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ABSTRACT

SEASONAL ECONOMIC DATA A8 APPROXIMATE HARMONIC OSCILLATORS

This paper draws the tentative conclusion that a single class
of nonlinear, damped, forced, oscillator with delay can be used to
describe the growth rates for both the indices of consumer durable
and nondurable goods production. These data are monthly data from
1919 to 1988. The same class of model fits the entire period,
although with parameter drift. The model is prescribed to track the
seasonal components of the time series. However, the degree of fit
as measured by‘R has a low value of about 79% durlng the war years
and is often in excess of 96%. Variations in the series at business
cycle frequencies are re-expressed by this model in terms of drift
in the values of the parameters. Examination of the Laplace
transform of the linear approximation indicates that there has been
a qualitative change in the dynamical properties of both series and
that the two series also differ qualitatively:; these conclusions
are drawn based on an examination of the differences in the
parameter values within the same class of model.
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SEASONAL ECONCMIC DATA AS APPROXIMATE HARMONIC OSCILLATORS

INTRODUCTION

In a previous paper, Ramsey and Lian(1992), and in a prior
most innovative paper by Barsky and Miron(1989), developed and
illustrated the idea that the well known seasonality of some
economic time series could be usefully exploited. Barsky and Miron
examined quarterly dummies. Ramsey and Lian examined the growth
rates of monthly data. This renewed interest in seasonal components
for their own sake is a welcome return to the earlier concerns of
the NBER.

The major post War emphasis for empirical macro-economic
analysis has been on the examination of economic behavior at
intermediate length scales; that is, on the "business cycle," see
for example, Durlauf(1990), Falk(1986), and Gabisch and Hans-
Walter(1987). Consequently, the time path of economic variables at
shorter length scales, such as seasonal variation, and the path of
economic variables at very long time scales, usually designated
"drift", or "trend" were removed with little attention paid to the
details of these components, except in so far as those details
might affect the analysis of business cycles at intermediate length

scales.,



However, this myopic attention on the intermediate term
business cycle by eliminating seasonal components and "trend", may
well have compounded the difficulties involved in that analysis. A
major tenet of this paper is that the business cycle of most
interest to economists is not understandable until the higher
frequency components are themselves well understood and accurately
modeled. The reasons for believing this are many, but an obvious
first point is the recognition that the lower frequency components
of a time series are often the sub-harmonics of higher frequencies
and of their differences. The second obvious point to make in this
context is that the use of an inaccurate "model" of the seasonal
components to remove seasonality may well obscure the observation
of the intermediate frequencies.

Seasonal variation is the closest that economic data come to
exhibiting steady state oscillatory behavior. Now that interest in
the dynamics of economic relationships has been renewed, it is
opportune to reopen the analysis of the seasonal components of
economic time series. The paper by Ramsey and Lian showed
graphically and by other more traditional means that the indices of
monthly production of consumer durable and nondurable goods have a
well pronounced cyclic pattern and that that pattern is remarkably
robust to war and depression. The work in that paper generated the
idea that the seasonal components might be modeled by a single
class of models that would differ over time only by parameter
drift. The drift in the parameters of the seasonal model would then

become the inputs to an analysis of the business cycle.



The objective of this research was to attempt to find a single
model for the seasonal components of each economic index that
exhibits seasonal variation. Attention was focused on just two
indices; the indices of production for durable and nondurable
consumer goods. It was anticipated that the parameters of such a
model would be subject to drift and to occasional shocks. The work
of both Barsky and Miron and of Ramsey and Lian indicated that a
high proportion of the total variation of the series would be

explained by the seasonal model.

MODEL SELECTION

The variables of interest in the previous paper by Ramsey and
Lian were the growth rates, that is, the relative first
differences, for some indices of production. Growth rates were
taken as the variable of interest for several reasons. First of
all, the growth rates are of interest in their own right. Secondly,
it is well known that the statistical properties are seemingly
simple. And finally, growth rates are closer to exhibiting "steady
state" stochastic behavior than is true for the levels that are
dominated by "drift."

The phase space diagrams produced in the Ramsey and Lian paper
indicated that the seasonal components of some production indices
are oscillators; that is, the second derivative is a function of
the growth rate and of the first derivative of the growth rate. The

work reported in Ramsey and Lian (1992) indicated that the



differential equation describing the oscillator seems to be forced
by a term that can be approximated by a Fourier series, see

Equation [1].

ﬁt = Q’(U't; utl f(t))
where: (1)
f(t) = forcing term

u, = growth rate

Because there is no theoretical model commonly accepted as a
useful approximation to the seasonal components of the growth rates
of the indices of interest, the research in this paper is
unabashedly "data driven." That is to say that as a first step in
the understanding of these types of data, the attempt was made to
discover from analysis of the data themselves the probable form of
the underlying model. However, the approach is far from a naive
"maximization of R?" by choice of variables.

First of all the choice of model was guided by the analysis of
the plots and other evidences of periodicity that were examined in
the Ramsey and Lian paper; a copy of one such plot, Figqure 1, is
included from that paper to illustrate the idea. Spectral analysis
indicated that there were four seasonal frequencies, the
corresponding periods of which are; one half, one third, one
fourth, and one fifth of a year.

The chosen model had to meet two sets of informal criteria;
one local and one global. The local criteria were the usual ones in
that a reasonable level of R?® was sought, very highly significant

" t" statistics, and very highly significant F ratios for the



extra regression sums of squares for the potential inclusion or
exclusion of candidate variables. Some analysis of the properties
of the residuals was carried out, but as it was anticipated that
there would be observable systematic effects at intermediate and
lower time scales, there was no attempt to achievg white noise
residuals. However, every effort was made to ensure that in
examining the properties of the residuals that there was no
evidence of systematic behavior at seasonal time scales.

The global criteria, even though informally carried out, were
very important in trying to achieve a single stable model of the
data. Various subsets of the data were fitted and the results
compared to each other. The underlying concept was that a single
class of model should be relevant for all sub-periods, even though
each period might be characterized by different parameter values.

