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Abstract. We extend the consistency principle for strategic games (Peleg and
Tys (1996)) to apply to solutions which assign to each game a collection of
product sets ol strategies. Such solutions turn out to satisfy desirable proper-
ties that solutions assigning to each game a collection of strategy profiles lack.
Our findings lead us to propose a new direction for normative game theory.
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I Introduction

A series of recent papers characterize solutions for strategic games using
the axiom of “*consistency ', and some complementary axioms. This literature
focuses on solutions that are point-valued in the sense that they assign to each
game a collection of strategy profiles. In this paper we extend these 1deas to
apply to solutions that are ser-valued 1in the sense that they assign a collection
of product sets of strategies to each game. