma 3.3.

Throughout this section, ([a,[h) Will represent an equilibrium
strategy combination and Fu = F(.yr,) the corresponding distribution

function for « = a,b. For any pair of distributions, (Fa,Fb), define
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to= Bir,rp) = infits max(F (t) Fyp(t)) = 13

to be either the first period in which one of the players moves with
probability | or, i¥ no such period exists, period T. If £ = G, we will say

that the equilibrium is degenerate. If t# 0, we will say that the

equilibrium is nondegenerate.

Lemma 3.1t For t < £ and t+l ¢ T, ralt) = ro(t+1) = 0 implies that

rglt+l) = 0.

Suppose the game has reached perind t ¢ £ and the terminal period
is at least two periods away. Then Lemma 3.1 says that if player # plans to
move with probability 0 in both pericds t and t+i, player & never moves in
period t+1> The reason is that player a is the leader for sure if he moves in
either period t or period t+i. But, since the payoft from leading is
declining over time, it follows that he prefers to move in period t rather

than period t+l.
Lemma 3.2: If t >0, then £ =T.

The argument is as follows. Suppose 0 ¢ t < T. Then one of the
players, say player A, moves with probability i upon reaching period t. Now
consider the payoff to player «. Conditional on reaching period f, he earns
&8 return CG(Q) if he moves in period £ and a return Ba(g) if he waits until
period t+1. SBince fAssumption Af implies that Batfl > Cd(ﬁ}, it follows

that he does better by waiting until period tet. Therefare, r«(f) = 0,
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Likewise, upen reaching period E-I, his expected return is

ratf-licutg-l) + (1-r5(?-1})A¢(€-1) if he moves in period £-1 and
rgt-11B,(E-1) ¢ (1-rg(£-1)B (£) if he waits until period £+1. But

since Assumption Al implies that C (E-1) < B (E-1) and A cE-1) ¢ B (b,

it follows that player « also does better by waiting until period t+1 than by
moving in period t-1. Therefore, rd(f-l) = (0. But if

ru(f-l) z r¢(€) = 0, then Lemwa 3.1 implies that, conditional on reaching
period ?, player § wmoves with probability 0, contradicting our assumption
that ra(f) = 1.

The importance of Lemma 3.2 is that it establishes that, in any
nondegenerate equilibrium, there is a positive probability that the game does
not end in any finite period t prior to 7. This means that there is a
positive probability that the equilibrium path reaches any information set,
Consequently, any strategy which is optimal starting in period 0 is also

optimal starting in any period t greater than 0. Therefore, we may state

Theorem 3.1: If (r_,r,) is a nondegenerate equilibrium, then it is subgame

perfect.

¥e will defer our analysis of subgame perfection for degenerate
gquilibria until Section &.

Define

th o= ¥ ro,ry) Einfi(t <O T rald) = ryti)) =0, t ¢ 3<T2UTH

to be the first period such that, upon reaching that periocd, both players wait

until period T with probability i. For each player &, define
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To = infiit < T: A (t) ¢ 03 U T2
to be either the earliest period in which the return to player a4 from leading
is nonpositive or, if the return from leading is always positive, period T.
The next two lemmata establish the relation between t* and Ty
Lemma 3.3: Suppose t = T. Then (i} Qg(T) > 0 implies t¥ 2t 2 t¥-18;

(11) q(T) = 0 implies t* = ® (iii) r (t*-1) = 0 implies Agtt*-1) = 0

and ra-l é ra g Tyt

The argument for condition (i) goes as follows. Suppose there is a
positive probability that player # waits until period T. Then Lemma 3.1
combined with the definition of t* implies that either player a moves with
positive probability in period t*~1 or player A moves with positive
probability in period t*-1 and player & moves with pasitive probability in
period t*-2. I player « moves in period t*-1, then his return from leading
most bhe nonnegative. If he moves in period t*-2 and player 8 moves with
positive probability in period t*-1, then the return from leading for player «
must be strictly positive in period t*-2, 1In sither case, we way conclude
that T, 2 t*-1. Dn the other hand, suppose that the return from leading in

period t* is strictly positive for player «, that is, 7, > t*. Then,

a
conditional on reaching period t¥, player 8 waits until period T with
probability 1. But in this case, the optimal response for player & is to move
in period t*, contradicting the definition., This establishes that 1, { th

36303630 00 06 00 0O

814 t* = ©, we adopt the convention that t*-1 = e,
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Eondition {(ii) is an immediate implication of Lemma 3.2, To establish
condition (iii), suppose, conditional on reaching period t¥-1, player § moves
with positive probability. Then he must be indifferent between leading in
period t*-~1 and earning a return of 0 in period T. Consequently, if player &
moves with probability 0 in period t*-i, Aﬂ(t*-l) must be 0. By definition,
then, t*-1 = Tgr which combined with condition (i), implies that
tq-l § s § Ty

As we shall see, the characterization of the nondegenerate equilibria
may be sensitive to whether or not the return from leading for player a in

period t, is exactly equal to 0. We will say that the payoff of player « is

&€
generic it A, (t) #0, t 6.7 In this case Lemma 3.3 can be strengthened to

read:

iLempa 3.4: Suppose £ =2 T. 1f the payoffs to both players are generic, then

{i) qﬁ(T) >0 implies t, = t* and (ii) qB(T) = 0 implies t* = o,

Lemma 3.4 follows from the observation that if the payoffs are generic
for both players, then whoever plans to move in period t®-1 must earn a
strictly positive return from leading in period t*-i, But if the game is to
continue with some probability beyond period t*-1 (as required by Lemma 3.2),
then the other player aust also plan to move in period t*-1, The genericity
of payoffs then implies that his return from leading in period t*-{ is
strictly positive as well. We conclude therefore, that Ty 2 t*, which
combined with Lemma 3.3 establishes the result.

Lemmata 3.3 and 3.4 also imply the following necessary conditions for

HREERERERERTEE

Note that Assumption Al implies that the class of generic payoffs includes
the case where lintéﬂna(t) = 0,
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the existence of & nondegenerate equilibrium,

Theorem 3.2¢ A& nondegenerate equilibrium exists only if Ta-l & oty § ratt.

If payoffs are generic, a nondegenerate equilibrium exists only if Ta = Ty

Note that Theorem 3.2 does not imply that these conditions are
sufficient for the existence of a2 nondegenerate equilibrium. As we shall see,
the set of conditions under which a nondegenerate equilibrium exists and its
characteristics depend critically on the relation between the return from
moving simultaneously and the return from leading. We can state the following
general result, however, which indicates some of the possibilities for the

existence of & continuum of nondegenerate equilibria.

Theorem 3.3: Suppose t[a,[b) is &n equilibrium with rgt0) = 0 and
ret0r > 0. Then (r¥*,,r*)) is also an equilibrium where
) roto) ¢ r* (o) ¢ 1, i) r* ) = rolty for t > t*, and

a2 s *
{iit) Lg = Uy

Theorem 3.3 states that if there is an equilibrium with the praoperty
that in periocd O player &« moves with positive probability ry(0) and player 8
moves with probability 0, then increasing the value of rqt0} and leaving the
remainder of the strategy combination unchanged also results in an
equilibrium. The reason is simply that an increase in ra(O) does not affect
the optimal response of player 8 atter period 0, and it only reduces the
expected return to player 8 (relative to his return fraom waiting) from moving
in period 0.

Ke turn now to a detailed analysis of games where the return from
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moving simultaneously never exceeds the return from leading.

4, Nondegenerate Equilibria: Cu £ Ay

To motivate our analysis of this case, we mention briefly some
variations on a model used by Hendricks (1984) to study the problem of the
timing of oil exploration. Two firms are assumed toc own leases in an area
that contains an unknown amount of oil and gas. Their uncertainty about the
area’s reserves is resoclved by drilling exploratory welis, the results of
which are public information. Each firm has an incentive to wait and let the
other firm incur the costs of finding out whether the area contains sufficient
reserves to be worth developing. On the other hand, if a firm waits and ends
up drilling anyway because the other firm also waits, it incurs a time cost
due to the delay in realizing the expected returns to drilling. Since a firm
benefits from the actions of the other firm only if the other firm drills
before the first firm commits itself to drilling, it seems reasonable to
suppose that the pavoff from drilling simultaneously is no greater than the
payoff from moving first,

The structure of the exploration game is common to many investment
situations in which economic agents have an incentive to delay their
commitment of capital and to free ride on the information generated by the
investments of other agents. In some of these examples, the payoff to a firm
from moving simultaneously with the other firm is likely to be less than its
payoff from moving first. For example, suppose two firms market a new product
at the same time and dewmand turns out to be large enough to sustain only one
firm., The firms are then forced to engage in a costly war of attrition to
determine which firm should exit (see Fudenberg and Tirole (1984) far an

analysis of such a model}., Both firms would have been better off if one of
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them had waited, for then the firm which followed could have ohserved the
state of demand and stayed out.
We consider, therefore, the following assumption, which we assume is

satisfied throughout this section.

A2 Ault) 2 Catt+l) for 4l < T.
Assumption AZ requires that the return to player o« from moving alone
in period t be greater than or equal to his return from moving together with

player 8 in periad t+1.

4.1 The Three Types of Equilibria

The primary role of Assumption A2 is to eliminate any incentive for a
player to wait simply to increase his chances of moving simultaneously with
the other player. In particular, if player # moves with probability 0 in
period t, then player & always prefers to move in period t rather than period

t+l. Consequently, we may strengthen Lemma 3.1 to read!

Lemma 4.1: Suppose t = T, Then if t+1 ¢ T, rgft) = 0 implies

relt+t) = o,
Define
£ = Etryry) 2 indtdt < T raltirgtt) = 03 U T

to be either the first period such that, upon reaching that period, at least

one of the players moves with probability 0 or, if no such period exists,
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period T. From Lemma 4.1, we may immediately infer

Lemma #.2: If t = T, then:

(i) P ttirptt) > 0 for t ¢ &

. N hd *.
{ii) P ltir (tel) =0 and (I-r (£))U-ryit)) ¢ 1 for t ¢t < th

(§ii) (Tt =1 - Fu(t*).