Therefore, the idea of symmetry in the results was an
important component. For example, in the approximation to the
"forcing term" in the differential equation for the growth rate,
both the cos and sin terms should be included in each sub-period,
even though for some one sub-period the recorded "t" statistic for
one of the spectral coefficient pairs might not indicate a
reasonable level of statistical significance. Another example is
that if the model is an oscillator, then some form of dampening,
whether linear or nonlinear, is required; consequently the sought
differential equation must contain some function of the first
derivative. However, symmetry in the response was not imposed; that

is, the assumption that acceleration would be affected in the same



way for both positive and negative levels of growth was not
.
imposed.

While variation in the parameters of the model over sub-
periods is to be expected, the presumption was that such variation
would be slow relative to the relevant periods of seasonal
oscillation. Consequently, the approximate stability, subject to
observational error, of the estimated coefficients across sub-
periods was an important consideration. This requirement is, of
course, a special case of the more general requirement that the
same variables and functional form apply for all sub-periods. While
functional uniformity over time was an important criterion, such
conformity was not imposed across indices.

Once a model was chosen for each index, the usefulness of the
model was tested by "forecasting", or by extrapolation of the
estimated model. More precisely, the empirically discovered
equation was fitted to the post war data up to, but not including,
the last five years of observations. The estimated model was used
to "forecast"™ out of sample the dependant variable, which is the
second derivative of the growth rate. However, the observed values
for the growth rate and the first derivative of the growth rate
were used as the "explanatory" variables. The idea for this
comparison is merely to see whether, notwithstanding the presumed
drift in some coefficients, the estimated model provides evidence
for its continued relevance.

Finally, using the estimated coefficients the model was

simulated by the Runga-Kutta method both in sample and out of



sample for the last sixty months. The objective, given that there
is recognized parameter drift, was to explore the robustness of the
results and to examine the extent to which the simulations over
intermediate length scales would diverge from the observed data.
While the simulation "forecast" is potentially a stringent
test, the coefficient estimates obtained from a simple least
squares fit of the differential equation are not accurate enough to
produce truly useful results. Nevertheless, the exercise is
informative in that non-divergence of the simulated data from the
path of the actual data over reasonably long periods of time
provides reassurance as to the reliability of the model, even at
this first crude stage of the analysis. This part of the analysis

is to be regarded as merely indicative and preliminary.

ANALYTICAL SOLUTION OF THE "LINEARIZED'" VERSION OF THE OSCILLATOR

The model to be discussed below was obtained after a very
considerable amount of empirical research. The idea for the chosen
model was suggested by some practical work on analyzing the
periodic behavior of tankers attached to fuel mooring buoys; for a
most enlightening explanation of this example see Thompson and
Stewart (1986). Some of the models that were rejected in favor of
that shown below are various versions of the Duffing, Mathieu-Hill,
and Van der Pol equations.

While the complete nonlinear differential equation that seems
to apply to both the data sets has not yet been solved

analytically, a linearized version has. The full model is shown in



Equation 2 and the linearized version in Equation 3.

4 4
U, + e, + [y, B;48,] = Y [a;cos(w;t) + bysin(w;t) ]
=1 in1
where:
Qe = [¥yel™y Yo U, Yo, 07, Yo U” ]' (2)
Y.. = 1; 1if mth = Sep-Feb; O, otherwise;
Y, = 1; 1if mth = Mar-Aug; 0, otherwise;
u* = pos(u,)
u- = neg(u,)
4
d, + eu,, + Bu, = ) [a;cos(w;t) + bysin(w,t) ] (3)

i=1

While there are a total of thirteen coefficients that were
estimated, the model is in fact quite simple. The basic structure
of the model is that of a damped, forced, oscillator, where the
oscillator component allows for nonlinearity and time
irreversibility and the dampening term is subject to a delay.

The Fourier series approximation to the forcing term involves
eight terms, four cos terms and four sin terms. There are four
fundamental frequencies corresponding to the periods of: one half,
one third, one fourth, and one fifth of a year; and in the
empirically observed data one must allow for four arbitrary phase
terms.

The dampening term enters the equation with a delay of one
month, which in itself introduces an element of nonlinearity into
the equation.

The four oscillator terms involving the growth rate are a

first approximation to the actual, as yet, unknown nonlinear term.
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The essential idea that is captured by this formulation is that the
change in acceleration, that is, the change in the value of the
second derivative depends on both the sign of the growth rate and
on the period of the year in which the effect occurs. The two
selected periods of the year are September through March and April
through August. Clearly, this portion of the equation requires
further insight and more analysis to perceive what this crude
approximation represents. In any event, the specification allows
the acceleration reaction to differ depending on whether growth
rates are positive or negative, so that if they differ, then one
can conclude that the process is time irreversible, even in the
absence of the linear dampening term that itself produces time
irreversibility.

The linearized version that is shown in Equation (3) is easily
solved by the use of Laplace transforms, see for example,
Strang(1986). However, this can only be done by using an
approximation to the exponential term that is introduced by the
delay in Du,. It is useful to view the homogeneous and particular
solutions separately.

Consider first the homogeneous version of Equation (3). Let U,

and U, be the initial conditions that hold in period t = 0. The

Laplace transform of the homogeneous equation is:

U(s) (82 + ase™® + B)-Uy(s+ae®) -U, = 0 (4)

By solving for U(s) in this equation, we get:

11



U (s +ae™®) + U (5)

o =
(s) (82 + ase™® + B)

The denominator in this equation can be factored by its roots,
{A;}, so that Equation (5) can be solved by partial fractions to
yield the solution:

+ Beht 4+ Cce*t

U, (A, + we™) + U,
()“1 - lz) ()'1 3)

.
A
B - U, (A, + ae ) 4+ U, (6)
(A, = A1) (A, - Ay)
c U, (A, + ae™) +AL'T0

(J"a - 2'1) (1'3 2)

This result is obtained by using a gquadratic approximation to the
exponential; that is, the term e® is replaced by (1 - s+ s%/2).
This approximation varies from reasonable to excellent for values
of s below 1 in absolute value. Consequently, the major effect on
the solutions is that the single real root is over estimated in
absolute value, especially when the absolute value of the actual
real root is greater than one.
The Laplace transform of the forcing term is given by:

V(s) Ea (——=—) + b;(——1—) (7)

S? + (02 s% + w?,

The particular scolution is given by solving the equation:

G(s) is the Laplace transform of the homogeneous equation. This

12



- Vis) - V(s)G(s), 8
o(s) (g2 + age™@ + B) ° © (8)

form of the Laplace transform indicates that the soluticn is the
convolution sum of the inverse transforms of V(s) and of G(s). The
particular solution to the linearized delay version of the

differential equation is:

t
u, = f(Ae‘l“"s’ + BeM 't 9 4 ceh 't 8 f(s)ds
o (9)

4
f(s) = a;cos(w,s) + b;sin(w;s)

i=1

The coefficients A,B, and C in the last eguation are the same
coefficients that were obtained in the homogeneous solution above.
The complete solution is the sum of the homogeneous and the

particular solutions as given by Equations 6 and 9.

