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Abstract 

For most feasible spectra of connected regular graphs with four distinct eigenvalues and at 
most 30 vertices we find all such graphs, using both theoretic and computer results. @ 1998 
Elsevier Science B.V. All rights reserved 
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1. Introduction 

Graphs with a few eigenvalues in general have nice combinatorial properties and a 
rich structure. A well-investigated family of such graphs comprises the strongly regular 
graphs (the regular graphs with three eigenvalues) and these too have a nice combi- 
natorial characterization. Two combinatorial generalizations of these strongly regular 
graphs are the distance-regular graphs, and going a step further, the association schemes 
(cf. [l]). The first stage of investigation after strongly regular graphs would be to con- 
sider three-class association schemes (cf. [5]). In such a scheme all graphs are regular 
with at most four eigenvalues, but of course not all graphs with four eigenvalues are in 
a three-class association scheme (indeed most are not). Even so, as mentioned earlier, 
such graphs have some interesting combinatorial properties and were studied previously 
by the first author [4]. Using the results from [4] we generated a list of feasible spectra 
for regular graphs with four eigenvalues and at most 30 vertices (for the definition of 
feasible, see Section 2). Using both theoretic and computer results we were able to 
find all graphs when a graph did exist, or show that none exists, for 214 of the 244 
feasible spectra thus found. To be precise, we know that there does not exist a graph 
for 68 of these feasible spectra. In 15 of the remaining 30 cases whose classification 
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is not yet finished, we have found some graphs after an incomplete computer search, 
while the other 15 cases are completely open. Of these, the smallest unsolved case is 
one on 28 vertices. 

Sections 2-4 of this paper contain results from [4] that are relevant to our search, 
while Section 5 is used to prove the non-existence of graphs for a considerable number 
of the feasible spectra. Section 6 contains an explanation of the methods used in the 
computer search and the appendix includes the lists of feasible spectra together with 
the number of graphs for each spectrum. Moreover, all new transitive graphs found 
by computer are also there. In the case of a spectrum for which new graphs were 
discovered, none of which was transitive, we also include as a representative one with 
the largest automorphism group. 

2. Feasible spectra 

If G is a connected regular graph on v vertices with four distinct eigenvalues, then 
(cf. M> 

(i) G has four integral eigenvalues, or 
(ii) G has two integral eigenvalues, and two eigenvalues of the form $(u f fi), with 

a, b E Z, b >O, with the same multiplicity, or 
(iii) G has one integral eigenvalue, its degree k, and the other three have the same 

multiplicity m = $(v - I), and k = m or k = 2m. 
In addition, if G has v vertices and spectrum {[& = k]‘, [Ail”‘, [A#“2, [&]‘“~}, then the 
following three equations uniquely determine the multiplicities ml, m2 and m3 from v 
and the eigenvalues &,12i,&,j23 (cf. [3,4]): 

1 +ml +m2+mJ=v, 

iL0 + mill + m2122 + rn3L3 = 0, 

The second equation follows from the trace of A (the adjacency matrix of G), and the 
third from the trace of A2. Using these conditions we are able to generate all possible 
spectra for regular graphs with four eigenvalues and at most 30 vertices. Different 
algorithms were used in each of the three cases above and they in turn were checked 
for the following further conditions. 

Since a regular graph with four eigenvalues is walk-regular (cf. [4]), it follows that 
the number of triangles through a given vertex x is independent of n, and equals 
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This expression gives a further feasibility condition for the spectrum of G since A 
should be a non-negative integer. In general, it follows that 

is a non-negative integer. Since the number of closed walks of odd length r is even, f$ 
should be even if r is odd. For even r we can sharpen the condition since the number 
of non-trivial closed walks (those containing a cycle) is even. When r = 4 the number 
of trivial closed walks through a given vertex (i.e. passing through one or two other 
vertices only) equals 2kZ - k, and this means that 

,_tb2k2+k Y- 
2 

is a non-negative integer, and it equals the number of quadrangles through a vertex. 
Here we allow the quadrangles to have diagonals. When r = 6, the number of non- 
trivial closed walks through a vertex equals (36 - k(5k2 - 6k + 2), which should be 
even. 

The complement of a connected regular graph with four eigenvalues is also such a 
graph unless it is disconnected. By generating only those spectra for which k > v- 1 -k, 
we ensured that any putative graph would be connected, but in the appendix we printed 
the complementary spectrum, unless it implied discomrectivity. 

In the algorithm to generate spectra with four integral eigenvalues we checked that 
8, was an even non-negative integer for r = 3,5,7,9 and 11 and that it was a non- 
negative integer in the cases r = 8,10 and 12. In addition we tested to see that both 
04 - 2k2 + k and 06 - k(5k2 - 6k + 2) were even non-negative integers, and that the 
complementary spectrum gave rise to numbers of triangles and quadrangles through a 
vertex that were also non-negative integers. For technical reasons we checked different 
conditions in the case of two integral eigenvalues, namely the conditions on 0, for 
r=3 , . . . ,6 and the complementary 0, for r = 3 , . . . ,8. Finally, in the remaining case of 
one integral eigenvalue it was not necessary to implement so many conditions. Here 
we checked only the conditions on 03 and 0,. When a putative spectrum satisfies all 
of the above conditions, it is termed feasible. 

3. Special spectral 

3.1. A useful idea 

properties 

Let G be a connected k-regular graph on v vertices with four eigenvalues k, 21, 12 
and 13. If G has a simple eigenvalue, besides k, say 13, then G admits a regular parti- 
tion into halves with degrees ($(k+&), f(k-&)), that is, we can partition the vertices 
into two parts of equal size such that every vertex has i(k + J3) neighbours in its own 
part and i(k - 4) neighbours in the other part (cf. [4]). A consequence of this is that 
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k - & is even, a condition which was proved by Godsil and McKay [6]. This con- 
dition eliminates the existence of a graph with spectrum {[14]1,[2]9,[-1]19,[-13]1}. 
Moreover, v is a divisor of 

(k - 21 )(k - 12) f (A3 - 4 )(A3 - 12) 

and 

(k - 11 W - 12) - (A3 - 11 )(A3 - A,), 

from which we derive that there is no graph with spectrum {[8]1,[2]7,[-2]9,[-4]1}. 
It is possible to prove all this, using an idea on which most of our results, both 

theoretic and computer, are built. Let A be the adjacency matrix of G. The matrix 
C = C(il, 1,) defined by 

c(n,,n,)=(A - &Z)(A - ;/21) - 
(k - 4 )(k - ‘l2& 

V 

is a symmetric matrix with row sums zero and one non-zero eigenvalue (13 - Ai)(& - 
12) with multiplicity mg (the multiplicity of 13 as an eigenvalue of G). Now C or 
-C is a positive semi-definite matrix of rank m3, and C has constant diagonal k + 
il& - (k - 11 )(k - &)/v. Of course, as A2 is a matrix with non-negative integral entries 
and A is a (0,l )-matrix, the other entries of C are very restricted. Especially when 
1123 is small we get strong restrictions on the structure of G. This enables us to show 
uniqueness of the graph in Proposition 1, and prove the non-existence of graphs in a 
substantial number of cases in Section 5. It also proved to be a powerful tool in our 
computer search, as is explained 

3.2. Disconnected complement 

If G has v vertices, degree k, 

in more detail in Section 6. 

and an eigenvalue k - v, then the complement of G 
is disconnected, and then it must be the disjoint union of strongly regular graphs with 
the same spectrum and hence with the same parameters. 

3.3. Graphs with least eigenvalue at least -2 

If G has least eigenvalue at least -2, then it must be CT, or the line graph of 
some graph H, where H is a strongly regular graph, or H is the incidence graph of a 
symmetric design, or H is a complete bipartite graph, or G is one of the graphs found 
by Bussemaker, Cvetkovic and Seidel [2]: 

BCS9: one graph on 12 vertices with spectrum {[4]1,[2]3,[0]3,[-2]5}, 
BC&: one graph on 18 vertices with spectrum {[7]1,[4]2,[1]5,[-2]10}, 
BCSiss-BCSi60: eight graphs on 24 vertices with spectrum 

BCS179: one graph on 18 vertices with spectrum {[10]1,[4]2,[1]4,[-2]11}, 
BCSiss: one graph on 24 vertices with spectrum {[14]1,[4]4,[2]2, [-2]17}. 
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Note that the complement of a connected regular graph with least eigenvalue -2, is a 
graph with second largest eigenvalue 1. 

4. Constructions and small examples 

4.1. Distance-regular graphs and association schemes 

In [7] (almost) all graphs with the spectrum of a distance-regular graph with at most 
30 vertices are found. Most of these graphs have four distinct eigenvalues. 

A substantial number of examples of distance-regular graphs with four eigenvalues 
are given by the incidence graphs of symmetric designs. In fact, any bipartite graph 
with four eigenvalues must be the incidence graph of a symmetric design, and hence 
is distance-regular (cf. [3, p. 1661). 

Some other graphs can be obtained by merging classes in distance-regular graphs 
(cf. [l]) or association schemes. By Gi we denote the distance i graph of G. For 
example, the distance 3 together with the distance 5 relation in the Dodecahedron 
gives a graph with four eigenvalues. Also the distance 4 relation in the Coxeter graph 
gives such a graph. 

In the tables of the appendix we have added, for every spectrum, the number of 
graphs with that spectrum or complementary spectrum that are a relation in some 
three-class association scheme. These numbers are obtained from [5]. 

4. I. 1. Pseudocyclic association schemes 
A three-class association scheme is said to be pseudocyclic if there are three eigen- 

values with the same multiplicity. If the number of vertices q is a prime power 
and q = 1 (mod 3), then the cyclotomic scheme, which has the third power cyclo- 
tomic classes of GF(q) as classes, is an example. For q>4, the corresponding graph 
Cycl(q) has four distinct eigenvalues and is obtained by making two elements of 
GF(q) adjacent if their difference is a cube. The smallest example is the 7-cycle 
CT. It is determined by its spectrum, as are Cycl( 13) and Cycl( 19), which we can 
prove by hand. On 28 vertices two schemes are known. Mathon [9] found one, and 
Hollmann [8] proved that there are precisely two. 