Lemma 4.2 establishes that any nondegenerate equilibrium has the
following properties. Both players move with positive probability conditional
on reaching any period up to period t. Beginning in period t up to t¥, only
one of the players moves with positive probability in any period -- one of the
players moves with positive probability in the even periods and the other
player moves with positive probability in the odd periods. From period t* up
to (but not including) period T, neither player ever moves., [f ¥ = t¥ we
will say that the equilibrium is fully mixed, 1In this case, both players move
with positive probability in every period t up to period t*, whereupon both
players wait until period T with probability 1. 1I¢ = 0, we will say that
the equilibrium is alternating. In this case, the players alternately move
with positive probability in every other period up to period t*, whereupon
both players again wait with probability ! until periad T. If 0 ¢ t ¢ t¥,
we will say that the equilibrium is hybrid. 1In this case, the pattern is
fully mixed up to period f, alternating frow period f to t*, whereupon both
players again wait until period T with probability 1. Finally, we note that
if t* = T, then in any period up to period T, there is positive probability
that some player moves., (There may also be a positive probability that one or
both of the players wait until period T.) The three possible equilibrium

patterns are illustrated in Figure 2Z for the case where t¥ ¢ T.
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Figure 2, Possible Patterns For Nondegenerate Equilibria

A e e A e A R A L A A R A s

4.2 Properties of the Equilibrium Strategies from 0 to t¥

We turn now to a precise characterization of the strategies in each of
the three types of equilibria from period 0 up to period t*. We show that
during those periods in which the strategies are fully mixed (0 to ¥-1), the
conditional probabilities are the solution to a first order difference
equation, whereas, in those periods t where the strategies are alternating
(f+1 to t¥-1), the conditional probabilities in period t are uniquely
determined by the return functions at t-1, t, and t+i. In the transition
periods between fully mixed and alterpating strategies (periods £-1 and f),
however, the restrictions implied by equilibrium generally permit a one
parameter family of conditional probabilities (ra(f-l),rq(f)).

Congider first the properties of an eguilibrium strategy in the
periods where the strategies are fully mixed. Since player o wust esarn the
same expected return from moving in any periad t < ?, we obtain immediately

the following restriction on the strategy of player §.

Lewns 4.3: The sequence {r,(t)}{ 5 satisfies rg(t) € (0,11 for
t ¢ t-2 and

(4.1) 0= [Bﬂ(t)-C“(t)]rB(t) + [Ca(t+1)-ﬂalt+1)](i-rsttl)rﬂ(t+l)

+ [Aa(t+1)-ﬂ“(t)](1-rs(t))

Note that (4.1) is bilinear in rﬂtt) and rg(t+l)., It follows,
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therefore, that rﬂ(t+1} implies a unique rﬁtt). Moreover, it can be readily

verified that rﬂ(t+1) € [0,1] implies that rﬂ(t) € (0,11, It then follons
by induction that, for any value of rstt) € [0,1], there is & unique seguence
{rﬂ(j)}gﬂo satistying equation (4,1) with rﬂtj} £ {0,1) for all

j = 0,iusyt. This result is suamarized as Lemma 4.4 helow,

Lesma 4.4 For any rﬂ(t} € [0,11, t ¢ T, there is 3 unique sequence

trytityi.y satisfying (4.1) with rp(i) € [0,11 for all j ¢ t.

When £ = ®, then equation {4.1) wust be satisfied for all t. The
existence of a solution with r () € [0,1] follows from standard arguments.
A more complicated argument is required to show that such a sequence is
unique.lo

Consider next the restrictions implied by the conditions for
equilibrium on the conditional probabilities of moving in the periods ¥-1 and
t when £ is finite. In period £ at least one of the plavers, say player «,
plang to move with probability 0. There are essentially three cases to
consider. First, if £ = 0, then we are considering an alternating
equilibrium and the only restriction on r£(0) is that it be large enocugh so
that player « prefers to wait until period § rather than to move in period 9.
If f >0 but t+1 ¢ t* then we are considering a hybrid egquilibrium. 1In
this case rutt-l) is uniguely determined by the requirement that plaver 8 be
indi¢ferent between moving in period t and moving in period £-1. However,
since player a« moves with probability 0 in period f, the restrictions on

EREFRERRERERENS

W07pe problem arises because there is no terminal condition. Consequently, in
order to establish the uniqueness of a solution satisfying Lemma 4.3, it is
necessary to establish that the difference equation (4.1) is unstable. GSee
the proof of Theorem 4.3 below.



22

ratg-i) and ratf) may be expressed as a single equation plus an ineguality.
These probabilities must equate the return to player « from moving in periods
t-1 and t+1 subject to the requirement that the return from moving in period
t is no greater than his return from moving in period £-1. Finally, if

3 2 t*, then we are considering a equilibrium which is essentially fully
mixed, in which cagse the conditions on the conditional probabilities at ¢
must be considered jointly with the implications of equilibrium for the
conditions at t*. Substituting these restrictions for the first two cases

into the payof+ functions then yields the following lemma.

Lemma 4.5: Suppose f£+1 < t* and rq(f) = 0, (a) If £ =0, then
(4.2) '3(0’ g LA 01-A, (1) 1/DB (0)-C (0)+A (0} ~A, (1)1,

() 1¢ ¥ > 0, then

(4.3) ra(t"l) = fﬂﬂ(t-l)-ﬂa(t)Jf[Bn(t-l)-Cﬂ(t'l)+ﬂn(t~1)-ﬂatt)]

ta (§)-a (f+1)1 (A _(f-1)-A_(f+1))
(4.8)  mommmmem e R ¢ rgth ¢ ==2 R
(B, (E1-C (D en, (1-a, (E+1))

» ~
1B, (£)-A (f+1)]

fa (f-1)-a (F+121 - r (B)LB _(&)-a_(F+1))
(4,5) ratt-z> a --——:—--—-5-- —5-~ ~8 . S ——— .
Ay Ay y N
(B, (t-1)-Co(E-11+A (E-1) =R, (E+1)] - r g (E)IB (D) -A (£+1)]

Finally, consider the periods between f and t*. cConditional on
reaching these periods, each player alternately moves with positive

probability. In those periods when Falt) = 0, therefore, rgit) must be
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thosen so that player « is indifferent between moving in periods t-1 and t+i1,
given that player A moves with probability 0 in those periods. Consequently,

we obtain:

Lemma 4.6: Suppose £ C( t and t+1 < t*. Then r (t) = 0 implies

(4.4} rp(t} = [Au(t-l)-ﬁu(t+1)]/[Bu(t)-ﬁatt+l)l.

Taken together, Lemmata 4.3, 4.5, and 4.6 summarize the equilibrium
restrictions on the behavior strategies in those periods before period t*-1{,
Corresponding to each value of t¥, they imply that there is at most one fully
mixed equilibrium, a one parameter family of alternating equilibria, and, for
each value of £, a one parameter family of hybrid equilibria in which the
strategies of the players begin to alternate in period ¥. In order to
conplete the characterization of the set of egquilibria, we need to consider

the implications for the strategies from period t¥-2 to period 7.

4.3 Equilibrium Mhen T (t*) Is Finite

In this section we consider the set of equilibria in which t* is
finite. We show that, generically, there is a unique nondegenerate
equilibrium, which is fully wixed. For a class of "nongeneric" payoffs,
however, we show that in addition to a fully mixed equilibrium, there is also
a one parameter family of alternating equilibria and, for each ¢ { t¥, a one
parameter family of hybrid equilibria. While it is true that these games
constitute a set of measure 0 in an appropriately parameterized space of
games, we have chosen to treat this case in detail because, in games with

incomplete information, the equilibrium freguently has an alternating
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structure (see Hendricks (1984)). In these cases, the analysis of the
terminal conditions corresponds to our analysis of the nongeneric case below.

We consider the generic case first,

4,3.1 Generic Pavoffs

If t¥ ¢ », Lemma 3.2 implies that G4(T) > 0 for « = a,b. It then
follows from Lemma 3.4 that t* = T, = t, whenever payoffs are generic., By
definition, some player o must plan to move with positive probability in
periaod t*-1, But this implies that player « be indifferent between maving in
period t*-1 and waiting until period T, which implies in turn that rﬂ(t*-l)

satisfy

* = *_ *_1y- *_ *._
(4.7) ratt 1) Aa(t 1)/[Ba(t 1) Ca(t 1)+A¢(t 1)),

Then, since Aatt*-l) > 0, we may conclude that rB(t*-l) > 0. An identical
argument then establishes that ru(t*-ll nust satisfy equation (4.7) and hence
that ratt*-ll > 0, Finally, since both ra(t*-i) and rb(t*-l) are strictly
positive, Lemma 4.1 implies that the equilibrium must be fully mixed--i.e.

£ = t* The uniqueness of the equilibrium then follows from Lemma 4.4 and

the uriqueness of the solution to (4,7). It is straightforward to check that
such a strategy combination is in fact an equilibrium. Our conclusions may be

summarized as:
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Theorem 4.1: Buppose payoffs are generic,
{a) There is a nondegenerate equilibrium (ga,gb) with t* (o if and
only if T, =1 <8,

th) {i) It is unique and fully mixed with F =t = T2 ® e

*-
(ii) {(ra(t),rb(t))}tgo1 must satisfy eguations {4.1) and (4.7).

If horizon is finite, then by definition t* must be finite. We

therefore obtain the following corollary to Theoren 4.1.

Corollary 4.1: Suppose payoffs are generic and T < @, Then there is a

nondegenerate equilibrium (;a,gb) if and only if 1, = try. It is the unigue

fully mixed equilibrium characterized by part {b) of Theorea 4.1,

§.3.2 Nongeneric Pavoffs

We turn next to games with nongeneric payoffs. Since we are supposing
that t* is finite, it follows from Lemma 3.2 that both players wait until
period T with positive probability. It then follows from Lemma 3.3 that t¥ is
equal to either T, OF T.+i.

We consider first the possibility for a fully mixed egquilibrium.
Suppose that A, try) = 0. If t* = r,+f, then, since Ay (t*-1) = 0 and
ri(t*-lJ > 0, player b prefers waiting until period T to moving in period
t*~{, contradicting the definition of a fully mixed equilibrium. We conclude,
therefore, that t* = Tps Which in turn implies, given Lemma 3.3, that T, is
equal to either t, or ty-1. But if 7, = ty-1, then t, = t*1 in which case
player a prefers waiting until period T to moving in period t*-1, again

contradicting the definition of a fully mixed equilibrium. We conclude,

therefore, that t* = Ty = Tye
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As in the case of generit payoffs, equating the payoff from woving in
period t¥~1 to the payoff from waiting until period ¥ implies that the
probability with which each player moves in period t*-1 satisfies equation
(4.7), 1% To = Ty then, following the argument of Theorem 4.1, Lemma 4.4

implies the existence of a unique fully mixed equilibrium. We summarize these

conclusions in Theorem 4.2.

Theorem 4.2: Suppose Astta) = 0. Then there is a unique fully mixed
equilibrium with T = t* < o if and only if t = Tpe The equilibrium is

characterized by the conditions of Theorem 4.1,

Consider next the ppesibility for alternating and hybrid equilibria,
In these equilibria, there is a single last mover, say player 8, who moves
with positive probability conditional on reaching period t*-1. In order for
such an equilibrium to exist, Lemma 3.3{iii) requires that Aa(t*—l) = 0 and
ta-i £ Ty $ Tyr To establish the sufficiency of these conditions, we need to
check that they are consistent with the restriction on the behaviar strategies
that player o wmoves with probability 0 in period t¥-1 and that, conditional on
reaching period t*-2, he is indifferent between moving immediately and waiting
until period T.