DETAILED DISCUSSION OF THE EMPIRICAL RESULTS

only two indices have been examined, the production indices
for consumer durables and for consumer nondurables. The data are
monthly from January 1919 to April 1988, but three observations are
lost at the beginning and two at the end of the series because of
the calculation of the derivatives of the growth rates: details of
these calculations and of the data sources are in Ramsey and
Lian(1992).

This section is in four parts: a very brief review of the

empirical findings from the previous paper, Ramsey and Lian(1992):
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a detailed discussion of each of the two indices; and finally a
comparison of the results for the two indices.
SUMMARY OF CURRENT INFORMATION ON THE TWO INDICES

Both series are well known to contain seasonal components,
Barsky and Miron(1991) and the references contained therein.

The nondurable series have significant power at the "seasonal"
frequencies that correspond to the periods one half, one third, one
quarter, and one fifth of a year. In addition, the Ramsey and Lian
(1992) paper, hereafter RL, also showed that the nondurable series
have power at the frequencies that correspond to the periods of one
year and 243.5 months, the latter having by far the larger power.

Figures 1 and 1A show in a striking manner the "shape" of the
seasonal periodicity of the nondurable series. Figure 1 plots the
phase space diagram for the growth rate of nondurable goods; that
is, Figure 1 plots the first two derivatives of the growth rate,

u.. Figure 1 was obtained by seasonally smoothing the observations

.
on Du, and I)Zut with a seven point smooth at a twelve month
interval. The accompanying Figure 1A shows that with respect to the
smoothed data during the post war period that the variation in the
phase space diagrams is due more to phase shifting than it is to
random noise.

The amplitude of the phase space orbit is the sum of squares
of the components Du and D’°u. Figure 2 shows the time series plot
of the amplitudes for the entire history of the data. From this

plot we see that the amplitudes have varied enormously over the

whole period; the Depression years had the biggest amplitude and
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the War itself the smallest, the ratio of smallest to largest being
about nine to one. The late post war period has been characterized
by a steady decline in the range of amplitude variation.

The durable consumer goods index was analyzed in a similar
manner. The durable goods index has a strong set of seasonal
frequencies that match those of nondurable goods, as well as the
annual and the 243.5 month cycles. In addition, the durable goods
index has power at the frequencies that correspond to the periods
of 18.2 and 34.7 months respectively. The plot of the squared
amplitudes for durable goods has the same general shape as that for
nondurable goods that is shown in Figure 2, except that the late
post war decline in the range of amplitude variation has been far
more extensive, see Figure 6.

SPECIFICATION OF NONDURABLE GOODS PRODUCTION INDEX AS AN OSCILLATOR

The nonlinear model that was discussed in detail in the
previous section was arrived at in accordance with the procedures
that were outlined above. Because considerable experimentation was
involved in the process, notwithstanding the global constraints
that were imposed on the choice of model; the danger of over
fitting remains high. If a model is seriously over fitted, that is,
the parameter estimates and the choice of the model itself are
mainly functions of noise, then its forecasts can be expected to be
both unreliable and the paths of the actual and the forecast series
should in general be expected to diverge strongly and quickly.

Consequently, the various forecast checks that were

implemented are even more important than usual. The outcomes are

i5



correspondingly even more interesting.
The final model that was fitted to all the data was that shown
in Equation [2]: Equation [10] shows the stochastic version in

which an error term, €., has been added to represent observational

t'
errors; the definitions of the other variables and the coefficients
are the same as those given in Equation [2]. The chosen
parametrization is such that the theoretically stable signs for the

coefficient a and the sum of the coefficients { B, } are positive;

there are no a priori constraints on the signs of the coefficients

4
u, = "[Z Biﬁit] - au,,
i=1

4 {10)

+ [a,cos(w;t) + b;sin(w;£)] + &,
i=1
{ a;, b; }.

The procedure used to estimate the equation was ordinary least
squares, even though the presumption of an additive error term for
D?u implies that both Du and u also contain errors of observation.
Consequently, the ordinary least squares estimates are biased.

However, ¢given the realized small error variances and the
reasonable assumption that the sizes of the observational errors in
Du and u are nearly equal to that for D?u, the bias effect will be
small. Further, the ordinary least squares estimates obtained below
are to be regarded as providing initial conditions for a more
rigorous analysis that will combine Runga-Kutta solutions to the

differential equation with fitting the data. The preferred method

will, once implemented, provide simultaneous estimates for all
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three variables, u,, Du,, and Dﬁ and will be able to allow for the
joint inaccuracy in all three variables in the equation.

Tables 1 to 4 summarize the regression results. Tables 1 to 3
present the estimates for separate regressions on three separate
periods; the middle part of the pre-war period, 1926 to 1937, the
war period including the immediate post war recovery, 1937 to 1962,
and the later post war period, 1962 to 1987. Table 4 presents three
overlapping sets of estimates for the late post war period, 1962 to
1975, 1969 to 1981, 1975 to 1987. The major point of interest is
the extent to which the coefficient estimates are constant, or
indicate a relatively slow drift over time. The drift in
coefficient values potentially provides a succinct statement of the
intermediate term effects that require further study. For example,
the differences in the coefficient estimates for the war period, or
for the depression, relative to the values for the late post war
period enable one to characterize the effects of the war, or of the
depression, in terms of those differences in parameter values.