4.2. Product constructions 

If G is a graph with adjacency matrix A, then we denote by G @I J,, the graph with 
adjacency matrix A @J,, (~3 denotes the Kronecker product), and by G 0 J,, the graph 
with adjacency matrix (A + I) ~3 J, - I. Note that G @ J, = ?? 0 J,, where ?? is the 
complement of G. The first construction adds an eigenvalue 0 to the spectrum, while 
the second construction adds an eigenvalue - 1. 

Thus, if we have a strongly regular graph or a connected regular graph with four 
distinct eigenvalues of which one is 0 or - 1, then this construction produces a bigger 
graph with four distinct eigenvalues. 
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For any n, C5 @J,, and C’, 0 J,, are uniquely determined by their spectra. Fur- 
thermore, if IG(I, I - 1,1 - 2) denotes the incidence graph of the unique (trivial) 
2-(l,l - 1, 1 - 2) design, then for each 1 and n, the graph IG(1,1- 1,1- 2) 0 J, is 
uniquely determined by its spectrum (cf. [4]). 

If A is the adjacency matrix of a graph G, then the graph with adjacency matrix 

( 

A I 
I J-I-A > 

is called the twisted double tdG of G. Now let v = 4~ + 1 and k = 2,~. Then G is a 
graph with spectrum {[k + l]‘,[k - l]‘,[-i + im]2k,[-i - $m]2k} if and 
only if G is the twisted double of a conference graph on v vertices (cf. [4]). Since the 
conference graphs &(3) on 9 vertices and P( 13) on 13 vertices are unique, also their 
twisted doubles are uniquely determined by their spectra. 

Let G and G’ be graphs with adjacency matrices A and A’, and eigenvalues &, 
i=1,2,..., v, and &, i = 1,2,. . ., v’, respectively. Then the graph with adjacency matrix 
A@I,~+I,,@A’haseigenvaluesli+A$ i=1,2 ,..., v,j=1,2 ,..., v’.Thisgraph,which 
is sometimes called the sum [3] or the Cartesian product of G and G’, will be denoted 
by G@ G’. An example with four distinct eigenvalues is G $ K,, where G is the 

. . 
complete bipartite graph K,,,,,,, or the lattice graph Lz(m). Here we present our first 
new result. 

Proposition 1. The graph K3,3 $ K3 is uniquely determined by its spectrum. 

Proof. Let G be a graph with spectrum {[5]1,[2]6,[-1]9, [-412} and adjacency ma- 
trix A. Then G is a 5-regular graph on 18 vertices with one triangle through each 
vertex. The matrix C = C(2, - 1) = A2 -A - 2Z- J, as defined in Section 3.1 is a pos- 
itive semi-definite integral matrix of rank two with diagonal 2. Thus, C is the Gram 
matrix of a set of vectors in R2 of length 2/2 such that their inner products are f2, f 1 
or 0. 

Note that if two vertices are adjacent and the vectors representing these vertices have 
inner product - 1, then they are in a triangle. This implies that any vertex is adjacent 
to precisely two vertices such that their inner product is - 1, and that the inner product 
between those two vertices is also -1. If two vertices have inner product -2 then they 
are adjacent, and if they have inner product 1 or 2 then they are not adjacent. 

Without loss of generality we assume that there is a vertex represented by vec- 
tor &( l,O)T. This vertex must be in a triangle with vertices represented by vectors 
&?( - i, i fi)T and fi( - i, -i &)T. Furthermore, it is adjacent to three vertices rep- 
resented by a( - LO)‘. In turn, such a vertex is in a triangle with vertices represented 
by vectors fi(i,f&)T and &(i,-$&)T, and is adjacent to three vertices repre- 
sented by &(l,O)T. 

In this way we find 18 vertices: each of the 6 mentioned vectors represents 3 vertices. 
Now, up to isomorphism, all adjacencies follow from the inner products and the fact 
that every vertex is in one triangle. The graph we obtain is K3,3 CB KS. 0 
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Fig. 1. Vectors representing the vertices of K3,3 $4. 

4.3. Examples from strongly regular graphs 

If G is a non-bipartite strongly regular graph on v vertices, with spectrum 
{[k]‘, [r]f, [SIB}, and C is a coclique of size c meeting the Hoffman bound, i.e. 
c = -vs/(k - s), then the induced subgraph G\C on the vertices not in C is a regular, 
connected graph with four eigenvalues if c<g. By looking at the complement of the 
graph, a similar construction works for cliques instead of cocliques. An example is ob- 
tained by removing a 3-clique (a line) in the point graph of the generalized quadrangle 
GQ(2,2), and the resulting graph has spectrum {[5]l, [116, [-112, [-313}. 

If G contains a spread, that is, a partition of the vertices into Ho&ran cliques, 
then by removing the edges of this spread, we also obtain a regular graph with four 
eigenvalues. For example, the complement of the triangular graph T(n) contains (many) 
spreads for every even n. 

Also some subconstituents (i.e. induced subgraphs on the set of (non-)neighbours of 
a given vertex) of strongly regular graphs have four distinct eigenvalues, for example 
the second subconstituent GQ(3,3)&) of the point graph of a generalized quadrangle 
GQ(3,3) (cf. [41). 

4.4. Covers 

In [4] n-covers of Cs 8 J,,, C3 @J,, = K 3”, C, 0 J,,, C6 0 J,, and Cube 0 J,,, having 
four distinct eigenvalues are constructed. The 2-cover of C3 @ J2 is isomorphic to the 
line graph of the Cube, the 2-cover of Cs 0 J2 is isomorphic to the Icosahedron, and 
the 3-cover of C3 8 J3 is cospectral but not isomorphic to H(3,3). The graphs in Fig. 2 
are the three remaining covers with at most 30 vertices. They were shown, using the 
computer, to be uniquely determined by their spectra. 

4.5. Switching 

Let G be a graph, and suppose we have a partition of the vertices into two parts. 
Switching G with respect to this partition is the operation of interchanging the edges 
and non-edges between the two parts (thus two vertices in different parts are adjacent 
in the new graph if and only if they are not adjacent in the original graph G) and 
leaving all other edges the same (thus two vertices in the same part are adjacent in the 
new graph if and only if they were also adjacent in G). If the partition, say with parts 
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Fig. 2. A 3-cover of C3 0 J3 and 2-covers of Cs 052 and Ce 0 52. 

VI and VZ, is regular, that is, if every vertex in 6 is adjacent to a constant number 
of vertices in the same part, and to a constant number in the other part, for i = I,2 
then switching with respect to this partition changes at most two of the eigenvalues 
of G. 

If a graph G admits a regular partition of the vertices into two parts, such that every 
vertex is adjacent to half of the vertices in the other part, then switching with respect 
to this partition gives a graph with the same spectrum as G, but which is possibly 
different from G. This way we computed several cospectral regular graphs with four 
eigenvalues, as is explained in more detail in Section 6. 

Switching was introduced by Seidel (cf. [l l]), and it has proved to be a powerful 
tool to construct cospectral graphs. Switching in general however changes the spectrum. 
For example, by switching with respect to some special regular partitions in strongly 
regular graphs it is possible to construct regular graphs with four eigenvalues (cf. [4]). 

Here we also use switching to construct regular graphs with four eigenvalues from 
other ones, with a different spectrum. 

Proposition 2. Let G be a regular graph on v vertices with spectrum {[k]‘,[Al]““, 
[&]“‘z, [A3]“‘3} where Ai = k - kv for some i, say i = 3. Suppose G admits a partition 
of the vertices into two parts of equal size such that every vertex is adjacent to 
i(k - Aj) vertices in the other part, for some j # i, say j = 1. Switching with respect 
to this partition gives a regular graph with spectrum {[A, + iv]l, [A,]““-‘, [;/21m*, [A, = 
k - ;vlm3+‘}. 

For example, consider the incidence graph IG(2n,2n - 1,2n - 2) of the trivial design 
on 2n points, i.e. we have a graph on vertices pi and bi, i = 1,. . . ,2n, where pi is 
adjacent to bj if and only if i # j, and with no other edges. Take for one part of 
the partition the set of vertices {pi, bi+n) i = 1,. . . , n}. Switching with respect to this 
partition gives the complement of the disjoint union of two cocktail party graphs CP(n), 
which has spectrum {[2n + 1]1,[1]2”-2, [-112”,[-2n + I]‘}, while the spectrum of the 
incidence graph was {[2n - 1]‘,[1]2”-1,[-1]2n-1,[-2n+ 11’). 
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5. Non-existence results 

Let G be a k-regular graph on v vertices with A triangles and E quadrangles through 
every vertex. Fix a vertex x, and let (Ti be the number of vertices y adjacent to x, such 
that A:Y = i, and let ri be the number of vertices y not adjacent to X, such that A& = i. 

Then counting arguments show that 

c gi = k, c iai = 24, c zi=v-k-l, 
I i i 

C izi=k(k-l)-24 and C 
0 

: (oi + ri)=E. 
i i 

We shall call this system of equations the (o,r)-system. 
In the following we examine several feasible spectra and prove the non-existence of 

a graph in each case. In each of the proofs of the following propositions we assume 
the existence of a graph G with the given spectrum and A will denote its adjacency 
matrix. 

Proposition 3. There are no graphs with spectrum {[71’, [415, [-215, [--319), 
{[6]1,[2]9,[1]9,[-3]11}, {[7]1,[21’2,[115,[-3112}, {[~l’,~~+~12,~-~110,~~-~12~~ 
{[7]‘,[1 +2&]2,[-1]91 - 2fi12} or {[81’,[-1 + &17J116,[-1 - da71. 