There are two cases to consider. If € ¢ t¥-1, then, by definition,
rﬂ(t*—Z) =0 and r (t*-2) > 0. Conditional on reaching period t*-2,
therefore, player a is indifferent between moving immediately and waiting

until period T only if

*_ *. *o
(4.8) rﬁtt 1) = Aa(t 2)/Ba(t 1).
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If t= t*-1, then, by definition, both rﬂ(t*-Z) and ra(t*-Zl are
positive. Then, conditional on reaching perind t*-2, player « is indifferent

between moving immediately and waiting until period T only if

A (ti_Z) -r (t*_i)aa{t*"l)
(4.9)  ry(t*-2) = SRS A . i _
- - - % - $_ "
[Ba(t* 2) Cu(t* 2) 4R, (t¥*-2)] ratt 1)B (£%-1)

The restrictions that rstt*-2) 2 0 and that player « prefers not to move in

period t¥-1 then imply

(4,10)  mes—smmmso e $ rpt*-1) { emmemeee .

Relations (4.8) to {4.10) together with the relations of Lemmata 4.5
and 8.6 are consistent with well defined behavior strategies if and enly if
ta-l & s k¢ Ty It is easily verified that any such strategy pair constitutes

i pair of best responses. Therefore, we may state

Theorem 4.3: There is a nondegenerate equilibrium with t* < ® and

1

rft¥=1) = 0 if and only if Aulry) = 0 and r,- g T, § rgt

Whenever there is a nondegenerate equilibrium with a single last
mover, an argument similar to the proof of Theorem 3.4 implies that there is

in fact a continuum of alternating and hybrid equilibria. However, the roles

RERERREERKEL XX

11Althuugh Theorem 3.1 establishes that these equilibria are subgame perfect,
only fully mixed equilibria are “trembling hand” perfect in games with
complete information. 1In general, a nondegenerate equilibrium is trembling

hand perfect only if r (t) = 0 whenever Au(t) ¢ 0.
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of « and B in these eguilibria may not be interchangeable., Suppose, for
example, that Ty, is even and Aplry) = 0. Then Ajlr,) # 0 implies that in
any alternating or hybrid equilibria, player b must be the last player to move
with positive probability. This requirement rules out equilibria in which £
is odd and rbtf) > 0 as well as equilibria in which £ is even and

ra(?) > 0, It is only when the payoffs to both players are nongeneric and

tTa = 'y that all of the possible alternating and hybrid patterns described in
Section 4.2 are consistent with equilibria.

We contlude our characterization of the set of nondegenerate
equilibria with a finite value of t* in Theorems 4.4 and 4.5. Theorem 4.4
describes the set of equilibria when the payoffs of only one plaver is
nongeneric. Thearem 4.3 describes the set of equilibria when both players

have nongeneric payoffs.

Theoren 4.4: Suppose Aglrg) = 0 and A,lr,) # 0. If r (t*1) = 0, then

t* = rﬂ+1. For ty even (odd) the set of nondegenerate equilibria with

ra(t*—l} = 0 may be indexed as follows!

(i) For each value of ra(O) (ra(ﬂ)) satisfying relation (4.2), there is a
unique alternating equiiibrium with { = 03

{ii) For each even (odd} &, 0 < € ¢ t*-1, and each value of rﬂtf)
{r (t)) satisfying relation (4.4) and for € = t*-{ and each value
of rB(f) satisfying relation (4.10), there is a unique hybrid
equilibriumg

(iii1)  For each odd {aven) &, 0 ¢ £ ¢ t*-1, and rolt) trgt£)) satisfying

relation (4.4), there is a unique hybrid equilibrium,
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Theorem_4.5: Suppose ﬂa(tﬁ) = Aylr,) = 0.
(1) if t; =ty =1, then the set of nondegenerate egquilibria such that
ra(t*-l)rb(t*-li = (0 may be indexed as follows:
(a) For each value of rato) or r,(0) satisfying relation 4.2,
there is a unique alternating equilibrium with ¥ = 0.
{b) For each ¥, 0 ¢ € ¢ t*-1, and each value ra(f) or rb(fi
satisfying relation (4.4) and for £ = t*-{ and each value
r t8) or r () satisfying relation (4.10), there is 2 unigue
hybrid equilibrium.
tii) 1 1, =1y-1, then t% =, and rutt*-1) = 0. The set of

equilibria are then defined by conditions (i) to (iii) of Thearenm 4,4.

4.4 Equilibrium #h T(t*) 1s Finite

We examine next the possibility of nondegenerate equilibria with
t¥ = 9. The analysis of this case differs from the foregoing analysis in two
respects. Firast, when t* = ®, there is no "last" period in which the players
move. Consequently, the argument which rules out the alternating and hybrid
equilibria is no longer valid, This implies in turn that it is no longer
directly relevant whether or not the payoffs are generic. Second, there is a
possibility that the requirements of Lemmata 4.3, 4.5 and 4.6 imply that a
player never waits forever when the horizon is infinite. When this condition
is satisfied, the payoffs at the and of the game becowme irrelevant and all of
the strategy pairs consistent with the restrictions of Lemmata 4.3 to 4.4 are
equilibria., Otherwise, if player § does plan to wait until the end of the
game with positive probability, then the payoff to player & from leading must
converge to ¢ as time approaches infinity. These conclusions are summarized

as Lemma 4.7.
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Lemma 4.7: A pair of strategies (;a,[b) with t¥ = ® is a nondegenerate
equilibrium if and only if Lemmata 4.3, 4.5 and 4.4 are satisfied and for each
%y, 0,(® > 0 implies either (i) lim, A, (t) =0 or (ii) qg(® =0 (for

B # a).

Although one can construct examples where 1int,.A¢(t) # 0 and the
conditions of Lemmata 4.2 or 4.4 imply that qa(n) > 0, it is difficult to find
an interesting economic interpretation for these examples. 5o long as the
length of the interval of "real® time between periods is conastant and we
assume any kind of discounting, the payoff from any action taken far enough
into the future must be arbitrarily close to zero. Consequently, the payoff
to player a from moving first further and further into the future must
convarge to his payoff when neither player ever moves. It is only in the case
where the interval of "real” time between periods becomes arbitrarily small as
the terminal period is reached that it is plausible toc assume that the limit
of Au(t} may differ from 0. In this case, however, it may be more appropriate
tc model the problem in continuous time.

In light of these remarks, we will confine ocur attention to the case

where the following assumption is satisfied.
A3 limg oA, (t) = 0,
An analysis of the class of equilibria when this condition is not

satisfied is tedious but essentially follows the arguments of Thearems 4.1

through 4.5,
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Theorem 4,46t Suppose that T = & and lint§mnu(t) =0 for a = a,b. The

set of nondegenerate equilibria can be indexed as follows!

ta) For each value of r_{(0) or ry(0) satisfying relation (4.2), there is a
unique (alternating) equilibrium with ¢ = 0.

(b} For each ¥ > 0 and each r_(f) or ry(£) satisfying relation (4.4),
there is a unique (hybrid) equilibrium.

{c) There is a unigue (fully mixed) equilibrium with € = @ determined

by equation (4.1},

Theorem 4.6 essentially states that all of the alternating, hybrid,
and fully mixed strategy combinations consistent with the restrictions of
Section 4.2 are nondegenerate equilibria. As in the finite horizon case with
nongeneric payoffs, the value of the conditional probability of moving for the
player wht moves in the first period of the alternating phase uniquely
determines the equilibrium for all of the alternating and hybrid equilibria.
The existence of a unique fully wmixed equilibrium is equivalent to the
existence of a unique solution to eguation (4.1) for which rylt) stays hetween
0 and 1 for all t. Given Lemma 4.4, the existence of such a solution follows
from standard arquments. The argument for the uniqueness of such a solution

is more subtle. The details are presented in the Appendix.

3. Some Examples: Ca > Au

The characterization of the nondegenerate equilibria in the previous
section depends critically on the assumption that a player always receives a
higher return from moving alone in period t than moving together with the
other player in period t+i. There are, however, a number of interesting

economic problems where this assumption may be violated. Consider, for
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example, a model of bargaining in which the issues being negotiated are in
some sense indivisible (i,e. the free agency rule in sports). Suppose two
parties have a disagreement on such an issue and each party hires an agent to
bargain on its behalf. At the beginning of each round of the negotiations,
gach party instructs its agent either to wmaintain the party’s bargaining
position or to concede it. If both parties cancede their positiens in the
same round, then the agents are assumed to bargain to a compromise settlement
in which each party is better off than it would have been if it had conceded
unilaterally but worse off than it would have been if it had maintained its
position., For such a problem, it would be appropriate to replace assumption
A2 of Section 4 with the assumption that C¢(t+1) > Aa(t) for all t+1 < T.12

In this section, we explore some of the implications for the class of
nondegenerate equilibria in the case where the return from moving
simultanecusly exceeds the return from leading. Even when we restrict
attention to symmetric games with return functions which decrease
exponentially with time, a complete characterization of the class of
g#quilibria appears quite cumbersome. Consequently, we confine most of our
analysis top establishing the conditions under which certain patterns of the
equilibrium strategies emerge which are not possible under Assumption A2.

Our main results may be summarized as follows. Suppose the return
from moving simultaneously is relatively closer to the return from following
than it is to the return from leading. Then there are no alternating
equilibria. Instead, & class of coordinating equilibria emerges in which both
players move with positive probability in some periods and zero probability in

AEEERFERRETEESE

12This assumption is commonly wade in the discrete time formulations of animal
conflicts in the biology literature (see Bishop and Cannings (1979} and
Hammerstein and Parker (1982).
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other periods. Second, if the return functions decline exponentially, the
difterence equation which defines the fully wmixed equilibrium may be stable.
If the horizon is infinite, this implies that the fully mixed equilibrium may
not be unique. If the horizon is finite or the return functiens do not
decline exponentially throughout the game, it implies that there may be no
fully wmixed equilibrium. Finally, in an asymmetric game in which one player
has a high and the other player a relatively low return from moving
simultaneously, these results imply that there may be no nondegenerate

equilibrium even if v = T

9.1 The Existence of Alternating and Coordinating Egquilibria

When Ca(t+1) is less than or equal to A (t), Lemma 4.1 reguires that
any period in which one of the players moves with probability O must be
followed by a period in which the other player wmoves with probability 0. 1In
contrast, when we allow Cu(t+1) to exceed ﬂatt), a player may have an
incentive to wait in order increase his chance of moving together with the
other player. As a consequence, there may be periods in which both players
move with probability O followed by periods in which there is a positive
probability that both players move together. Furthermore, the incentive to
wait in order to avoid moving alone may be sufficiently strorg to actually
eliminate the alternating equilibria.