The overall impression from examining these Tables is that the
effect of Du, e in the Tables, in dampening the oscillations
increased during the war, but that the post war period is
characterized by a weak dampening term. For the B. terms, only the
first and the third varied to a significant extent; the first
declined during the war and recovered later, whereas the third
coefficient either declined to very small values, or even became
locally unstable; the evidence from Table 4 lends some credence to

the latter notion. The effect of the one half year period forcing
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term declined during the war, but returned to pre-war levels later.
The one fourth year period forcing term increased steadily.

Comparing the variation in the coefficient estimates for the
late post war periocd is more revealing as these data are less
noisy. The o and B, coefficients increase monotonically over this
period, the coefficients for the first two forcing frequencies
decline, and the rest remain constant, some remarkably so. Plots
for the variation of a and for the first two forcing terms during
this period are shown in Figures 3(a) to 3(c).

Figure 3(d) shows a similar plot for the a coefficient
variation during the pre war period. The remaining coefficient
estimates for the pre war period exhibited 1little systematic
variation relative to the relatively large variances of estimate
that prevailed during this period.

Overall, the variance estimates for all coefficients are
remarkably stable over very long intervals of time.

These numerical results become interesting mainly in the
context of the underlying differential equation. Unfortunately,
because the oscillator term is nonlinear this is not an easy task.
However, regression and simulation experiments have indicated that
the linearized version as shown in Equation (3) is a reasonable
approximation to the major movements of the series. Consequently,
we can consider as a first approximation a linearized version

obtained by substituting u, for the{d;,} and using the mean of the

{8;}. The homogeneous portion of the differential equation

including the delay in Du, is then easily obtained by the

18



application of the Laplace transform. If u, and U, are the initial

conditions for the differential equation, then the Laplace

transform of the linearized equation is:

vy - Dlsreexp(8)) ¢ 2 (11)

52 + asexp(-s) + B

The term (s? + asexp(-s) + p) in equation 5 has three roots; two

that derive from the basic damped oscillator and a third that is
generated by the presence of the exponential term that itself
arises from the delay in Du,.

Table 5 shows for each of the sub-periods discussed in Tables
1 to 4 the roots for this equation. The roots were calculated by
using the quadratic approximation to the exponential term. Two
other calculations of potential economic interest were carried out.
The Maximum Delay Period, (MDP),is the maximum over the three roots

of the delay period, that is , of the time required to reduce the
term, et to e' = 0.368, where the root Ay = p; + ié;.. The MDP

provides a measure for the longest time duration of any shock to
the system, the larger MDP, the longer the effects of any given
shock will be felt.

The period that is shown in the last column of Table 5 is the
period in months that corresponds to the natural frequency of the
oscillator as given by §., P = 2x/é6. The natural frequency of the
homogeneous part of the equation is important for analyzing the

dynamical path of the system both in the short run and in the
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longer term. This is especially true when the natural frequency and
the forcing frequencies are incommensurate, or have small
differences. In these cases, the "short run" properties of the
system determine the behavior of the system at intermediate, or
even, at long time scales.

Figures 4(a) to 4(f) are plots of the Laplace transform
function s?2 + ase s + p for each of the main sub-periods and the

three sub-periods of the last period that were used for the
estimation of the coefficients in Table 5. The "generic" shape for
this equation is shown in Figures 4(c) to 4(f). Because e™® will
dominate the other terms eventually, the equation always has at
least one real root. As the parameters a and § vary, so does the
degree of curvature of the equation and whether there are one or
three real roots. This equation provides a practical example of
critical phase transition in that, looking only at the three major
periods, one sees that the pattern of roots is critically dependent
on the position of the relative minimum of the curve that lies
between the real root and zero. If the coefficients of Equation 3
change in such a manner that the relative minimum is increased from
a negative wvalue, the solution space will pass from three real
roots with no natural harmonic, through a single repeated root at
the critical point, to a pair of complex roots with a natural
frequency.

Except for the curve in Figure 4(c¢) representing the "average
effect" during '62 to '87, the equation has complex roots for all

other periods and even for the sub-periods during '62 to '87; this
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last result is an example of the limitations of using the linear
approximation. However, the curves in Figures 4(d) to 4(f) indicate
that each of the sub-periods is close to being "forced" into the
"three real root" phase, that is, a relatively minor change in the
average value of {B.}, or in a, will change the dynamical system
from one having a pair of complex roots to one having three real
roots.

The salient conclusions from these results for the homogeneous
part of the differential equation are that the late post war period
has a declining Maximum Delay Period, MDP, that is, a declining
period for the duration of any shock to the system and that the
period of the natural frequency, while substantially greater than
in the prewar period, has itself been declining rapidly. This
conclusion, together with the observed shifts in the parameters for
the forcing terms that were noted above, characterize the change in
the dynamics that are occurring in the nondurable sector of the
economy .

FORECASTS AND SIMULATIONS

While an effort was made to derive an equation that would, up
to parameter drift, be suitable for all periods of time, the key
question is whether the model that has been obtained is robust to
simulation and whether forecasts based on these results are useful,
even without allowing for parameter drift. The purpose of this
section is to document the extent to which this is true.

To this end, the last three hundred months were selected from

the series and the model was re-estimated using only the first two
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hundred and forty observations. Two sets of tests were performed.
The first test was to see whether the regression equation
itself, notwithstanding its potential regression estimate bias,
could be usefully extrapolated to the remaining sixty months of
observations without any alteration in the equation, or refitting
of the parameters in light of the above documented changes in the
parameter values. In this check of the results, the observed values
of u, and of Du, were used. The statistic that was used in this test
was the "relative mean squared error", where the relative mean

squared error, RMSE, is defined by the ratio of the mean squared

error of forecast, Y, (D?u, - D®*3.)%, where D?d, is the least

squares forecast of Dﬁ%, to the estimated variance of the variable
D%%. The result is an average over the sixty forecast months.

The nondurable goods results can be easily summarized. The
RMSE overall for the sixty month forecasts is 7.3% and the five
year average for each month of the year varies from a low of 0.1%
in October to a high of 6.6% in February; most of the RMSE's are
about 2%. A plot of the predicted values against the observed for
the entire three hundred observations is shown in Figure 5. There
is no indication that there is an increase over time in the RMSE
over the time horizon of the forecast.

The second test is potentially more stringent in that the
estimated parameter values together with three initial conditions
would be used to simulate simultaneously by use of a Runga-Kutta
expansion the entire time path of the triple (u,, Du,, Dzut).

Unfortunately, while the least squares regression estimates are
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useful initial conditions for a full analysis, they are unlikely to
provide results of sufficient accuracy to be able to track the
finer details of the series. Further, given the known drift in the
parameter values, it is most unlikely that a simalation based only
on the regression estimates will provide useful forecasts of the
variables. This is especially true for u,. Nevertheless, a
simulation of the system based on the regression estimates can be
helpful in determining the level of the general degree of fit and
whether the results seriously degrade over time. The simulation
test is a tougher test in that there is no reliance on the observed
values of the growth rate itself and of its derivative.

Using the same coefficient estimates as were used in the last
set of comparisons together with the appropriate initial
conditions, Runga-Kutta methods were used to simulate without added
noise the triple ( u, Du, Dzu)t over the last three hundred month
period.

The spectra of the simulated series were compared to those of
the actual series for the same period; the former set of spectral
plots were essentially smoothed versions of the latter. The range
and variance of each of the simulated variables was less than the
corresponding value for the actual series over the simulated
period. Numerous plots of both sets of series indicated that there
was broad agreement between the two sets of series. However, the
details were often missed as were the exceptionally large values
for the observed variables, and the timing of changes in direction

were often off by one or two time points. There was no indication
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that the simulated series were diverging over time from the actual
series, either by expleding or collapsing.

Initial estimates of the RMSE between the crude simulated
series and the actual over the forecast period were not impressive
as was to be expected. The RMSE over sixty months for D*u was
19.9%, for Du was 44% and for the growth rate, u, itself, 68%. The
progression from low to high values for the RMSE going from Dﬁ% to

u. is to be expected, since the regression model minimizes the

t
error sum of squares for Dﬁk only. In order to put these results
into better perspective, a series of sub-sets of sixty observations
on u, were selected from the fitted data, that is, the data that
provided the coefficient estimates, and the RMSE's were calculated
for these "in sample" forecasts. The results were 46%,102%,54% and
53% for a median value of about 54%.

The main lesson to be gathered from these results is that the
out of sample results are as good, or as bad, as the in sample
results, that the model, even without adjustment for the known
drift in the parameters, maintains an approximation that does not
degrade over time out of sample.

SUMMARY OF DURABLE GOODS PRODUCTION INDEX AS AN OSCILLATOR

The research strategy did not impose the constraint that the
chosen functions should be the same for both indices, although that
was the outcome. This result is fortunate in that having the same
functional form facilitates the comparison of the dynamical
properties of the two series. Tables 6 to 9 summarize the least

squares regression fits in the same format as was used for the
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nondurable goods index.

The seasonally smoothed amplitude plot for the durable goods
index is shown in Figure 6. One of the more striking features of
this plot is the strong decline during the late post war period in
the maximum amplitude of the series; this condition will have
important implications for the subsequent analysis.

Comparing coefficients across time periods in Tables 6 to 9
and as summarized in Table 10, one notices first that a was very
low in the thirties, and somewhat high during the War and its
immediate recovery period relative to the late post war period. The
average B coefficient was high during the depression, declined
substantially during the war and then recovered in the post war
period. Similar comments apply to the first two coefficients in the
set of forcing terms; the remainder, at least relative to the
observed standard errors, were constant.

The post war period when divided into three sub-periods
indicates a monotonic drift up for a and down for f§, see Table 10.

A plot of the observed values for D%u against the predicted
for the post war period is shown in Figure 7. The next fiqure shows
the increase in the value of the forcing term corresponding to the
period of one half year for a sequence of "rolling fits"over the
entire period 1962 to 1987, this is the equivalent plot to those
shown in Figqures 3(a) to 3(d) for nondurable goods.

As was the case with nondurable goods index, the estimates of
the variances of all the coefficients are remarkably constant as a

review of Tables 6 to 9 will confirm.
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Table 10 summarizes the cocefficient values and the derived
values for the roots of the Laplace transform of the homogeneous
form of the delay differential equation. Figure 9 presents graphs

for each of the three major sub-periods of the function
((a/2)s®>+ (1-e¢)s?2 + as + B), which is the quadratic approximation

for the denominator in Equation (5); the plots for the sub-periods
of the late post war period are not included since they are
qualitatively the same as that shown in Figure 9(c).

During the war period the natural period of the homogeneous
equation was about five months and during the late post war period
the natural period was constant at about six months. The MDP was
about three months during the war, but since the war MDP increased
from about two to three months.

The model was refitted to the first three hundred observations
of the last three hundred and sixty observations. The estimated
coefficients were used to forecast the next sixty months as was
done for the nondurable goods index. Recalling Figure 6, it is to
be anticipated that the RMSE test will not be very impressive
because of the shift in the roots of the differential equation.
Nevertheless, the experiment was run and the forecasts are plotted
with the observed values in Figure 10. The within sample forecast
error was 4.6%, whereas the out of sample error was 44%. This
difference arose in large part because the variance of Du fell
from 2.88 E-4 within sample to 1.43 E-4 out of sample.

Because of the substantial change in the roots the Runga-Kutta

simulations were not run.
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A COMPARISON OF RESULTS FOR THE TWO INDICES

A review of Tables 5 and 10 will highlight the comparisons
between the two indices. One of the striking characteristics is
that the Laplace transform roots for the two indices during the war
are remarkably similar. The late post war results are however quite
different. The natural frequency for durable goods is about six
months, whereas that for nondurable goods is about seventeen
months, but declining fast. The MDP for durable goods has risen
from two to three months, whereas the MDP for nondurable goods is
falling from five to two and a half months. A comparison of Figures
4 and 9 shows that the war and post war plots for the durable goods
index are qualitatively the same as the pre-war and war plots for
the nondurable goods index. In the pre war and post war periocds the
two series are qualitatively different as the graphs in the two
figures show so clearly.

SUMMARY, CONCLUSIONS, AND FURTHER WORK

The analysis above has demonstrated that a single class of
model can be used to describe the short term time path of two
indices of production and that that single class of model holds
over the entire recorded history of the two series.

Variation in these indices at "business cycle time scales" is
represented by the slow variation in the parameter values of the
model of the dynamical system. The major difference between this
approach and the usual business cycle approach is that in this
analysis the economic effects of the two time scales are

interdependent and are not simply additive; business cycle
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characteristics can only be examined in conjunction with the
analysis of the so called "seasonal components."

The model class that seems to fit these data is a nonlinear,
damped, forced oscillator with delay. A large and varied class of
alternatives were considered and rejected in favor of the model
presented above. The models that were rejected included numerous
versions of the Duffing, Mathieu-Hill, and Van der Pol equations.

The linearized version captures most of the coarse grain
analysis, but misses the finer details. A detailed analysis of the
properties of the solution to the linearized version indicated a
large number of interesting results. While the same functional form
for the differential equation holds approximately everywhere the
estimated models are qualitatively different across indices and
over time. This conclusion was documented in Tables 5 and 10 and
more strikingly in Figures 4 and 9.

The overall impression of the statistical results,
notwithstanding the obvious drift in parameter values, is one of
stability of the coefficient estimates. Some of the coefficient
estimates exhibited remarkable stability over a sixty year time
span; although the quality of this impression depends on the
prejudices of the individual reviewer.

A comparison of the estimates of the standard errors indicates
that the two sets of estimates are very similar. The stability of
the variance estimates for each model over time is impressive.

This research has already raised several questions and is

likely to raise more. The forcing term involves four specific
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frequencies, only two of which might be intuitively plausible. In
particular, the strong appearance of the periods represented by one
third and one fifth of a year pose interesting theoretical
questions about the dynamics of industrial production. Of greater
weight is the question as to why the dynamics of both series
involve the precise periodic sequence of one half, one third, one
quarter, and one fifth of a year.

A greater challenge is to discover the nature of the mechanism

that is currently being crudely approximated by the{d;.}. This

should be the subject of both theoretical and empirical research.
Also the theoretical reasons for the appearance of the delay in the
effect of Du, is a potential area of useful research.

A considerable amount of further work is obviously needed. The
first task will be to improve the formulation of the nonlinear
terms involving the growth rate. This will pave the way for the
development of a model for the variation of the coefficients in the
two indices. The modeling of the drift in the parameters is, of
course, the subject of interest of business cycle research, so
that these models should stimulate alternative ways of thinking
about and modeling the business cycle.

Finally, a revised model that includes terms for what is now
termed drift, will inevitably require simulation in order to
predict jointly all three elements of the differential equation,

u,, Du,, and Dﬁh. At such a time a useful model for the analysis of

tr
growth rates will have been obtained. In the process it is to be

hoped that these results will stimulate a substantial effort in
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developing the underlying economic theory.
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Table 1

Estimation Results for NonDurable Goods
for Period March 1926 to November 1937

Coefficient Estimate std. Error t-Value Sig. Level F-Ratio P-value
aRSS

84 0.17529 0.053465 3.2786 0.0013 92.16 0000
i 0.114463 0.1240538 0.9227 0.357¢% 7.13 .0086
Bz 0.130298 0.1056%4 1.2328 0.2199 41.23 .0000
8, 0.134197 0.061778 2.1722 0.0317 102.71 .0000
a 0.556307 0.046008 12.0914 0.0000 404 .96 .0000
a, -0.007293 0.001081 -6.7480 0.0000 52.57 .0000
8o 0.005105 0.001237 4.1284 0.0001% 12.75 . 0005
ay 0.001428 0.001044 1.3679 0.1737 1.37 .2433
a, -0.001173 0.001118 -1.0492 0.2961 .75 .3985
b, 0.00297 0.00130¢ 2.2688 0.0250 3.28 L0724
b, -0.004001 0.001136 -3.5207 0.0006 12.47 .0006
b -0.000268 0.001046 -0.2563 0.7982 .07 .8008
bé 0.000017 0.001037 0.0164 0.9869 .00 .9871

R-SQ. (ADJ.) = 0.8381 SE = 0.00854%  Durbin Watson = 0.998

Number of Observations = 140

Coefficient of Skewness = 1.44166 Standardized Value = 6.96387

Coefficient of Kurtosis = 7.44361 standardized Value = 17.978

<

Eiﬁi = 0.552
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Table 2
Estimation Results for NonDurable Goods
for Period Novemeber 1937 to November 1962

toefficient Estimate std. Error t-value Sig. Level F-Ratio p-value “
ARSS

B, 0.040648 0.033368 1.2182 0.2242 85.01 .0000 “
8, 0.300605 0.0846008 3.4951 0.0005 1.53 2166 “
Bz 0.229795 0.048228 4. 7648 0.0000 168.86 .0000 “
B, 0.168767 0.055452 3.0435 0.0026 307.84 .0000 |
a 0.649262 0.027105 23.9535 0.0000 1630.60 .0000
a, -0.004904 0.00044 -11.1400 0.0000 155.93 .0000
Y 0.002469 0.000518 4.7693 0.0000 25.56 .0000
ag 0.003093 0.000428 7.2294 0.0000 44,70 .0000
a, -0.001054 0.000448 -2.3549 0.0192 3.72 .0548
b, 0.000676 0.000543 . 12445 0.2143 1.47 . 2269
by -0.001903 0.00042 -4.5329 0,0000 23.38 .0000
b -0.000942 0.000422 -2.2343 0.0262 5.38 .0210
b, 0.00149 0.000405 3.680% 0.0003 13.55 .0003

R-5Q. (ADJ.) = 0.8915 SE = 0.004821 Durbin Watson = 1.183
Number of Observations = 300

coefficient of Skewness = 0.032366 Standardized value = 0.228865
Coefficient of Kurtosis = 1,0607 Standardized Value = 3.75015
Z; ﬁi = 0.740 < Bi > = 0.185