Proof. A graph with the first spectrum would be 7-regular on 30 vertices with A = 3 
triangles and B = 12 quadrangles through every vertex. Using the idea of Section 3.1, 
let C = C(2, -3) = A2 + A - 6Z- $J, then -C is a positive semi-definite matrix with 
diagonal $. It follows that C can only have entries -i and f , and so if x and y are 
adjacent then A,, - 2 - 0 or 1, and if n and y are not adjacent then Ai,, = 1 or 2. But now 
the (cr, r)-system does not have a solution, so we have a contradiction. The other cases 
go similarly. ??

Proposition 4. There are no graphs with spectrum {[8]l, [2 + 3d?j3, [-112’, [2 - 
3Jz13} or {[91’, [713, [-1l24, [-312}. 

Proof. The first spectrum would give an g-regular graph on 27 vertices with A = 22 
triangles and B = 102 quadrangles through every vertex. The matrix C as defined in 
Section 3.1 by C=C(2 + 3&,-1)=A2 - (1 + 3v’?)A - (2 + 3&)I - (2 - d)J, 
is a positive semi-definite matrix with diagonal 4 - 2& It follows that if x and y 
are adjacent then A,, 2 = 5,6 or 7, and if x and y are not adjacent then A$, = 0 or 
1. Now the (0, r)-system has one solution ~7 = 2, 66 = 0, rrs = 6, rt = 12, ra = 6. 
But then G =H 0 53, for some graph H. It follows that H must have spectrum 
{[2]1,[~]3,[-1]2,[-v’?]3}, but since such a graph does not exist, we have a con- 
tradiction. Similarly, a graph with the second spectrum must be of the form H 0 52, 
where H has spectrum {[4]‘, [3]3,[-1]9,[-2]2}, which is impossible by the results of 
Section 3.3. ??
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The next proposition uses the fact that if the number of triangles through an edge 
is constant, then the number of quadrangles through an edge is also constant (cf. [4]). 
If 5 is the (constant) number of quadrangles through an edge, and if s” is the number 
of quadrangles through a vertex, then t: = 2E/k. 

Proposition 5. There are no graphs with spectrum {[8]‘, [-1 + m14, [O]'t , 
[-1 - &i14} or {[4]‘,[-4 + i&i]4,[O]6,[-!j - 4&i]‘}. 

Proof. Note that if H is a graph with the second spectrum, then H @ J2 is a graph 
with the first spectrum. Thus it s&ices to show that there is no graph with the first 
spectrum. Suppose G is such a graph, then G is 8-regular on 30 vertices without 
triangles, such that every vertex is in 9 = 84 quadrangles and every edge is in c = 21 
quadrangles. 

Suppose first of all that G has diameter 2. Suppose x and z are two non-adjacent 
vertices such that A2 a = 1 and let y be their common neighbour. Now the 21 quadrangles 
through {x, y} and the 2 1 quadrangles through {z, y} are distinct, and since there are 
42 edges between G(y)\{x,z} and Gz(y), all these edges contain a neighbour of x 
or z. Then it follows that the number of vertices at distance 2 from y is 14, and so 
G has diameter 3, which is a contradiction. Thus for any two non-adjacent vertices x 
and z we must have A$ > 2. But then the (a, r)-system has no non-negative integral 
solution. Thus G has diameter 3. 

Take a vertex x and let y be a vertex at distance 3 from x. Let A be partitioned 
into two parts, where one part contains y and the neighbours of X. Then 

A= 

Since rank(A) = 9, it follows that rank(N) ,<4. Now write 

N=(; ;) and N’=(T ;). 

Since the all-one vector is in the column space of N (N has constant row stuns 8), 
ranlc(N’) &rank(N), so rank(Ni ) <3. Moreover, Ni has constant row sums 7, and so 
it follows that Nt is of the form 

i 

Jm,,w,--12 Jim Om,,t, Jm,,t, 0m.t~ %,13-t,-12 

N _ Jmz,vt,--12 Jat, Om,,,, %tz Jwz %,13-1,--q 

’ - Jm,,vt,--12 On,,,,, Jim,,, Jm,,t, Om,,rz %,13-t,--h 

1 

’ 

Jm,,w-tz %t, Jm,r, On,,,, Jm,,tz Om4,13-r,-r2 

with ml + rn2 + m3 + m4 = 8, and tl, t2 # 0, or that Nt has at most 3 distinct rows. 
Suppose we are in the first case. If we count the number of quadrangles through x and 
a vertex z which corresponds to one of the first ml rows, then we see that 

t = 7(ml - 1) + (7 - t2)m2 + (7 - tl)m3 -t- (7 - ti - t2)m4. 



E.R van Dam, E. Spencel Discrete Mathematics 189 (1998) 233-257 243 

If we count the number of quadrangles through x and a vertex corresponding to one 
of the m2 rows of the second block, then 

From this it follows that ml +m3 = m2 +m4 = 4, and tl + t2 = 7. Similarly it follows that 
ml + m2 = m3 + rn4 = 4, and so that ml = m4 and m2 = ms. This implies that Gs(x) has 
7 vertices and that every vertex in G&X) has 4 neighbours in G(x). From the Hoffman 
polynomial it follows that if y is a vertex at distance 3 from X, then AzY = 16, so in 
turn every index in Gs(x) has 4 neighbours in G&). But then the induced subgraph 
on Gs(x) is 4-regular on 7 vertices, and this is not possible without triangles. 

Thus, we are in the second case. Suppose IV1 has 4 identical rows. By counting the 
number of quadrangles through x and a vertex corresponding to one of these 4 rows 
it follows that the other 4 rows are disjoint from the first 4. Further counting gives 
that the other 4 rows must also be the same, and again we have that G&c) has 7 
vertices and that every vertex in Gz(x) has 4 neighbours in G(x), which leads to a 
contradiction. It follows that we have one row occurring twice and two rows occurring 
three times. By counting quadrangles through x and a vertex corresponding to one of 
the rows occurring twice, we see that 

4: = 7 + 3t1 + 3t2, 

for some tl, t2, and so 14 should be divisible by 3, which is a contradiction. •i 

Next we shall prove the non-existence of some graphs, assuming that they have an 
eigenvalue with multiplicity 2. 

Proposition 6. There are no graphs with spectrum {[7]1,[3]6,[-1]15,[-5]2}, {[lo]‘, 
PI37 M’8, H12}, {WI’, [412, Eel’*, [-613) or {[91’, [416, [-112’, [-612}. 

Proof. A graph with the first spectrum is 7-regular on 24 vertices with 5 triangles 
through each vertex. Let C = C(3, - 1) = A2 - 2A - 3I- $ J, then C is a positive semi- 
definite matrix of rank two with row sums zero and diagonal 9. Thus, C can only 
have entries -i, -$, -i, $, s and t. 

Now suppose that C,, = - f for some vertices x and y. Let z be another arbitrary 
vertex. Since C has rank two it follows that the principal submatrix of C on vertices 
X, y and z has zero determinant, and so either C, = f and C, = - $ or C, = - 4 and 
C, = t. But then x and y cannot both have row sums zero, and it follows that C has 
no entries - i. Similarly it follows that C cannot have entries $, -i and $. Thus C 
can only have entries t and - $. 

Now fix x. For all vertices y adjacent to X, we must have A& = 2 or 6. But x has 7 
neighbours, giving that x is in at least 7 triangles, which is a contradiction. The other 
cases go similarly. 0 
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Proposition 7. There is no graph with spectrum {[ 12]*, [312, [0]22, [-912}. 

Proof. Here we would have a 12-regular graph on 27 vertices with A =6 triangles 
and 3 = 492 quadrangles through every vertex. The matrix C(0, -9) is positive semi- 
definite of rank two with row sums zero and diagonal $. Thus, C can only have entries 
-7 -4 -1 2 5 

3’ 3’ 3,T,~ and $. 
Now suppose that C,, = -$ for some vertices x and y. Let z be another arbitrary 

vertex. Since C has rank two it follows that the principal submatrix of C on vertices 
x, y and z has zero determinant, and so either C,, = s and C, = -i or C,, = - f and 
C,,, = f . But then x and y cannot both have row sums zero. Thus, C has no entries 
-i. This implies that if x and y are adjacent then AzY # 0, and since there are only 
6 triangles through every vertex, it follows that Azy = 1 (~1 = 12), and so C,, = 3. 
Again, let z be another vertex, then it follows that C, = $, f or -g. Now it follows 
that if x and z are not adjacent, then A$ = 7,10 or 12. But then the (a, r)-system has 
no integral solution, giving a contradiction. 0 

Proposition 8. There are no graphs with spectrum {[9]‘, [318, [-1]19, [-712} or {[lo]‘, 

P12, rw, W14). 

Proof. A graph with the first spectrum would be 9-regular on 30 vertices with A = 4 
triangles and B = 124 quadrangles through every vertex. Take C(3, -l), which is a 
positive semi-definite integral matrix of rank two with diagonal 4. Thus, C can only 
have entries -4, -3,. . . ,3 and 4. Note that since there are 4 triangles through a vertex, 
it follows that if x and y are adjacent then A& <4. 

Now suppose that C,, = 0 for some vertices x and y. Let z be another arbitrary 
vertex. Since C has rank two it follows that the principal submatrix of C on vertices 
x, y and z has zero determinant, and so C,, = 0 or f4. This implies that if x and z are 
adjacent then A, 2 = 0 or 4, and if x and z are not adjacent then AZ= = 2 or 6. But then 
the (a, r)-system has no solution, so C has no entries 0. Similarly, we can show that 
C has no entries fl and f3. Thus, C only has entries f2 and f4. This implies that if 
x and y are adjacent then A,, - 2 - 0 or 2, and if x and y are not adjacent, then AZ, = 0,4 
or 6. The (a, r)-system now has one solution rrs = 5, 02 =4, zo = 6, r4 = 10, 76 =4. 
Now it is not hard to show that a graph with these parameters does not exist. The 
other spectrum is even easier, since here none of the (a, z)-systems has a solution. 0 

Proposition 9. There is no graph with spectrum {[13]*, [3 + 2012, [- 1]25, 
[3 - 2v%]2}. 