To illustrate this point, consider a game with an infinite horizon in
which all of the the return functions decrease exponentially with time. That
is, A t) = Ast, B (t) = Bat, and C t) = cot, where 0 ¢ & <1 and
0 CALCC B, Leat (ga,;b) be an alternating equilibrium. Then for every
perind t > 0 in which player a chooses ra(t) = 0, both ra(t-l) and r«(t+1)

must be positive so the value of rﬂ(t) is determined by the relation
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{(3.1) 0

Pultel Fg) = Pott-1,Fy)

® Pu(t+1‘FB)-Pu(t’FB) + Pm(t,Fﬂ)*PG(t-l,Fa)

tei-F, (¢~ - - -
BELLI-Fgtt-1)1[r, () [B~C] + (L-r 4(t))[8A-AD]

K Y ST TSR F LTI TS I FENTIRN 15V S B

In order for ry to be an optimal response teo ras it is necessary and
sufficient that, for each positive t with r _(t) = 0, the value of ra(t)

determined by equation (5.1) satisfy
{5.2) Patt+1,F3) - PaltsFa) 202 Palt Fg)-Pult-1,Fp.

Using equation (5.1}, it follows that relation (5.2) is satisfied if and only

if
Pa(t+1,F8) - Pa(t,Fﬂ) b4 Pu(t,Fﬁ)—Pu(t-l,Fﬂ).
ar
ra(t)[B-C] + (l—ra(t))[ﬁﬁ-ﬂl b1 rsit)[6C~A] + (l-rﬂ(t))[sﬂ-ﬁl.

Then since equation (5.1) implies rB(t) >0 when & > 0, we conclude that an
alternating equilibrium exists if and only if B-C 2 8E-A.

To understand this result, one must recognize that ratt) has to
balance two conflicting incentives. On the one hand, it must be small enough
to induce player « to move in period t-1 rather than in period t where he may

reap the benetits from moving simultaneously with player 8. On the other
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hand, it must be large enough to induce player « to wait until period t+{ in
order to receive the possible benefit from following in period t. The larger
is the return from moving simultaneously, the smaller must rﬂtt} be in order
to induce player a to move in period t-1, but the larger nmust rﬂ(t) be in
order to induce player to wait until period t+l. MWhen the return from moving
simultanecusly is sufficiently large, these two conditions are incompatible.

This arqument suggests that instead of an alternating equilibrium, we
may obtain an equilibrium in which the plan of both players is to periodically
move together with pasitive probability in some periods followed by one or
more periods in which both wove with probability 0. We #ill call sueh an
equilibrium a coordinating equilibrium.

Consider then a coordinating equilibrium in which both players move
with probability r upon reaching any even period and move with probability 0

in any odd period. Then r is determined by the relation
(5.3) 0 = Pu(t+2‘F8) - Patt,FB)
= Pu(t+2’FB)'Pa(t+1'FB} + P¢(t+1,FB)-P¢(t|F8)
= t-Fyen st frisc-aze(1-rics-11a]

+ (1-F -1 8% [riB-CI+ (1-r)146-114],

where t is an even integer., The strategy determined by r is optimal if and

only if
{5.4) Pa(t+2,Fﬂ3—Pu(t+l,F8) 2 02 Patt+1.F8)—Pd(t,Fa)

Using equation (5.3) it then follows that (5.4) is satisfied if and only if
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Polt+2,Fg) =P (t+1,Fp) 2 Pult+l,Fg) =P (t,F )

or

rLsC-Al + (1-r)(8-1}R 2 r(B-C] + (1-r){(§-1]A.

But, since & < } implies r > O, this relation can be simplified to
§C-A ) B-C.

We conclude that for the stationary model being considered here,
either an alternating equilibrium exists or a two period stationary, two
period coordinating equilibrium exists. Both exist only in the special case
where 8C-A = B-C. In particular, if C-A > 8-C, then as § approaches 1, the

alternating equilibria vanishes and the coordinating equilibria appears.

5.2 The Existence and Uniqueness pf Fully Mixed Egquilibria

When Cu(t+1) { Ay lt), the proof of the uniqueness of the fully mixed
equilibrium in the infinite horizon game depends essentially on the fact the
difference equation describing the conditional probabilities across periods is
unstable, Consequently, all but one sequence of conditional probabilities
wust eventually violate the restriction that rs(t) lie between 0 and 1.
Hawever, when qut+1} is greater than R,(t) and sufficiently close to
B“(t+1), the relation between r8€t+1) and rs(t) may actually be a contraction
over a range of rﬂ(t). This leads to the possibility of multiple equilibria,

Assuming that the return functions decline exponentially as in Section
4.1, the equation relating ri(t+i) and r(t) can be written asl?

HEEEEEREERREER

13this assumes that C # A, I C = A, then rit) = At1-8)/(B-§A] for all t.
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At1-8) (B-C) rit)
. +1) = T mmmm—— D i e R b e
(5.5)  ritel) = hirith [8(C-AY) [&(A-C)] [1-rit)]
Suppose that {rltt}}:=° and {rz(t)}:ao koth satisfy (5.9) with

0 ¢ ritty ¢ 1, for i =1,2. Then

(5.8) fritten) - e2(ead | = (B-CIZC8C-M et 7 Ct-rt ity - 20ty 7 (0P 2 (e |
2 (LB-c1/e8c-m1irlr-r2 |,

It A > C, then |([B-C)/C8(C-A1]] > 1 which implies that the difference
equation (5.5) is unstable. Consequently, the only fully mixed equilibrium is
the pair of strategies corresponding to the stationary solution of (5.5) which
we will denote by F.

Now suppose that C > A. As illustrated in Figure 3, it may be shown
that h(r) is a concave, strictly decreasing function on the unit interval,
taking on nonnegative values over the interval EO,FJ. where
F = A(1-8)/[B-C+A~§A1. The necessary and sufficient condition for r to be
locally stable is that {dh(r)/dr} < 1. If this condition is satisfied, then
there exists an open interval A = {(r-e¢, r+¢) such that, for any r(0) € a,
rit) converges to r. Consequently, when the stationary solution is locally
stable and the horizon of the game is infinite, & one-parameter family of
fully-mixed, nonstationary equilibria exists in addition to the stationary
equilibrium,

Figure 3 A Contipuum of Fully Mixed Equilibria

- e -

I+ Idh(F)/dr} > 1, then ¥ is locally unstable and, given any
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ri0) #r, r{t) either converges to a limit cycle or diverges out of the unit
interval, A sufficient condition for the nonexistence of nonstationary fully
mixed equilibria is far |[dhird)/dr{ > 1 +for all r € [0, f1. Since hir) is
concave, this condition is satisfied if |dh(0)/dri > 1 or, equivalently,
B-C > &{(C-A}.

Consider next the implications for the existence of a fully mixed
equilibrium for a finite horizon game when the difference equation h is
stable. Since A > 0, it follows that A (t) = pe™® > 0 +for all t ¢ T
which, combined with Lemma 4.4, implies that t* = 7. When T ¢ ©, equation
(4.7) implies that r,(T-1) = A/LB-C+A1. 'Y Now suppose that
[B-C+A(1-8)12/[B-CI4(C-A) < 1 ~- i.e. |dh{(f)/dr) ¢ 1. Then any solution to

A

(3.4) with an initial condition r(0) { r implies that r{t) converges to r.
Consequently, tf © # A/IB-C+A), then there is no fully mixed equilibrium for
T finite but sufficiently large.

A similar arqument establishes that, if the return functions are not
exponential, there may also he no fully mixed equilibrium even when the
horizon is infinite. Choose A, B, and C so that B-C ¢ C-A, and suppose that
§ is chosen so that equation (5.%5) is a contraction for any r(0) $ rigs.

Now suppose that in some period T the discount factor increases to § for the
remainder of the game (with a corresponding change in A,B, and C so that
Assumption Al is satisfied). Inspection of equation (5.5) reveals that FLB)
converges monotonically to O as & approaches |. Consequently, we may choose
¥ so that r(§) ¢ F(§). But in this case, if € is chosen sufficiently
large, the value of r(f) must lie outside the range of 10,9(3)3 implying
that r(¥+1) < 0. Consequently, there is no fully mixed equilibrium. The

HEERRERREREERF

1414, argument behind equation {(4.7) does not require Assumption AZ.
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problem is illustrated in Figure 4,

e Ay A E S A A e

Figure 4 No Fully Mixed Equilibrium Exists

We conclude that if the difference mguation is stable, then no fully
mixed equilibrium generally exists when the horizon is finite and sufficiently
large. If the horizon is infinite and the difference egquation is stable, a
fully mined equilibrium may not exist when the payoffs are nonstationary, but

if it exists, there is generally a one parameter family of such equilibria.

5.3 An Example with No Nondegenerate Equilibrium

As long as the game is symmetric and the horizon is finite, a
symmetric fully wmixed equilibrium exists. 19 However, it we allow for
asymmetries in the returns to moving simultansously, the arguments of Sections
5.1 and 5.2 can be combined to produce an example where no nondegenerate
equilibrium exists, even if the returns to following and leading are the same
for the two plavers.

We assume that the return functions for leading and following are
identical for both players and decrease exponentially. That is, for a = a,b,
Aa(t) ] Ast and Bd(t) = Bst. If both players move in period t, then we
assume that player b earns a return Eb(t) = Ast, while player a receives a
higher return Ca(t) = cst. Suppose that 0 ¢ § <1 and 0 ¢ A < C ( B,
Then, for T finite but greater than 1, there is no nondegenerate equilibrium,

To see this, note first that in a nondegenerate equilibrium, Lemma 3.2
EEERRERRERRRER
151¢ the horizon is infinite, the last example of the previous section
demonstrates that no symmetric fully mixed equilibrium may exist. We suspect

that it may be possible to construct cases where there is no nondegenerate
equilibrium of any kind for this kind of example.
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requires that beth players plan to wait until period T with sowe positive
probability. Then since A _(T-1) > 0, for « = a,b, it follows that player 8
must move with positive probability in period T-1} otherwise, player a, upon
reaching period 7-1, moves with certainty. But if player 8 is to be
indifferent between moving in period T-1 and waiting until period T, the

probability with which player &« moves upon reaching period T-1 wust satisfy

(3.7} r dT-1) = A/LB~C+AD,

Now let t’ be the smallest value of t such that rati) > 0 for
i=t,...,T-1, S8ince the paycffs to player b satisfy Assumption A2, and
gquation (5.7) implies that Fp(T-1) > 6, it follows from Lemma 4.1 that
ryatT-2) > 0. MWe may therefore conclude that t’ ¢ T-2.

In order for player a to be indifferent between moving in each of the
periods, t’ to T-1, the sequence {rb(j)}};%.nust satisfy equation

(5.3). In particular,
PR{T=1) = h{ry(T=-2)) ¢ h(0) = A(1~§)/[B-C+A(1-8)1 ¢ A/LB-C+Al,
violating equation (5.7).16

b. Degenerate Equilibria and Subgame Perfection

In this section we examine the degenerate equilibria for games which

satisfy Assumption A1, The degenerate equilibria can be classified into two

EEFERREREEERRKE

Lops we suppose that the return to player a upon reaching period T is asT
trather than 0), then we obtain TplT-1) = A(L1-8)/[B-C+A(1-8)). In this case,
it appears that there is a nondegensrate equilibrium which is fully mixed up
to period T-2.
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types depending upon which player moves in period 0. We establish firet the
conditions under which each type of degenerate equilibrium exists, HWe show
that a degenerate equilibrium in which player a moves first exists if and only
if player 8 has a strategy which implies that woving immediately yields a
higher payoff to player a than waiting until period V. We then turn our
attention to the implications of subgame perfection. For a game with ap
infinite horizon satisfying assumption AJ, we demonstrate that for each player
4 there is a subgawe perfect equilibrium in which plaver o moves immediately
with probability 1. [If the horizon is finite (and payoffs are generic}, such
an equilibrium exists if and only if (i) A (0) > 0 and (ii) 7, 2 tg. That
is, the return to player & from leading in period 0 must be positive and it
must be positive in any period in which the return to player # from moving
firet is also positive. It then follows from Theorem 4.1 that, generically,
both types of degenerate equilibria are subgame perfect whenever a

nondegenerate equilibrium exists,

.1 The Existence of Degenerate Equilibria

We begin with a statement of the conditions which are necessary and

sufficient for the existence of a degenerate equilibrium.

Theorem &6.1: @Given Assumption A1, there is a degenerate equilibrium with

rq{0) = 1 if and only it A, (0) infy p{0,B,(t)}.

As long as player B possesses a strategy which permits a return to
player o which is no greater than AG(O). the best response of player « is to
move immediately with probability 1. Since player f is not called upon to

carry out his threat, this strategy combipnation is an equilibrium. Such a
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threat exists if either the return to player o from moving in period 0 is
nonnegative (in which case player § can threaten never to move}, or it is less
than his return from following in some period (in which case player §
threatens to move in that period). Otherwise, it follows from Assumption Al
that it is a dominant strategy for player &« to wait until period T in which
case no such degenerate equilibrium exists.

Nptice that whenever a degenerate egquilibrium exists, there i
generally a large class of equilibrium strategies which support the same
outcome since the specification of the players’ strategies in the periods
after period 0 is largely indeterminate. The only restriction is that player
8 adopt a strategy which implies that it is optimal for player « to move in
period 0. BSome of this indeterminacy can be eliminated by requiring each
player to play optimally in every subgawe. The remainder of this section is

devoted to examining the implications of this restriction.

4,2 The Existence of Subgame Perfect Degenerate Equilibria

For any t, 0 ¢ t < 7T, let My denote the subgame starting in period t.

To simplify notation, we will say that (ga,;&) is an equilibrium for subgame

T

Py if Cr tid,rp (3023721 is an equilibrium for Iy, Our analysis of the

subgame perfect equilibria is based on the following Lemma.

Lemma b6.1 A degenerate equilibrium ([a,gb) is subgame perfect if and only
if there is a t, 0 < t {7 such that (i) for 0 ¢ j < t, reli’) = 1 and
rﬂlj) & 03 (ii) if t < T, then (Cayrp) is a nondegenerate equilibrium for

game Tyy and (iii) Agtlid 2 SuppyiPglk,Fg) for all j < t,

Lemma 6.1 states that in any subgame perfect degenerate equilibrium
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some player & moves with probability | and player 8 moves with probability ¢
conditional on reaching any period j up to sowme period t. Thereafter, the
strategy pair must form a nondegenerate equilibrium. In addition, the payoff
to player & from waiting until period t must not exceed his return from
leading in any period prior to period t.

The argument goes as follows. Suppose that (r_,r,) is a subgame
perfect equilibrium in which player &« moves first. Let t be the first period
in which plaver « does ngt wove with probability 1. Assumptiaon Al then
implies that, conditional on reaching any period j, player 8 prefers to wait
until period j+i. [t follows, therefore, that p{ayer # moves with probability
0 in each period j up to period t. This establishes the necessity of
condition (i). Now suppose the game reaches period‘t—l and t { T. Then Al
implies that player 8 cannot.auve with probability 1, since player &« could
then earn & higher return from waiting until period t+1 than from moving in
period t-1. But this violates the assumption that relt=1) > 0.
Eonsequently, any subgime perfect strategy pair must form 2 nondegenerate
equilibrium for the subgame starting in period t. This establishes the
necessity of condition (ii). Finally, in order for it to be cptimal for
player & to move in any period § before period t, the return from leading in
period j wust be no less than the payoff he receives from waiting until any
period k after period t. But since player 8 never moves in the first t
periods, this requirewment reduces to the condition that the return from
leading in period j be at least as large as his expected paycff from moving in
any period after period t. This is condition (iii).

That these three conditions also imply that the strategy pairs are
optimal in each subgame follows from Theorem 3.1 which states that all

nondegenerate equilibria are subgame perfect.
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fis in the case of degenerate equilibria, when a degenerate subgame
perfect eguilibrium exists, there are generally many strategy combinations
which support the same outcome. In determining which outcomes can be
supported as degenerate subgame perfect equilibria, however, the next lemma
permits us to restrict our search to a particularly simple class of
strategies. Recall that t* is the first period in and after which neither

player moves with positive probability.

Lemma 6.2: If a subgame perfect equilibrium exists with rol0) =1, then
there is a subgame perfect equilibrium in which relt) =1 and rgit) =0
for t < t¥, For any such equilibrium, either (i) t* = ® or (ii) t¥* 2 Ty

and A (t*-1) 2 0,

Lemma 6.2 states that we can always support the outcome of a subgame
perfect equilibrium with a pair of strategies in which one player B never
moves and the other player « moves with probability 1 conditional on reaching
any pericd up to period t*, in and after which he never moves. Furthermore,
the value of t* must be chosaen so that player « does not prefer to wait in
periods before period t* (implying Ra(t*-l) 2 0) and does not prefer to move
in periods in and after t* (implying t* 2 ¢,). Note that if the payoéf to
player a is generic, then these conditions imply that t¥ = Ty

The argument goes as follows. Choose t* to be the largest t such that
Aa(t-lJ 2 0. If t* =T, then the strategy pair in which player « plans to
move immediately upon reaching any period and player 8 plans to never move is
clearly a subgame perfect equilibrium. If t* ¢ T, then Lemma 4.1 implies
that the original strategy pair must form a nondegenerate equilibrium for the

subgame rti. Lemma 3.3 then implies that neither player moves with positive
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probability conditional on reaching any period greater than t*-1. From Lenma
3.2, we may then conclude that it must be an optimal response for both players
to wait until peripd T, This implies that ﬁﬂ(t*) { 0 and hence that

t* 2 tye It also implies that ﬂa(t*-l) 2 0. This establishes the Lemma.

We turn now to a characterization of the conditions under which each
type of degenerate subgame perfect equilibrium exists. As in Section 4, it
will be convenient to distinguish between finite and infinite horizon games,
e begin with 2 statement of the conditions which are necessary and sufficient

for the existence of a subgame perfect degenerate equilibrium when the horizon

is finite.

Theorem é.2: Suppose T ¢ ®, There is a subgame perfect equilibrium with
rel0) =1 if and only if each of the following conditions are satisfied:
(i) ﬂ“(O) 20y Ui) rg-l § vy, G §F T, < T and A,(r,) < 0, then

Th £ Tye

§p long as the return to player & frowm wmoving immediately is greater
than or equal to ¢ and the return to player # from moving is not strictly
positive in any period following a period in which the return to player « is
nonpositive, there is a subgame perfect equilibrium in which player a moves
immediately. The Theorem is essentially a consequence of Lemma 6.2 and the
observation that the optimality of ry requires that AB(t*) ¢ 0 if t¥ (T
The conditions of Theoraem 6.2 are also sufficient for the existence of a
subgame perfect equilibrium when T = @. When payoffs are generic, Theorem

4.2 implies
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Corollary 6.1t Suppose T { # and the payoff to player a is generic, Then

there is a subgame perfect equilibrium with ryt0) =1 if and only if

; ;g 17
(1) A, (0) > 0 and (i) tg4 ¢ t,.

We turn next to the case where the horizon is infinite. As in Section

4, we confine our attention to the case where lim, oA, (t) = 0,

Thecrem 6.3¢ If T = @ and Assumption AJ is satisfied, then for a = a,b,

there is a subgame perfect equilibrium with rqt0) = 1.

As long as his return from leading is positive in every period, it

always pays player o to move if the strategy of plaver B is always to wait.

6.3 The Relation between Degenerate and Nondegenerate Equilibria

We conclude this section with some remarks on the relation between the
existance of subgame perfect degenerate equilibria and the existence of
nondegenerate equilibria.

Suppose that Agl0) 2 0 for each player a. Then Theorem 6.2 implies
that both degenerate equilibrium outcomes are subgame perfect if and only if
Ta = tp when payoffs are generic and te1 2 g ¢ Tatl when payoffs are
nongeneric. In Theorem 3.2 we have established that these same conditions are
also necessary for the existence of nondegenerate equilibria., Thus, in
general, the existence of two subgame perfect degenerate equilibrium outcomes
implies the existence of nondegenerate equilibria. To establish the converse,

FRERERXERTRERS

17This is also & necessary and sufficient condition for the existence of a
degenerate equilibrium which is “trembling hand" perfect {(Selten (1975)) even
when payoffs are nongeneric. In general an equilibrium is trembling hand
perfect only if r.(t) = 0 whenever A,it) ¢ 0.
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however, the example of Section 5.3 illustrates the necessity of some
additional restrictions on the payoffs. In that example, there is no
hondegenerate equilibrium even though & strategy combination in which either
of the players moves with probability | upon reaching any pericd and the other
player never wmoves can be shown to be a subgame perfect equilibrium.

Theorems 4.1 through 4.3 do imply, however, that these terminal
canditions are sufficient for the existence of & nondegenrate equilibrium if
Assumption A2 is satisfied. Hence, in games in which the return from leading
is greater than or equal to the return from tying, the existence of both
subgame perfect degenerate is generally both necessary and sufficient for the
existence of a nondegenerate equilibrium. We summarize these conclusions in

the following Theoren,

Theorem 6.4: (i) If A (0) 2 0, then there is a nondegenerate equilibriunm
only if there is a subgame game perfect degenerate equilibrium in which

rgt0r = 1. tii) If A¢(0) 2 ¢ for a = a,b, and if Assumption A2 is
satigfied, then there is a nondegenerate equilibrium if and only if, for each

o, there is a subgame perfect degenerate esquilibrium in which rel0) = 1.



48

References

“Benoit, J.P. [1985], "Financially Constrained Entry in a Game with Incomplete
Information," YThe Rand dournal of Economics, 15,{4}, pp.490-499,

Bishop, D.T. and Cannings, C. [19781, *A OGeneralized War of Attrition,*
dournal of Theoretical Biology, 70, pp. 85-124.

Bishop, D.T., Cannings, J., and Maynard Smith, J. [1978], "The War of
Attrition with Random Rewards,” Journal of Theoretical Biolegy, 74,
pp. 377-388B.

Bliss, C. and Nalebuff, B. £1984), "Dragonslaying and Ballroom Dancing: The
Private Supply of a Publie Sood," Journal of Public Economics (2%),
p. 1~12,

Dasgupta, P. and Maskin, E. F1982), "The Existence of Equilibrium in
Discontinuous Gawes, 1: Theory,” mimeo,

Dasgupta, P. and Maskin, E. [19B2], "The Existence of Equilibrium in
Discontinuous Gamnes, 2! Applications," naiaeo.

Fudenberg, D., Bilbert, R., Btiglitz, J., and Tirole, J. [19831, "Preemption,

Leapfrogging, and Competition in Patent Races," European Econpamic
Review, 22, pp. 3~31.

Fudenberg, D. and Tirole, J. E1983), "A Theory of Exit in Oligopoly," IMSSS
Working Faper No. ?.

Hammerstein, P. and Parker, 8.A. [19B82), "The Asymmetric War of Attrition,”
Journal of Theoretical Biology, 94, pp.&47-482.

Hendricks, K. [1984]), "Information Externalities and the Timing of
Investments," aimeo.

Kohlberg, E. and Mertens, J.F. [1982], "On the SBtrategic Stability of
Equilibria,” CORE Discussion Papar No. 8248,

Kreps, D. and Wilson, R. [1982al, "Reputation and Imperfect Information,"
Journal of Economic Theory, 27, pp.253-279.

Kreps, D.M. and Wilson, R. [1982b), "Sequential Equilibria,” Econometrica, 50
pp. 863-B94,

Maynard Smith, J. [1974), "The Theory of Games and the Evolution of Animal
Conflicts,” Journal of Theoretical Bigplogy, 47, pp. 209-221,

Maynard Smith, J. and Parker, G. A. [197461, "The Logic of Asymmetric
Contests,” Animal Behavior, 24, pp. 159-175.

Nalebuff, B. and Riley, J. [19B4), “Asymmetric Equilibria in the War of
Attrition," forthcoming Journal of Theoretical Biology, 198S.




49

Parker, 6.A. and Rubenstein, D.I. [1981], “Role Assestment, Reserve Strategy,
and Acquisition of Information in Asymmetric Animal Conflicts,”
Aniwal Behavior, (29), pp.221-240.

Ordover, J.A. and Rubinstein, A, [1985), "A Sequential Concession Game With
Asymmetric Information," mimeo.

Osborne, M.J. [1983], "The Role of Risk Aversion in a Siwmple Bargaining
Model," mimeo.

Selten, R. [1974}, "Reexawination of the Perfectness Concept for Equilibrium
Points in Extensive Banmes," International Journal of Game Theory, 4,
pp. 25-55,

Selten, R, [1980), "A Note on Evolutionarily Stable Strategies in Asymmetric
Animal Conflicts,"” Journal of Theoretical Biology, (B4), pp. 93-101.

Weiss, A. and Wilson, £.A, (1984), "An finalysis of Bames of Timing With
Complete Information: An Application to 0il Exploration," wmimeo.

Wilson, C.A. [1983], "Notes on Games of Timing with Incomplete Information,”
nimeo,



Appendix
We present here the proofs of the Lemmata and Theorems stated in the
text. As in the text, j.,k, and t will refer to nonnegative integers. An
arbitrary will be denoted by & and the other player by 8. We will use
repeatedly the fact that if (Fa,Fb) the pair of distribution functions
generate by an equiiibrium ([a,gb), then g tt) > 0 implies that

Pa(t'FB) = suija(j,Fﬁ).

Proof of Lemma 3.1:

Since Qu(t+1) = 0 and t < £, it follows that Falt#1) < 1.

Therefore qs(t+1) = qatt) = 0 implies
P«(t+1,Fﬂ) - Pa(t,Fa) = £R¢(t+l)~ﬂa(t)l(I-Fa(t+li) <0

which implies qg(t+1) = 0. R.E.D,

Proof of Leama 3.2!

Suppose that 0 ¢ t ¢ 7. Then for some player 8, qﬂtf) > 0 and

FQ(Q) = |, Consequently, Assumption Al implies

Patt"'i,Fa) - F«(t-l’FB) =

qB(t-ilfﬂﬁtt-l)-Cu(t~l)] + qatt)[Ba(t)-Aatt-l)J > 0.
and

Pa(t+i,Fa) - Pa(t'Fﬂ) = qB(t){BG(t)—C«(t)] > 0.
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Therefore, qa(?—l) = qatf) z (. But then Lemma 3.1 implies that

qs(g) = 0. A contradiction. R.E.D.

Proof of Theorem 3.1:

Suppose (:a,;b) is a non-degenerate equilibrium. Then Lemma 3.2
implies that F(t-l;;s) < 1 +#or all t ¢ 7. Consequently, ra(t) >0
implies that Pa(t,F(-;ga)) = SUPjPa(j’F(';EB))' From the definition of

F(j;t,[ﬂ),
F(jit,[ﬂ) = {F(j;gﬂ)-F(t-l;[a)]/(l-F(t-l,[ﬂ))

for 0 ¢t ¢ i { T. Therefore,

=
PolisFlogtypg) =Py (GF (5t rg) = [P CisFegrg) =P (KjFLa3r ) 1/ (1=F LE=13rg))

tar 0 §t ¢ kyd ¢ T which implies that for 0 ¢t ¢ J £ T,

Pu(j,F(-;t,La)) = ’upkgtpu{k'F(';t'fﬁ)) whenever r _ (j) » 0. B.E.D.

@

Froof of Leapa 3.3:

{i) Buppose that g (T) > 0. MWe show first that rt, ¢ t*. If t¥ = 7T, the

result follows by definition. 5o suppose that t* ¢ T. Then

- * = - *
0 £ Pu(T’FB) Palt ’FB) = qE(T)Rm(t I
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This implies that Aa(t*} $ 0 from which it follows that Ta $ t¥.
To show that ¢, » t*-1, suppose first that t*¥ = @, Then since

: a .
Limy,0)5a¢9g(3) = 0, we have

0 3 Pu(T’Fs) - linsupt+G?u(t,FBJ
= Limsupy o [1B(t1=Co it 1a,0t) + F5o4 4 TB, (30 =R () 1q,(5)
= 9y TR, ()]

2 - qB(T)limt=aAm(t).

Assumption Al then implies that Aty > 0 for all t which implies that
t = o,

Next suppose that t* < ®. Note first that either qa(t*-i) >0 or
Q,(t¥-2) > 0. Otherwiss, Lemma 3.1 implies that g (t*-1) = qgtt*-1) = 0,

contradicting the definition of t*., If qa(t*-Z) > 0, then we have

o
n

- *_
PulToFg) = Py tt¥=2,Fy)

*_ *_ - *_ *_ *_ - *_
Qg (t*-21 0B (£*-2)-C (t¥-2)] + Qgtt*-11IB, (t*-1)-A (t*-2)3
- qa(T}Aa(t*-2)

> -qﬁ(T)Aatt*-Z),

from which it follows that Au(t*-E) > 0. While it qu(t*-l) » 0, then

L=}
1

- - *
PolTsFg) = Pott LFg)
= qa(t**l)[Ba(t*-l)—ca(t*-l)l - qﬁ(T)R«(t*-i)

2 - qgtTia t*-11,

which combined with Assumption Al again implies that A«(t*-Z) ) Aa(t*-i) 2 0.



A4

In either case, therefore, T 2 t*-1,

{ii) Suppose that qB(T) = 0, Then Lemma 3.2 implies that FB(t) 1 for
all t ¢ T which implies in turn that t* = 7T = @,

(iii) We note first that Lemma 3.2 implies that gq (M), qaiTi > 0 if

t* ¢ o, Then i r, (t*-1) = 0, the detinition of t* implies that

rﬂ(t*-l) > 0. HWe may therefore conclude that

- *_ = - *
0 = Pa(T,Fu) Pﬁ(t l’Fu) = quiT)Aaft i)

which implies Aa(t*—l) = 0, By definition, then, t¥-1 = Ta The condition

then follows from condition (i}, 2.E.D.

Proof of Lemma 3.4:

Biven Lemma 3.3, all that is required is to establish that if
qa{T) >0 and t* ¢ o, then Ta 2 t¥. From the proof of Lemma 3.3, we know
that qu(t*-ll >0 implies Aa(t**i) 2 0. If payotfs are generic, then this
implies that A (t*-1) > 0 which in turn implies that ¢, > t*. The Lenma
will follow, therefore, it we can show that g, (t*-1) > o.

Suppose not. Then the definition of t* requires that qB(t*-IJ > 0.

The assumption that qﬂ(T) > 0 then implies that
- - *_ = = *_
0 FB(T,Fa) Pﬂ(t l,Fﬁ) qa(T)Aa(t 1).
From Lemma 3.3(ii) we know that t* ¢ ® implies that Q,fT) > 0. But this

implies that Aa(t*-I) = 0, which contradicte the assumption that payoffs are

generic. R.E.D.
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Proof of Theorem 3.2:

The theorem follows directly from Lemmata 3.3 and 3.4, B.E.D.

Proof of Theorem 3.3:

Without loss of generality, we may suppose that ra(o) < 1. Note

first that if rp is an optimal response, then [: is as well.
Second, note that for ail t > 0,
Qglt) = g (B0 (1-r¥0))/(1-r (0))]
trom which it follows that for all t,j > 0,
Pﬁtt,F;)-PB(j,F:) = [(l-r;(O))/(1-r¢(0)}}[PB(t,F«)-Pa(j,Fu)].

and

* - *
Patt Fa) = Palo,Fh)
*y . * ¥y . ¥
= IRt FR-Patt FR)T + [P (1, FY)-P,10,F5)]
*y * * -
= fPﬂ(t,Fu) Patl,Fa}J + ru(O)[Bu(O} Cyl0]

~p ¥ -
+ [ ra‘O)}[Au{l) Ayt0)]

-k - -
Lt-r¥con /s r“(O))J[tPB(t,Fa) Pail,F o)l

- - * -
tLLor, (00 10A,(1)-A,(0)3] + r2(0}IB (0)-C(0)]

Hrr

-t - - -
£l ra(O))/(l ra(O))][[Pﬁ‘t’Fu) Pﬂ‘l'Fa)] + ra(O)[Bm(O} Cal0dl

+ L1er  (0)I0A, (1) -A,10)1]

-r¥ - -
[ ra(OJ)/(l r“(e)}][Pﬂ(t,F«) Pﬁ(O,FaJI.
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We conclude that ry is also optimal against [i. 8.E.D.

Proof of Lemma 4.1:

Since t+l ( f. it follows that either F3(t+1) ¢ 1. Therefore

Assumptions Al and A2 imply that

Pa(t+1‘FB) - Pa(t,Fﬁi = ICm(t+l)-Aa(t)]qﬁ(t+l)

+ [Aa(t+1)-ﬂa(t)](l-Fﬂ(t+1)) <o

which implies Gult+l) = 0. 0Q.E.D.

Proot ot Lemma 4.2:

Part (i) follows from the definition of €. Part (iii) follows 4rom
the definition of t* and induction on Lemma 4.1. To establish part (ii) we
may use the definition of f ang a8gain argue by induction on Lemma 4.1 to
establish that g,(t)q,(t+1) = 0 +for all t, £ $t g 7. The secand half of

the condition follows from the definition of t¥%. @0.5.D.

Propf of Lemma 4.3:

Far any ¢t ¢ f-i, the conditions for equilibrium require

0= Pa(t“'i,FB) - Pa{t'Fﬂ)
= [Bu(t)*ca(t)]qﬂ(t) + [Cd(t+l)_Ad(t)]qﬂ(t+1)

+ [Au(t+1)-ﬂu(t)]EI-Fa(t+1)J.
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The Lemma then follows upon substitution of the expression for rB(-). g.E.D.

Proof of Lemma 4.4:

Since equation (4.1) is bilinear in ra(t) and rﬂ(t+1), it follows by
induction that for any rﬂ(t>, t > 0, there is a unigue sequence {rn(j)}ggo
satisfying (4.1). Furthermore, solving for rH(t) as a function of r8(t+x), ue

ebhtain

ra(t) = ga(r3(t+l);t)

(A. 1) E it e T, Lo
[Ba(t)-C«(t)+ﬂu(t)-ﬁa(t+l)] + [Aa(t+1)-C“(t+i)}rB(t+1}

Ba(t)-Ca(t)

2 | ~ wm [ - e o R -

IBa{t}—C“(t)+Au(t)~Ad(t+i)3 + [Aa(t+1)-8¢(t+l)]rﬂ(t+1)

Note that if A2 is satisfied, then Fgliti) € [0,1]1 implies
gﬂ(r8(j+1);j) € {0,1). CLConsequently, it follows by induction that

rn(t) € [0,1] implies ra(j) £ [0,1] for j < t. B.E.D.

Proof of Lemma 4.5:

Suppose that £ = ¢ and Q,(0) = 0. Then since t* > 1, it follows

from Lemma 4.2 that 8,012 > 0 and ggt1) = 0. Therefore,
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0 & Pull,Fg) = P 0,Fp)

= QH(O)IBQ(OI-C¢(0)] + (1-q5(0))[na(l)-ﬂaiﬂ)3.

Noting that rB(O) = qﬂtﬂ) and rearranging terms vields relation (4,2},
Now suppose that £ > 0. Then since qa(f) = 0, the definition of

t implies that both r5(€-1) >0 and rg(f) >0, Therefore,

0= Pﬂ(t’Fa) - Ps(t*l,Fa)

= 9, (T8 -1 -CpE-101 + (-F (E-1) A ) -A (E-1)0.

Substituting in conditional probabilities and solving, we then obtain equation
{4.3).

To establish relations (4.4) and (4.5), we use the fact that
3,(E) = 0 implies qB(?+1) = 0, q,(f-1) > 0, and q,(E+1) > 0. Theretfore

0 = Pytt+1,Fp) - P ti-1,Fp
= ggtt-0 B i1 -C (E-11 + (1-F g (8 LA (E+1) =R (E-1)3,

Using conditional probabilities and rearranging, we obtain equation (4.5).

Also

[ =]
Fal

b o b4 hd A N
qﬂ(t)[Ba(t)-Ca(t)] + (I-FB{t))[R«(t+l)-Aa(t)].

Upon substituting in conditional probabilities, we then obtain
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o d b A i b ha A
raft) 2 (A E1-A B+ 1708 (- (E1+A (£)-A (E+D) ],
Finally, note that 1 > rgif-1) > 0 if and only if
A od b N I
rgit) < LA (E+1) =R (E-1) /1B ()-A (£+1) 1,

This establishes relation (4.4). @&.E.D.

Proof of Lemma 4.6:

If Qu(tr = 0, it follows from the definition of £ and t* that

qstt-i) = qn(t+1) = ¢ and both g,(t-1) and Q,(t+1) are positive. Therefore

0= Pa(t+1’Fﬂ) - Pu(t-l,Fﬂ)

= qﬁ(t)lﬂutt}~ﬂa(t-l)l - (l-Fﬂit){ﬂ“(t+l)-Aa(t-1}].

Substituting in conditional probabilities and solving, we obtain equation

(4.58), 0.E.D.

Proof pf Theoream 4.1:

We establish first that ratt*-li >0 inmplies equation (4.7), Since

the definition of t* implies that qﬁ(t} =0 for t* {t <T, it follows that

a - *—
0 = P UTiFg) = P, (t*=1,Fy)

= % ¥_1{1} . *_ - ¥_
= QB(t l)IBu(t 1) Ca(t 1] qﬁ(T)A«(t 1},
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Solving in terms of conditional probabilities then yields equation (4.7).

By definition of t¥%, at least one player, say player &, moves with
pasitive probability conditional on reaching period t*-1, SBince the payoffs
of player a are generic, it then follows from equation {4.7) that
rB(t*-I) > 0. Therefore, we may conclude that A i{t*-1) > 0 and
ra(t*~1) >0 for a = a,b. These results combined with Lemma 3.3 then imply
that (i) rﬂ(t*-ll satisfies (4.7) for A = a,b, {4i) v, > t*1 for a = a,b,
and hence that (iii) &= t* = ¢ = ¢,

The uniqueness of the equilibrium then follows from Lemma 4.4. Since
Au(t) <0 for t* ¢t (T, it may be readily verified that this pair of

strategies constitute a pair of best responses. G.E.D.

Proof of Theorem 4.2:

Suppose Ap(ty) = 0, If t* < ®, then for « = a,b, Lemma 3.2
implies that qm(T) > 0. If the equilibrium is alsp fully mixed so that

rﬁ(t*-i) >0 for B = a,b, then
0 = P (T,Fg) - P tt¥~1,F

ﬂ)
- *_ *_1) - *_ - *_ - *_
qptt 1)[Ba(t D-C (t-~1)1 qB(T)Aa(t 1) » qﬁ(T)Aa(t 1).

which implies that Aatt**l) >0 for &« = a,b. Then, since Lemma 3.3 implies
that t*-1 ¢ T, § t* for a = a,b, it follows that t* = T, and hence that

Tyl § Ty, § Ty But if v, = rp-1, then t* = tatl in which case

0 = Py T,Fpg) = Pylrg,Fy)

= qa(ra)tsa(tu"ca(ta)] - qﬁtT)A“(ta) > - qﬂ(T)Au(ta},
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contradicting the definition of T, We conciude that a fully mixed
equilibrium exists only if T, = Ty
The existence and uniqueness of a fully mixed equilibrium then follows

the argument in the proof of Theorem 4.1, R.E.D,

Proof of Theorem 4.3:

Suppose that t* ¢ ¢ and ra(t*-l) = 0, Then Lemmata 3.2 and 3.3
imply that Aatt*-ll 20 and r,-1 gty = t* { t,. This establishes the
“only if"* part of the theorem.

To establish the "if" part, we note that these conditions are
consistent with well defined behavior strategies satisfying relations (4,2) to
(4.6) and (4,B) to (4,10). Furthermore, it may be verified that any pair of

strategies satisfying these relations forms a pair of best responses. g8.E.D,

Proof of Theorems 4.4 and 4,5:

Both of these theorems follow upon verifying that relations (4.2) to
(4.6) and (4.8) to (4.10) combined with the necessary conditions of Theoren
4.3 are not only necessary but alsc sufficient for a pair of strategies to

fors a pair of best responses. 8.E.D.

Proof _pof Lemma 4.7:

The suffiency of the conditions for a strategy combination with

t* = o to be an equilibrium will be left to the reader. We will establish
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the necessity of the conditions. It is immediate that the conditions of
Lemmata 4.3, 4.5 and 4.6 must be satisfied. Suppose that li“tan“u‘t) £ 0
and suppose that the requirements of Lemmata 4.3, 4.5 and 4.4 imply that
q,(® > 0. Then since t*¥ = o, Lemma 4.1 and the conditions for equilibrium

imply that there is a a subsequence t*3 such that

0 = PL(8,Fg) = Limyk,gPy(th Fp)

, Ky.c (¢ k 0 en (b .
Limgk,g [[B, (850 -Co ¥ 1a c*) + FY ki (ir-a (619,00

" K
Ayftiiag (e ]

k .
'liﬂtk*.ﬂu(t )qﬂ(ol = qﬁtu) l:mt+,ﬁa(t).

This eatablishes the Lemma. @&.E.D.

Proof of Theorem 4.6

Since lint+,Ad(t) = 0, t, = 0, It then follows from Lesmata 3.2 and
3.3 that t* =o0 for any non-degenerate equilibrium. To establish conditions
ta) and (b), note that Lemmata 4.3, 4.4, and 4.5 imply a unique pair of
strategies associated with each t ¢ ® and each ra(f) {(f = 4,b) satisfying
the conditions of Lemma 4.5. To establish (c), we need to establish the
existence of a unique solution to equation (4.1) with the property that ra(t}
€ [(0,1]1 for all t,

Ne show first there is a sequence (r,(t)}¢,, which for all t 5 0

satisfies (4,1) and rgtt) e [0,13. For t > 0, lat

My = (lrg(id33.0 € R®t (ra(),ry(i+1)) solves (4.1) for § < t, and

Fﬁ(j) € [0,1] for j ¢ t},
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and for any k < t, let My (k) = {r € Rer = rg(h), {rg(i)if.g € M3,

Since gs(x;j) is a continupus and weakly monotonic in x and is contained in
[0,t] whenever x € [0,1], it follows that ”t is a non-empty, cnmpact1 set and
that for each & ¢ t, Mitk) is convex. Furthermore, Myyp © My Let

Mg = n:,ont. Then My, is a non-empty, compact set with the property that
CFB(j)}?,O €E M, implies (ra(t).rﬂ(t+1)) solves (4.1) and rﬁtt) e {0,11

for all t ( o, Therefore, a solution exists.