33



Tabie 3
Estimation Results for NonDurable Goods
for Period December 1962 to November 1987

Coefficient Estimate Std. Error t-vValue Sig. Level F-ﬁ:;:o p-value 4“
Al
84 0.187271 0.025647 7.3020 0,0000 37.59 .0000
B 0.24B262 0.189251 1.3118 0.1906 42.44 .000¢
B2 -0.11995 0.063662 -1.8842 0.0606 853.51 .0000
8, 0.101403 0.032096 3.1594 0.0017 1696.76 .0000 "
a 0.439896 0.028833 15.2565 0.0000 2719.69 .0000 AAH
a, -0.007653 0.000363 -21.1060 0.0000 641.82 .0000
8 0.008259 0.000515 16.0408 0.0000 158.15 -0000
ag 0.004257 0.000328 12.9775 0.0000 129.98 .0000
a, ~0.000401 0.0003%7 -1.0101 0.3133 .55 4663
by 0.005088 0.000565 9.0019 0.0000 70.56 .0000
b, -0.002116 0,000353 -5.9942 0.0000 47,27 -0000
by 0.001208 0.000372 3.2497 0.0013 9.21 .0026
b, 0.001519 0.000308 4.9305 0.0000 24.31 .0000

R-$Q. (ADJ.) = 0.9555 SE = 0.003427 Durbin Watson = 1.225
Number of Observations = 300

Coefficient of Skewness = -0.17989 Standardized Value = -1.27201
toefficient of Kurtosis = 0.173621 Standardized Value = 0.613844
Z; ﬁi = 0.416 < Bi > = 0.104
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Table &

Comparison of Coefficient Estimates for Three Subperiods

of the Late Post-War Period: NonDurable Goods

* * R *
Period C, Period C, Period Cy I
Coefficient Estimate Std. Error Estimate std. Error Estimate Std. Error |
B, 0.185548 0.036141 0. 198563 0.036731 0.192308 0.029989 “
B4 0.115989 0.234148 0.27992 0.239425 0.455476 0.258894 “
B2 -0. 148704 0.072246 -0.12472% 0.093599 -0.173686 0.096491 "
B, 0.119086 0.03457 0.117551 0.040248 0.117316 0.048389
a 0.29469 0.039573 0.370355 0,041026 0.405241 0.040573
84 -0. 009666 0.000445 -0.007885 0.00050%5 -0.006148 0.000494 ||
a4 0.01154 0.000781 0.009555 0.000756 0.007661 0.000601 “
aq 0.004736 0.000402 0.004697 0.000448 0.004516 0.000428
a, -0.000571 0.000503 -0.000594 0.00055 -0.000318 0.000499
b, 0.007732 0.000844 0.006136 0.000809 0.005%9 0.00068
b, -0.004139 0.000463 -0.002144 0.000476 -0.001011 0.000442
b 0.00178%9 0,000486 0.001896 0.000532 0.001844 0.000477
b, 0.001555 0.000368 0.001316 0.000421 0.001106 0.000404
T B =0.208 T = 0.472 T, B, = 0.59¢
<hL=ol0s9 <h 3 =0.118 <h P=08
Period C,: December 1‘962 to May 1975
Period CZ: February 1969 to August 1981
Period C3: June 1975 to November 1987
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Coefficient Summary and Roots
By Sub-Period: NorDurable Goods Index

Table 5

. ok ke
?:QL:Q a <B;> A iy Az MDP P __“
A 0.56 0.138 -0.31 -0.6321.10i 3.2 5.7 |
B 0.65 0.185 -0.32 -0.3811.27i 3.2 4.9
c 0.44 0.104 -1.24 -0.86 -0.44 2.3 None
C, 0.29 0.06% -4.47 -0,212+0,248i 4.7 25.3
C, 0.37 0.118 -2.77 -0.32010.358§ 3.1 17.6
C< 0.405 0.148 -2.17 -0.380£0.4361 2.6 14.4

A = 1926 to 1937
B = 1937 to 1962

*k

P
P = (2m)/6
A;

t= (pg *+ 6T

C - 1962 to 1987
Cy = 1962 to 1975

MDP = Maximum Delay Period (in months) - maximum {t.}3 e
- Period in Months of the natural freguency of the oscillation

36

C, = 1969 to 1981
C3 = 1975 to 1987

Pty

=€



Table 6

Estimation Results for Durable Goods
for Period March 1926 to November 1937

Coefficient Estimate 5td. Error t-Value 5ig. Level F-RRastsio P-value ||
Al

84 0.223322 0.033191 6.7283 0.0000 30.07 .0000 “
8- 0.167693 0.053827 3.1154 0.0023 8.53 .0041 “
i 0.258707 0. 04391 5.8918 0.0000 28.06 .0000 Il
8, 0.294539 0.04521 6.514% 0.0000 53.14 . 0000 “
a 0.298896 0.042628 7.0117 0.0000 384.85 -0000
a, -0. 008045 0.001915 -4,2009 0.0000 18.14 .0000
a- 0.005032 0.001909 2.6367 0.0094 6.60 L0113
8y 0.001024 0.001843 0.5557 0.5794 .34 .5651
a, 0.000092 0.001838 0,0501 0.9601 .02 .8848
b, 0.001061 0.00214 0.4961 0.6207 .27 .6094
b -0.003192 0.001896 -1.6840 0.0946 2.76 .0989
b, -0.0018565 0.001807 -1.0318 0.3041 1.07 .3040
b, 0.000029 0.001815 0.0162 0.9871 .00 .9872

R-SQ. (ADJ.) = 0.7897 SE = 0.015140  Durbin Watson = 0.800

Number of Observations = 140

Coefficient of Skewness = 1.38874 Standardized value = 6.70826

Coefficient of Kurtosis = 4.88335 Standardized Value = 11.7944

Y 8 = 0.9442 <B;> = 0.236
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Table 7

Estimation Results for Durable Goods
for Period November 1937 to November 1962

Number of Observations = 300
Coefficient of Skeuness

Y 8; =0.7158

<B‘-> = 0.179

= -0.68207 Standardized Value
Coefficient of Kurtosis = 6.40854 Standardized Value