Proof. Such a graph is 13-regular on 30 vertices with A =62 triangles and E = 570 
quadrangles through every vertex. Take the matrix C(3 + 20, - 1 ), so C = A2 - (2 + 
2fl)A - (3 + 20)I - $(lO - 2m)J, which is a positive semi-definite matrix 
of rank two with diagonal A( 10 - 2&?). From this it follows that if A,, = 1 then 
A& = 9,10,11 or 12, and if A,.. = 0 then A$ = 0, 1,2 or 3. For a non-negative integral 
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solution of the (o,r)-system we have ~9 26 and 0~ ~2. Now fix a vertex x, and let 
y and z be two vertices with AZ, = A:= = 9, then C,,, = C,, = A( 10 - 20) - 3. Since 
the principal submatrix on the vertices X, y and z has zero determinant, it follows that 
c,, = $10 - 2v%), so A’y = 12. For fixed y we have at least 5 choices for z left 
(as >,6), so for y we have 612 >, 5, which is a contradiction. ??

We finish by giving a case where we use the same technique as in the uniqueness 
proof of the graph Ks,s @ KJ. 

Proposition 10. There is no graph with spectrum {[6]1,[3]5,[-1]13,[-4]2}. 

Proof. Here we have a 6-regular graph on 2 I vertices with A = 5 triangles and B = 20 
quadrangles through every vertex. Here we take the matrix C(3, - I), then C is a 
positive semi-definite matrix of rank two with row sums zero and diagonal 2. Thus C 
is the Gram matrix of a set of vectors in R2 of length fi with mutual inner products 
12, fl or 0. Note that not both 0 and fl can occur as inner product, since then also 
inner products that are not allowed occur. 

Suppose that inner product 0 occurs. Without loss of generality we assume that 
there is a vertex represented by vector a( l,O)T. The only vectors that can occur 
now are &a( 1, O)T and h&(0, l)T. Since C has row sums zero, it follows that the 
number of vertices represented by a( 1, O)T equals the number of vertices represented 

by -&LO)*, and the number of vertices represented by v&O, l)T equals the number 
of vertices represented by -v’?(O, l)T. But the number of vertices is odd, which is a 
contradiction. 

It follows that if x and y are adjacent then A& = 1,2,4 or 5 and if x and y are not 
adjacent then A,, 2 = 0,2 or 3. Now we have the (a, r)-system 

ai+az+ad+a5=k=6, 

ai +2a2+4a4+5as=2A=10, 

2~+3rs=k(k- 1)-24=20, 

which has three solutions: 
(i) a5 = 1, a4 = 0, a2 = 0, ai = 5, z3 = 0, 52 = 10, r. = 4. 

(ii) a5=0, a4=1, az-1, al=4, z3=2, r2=7, r0=5. 
(iii) a5=0, a4=0, a2=4, ai=2, t3=4, r2=4, r0=6. 
By looking at out vector representation we see that if there is a vertex for which we are 
in case (ii), then there are vertices (those represented by vectors opposite to the vector 
representing our original vertex) for which the (a, r)-system does not hold. Similarly, 
if there is a vertex for which we are in case (iii), then there must be vertices for which 
we are in case (i). 
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Thus we may assume that there is a vertex x for which we are in case (i). Let y 
be the vertex adjacent to x with A,, 2 = 5, then the other neighbours of x and y are the 
same, say 1,2,3,4 and 5. Now ,4zi = 1 for i = 1 ,..., 5, SO C,=-2, and i and j are not 
adjacent, for all i, j = 1,. . . ,5. From the principal submatrix of C on vertices x,i and 
j it follows that Co = 2, but then A$ = 3, so besides x and y, i and j only have one 
common neighbour. This implies that we can identify the 10 vertices z not adjacent to 
x such that A; = 2 with the pairs {i, j}, i, j = 1 , . . . ,5, i # j, in such a way that i and 
j are adjacent to {i, j}. From the principal submatix of C on vertices X, i, {j, k}, with 
i # j, k, it follows that Ci{j,k) = - 1, and SO A$ j kl = 0. This implies that the subgraph 
on the pairs {i, j}, i, j = 1,. . . , 5 is empty, so that all 10 pairs must be adjacent to the 
remaining four vertices, which is a contradiction. Thus, we may conclude that there is 
no graph with the given spectrum. 0 

6. Computer results 

When the existence or full classification of a graph with a given set of four eigen- 
values could not be determined without the use of a computer, we used basically the 
same methods as [7]. In some situations, however, it was still not possible to classify 
the graphs completely on account of the vast amount of CPU time required. Indeed, 
in some cases we were unable to discover whether or not a graph existed at all. 

As before, we used two programs to determine the graphs, one for the case when 
all the eigenvalues were integral and another when only two of the eigenvalues were 
integers. Both methods, however, had a common element, which we now briefly de- 
scribe. Let A be the adjacency matrix of a graph G on v vertices. In our (backtracking) 
search for zero-one (symmetric) matrices A with four eigenvalues we have to ensure, 
as far as possible, that we avoid a path of the search tree that would yield an isomor- 
phic copy of a graph that had already been discovered. This we did by demanding that 
the matrix A be in standard form. Thus, A is the greatest adjacency matrix amongst 
the adjacency matrices of all graphs isomorphic to G. Here the ordering involved is 
the lexicographical one on the binary integer obtained by concatenating the rows of 
the upper triangular part of A. A simple observation is that if r rows of A have been 
determined in the form 

A, N, 
( > N,’ 0 ’ 

where A, is a principal sub-matrix of A of order r, then this matrix itself must be 
in standard form. Testing to see that this was the case was very efficient, at least for 
small values of r. 

To use the eigenvalues of the given graph in our search, observe that, as outlined 
in Section 3.1, we can use the eigenvalue k and two of the other three eigenvalues to 
determine constants a, b,c and d such that the matrix B defined by 

B=uA2+bA+cZ+d.Z 
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is positive semi-definite and has rank equal to the multiplicity, p say, of the remaining 
eigenvalue. This can be done for each of the three possible choices of two eigenvalues. 
The matrix B then will have two eigenvalues, the non-zero one of which we denote 
by 0. It is then clear that every principal sub-matrix of B must have rank at most p 
and have eigenvalues, all of which lie between 0 and 8. Thus, for all rfv the matrix 
B, defined by 

B, = a@; + N,N,T) + bA, + cl + dJ 

must satisfy these two conditions. 
The method used for testing the rank of B, depended on whether the constants a, b, c 

and d above could all be chosen as integers. This is certainly the case when all the 
eigenvalues of G are integers, but not always so when only two of the eigenvalues are 
integral. For details as to how the methods differed the reader is referred to [7]. In the 
cases when p was small (no more than 5) testing the rank condition was reasonably 
efficient, and when used in conjunction with the above bounds on the eigenvalues of B,, 
it generally enabled the computer search to be completed. However, other determining 
factors in the completion of the computer searches were the number of triangles and 
upper bounds to i and p (the number of common neighbours of two adjacent and non- 
adjacent vertices, respectively). The smaller these numbers were, the more likely it was 
that the classification was feasible, but this was not always so. Overall, a complete 
classification was achieved in all but 30 cases, 18 of which were graphs with four 
integral eigenvalues, and 11 of which were graphs with two integral eigenvalues. In 
13 of these 30 cases we used other computer methods to obtain a partial classification, 
and there remain 15 sets of four eigenvalues for which the existence of a graph (on 
at most 30 vertices) is still in doubt. We briefly describe the methods used in this 
situation. 

First we mention that an incomplete search in case 162 found 1487 graphs. In fact 
these are all graphs having a (Hoffman-)clique of size six, which can be partitioned 
into three pairs of vertices such that for each pair there are eight vertices outside the 
clique that are adjacent to both its vertices and to no other vertices of the clique. The 
induced subgraph on the vertices outside the clique is then a graph of case 91, and 
each and every one of the 28 graphs of this case actually appears in this way. 

One method of establishing the existence of some graphs with four integral eigen- 
values is to take a strongly regular graph and remove a clique or a co-clique of 
appropriate size, as in Section 4.3. This we did by utilising the strongly regular graphs 
with parameters (36,15,6,6), (36,21,12,12) and (35,18,9,9), and their complements, 
that were found in [ 131, where a partial classification of regular two-graphs on 36 
vertices was made. This enabled the quoted lower bounds to be obtained for numbers 
110,112,157,164 and 170. In the case of number 157 the initial lower bound found 
was later increased by switching (see below). It seems rather surprising that of the 
32 548 graphs found in [13] with parameters (36,14,4,6) only two possess a co-clique 
of size 8. These two give rise to the lower bound for number 110. 
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It might be of interest at this stage to point out that the 11 graphs that were found 
in case 130 all come from graphs co-spectral with GQ(3,3) by the removal of a 
lo-coclique. This was established by examining the 27 strongly regular graphs with 
parameters (40,12,2,4) that were obtained in [ 121. 

In Proposition 2 there were described arithmetical conditions on the eigenvalues of a 
graph (with four integral eigenvalues) which, if satisfied, might lead to the possibility 
of constructing from the graph further graphs with four eigenvalues, but with (possibly) 
different spectra. We have examined all the graphs with four integral eigenvalues (on at 
most 30 vertices) and have noted the ones that satisfy this condition. Those that might 
be switchable are (44,49,55), (48,54), (70,78,83), (71,76,93), (72,91), (75,86), 
(110,111,112), (137,168), (138,148), (144,159,161), (147,155), (149,163), 
(157,170) and (158,166). Of course, we can only use the idea of Proposition 2 to 
possible advantage if we know of the existence of at least one graph belonging to the 
above pairs or triples. Some we had already worked out by virtue of our exhaustive 
search, and others yielded no information, as in the case (149,163). Nevertheless, we 
were able to use the triples (71,76,93), (144,159,161) and (110,111,112) to advan- 
tage to produce new graphs. In the first of these, the four graphs that were found 
by exhaustive search in the case of number 71 were switchable into five and sixteen 
new ones corresponding to numbers 76 and 93, respectively. We had been unable to 
produce any graphs at all in these two cases using our exhaustive search. However, 
the transitive graphs of McKay and Royle [lo] contained among them five graphs all 
of which were among the ones found by switching (two in case 76 and three in case 
93). In the case of the triple (1 10, 1 1 1, 112) the 8472 graphs from number 112 could 
be switched into 10 350 graphs with spectrum that of number 111 (all new) and the 
two graphs of number 110 (which had already been found). Finally, the three graphs 
of number 144 were switchable into 50 graphs corresponding to number 159 of the 
triple (144,159,161). No information was obtained about number 161. Although we 
had already found graphs in cases 157 and 170, we discovered that by switching the 
24 93 1 graphs of number 170 we could increase the number of graphs of number 157 
from the 66 986 found from Ls(6)\6-coclique, to 68 876. 

Overall there were so many graphs found that it is not possible to list them all in 
this paper. However, in the cases where there were graphs discovered by the computer 
that were not already known, we list one graph as a representative of these new graphs. 
Further, all new transitive graphs are also listed. 

In Appendix A. 1, where there is a table of feasible spectra for regular graphs with 
four integral eigenvalues, the numbers for which a computer was needed to establish the 
existence of at least one graph, are 37,69,70,71,76,78,83,93,100,110,111,130,144, 
157,159,164, and 170. In all of cases except 70,100,llO and 111, there are transitive 
graphs. Indeed, in some instances there are several such graphs. For example, number 
78 has four transitive graphs, number 83 and 93 have three, and numbers 71,76,157 
and 170 have two each. New graphs were also discovered with spectra numbered 
39,44,48,49,54,72,91,104,112,138,148, and 154. In each of these cases, at least 
one graph was already known. The corresponding graphs are listed at the end of 
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Appendix A.l. The graphs corresponding to numbers 55,97,99,125 and 129 are al- 
ready contained in [7] and as a consequence are not included here. 

For spectra containing only two integral eigenvalues, there was precisely one number 
in the listing of Appendix A.2, namely 23, for which the computer established the 
existence of a graph when none was already known. In this case there is a unique 
graph, and it too is transitive. New graphs were also found for spectra numbered 25 
and 28. Numbers 45 and 54 were considered in [7], where the quoted lower bounds 
were obtained. However, none of the graphs coming from number 45 was listed there, 
and so, for the sake of completeness, we include here those transitive graphs found. 
The graphs in all these cases are given in Appendix A.2. 

Corresponding to each graph listed there are two lines of data. The first contains 
the hexadecimal form of the graph. This is obtained by expressing the binary integer, 
derived by concatenating the rows of the upper triangular part of the adjacency matrix, 
as a hexadecimal integer. The next line contains the order of the automorphism group 
of the graph, together with its orbits, unless the graph is transitive. 

The reader who wishes to have copies of any, or indeed all, of the graphs found in 
the above investigation, may obtain them by accessing the second author’s home page 
on the Internet at http:l/gauss.maths.gla.ac.uk/-ted/. 

Appendix A 

In this appendix we list all feasible spectra for connected regular graphs with four 
eigenvalues and at most 30 vertices. If both the spectrum and its complementary spec- 
trum correspond to connected graphs then only the one with least degree is mentioned. 
# denotes the number of graphs. In between brackets the number of such graphs or 
their complements that are a relation in a three-class association scheme is denoted (if 
positive). The references refer to the sections or the literature. 

A. 1. Four integral eigenvalues 

No. v Spectrum A % # Notes References 

1 6 (1 21’, lt12> 1-112, [ -21’) 0 0 1 (1) c6 4.1 

2 8 {[ 5]‘, [112, [-114, [ -31’) 6 22 1 (1) G=2C4 3.2 
3 8 {[ 3]‘, [113, [-113, [ - 31’) 0 3 1 (1) Cube 4.1 

4 10 {[ 411, [114, [-114, [ -41’) 0 12 1 (1) lG(5,4,3) 4.1 

5 12 0 91’, [113, [-116, [ - 312} 28 204 1 (1) G=3C4 3.2 
6 12 {[ S]‘, [212, [-118, [ -41’) 19 123 1 (1) i;=2&3 3.2 
7 12 U 41’, [213, [ 013, [ - 215) 2 2 L(Cube), BCS9 3.3 
8 12 {[ 7]‘, [114, [-116. [ - 51’) 9 

8: 
1 (1) 6=2CP(3) 3.2 

9 12 {[ 5]‘, [115, [-115. [ -51’) 0 30 1 (1) ZG(6,5,4) 4.1 
10 12 {[ 51’3 tl13, [ 016, [ -41’) 0 25 0 A’=1 3.3 
11 12 {[ 51’, UT, [-112, [ - 313) 2 14 1 GQ(2,2)\3-clique 3.3, 4.3 

L(CP(3)) 
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No. v Spectrum A 9 # Notes References 

12 12 I[ 51’3 [312, [-llS, 1 -31’1 6 14 1 

13 12 {[ 51’, [212, [ 113, [ - 2n 4 9 l (1) 

14 14 {[ 61’9 P16. [-116, [ - 61’1 0 60 1 (1) 
15 15 ([ 41’, [215, I-114, [ -215) 2 0 1 (1) 
16 15 {L 41’9 [313, [-119, [ -212) 4 40 
17 15 {[ 61’, [116, [ 015, 1 -413} 1 36 0 

18 15 {[ 61’, [31*, [ 114, [ - 2181 7 20 1 (1) 
19 16 {[13]‘, [114, [-118, [ - 313} 66 738 1 (1) 
20 16 {[ll]‘, [3]*, [-l]“, [ - 51’) 39 367 l (1) 
21 16 {[ 61’, 141*> [ Of, [ -217) 9 27 0 

22 16 {[ 91’, [116, f-11’, 1 - 71’1 12 204 l (1) 
23 16 {[ 71’> [117, [-117> [ - 71’1 0 105 1 (1) 
24 16 {[ 71’3 [118, [-115, [ - 512) 3 69 0 
25 16 {[ 7]‘, [313. [-l]“, [ - 51’) 9 57 1 

26 18 {[14]‘, [213, [-l]“, [ - 412} 73 894 1 (1) 
27 18 {[13]‘, [116, [-119, [ - 512} 54 666 1 (1) 
28 18 {[13]‘, [1]8, [-218, [ - 51’) 56 652 l (1) 
29 18 {[ 51’7 [216, I--119> [ -41*) 1 lc2 1 

30 18 {[ 51’, [217, [-ll’, [ - 219) 3 2 0 
31 18 {[ll]‘, [214, [-1]12, [ -71’) 28 360 l (1) 
32 18 {[ 61’, [314, [ 014> [ - 219) 7 16 1 
33 18 {[ 7]‘, [l]“, [-214, [ - 512} 2 58 1 

34 18 {[ 71’, [412, [ 115, [ - 21”) 11 40 2 (1) 
35 18 {[ 81’, U18, [-118, 1 - 81’1 0 168 1 (1) 
36 18 {[ 81’, [217, [-219, [ -41’) 12 68 0 

37 18 {[ 81’, [216, [-ll*> [ -4131 10 78 2 
38 18 {[ 8]‘, [5]*, [-1]14, [ -41’) 19 96 1 

39 18 {[ 81’, [214> 1 019, [ - 414) 8 84 3 (1) 
40 18 {[ 81’, [413, [-ll*, [ - 21? 18 78 0 

41 20 {[17]‘, [115, [-11’0, [ -314} 120 1816 1 (1) 
42 20 {[16]‘, [l]*, [-2]“, [ -41’) 99 1401 l (1) 
43 20 {[14]‘, [4]*, [-1]16, [ - 61’) 66 817 l (1) 
44 20 {[ 61’, [215. 1 Ol”, [ - 414) 0 27 2 (1) 
45 20 {[ 61’9 [314> 1 114, 1 - 21”) 6 12 1 
46 20 ([13]‘, [l]“, [-2]*, [ - 71’) 45 615 l (1) 
47 20 {[ 71’, [214, [ o1’*, [ - 5131 0 63 0 
48 20 {[ 711, VI*, [-115, r -316) 6 30 9 

49 20 {[ 711, [3]5, [-l]‘O, [ - 314) 
50 20 {r 71’, [313> [ 214, [ - 21’*) 
51 20 {[ll]‘, [1]8, [-11’0, [ -91’) 
52 20 {[ 91’, P19, [-119> [ - 91’) 
53 20 {[ 911, [3]4, [-11’4, [ - 71’) 
54 20 {[ 91’, [218, [-114, [ - 3171 
55 20 {[ 91’, [315, [-119, 1 - 3151 
56 21 {[ 6]‘, [315, [-1]13, [ - 41*} 
57 21 {[ ‘31’, [512, [ 116, [ -2l’*) 

9 33 4 (1) 
9 27 1 (1) 

15 415 l (1) 
0 252 1 (1) 

12 156 1 
15 105 26 

18 108 9 (1) 
5 20 0 

16 72 1 (1) 

SR(26,10,3,4)\6-cocl. 
Dodecahedron3,5 
Petersen@J2 

L(K4,5 ) 
d = 2CP(5) 
IG(10,9,8) 
IG(5,4,3))032 
L3(5)\5-coclique 

J(63) 

C6 052 

W3,4 ) 

1G(7,6,5) 

L(Petersen) 
A3=-2 
1’ = 1 

W3,5) 

d=4c4 
6’22K4.4 
,13=-2 
i; = 2CP(4) 

IG(8,7,6) 
1’ = 1 
Cube@ Jz 

G=3k3,3 
G = 3CP(3) 
6=2L2(3) 

K3,3 @ 4 
A3=-2 

G=2K3,3,3 
L(W)) 
BCS179 
L(K3,6)> BCS70 
IG(9,8,7) 

C6 OJ3 
Ld3)BJz 
A3=-2 

i;=5c4 
c = 2Petersen 
G=2K5,5 
Petersen@ 52 

L(IG(5,4,3)) 
G = 2Petersen 

W3,7 ) 

58 22 {[lo]‘, [l]‘O, [-11’0, [-lo]‘} 0 360 1 (1) IG(11,10,9) 4.1 
59 24 {[21]‘, [116, [-1]12, [ -315} 190 3630 l(1) G=6C4 3.2 
60 24 {[20]‘, [214, [-1]16, [ - 413} 163 2961 1 (1) G=4K3,3 3.2 

4.2 
3.3 

4.1 

3.3, 4.1 
3.3 
3.3 
3.3 

3.2 
3.2 
3.3 
3.2 
4.1 
3.3 
4.2 

3.2 
3.2 
3.2 
4.2 
3.3 
3.2 
3.3 
3.3 
3.3 
4.1 
3.1 
6 
4.2 
4.2, 6 
3.3 

3.2 
3.2 
3.2 
4.2, 6 
3.3 
3.2 
6 
4.1, 4.3, 6 

4.2, 6 
3.3 
3.2 
4.1 
4.2 
4.3, 6 

4.1, [71 
5 
3.3 
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No. v Spectrum A H # Notes 

61 24 {[19]‘, [313, [-1]‘8, [ - 5]*} 139 2395 1 (1) 
62 24 {[19]‘, [118, [-1]12, [ - 513} 135 2403 1 (1) 
63 24 {[ 5]‘, [316, [-1]14, [ - 313} 4 6 1 

64 24 tr 511, t2i8, [ oi8, [ - 31’) 0 5 0 
65 24 {[17]‘, [512, [-1]20, [ - 71’) 100 1536 1 (1) 

66 24 {[ 61’, ~414, [ oi8, [ - 21”) 8 19 0 
67 24 {[17]‘, [119, [-l]‘*, [ - 7]*} 88 1560 1 (1) 
68 24 {[ 7]‘, [316, [-1]15, [ - 5]*} 5 41 0 

69 24 {[ 711, ~31~~ [ li”, t - 31~) 4 25 5 
70 24 ([ 8]‘, [2]“, [-219, [ -413} 7 48 5 

71 24 0 81’, t21*, [ 019, [ - 416) 4 60 4 

72 24 It 81’, ~413, t 01’5, [ - 415) 8 68 5 
73 24 {[15]‘, [314, [-1]18, [ -91’) 57 981 1 (1) 

74 24 tr 81’, [4i3, [ 2i5, [ -21’~) 13 48 1 (1) 
75 24 ([ 9]‘, [l]“, [-3]*, [ - 514} 4 116 1 

76 24 a 91’, [3i7, [-li9, [ - 31’1 15 84 >5 
77 24 {[14]‘, [2f’, [-1]‘6, [-lo]‘} 37 822 1 (1) 

78 24 0 911, ~314, [ 119, [ - 31’0) 12 84 87 

79 24 {[ 911, ~612, [ 117, [ - 21’4) 22 119 1 (1) 
80 24 {[lo]‘, [213, [ 0]18, [ - 8]*} 0 285 0 
81 24 {[lo]‘, [1]16, [-214, [ - 613} 7 196 0 
82 24 {[lo]‘, [4]*, [ O]‘*, [ - 613} 10 205 0 
83 24 {[lo]‘, [2]“, [-218, [ -414} 16 141 183 
84 24 {[lo]‘, [4]‘, [ 013, [ -2]‘5} 25 145 0 
85 24 {[13]‘, [l]‘O, [-l]‘*, [-111’) 18 738 1 (1) 
86 24 {[lo]‘, [414, [ 213, [ - 2]16} 24 141 9 
87 24 {[ll]‘, [l]“, [-l]“, [-111’) 0 495 1 (1) 
88 24 ([ll]‘, [315, [-l]“, [ - 91’) 15 335 1 
89 24 {[ll]‘, [513, [-1]19, [ - 71’) 28 279 1 
90 24 {[ll]‘, [1]16, [-l]*, [ - 515} 15 255 0 
91 24 {[ll]‘, [316, [-1]14, [ - 513} 23 239 28 
92 24 {[ll]‘, [7]‘, [-1120, [ - 51’) 39 303 1 
93 24 {[ll]‘, [3]‘, [-118, [ - 318} 27 215 216 

94 25 {[lo]‘, [512, [ O]“, [ - 514} 15 180 0 

95 26 {[12]‘, [l]‘*, [-l]‘*, [-121’) 0 660 1 (1) 

96 27 {[22]‘, [1]12, [-2]12, [ - 5]*} 191 3892 1 (1) 

97 27 t[ 61’~ [316, I 01’2, [ - 319 3 12 4 (1) 
98 27 {[20]‘, [216, [-1]18, [ - 7]*} 136 2664 1 (1) 
99 27 {[ S]‘, [2]‘*, t-l]*, [ -416} 4 48 13 (3) 

100 27 {[ S]‘, [514, [-1120, [ -412} 16 72 1 
101 27 {[lo]‘, [416, [ l]*, [ - 2]18} 23 124 1 
102 27 {[lo]‘, [712, [ 118, [ - 2]16} 29 184 1 (1) 
103 27 {[12]‘, [312, [ O]**, [ - 9]*} 6 492 0 
104 27 {[12]‘, [314, [ 0]18, [ - 614} 18 348 5 (1) 
105 27 {[12]‘, [318, [ 016, [ - 3]‘*} 30 276 21 (1) 

106 28 {[25]‘, [l]‘, [-1]‘4, [ - 316} 276 6372 1 (1) 
107 28 {[ 6]‘, [514, [-l]*O, [ - 213} 12 36 0 
108 28 {[20]‘, [612, [-1]24, [ - 81’) 141 2587 1 (1) 
109 28 {[ 91’. [513, [ 216, [ - 2]18} 18 81 1 (1) 
110 28 {[lo]‘, [2]14, [-2]‘, [ - 416} 12 117 22 

G = 3K4,4 
G = 4CP(3) 
2-COVer C6 @ 52 

G=2&6 
i3=-2 
G = 3CP(4) 

L(Cube)@ J2, BCS@ 52 

G = 2K4,4,4 
L(K4,6 ) 
GQ(2,4)\3-cl, BCS1a3 

G = 2&,3,3,3 

L(K3,a) 

I’ = 1 

13=-2 
G = 2CP(6) 

L(CP(4)h BCS153-‘60 
IG(12,11,10) 
IG(6,5,4) 0 J2 
Cube@ 53 
I’ = 1 
(GQ(2,2)\3-clique)@ J2 
C6 @J4 

IG(13,12,11) 

6 = 3&(3) 
H(3,3), 3-cover C3 @ J3 
G = 3%,3,3 
GQW)\ spread (2x ) 
ff(3>3)3>GQ(3,3)2(x) 

W3,3,3 ) 
W3.9 ) 

b(3)@& 
H(3> 3)~ 

i;=7c4 
&=-2 
G = 2K’,’ 

W4,7 ) 

3.2 
3.2 
4.4, 6 
6 
3.2 
3.3 
3.2 
6 
6 
6 
6 
6 
3.2 
3.3 
3.3, 4.3 
6 
3.2 
6 
3.3 
5 
3.3 
5 
6 
3.3 
3.2 
3.3 
4.1 
4.2 
4.2 
3.3 
4.2, 6 
4.2 
6 

5 

4.1 

3.2 
4.1, 4.4, [7] 
3.2 
4.1, 4.3, [7] 

6 
3.3 
3.3 
5 
4.2, 6 
4.1 

3.2 
3.3 
3.2 
3.3 
4.3, 6 
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No. v Spectrum A E # Notes References 

111 28 {[ll]‘, [31’, 1 117, [ - 3113) 21 175 a10350 
112 28 {[12]‘, [2114, r-2T, [ - 41’) 24 270 a8472 (56) 

113 28 {[15]‘, 
114 28 {[13]‘, 
115 28 {[13]‘, 
116 28 {[13]‘, 

117 30 {[26]‘, 
118 30 {[26]‘, 
119 30 {[25]‘, 
120 30 {[24]‘, 
121 30 {[ 6]‘, 
122 30 {[23]‘, 
123 30 {[ 6]‘, 
124 30 {[23]‘, 
125 30 {[ 7]‘, 
126 30 {[ 7]‘, 
127 30 {[ 7]‘, 
128 30 {[ 711, 
129 30 {[ 8]‘, 
130 30 {[ 8]‘, 
131 30 {[ 8]‘, 
132 30 {[ 8]‘, 
133 30 {[21]‘, 
134 30 {[ 8]‘, 
135 30 {[21]‘, 
136 30 {[ 9]‘, 
137 30 {[ 911, 
138 30 {[ 9]‘, 
139 30 {[ 911, 
140 30 {[ 911, 
141 30 {[ 931, 
142 30 {[ 9]‘, 
143 30 {[ 911, 
144 30 {[lo]‘, 
145 30 {[19]‘, 
146 30 {[lo]‘, 
147 30 {[ll]‘, 
148 30 {[ll]‘, 
149 30 {[ll]]. 
150 30 {[ll]‘, 

[1]‘2, [-11’4, [-131’) 
[1]‘3 [-11’3 [-131’) 
[3]6,‘[-1]20,‘[-111’) 
[515, r-116, [ - 21’6) 

[215, [-llZO, [ - 414} 
[11’2, [-2F5, [ - 4121 
[l]‘O [-11’5 [ - 514) 
[413,’ [-1]24,’ [ - 612} 

[219, [ 119, [ -31”) 
[2]‘O [-21’8 [ - 71’) 

[318,‘[ 114, i - 21”) 
[lY5, [-2l’2> [ - 7121 
[2114, [-2Y4, [ - 71’1 
[2]‘5 [-215 [ - 319) 

[415,‘[ 01’5: [ - 319} 
1 21’2, [ 115, [-31’2) 
[ 2114, [-2114, i-81’) 
[ 21’5 r-219 [-415) 
[ 319,’ [A]‘51 [-415) 

[ 41’, [-118, [-2114) 
[ 11’2, [--1115> [-912) 
[ 415, [ 215> [-21’91 
[ 11’s [-33’0 [-91’) 
[ 3]8,‘[-1]‘9,‘[-712) 

[ 416, [-112’> [-612) 
[ 315, [ 012’, [-614) 
[ 414, [ 0120> L-51’) 
[ 3l’O, [-119> [-3l’O) 
[ 51’, [-11’9> [-315} 
[ 713. [-ll24> [-312) 
[ 414> r 315, [-2120) 
[ 21’5 [-21’0 [-514) 
[ 4]4,‘[-1]24,‘[-111’) 

[ 514, [ 215> [-21201 
[ 21’6 [-319 [-414) 
[ 515,’ [-1320: [-414) 
L 21’0, r 119, [-4l’O) 
[ 61”> [-ll~, [-3!5) 

21 1197 1 (1) 
0 858 1 (1) 

18 618 1 
48 408 0 

289 6972 1 (1) 
289 6966 1 (1) 
252 5940 1 (1) 
226 5022 1 (1) 

06 0 
196 4194 1 (1) 

5 4 0 
190 4230 1 (1) 

0 42 4 (4) 
3 12 0 
7 28 0 
2 14 0 
0 84 4 (4) 
4 36 11 
7 42 0 

14 42 0 
130 3030 1 (1) 

12 36 1 
138 2934 1 (1) 

4 1240 
11 102 0 
0 126 2 (1) 
6 102 0 

12 60 3 17 
20 92 1 
28 156 0 
16 62 1 (1) 
9 1203 

96 2082 1 (1) 
23 120 1 
16 162 0 
28 198 8 (1) 
13 174 ? 
34 222 0 
30 186 0 
37 270 1 (1) 

4 414 0 
12 318 2 (1) 
22 244 ? 
20 254 ? 
27 240 Z 68876 
46 1590 1 (1) 
28 248 > 50 
14 474 0 

151 30 {[ll]‘, [ 5]‘, [ 114, [-2]L”} 
152 30 {[Ill’, [ 812, [ 119. [-2]‘8} 
153 30 {[12]‘, [ 216, [ 0]2O, [-813) 
154 30 {[12]‘, [ 219, [ 0]15, r-61’) 
155 30 {[12]‘, [ 21’6, i-338, L-415) 
156 30 {[12]‘, [ 2]14, [ O]‘, [-41”) 
157 30 {[12]‘, [ 31’0, [ 015, [-31’4) 
158 30 {[17]‘, [ 2]*, [-l]“, [-13]‘} 
159 30 {[12]‘, [ 415, [ 11’0, [-31’4) 
160 30 {[13]‘, [ 1120, [-115, [-714} 

6 
T(l)\spread 4.3, 6 
SR(35,16,6,8)\7-cocl. 

G = 2CP (7) 3.2 
IG(14,13,12) 4.1 
IG(7, 6, 5)o.h 4.2 
A3=-2 3.3 

G=5K3,3 3.2 
G = 3Petersen 3.2 
G = 5CP(3) 3.2 
G = -3K5,5 3.2 

5 
c = 2GQ(2,2) 3.2 
As=-2 3.3 
G = 3Petersen 3.2 
IG( 15,7,3) 4.1, r71 

5 
6 
5 

IG(15,8,4) 4.1, [71 
GQ(3,3)\ 1 0-coclique 4.3, 6 

13=-Z 
c = 3CP(5) 

L(IG(6,5,4)) 
?? = 2GQ(2,2) 

Petersen @ J3 

L(Petersen) @I .I2 

L(K5,6) 

G=2K5,5,5 
L(Petersen) 

Petersen 0 J3 

A3=-2 

L(K3,10) 

GQG2)@J2 

L3(6)\6-coclique 

G=2K3,3,3,3,3 

I’ = 1 

6 
3.3 
3.2 
3.3 
3.2 
5 
5 
4.2, 6 
6 
6 
4.2, 6 
5 
3.3 
6 
3.2 
3.3 
6 
4.2, 6 

6 
3.3 
3.3 
6 
4.2, 6 

4.3, 6 
3.2 
6 
3.3 
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No. v Spectrum A E # Notes References 

161 30 {[131’, [ 2115, [-219, [-515) 27 372 ? 
162 30 W31’, [ 319> [-1l15> [-V) 30 378 2 1487 (1) GQ(2,2)@J2 4.2, 6 
163 30 {1131’, [ 31”, [-7-P. [-3l’O) 36 344 ? 
164 30 W31’, [ 319. [ 115> t-3l’5) 34 346 > 82 L3(6)\6-clique 4.3, 6 
165 30 U41’, [ 1114, [-11’4, I-141’1 0 1092 1 (1) IG(l5,14,13) 4.1 
166 30 {U41’, [ 219, [-11’9. L-131’) IO 930 0 3.1 
167 30 U141’, [ 514> [-11Z4, [-lOI’ 37 660 1 IG(5,4,3) 0 53 4.2 
168 30 {t141’, [ 416, [-llzo. [-613} 41 542 ? 
169 30 {P41’, [ 91*, [-1l26, L-61’) 66 692 1 C, @J5 4.2 
170 30 {[141’, [ 2115, [-114, [-41’0) 37 498 > 24931 SR(35,16,6,8)\5-cl. 4.3, 6 

No. Y Hexadecimal form/orbits IAutl 

37 18 

39 18 

44 20 

48 20 

54 20 

69 24 

70 24 

71 24 

72 24 

76 24 

78 24 

83 24 

91 24 

93 24 

432 

512 

3072 

20 

1024 

40 

1152 

384 

1152 
144 

4096 

144 
48 

1152 
1152 
1152 

48 

192 
384 

48 

196608 
384 

384 
192 

48 
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No. Y Hexadecimal form/orbits IAutl 

100 27 

104 27 

110 28 

111 28 

112 28 

130 30 

138 30 

144 30 

148 30 

154 30 

157 30 

159 30 

162 30 

164 30 

170 30 

3981312 

32 

60 

720 

60 

60 

65536 
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A.2. Two integral eigenvalues 

No. v Spectrum A P # Notes References 

1 10 
2 10 

3 12 
4 12 

5 14 
6 14 
7 14 

8 15 
9 15 

10 15 
11 15 
12 15 

{[ 7]‘,[-3]‘,[ 0.618]4,[-1.61814) 
{[ 4]‘, [ 015, [ 1.23612,[-3.23612} 

{[ 5]‘, [-l]‘, [ 2.23613, [-2.23613} 
{[ 5]‘, [ 113. [ 0.73214, [-2.73214} 

{[ 3]‘,[-3]‘,[ 1.414]6,[-1.41416) 
{[ 4]‘,[-4]‘,[ 1.414]6,[-1.41416) 
{[ 6]‘,[ O]‘,[ 1.646]3,[-3.646]3} 

{[12]‘,[-3]*,[ 0.618]6,[-1.618]6} 
{[ 4]‘,[ 0]6,[ 1.791]4,[-2.79114) 
{[ 6]‘,[-1]‘“,[ 4.162]2,[-2.162]2} 
{[ 6]‘, [-116, [ 2.44914, [-2.449]4} 
{[ 6]‘, [ O]“,[ 1.854]*, [-4.S5412} 

13 16 {[ 7]‘,[-l]“,[ 4.46412,[-2.464]*} 

14 18 {[ 5]‘, [ 3]‘,[ 1.30318, [-2.303]*} 

15 20 {[17]‘,[-3]3,[ 0.618]*,[-1.618]*} 
16 20 {[ 5]‘, [-115, [ 2.236]‘, [-2.2361’) 
17 20 {[ 73’,[-1]‘5,[ 5.873]2,[-1.87312) 
18 20 {[ 8]‘,[-219,[ 3.23615,[-1.23615} 
19 20 {[ S]‘, [ 0]15, [ 2.47212, [-6.472]*} 
20 20 {[ 8]‘,[ O]“,[ 2.31714,[-4.31714} 

21 21 {[ 4]‘, [-218, [ 2.41416, [-0.41416} 
22 21 {[ 6]‘, [-116,[ 2.449]‘, [-2.4491’) 
23 21 {[ 6]‘, [ O]*, [ 2.19316,[-3.19316} 
24 21 {[ 8]‘,[-1]‘4,[ 4.74213,[-2.74213} 
25 21 {[ 8]‘, [-l]*,[ 2.828]6,[-2.828]6} 
26 21 {[ 8]‘, [ 1]12, [-0.20914, [-4.79114} 
27 21 {[ 8]‘,[ 116.[ 1.449]‘,[-3.4491’) 
28 21 {[ S]‘, [ 2]*, [-0.586]6,[-3.414]6} 
29 22 {[ 5]‘,[-5]‘,[ 1.732]10,[-1.732]10} 
30 22 {[ 5]‘,[ O]“,[ 2.37215,[-3.37215} 
31 22 {[ 6]‘,[-6]‘,[ 1.732]‘“,[-1.732]‘o} 
32 22 {[lO]‘,[ O]“,[ 2.31715,[-4.31715} 

33 24 {[ 7]‘,[-1]‘5, [ 4.46414, [-2.46414} 
34 24 {[ 7]‘, [-l]‘, [ 2.646]8,[-2.646]8} 
35 24 {[ 8]‘, [ 0]15, [ 2.87314, [-4.87314} 
36 24 {[ 9]‘,[ 1]‘5,[-0.551]4,[-5.449]4} 
37 24 {[ 9]‘, [ l]‘, [ 1.646]*,[-3.646]*} 
38 24 {[ll]‘,[-l]“,[ 5.472]3,[-3.472]3} 

39 25 {[22]‘, [-314, [ 0.618]10, [-1.618]10} 
40 25 {[lo]‘, [ 012’, [ 3.09012, [-8.090]*} 

15 80 1 (1) 
0 10 1 (I) 

5 10 1 (1) 
2 13 0 

0 0 1 (1) 
0 6 1 (1) 
3 33 0 

55 560 1 (I) 
0 4 0 

11 32 0 
7 20 0 
0 48 1 (1) 

15 57 0 

2 4 1 

120 1815 1 (1) 
3 21 

18 75 0 
15 60 0 
0 132 1 (1) 
6 80 0 

2 0 1 (1) 
5 10 0 
2 16 1 

18 78 0 
12 56 6 (1) 
2 88 0 
6 62 0 
8 60 28 (1) 
0 10 1 (I) 
0 10 0 
0 30 1 (I) 

15 175 0 

Klein 
13 41 0 
7 21 10 (1) 
3 78 0 
2 134 0 
8 91 1 (1) 

a’=1 
Klein’,3 

6 
4.1, [71 
6 
3.3 
4.1, 6 

35 255 1 Icosahedron @ J2 4.2, 6 

210 4220 l(1) G’5C5 3.2 
0 280 1 (1) Cs@Js 4.2 

G’2C5 3.2 
C5 @J2 4.2 

Icosahedron 4.1, [61 
1’ = 1 3.3 

IG(7,3,1) 4.1 
IG(7,4,2) 4.1 

6 

G=3c5 3.2 

5 
6 

CsBJ3 4.2 

ta2(3) 4.2 

6=4c5 3.2 
2-cover C5 0 J2 4.4, 6 
A3 1 -2 
A3=-2 
C5@J4 

3.3 
3.3 
4.2 
6 

L(IGt7,3,1)) 

L(IG(7,3,1))3 
I’ = 1 

L(IG(~, 3,l ))2 
IG(11,5,2) 

IG(11,6,3) 

3.3, 4.1 
6 
6 
6 
4.1, 6 
3.3 
5 
4.1, 6 
4.1 
6 
4.1 
6 

41 26 {[ 4]‘,[-4]‘,[ 1.732]‘2,[-1.732]12} 0 0 1 (1) IG(13,4,1) 4.1 
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No. v Spectrum A 5 # Notes References 

42 26 {[19]‘,[-7]‘,[ 1.303]‘2,[-2.303]‘2} 123 2208 l (1) G=22p(13) 3.2 
43 26 {[ 7]‘,[ 5]‘,[ l.562]‘2,[-2.562]‘2} 6 24 1 W(l3) 4.2 

44 26 {[ 9]l,[-9]‘,[ 1.732]‘*,[-1.732]‘*} 0 180 1 (1) lG(13,9,6) 4.1 

45 26 {[12]‘,[ 0]13,[ 2.606]6,[-4.606]6} 24 318 >85 (1) P(l3)@J2 4.2, 6, 171 
46 27 {[ S]‘,[-lJzo,[ 6.243]‘,[-2.24313} 22 102 0 5 
47 27 {[ 8]‘,[-1JL4,[ 3.85416,[-2.85416} 13 48 1 3-cover C3 @ J3 4.4, 6 

48 28 {[ 6]1,[-2]15,[ 3.41416,[ 0.58616} 6 9 1 

49 28 
50 28 
51 28 
52 28 
53 28 
54 28 

55 30 
56 30 
57 30 
58 30 
59 30 
60 30 
61 30 
62 30 
63 30 
64 30 
65 30 
66 30 
67 30 
68 30 
69 30 
70 30 

{[ 7]‘, [-117, [ 2.646]‘“,[-2.646]‘o} 
{[ 9]‘, [-112’, [ 6.58313, [-2.58313} 
{[ 93’ [ O]*’ [ 3.62313 [-66231’) 
{[12]‘:[ 012’:[ 3.292]3:[-7:292]3} 
{[12]‘, [ O]‘5, [ 2.87316, [-4.87316} 
{[13]‘, [-1]13, [ 3.60617, [-3.60617} 

{[27]‘, [-315, [ 0.618]‘*,[-1.618]‘*} 
{[ 7]‘, [-319, [ 2.732]l”, [-0.732]‘“} 
{[ 8]‘, [ O]*‘, [ 3.58314, [-5.58314} 
{[ 91’ [ 31’ [ 1236]‘* [-3.236]‘*} 
{[lo]‘: [ o,‘G, [ i.35915: [-5.35915) 
{[ll]‘,[-l]“,[ 3.317]9,[-3.31719) 
{[ll]‘, [ 1]19, [ 0.16215, [-6.1621’) 
([1 l]‘, [ 515, [-0.382]‘*, [-2.618]‘2} 
{[12]‘,[ O]=, [ 3.708]*, [-9.7081”) 
{[13]‘, [-2]19, [ 5.37215, [-0.37215} 
{[13]‘,[-1]25, [ 9.325]2,[-3.325]2} 
{[13]‘, [-l]*‘, [ 5.89914, [-3.89914} 
{[13]‘, [ 319, [-0.268]‘“, [-3.7321”) 
{[14]‘,[-2]*‘,[ 5.791]4,[-1.209]4} 
{[14]‘, [ O]“, [ 2.87317, [-4.8731’) 
{[14]‘, [ 21’1, [ 0.44919, [-4.44939) 

6 15 0 
27 144 0 

0 153 0 
12 390 0 
21 300 ? 
39 390 a515 (1) 

325 8150 1 (1) 
5 16 ? 
0 84 0 
8 62 ? 
7 151 0 

22 165 ? 
3 249 0 

29 190 ? 
0 510 1 (1) 

47 388 0 
62 570 0 
46 410 ? 
32 358 ? 
56 532 0 
35 525 ? 
34 513 ? 

W%7,4,2)), 
Coxeterd 

Taylor 4.1, [71 

6=6C5 3.2 

A,=1 

C5 @‘J6 
13=-2 

13=-2 

3.3, 4.1 

5 

6 

3.3 

4.2 
3.3 
5 

3.3 

No. v Hexadecimal form/orbits IAutl 

23 21 FC0008780001E04C880066180B130A8051224912B06104B4590A4 42 
25 21 FFOOOF1C01COE0l20E0849824AE43?t233C1CB5269lEDl8 21 

FFOOOE1E0066602A8Cl5430C5l489303902E2A542CD47B3B65950 336 
28 21 FFOOOE1E0060780A238l9A4A27154B358934382E30E88CD2263A8 42 

FFOOOClF00843C21199l9l5498B62570COF4446A4A324B524C93C 336 
45 26 FFF0007EOF806390F049A239O9C1E281FB867AO14DF8B98CD630FAB 

F64B6EA25304E6C5D2BC52ED908 78 
FFF000780FEOOE1C3C3870F1326673266607F00730F3987B87E7OFC730F 
9860003CCF367E78C3 lFEO0 638976 
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A.3. One integral eigenvalue 

No. v Spectrum A E # Notes References 

1 7 {[2]‘,[l.247]2,[-0.445]2,[-1.802]2} 0 0 1 (1) C7 3.3, 4.1.1 
2 13 {[4]‘, [l.37714, [ 0.274]4,[-2.651]4} 0 4 1 (1) Cycl(l3) 4.1.1 
3 19 {[6]‘,[2.507]6, [-l.222]6,[-2.285]6} 6 12 1 (1) Cycl( 19) 4.1.1 
4 28 {[9]1,[2.604]9,[-0.110]9,[-3.494]9} 9 72 22 (2) Mathon, Hollmann 4.1.1 

Acknowledgements 

We wish to thank Chris Godsil for checking the transitive graphs computed by 
McKay and Royle (cf. [lo]) for the ones with four eigenvalues. At an earlier stage 
of our search he indeed found some which we didn’t know of. Later we found these 
graphs too using switching. 

References 

[1] A.E. Brouwer, A.M. Cohen, A. Neumaier, Distance-Regular Graphs, Springer, Heidelberg, 1989. 
[2] F.C. Bussemaker, D.M. Cvetkovic, J.J. Seidel, Graphs related to exceptional root systems, in: A. Hajnal, 

V. Sos (Eds.), Combinatorics, North-Holland, Amsterdam, 1978, pp. 185-191; T.H.-Report 76-WSK-05, 
Eindhoven University of Technology, 1976. 

[3] D.M. Cvetkovic, M. Doob, H. Sachs, Spectra of Graphs, V.E.B. Deutscher Verlag der Wissenschaften, 
Berlin, 1979. 

[4] E.R. van Dam, Regular graphs with four eigenvalues, Linear Algebra Appl. 226-228 (1995) 139-162. 
[S] E.R. van Dam, Three-class association schemes, J. Alg. Combin., to appear. 
[6] CD. Godsil, B.D. McKay, Feasibility conditions for the existence of walk-regular graphs, Linear Algebra 

Appl. 30 (1980) 51-61. 
[7] W.H. Haemers, E. Spence, Graphs cospectral with distance-regular graphs, Linear Multilin. Algebra 39 

(1995) 91-107. 
[8] H. Hollmarm, Pseudocyclic 3-class association schemes on 28 points, Discrete Math. 52 (1984) 

209-224. 
[9] R. Mathon, 3-class association schemes, in: Proc. Conf. Alg. Aspects Comb., Congressus Numerantium 

XIII, University of Toronto, 1975, pp. 123-155. 
[lo] B.D. McKay, G.F. Royle, The transitive graphs with at most 26 vertices, Ars Combin. 30 (1990) 

161-176. 
[11] J.J. Seidel, A survey of two-graphs, in: Coll. Intern. Teorie Combinatorie, Accademia Nazionale dei 

Lincei, Roma, 1976, pp. 481-511. 
[12] E. Spence, (40, 13, 4)-Designs derived from strongly regular graphs, in: J.W.P. Hirschfeld, D.R. Hughes, 

J.A. Thas (Eds.), Advances in Finite Geometries and Designs, Proc. 3rd Isle of Thorns Conf., 1990, 
Oxford Science, 1991, pp. 359-368. 

[13] E. Spence, Regular two-graphs on 36 vertices, Linear Algebra Appl. 226-228 (1995) 459-497. 