To prove that the solution is unigue, suppose that {rﬂ(tJ}J,t is a

solution to (4.1) for which rglt) € 10,13 for t p 0. Define t(0) 2 0 and

for k > 0,
tik}) = inf{t > rlk-1)t ﬂ«(t) = Lt
Then for t+l = t(k), equation (4.1) implies:
Falt) = LA (£)-R (41)I/0B, (t)-C (k) +A (£)-A, (t+1) 1,
Suppose that {r;(t)}:go is also a splution to (4.1}, Then it follows from
part (a) that cik) < o, implies r,(t) =r;(t) for any t ¢ t(k). Let k =

sup{k: t(k) < @}, Then if k = @&, it follows immediately that the solution

to (4.1) is unique.

Suppose k < ®, Then for t 2 k, we may invert 94 it) to obtain

EERFEFRRERRERS
1In the product topology.
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B, (t)-C,(t) rglt) Aglth-A, (t+1)

Ag{t+1)=Cult+])  L-rg(t) A (t+1)-C (t+1)

Now suppose that M, contains more than one sequence. Then it follows from
Lemma 4.4 that Mg(k) contains more than one element. Furthermore, since Mglk)
is convex, we may suppose that there are three such elements and hence three
sequences, {rL(ji};zo, i=1,2,3, contained in Mgy, Furthermore, we may
choose ¢ > 0 such that ra(k) + ¢ < r3(k) < r3tk) - ¢ We will

show that (r3(j)3}., cannot belong to .

Note first that for each t » &, hgl.3t) is an increasing convex

function. Then since

dhairﬁ(t);t) i By(t)-C,(1) 1

dry(t) Aglt+1)-Colt+l) 1-rgit)
it follows upon application of the chain rule that for ¢t 2 Kk and i = 1,2;

. . A_tk)-C, (k) B, (j)-C,(j)
+1 t-1
{A.2) r; (t}ur;(t) g ( ___________ ) 'jgﬁ(__ugnﬁ_z_____s_-_;__m_i) ¢
Aa(t)wca(t) IAa(J)-C«(J)]El-ra(J)J

But if Au{t) ), Cu(t), then Assumption Al implies that
[Ba(t)-cu(t)JIEAa(t)-Cm(t)] > 1 for all t. Thergfore Assumption Al(b) and

relation (A.2) imply
i+l - i -
ra (t) ratt) 2 € [AG(E) ca(E)J/2K E o€ for all t ; k.

Then since rs(t) ; 0 for all t 2 Ky it follows that

(l-r%(t)) ¢ (1—51) for all t k. Substituting back into inegquality
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{A. 2}, we then obtain
3 2(t-k)
rﬁ(t) 2 & [1/01-¢))) .

Therefore, for t sufficiently large, rg(t) ? 1 which implies that

(Fatt)If o £ Mg  G.E.D.

Froof of Theorem &.1!

To establish the necessity of this condition, suppose

Au(O) < inft<T{0,Bu(t}}. Then Assumption Al implies that

PolTyFad = Byt0,Fg) = [B4(0)-C,(0)3gy(0)
T-lrg .
+ 1ia1tBg (i) -h,(0) gty - A (0)q (T

¥ 0,
from which it follows that relo) = 0.
To establish the sufficiency of this condition, suppose first that
ﬁu(O) 2 Ba(t). Consider any (;m,[ﬁ) such that rqfo} =1, rﬁ(j) = 0 for
j<t, and rs(t) = 1. Then

PatisFy) = Pgt0,Fy) = [Bg(0)-Cgt0)] > 0

which implies that Tp is an optimal response. And
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Pm(j'FB) - P&(O,Fal = [A,(i)-R, (00 < 0 far j < t
= [Cu(j)-natﬂ)] CIBulit-A, (003 ¢ 0 for j =1t
= {B, (t)-A,{0)] £ O for j > t
which implies that L, is an optimal response.
Similarly, if A (0) 2 0, then for any {rys0g) such that r,(0) =1,

and ratj) =0 for j < T, we have again that

Pﬂ(j’Fa) - FB(O’Fu) = EBB(O)-CH(O)] > 0

which implies that Tg is an optimal response. And

Pa(j’Fﬁ) - PG(O,Fﬁ) = (A (J)1-R,100] C O tor 3 ¢ t

= -A (0} ¢ 0 for j =T,

which implies that Ty is an optimal response, g.E.D.

Proof of Lemma b.1:

Suppose that (ga,[bJ is a subgame perfect degenerate eguilibrium and
let t = sup{j: ra(k) =1 for all k < j}. We show first that if t < T,
then ([a,gb) must be a non-degenerate equilibrium for the subgame Fy.
Suppose not. Then the definition of subgame perfection implies that t;a,;h)
form a degenerate equilibrium for Ft. Bince rglt) < 1, by definition, it then

follows that rﬂ(t) = 1. Conseguently,
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0= Fu(t+1’FB(’;k‘£8)) - Pd(t-l,Fﬂi-ik,[s)

= Bm(t) = Rylt-1) > 0.

But this implies that ratt-l) = 0 which contradicts the definition of t.
This establishes the necessity of (ii}.

To establish the necessity of condition (i), it is encugh to show that

rﬂ(k) = 0 for all k < t. But this follows immediately, since for any

ik,

PatdsFyloskoryd) = Pglh,Folegkyry) = Bytki=Ca(k) > 0.

To establish the necessity of condition (iii), we note that

retid = 1 implies that

o
| [ R

PatksFglesiyrgd) = Poti Fatesi,ry)

PotkeFg) = Ayt

for t ¢ ¢ T.

To establish the suffciency of these conditions, it is enough to shaw
that they imply P“(j;j,FB(-;j,gm) 2 supk;jP«(k;j,Fﬁ(-;j,[u) whenever
Fati? > 0 and Pﬁ(j;j,Fm(-;j,[ﬂ) 2 5upknga(k;j.Fa(-;j,[a) whenever
rﬂ(j) > 0. Since (r ! constitute a non-degenerate equilibrium for the
subgame Pt, these conditions are automatically satisfied for j ¢ t. All that
remains is to establish these conditions for player a« when j ¢ t. By

assumption,
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0 2 PotkyFgd = Aylt=1) 2 Polk,Fpalegiyrg)) = Agli)

= Pu(k’FB(';J’Eﬂ” b Pﬁtj’Fﬂ(.;j‘Lﬂ)

for all k g t. For j < k ¢t

Pa(k’Fﬂ(';j’[B)) - Pu‘j‘Fﬂ('ij'Eﬂ)) = A,k - A, 05) € 0.

8.E.D.

Proof of Lemma 6.2

Consider any degenerate subgame perfect equilibrium (;a,[b) with
rgf0) = 1. Let t** = sup{t 3 1: A (t-1) 2 03 (From Lemma 6.1, we know that
A t0) 2 0 and hence that t** > 0.). Define r¥(t) = 1 and rgit) =0
for t < t** and rit) = rgtt) =0 for t¥* (¢ (1. To establish that
([:,gg) is subgame perfect, we need only establish that conditions (ii)
and (iii) of Lemma 4.1 are satisfied,

1+ t** = 7, then these conditions are satisfied by definition of t*¥.
Suppose t** ¢ T. Then Lemma 4.1 implies that for any t with rgit) >0,
(:a,;b} forms a nondegenerate equilibrium for the subgame Tys Lemma 3.2

implies that qa(T;t**) >0 and Lewma 3.3 implies that t*(ca,cb) < pE%4,

Therefore,

Pu(T;Fat-;t**)) - Pa(t**;FB(-;t**)}

= qgt** et e, (M -c (9 - qatTst*H)A (t*) > 0,

This in turn implies that qmtrgt**) 1 which implies that
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0 & PatTyFyt-3t¥®)) - Pote¥F (ogt¥h)) = ~q (Tyt* M)A (t*%)
Bince Au(t**) < 0, by definition, we may then conclude that ([:,[g) is
4 equilibrium for F.s. Finally, since Patt,FE) = A t) for all t < T, it
follows that condition (iii) is satisfied as well.

To establish the last statement of the lemma, we simply note that for

all t,

* - * = -
PolToFE) —Pyt,FH) Ay it),

Consequently, if (;:,gg) is to be an equilibrium, we must have

Ay(t®) £ 0 whenever t* < T, and A _(t*-1) ) 0. @.E.D.

Proof of Theorem 6.2

To establish the necessity of these conditions, suppose (;a,gh) is a
subgame perfect equilibrium with ret®) = 1. Lemma 6.2 implies that there is
a t* >0 such that r (t) =1 for t < t* and raft) = rott) = 0 for
t* é t < T. But then Lemma &.1(iii) implies that ha(O) 2 PG(T;FB) = 0, This
establishes condition {i}).

To establish the necessity of conditions (ii) and (iii), consider a
subgame perfect degenerate equilibrium satisfying the conditions of Lemma 6.2,
Note first that Lemma 6.2 implies t* ¢ t,tl. Then if t* = T, conditions
(ii) and {(iiil) follow immediately. If t* < T, then since ([a,[b) is an

equilibrium for Ft*, we must have
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0 & PRl Futegt® ) 2 Patt® Fotost®) = Apgct*) ¢ 0
which again implies tg & t* & r 41, Finally, if A, (z,) < 0, then Lemma 4.2

implies that t* = Ty in which case, we obtain 1, ¢ v,. 8.E.D.

Proof of Theorem &.3:

It is sufficient to check that the strategy pair {(r

a*[p) defined by
rgtt) =1 and rﬁtt) =0 for all t is an equilibrium for all subgames Mo

t 2 o0. 8.E.D.

Proof of Theprem 6&.4:

I+ T =9 and h&(O) 2 0, then Theorews 4.6 and 6.3 imply that both a
nondegenerate equilibrium and a subgame perfect equilibrium with refor =0
exists.

Suppose T < o,

(i) Theorems 4.1 through 4.3 imply that a nondegenerate equilibrium exists
if and only if tg=l £ty ¢ tgtl. If A, (0) 2 0, Theorem 6.2 implies that
these conditions are sufficient for the existence of a subgame perfect
equilibrium with ral0) =1,

(ii) I# A,t0) 20 for a = a,b, then Theorem 6.2 implies that these
conditions are both necessary and sufficient for the existence of a subgame
perfect equilibrium with rat0 =1t and a subgame perfect equilibrium with
ry{0) = 1.

uIEIDI



Figure 1. The War of Attrition in Extensive Form
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Figure 2. Possible Patterns For Non-degenerate Egquilibria

Fully Mixed Equilibria
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Figure 3

A Continuum of Fully Mixed Bquilibria
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Figure 4

No Fully Mixed Equilibrium EBxists -
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