22.6576

38

-4,82298

Coefficient Estimate std. Error t-Value Sig. Level F-ﬁ;;:o p-Value "
a
B4 0.060579 0.027885 2.1724 0.0306 .14 .7088 “
8- 0.181645 0.029331 6.1929 0.0000 36.95 .0000 |
B 0.181624 0.028134 6.4556 0.0000 45.33 .0000
B, 0.291969 0.029772 $.8070 0.0000 112.04 .0000
a 0.60913 0.026384 22.6573 0.0000 1563.4% .0000
a, -0.002603 0.000683 -3.8081 0.0002 15.16 .0001
8, 0.000705 0.0006%94 1.0160 0.3105 1.81 L1793
By 0.002028 0.000666 3.0469 0.0025 8.42 .0040
a, -0.000147 0.0006%7 -0.2103 0.8336 .00 .9751
b, -0, 002061 0.000689 -2.9935 0.0030 9.53 .0022
b, -0.00147 0.000686% -2.1420 0.0330 4.50 .0347
b 0.0007 0.00066% 1.0458 0.2965 1.11 2919
b, 0.000573 0.000661 0.8676 0.3864 .75 .3956
R-SQ. (ADJ.) = 0.8567 $E = 0.008018  Durbin Watson = 0.906



Table 8
Estimation Results for Durable Goods
for Period December 1962 to November 1987

Coefficient Estimate std. Error t-Value Sig. Level F-RRastsio P-value “
A
B4 0.192828 0.029206 6.6024 0.0000 41.09 .0000 Jl
B 0.269129 0.029228 9.2079 0.0000 369.12 .0000
Bz 0.132346 0.022338 5.9247 0.0000 113.44 .0000
8, 0.194262 0.025034 7.7598 0.0000 222.61 .0000
a 0.540277 0.028608 18.8858 0.0000 7281.22 . 0000
a, -0.004381 0.000342 -12.8245 0.0000 96.25 .0000 1'
[-0Y 0.00417 0.000421 9.9088 0.0000 224.09 .0000
fg 0.002449 0.000288 B.4945 0.0000 69.30 .0000
a, 0.000581 0.000354 1.6383 0.1025 12.03 . 0006
b, -0.001741 0.000425 -4.0936 0.0001 15.74 .00
b, -0.000531 0,000356 -1.4922 0.1367 2.51 .1140
b= 0.000111 0.000366 0.3045 0.7610 .30 .5920
b, 0.000682 0.000259% 2.6294 0.0090 6.9 .0090
R-SQ. (ADJ.) = 0.9658 SE = 0.003129  Durbin Watson = 0.924
Number of Observations = 300
Coefficient of Skewness =-0.330294 Standardized Value = -2.33553
Coefficient of Kurtosis = 0.97914 Standardized value =3.46178

Y 85 =0.789  <g> = 0.197
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Table 9

Comparison of Coefficient Estimates for Three Subperiods

of the Late Post-War Period: Ourable Goods

Period CZ: February 1969 to August 1981
Period Cs: June 1975 to November 1987

40

Period C..* Period C-,* Period C,*
Coefficient Estimate std. Error Estimate std. Errot Estimate std. Error

B4 0.196893 0.054845 0.178292 0.042939 0.156025 0.030427
Bo .0252742 0.046409 0.198388 0.044432 0.164665 0.041983
B+ 0.136819 0.029216 0.143051 0.034296 0.075621 0.03203
B, 0.171165 0.033195 0.157445 0.034239 0.187585 0.035575
[ 0.534207 0.041977 0.557535 0.0446669 0.568335 0.042523
a, -0.0045688 0.000675 -0.005172 0.000533 -0.004787 0.000365
a, 0.004913 0.00072 0.004507 0.0005698 0.003921 0.00054
ag 0.002543 0.000482 0.002801 0.00044 0,002647 0.00032
a, 0.000527 0.000636 0.000212 0.000537 0,000528 0.000382
b, -0.003089 0.000638 -0.002094 0.000705 -0.00032 0.000584
b, -0.00103 0.000678 -0.000794 0.000532 -0.000081 0.000383
b 0.000439 0.000675 0.000137 0.000554 0.000139 0.00042%
b, 0.000784 0.000385 0.000743 0.0003386 0.000615 0.000303

R-SQ. (ADJ.) = 0.9715 R-50. (ADJ.) = 0.9667 R-SQ. (ADJ.) = 0.9680

Y 57 =0.7576 Y 8; = 0.6772 ¥ 3 =0.5839

<f;> = 0.189 <B;> = 0.169 <B;> = 0.146

* Period C.: December 1962 to May 1975




Table 10
Coefficient Summary and Roots
By Sub-Period: Durable Goods Index

ke i
Periog a <ﬁi> 11 12 13 MDP P “
Index
A 0.299 0.236 -4.3 -0.190£0.575i 5.26 10.9 ||
I
B 0.609 0.179 -0.351 -0.46611.2061 2.85 5.2
c 0.540 0.197 -0.529 -0.58741.017i 1.89 6.2
c, 0.534 0.189 -0.519 -0.613:0.994i 1.93 6.7
c, 0.558 0.169 -0.396 -0.59421.085i 2.53 5.8
Cx 0.568 0.146 -0.318 -0.60211.1211 3.1 5.6
* A = 1926 to 1937 C = 1962 to 1987 C, = 1969 to 1981
B = 1937 to 1962 Cy = 1962 to 1975 c§ = 1975 to 1987

*k

-— -t- -
MDP = Maximum Delay Period (in months) - maximum (t.}3 e Piti _ ¢

- Period in Months of the natural frequency of the oscillation
(2n)/8

P
p =
lit = (|:|i + 16'i)t
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Fiqures 4a-4f: Plots of the Functlon [(qig)s3 + (l—a)s2 + as +B]
for Various (o, B): NonDurable Goods
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Fiqures 9(a)-(c): Plots of the Function r(aIZ)s + (1- a)s2 + s +
31 for Varjous (o, B): Durable Goods
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Figure 10

COMPARISON OF FORECAST AND OESERUVED

~— PFORECAST

DURABLE GOODS} DEC. 'SR TO DEC. ‘87
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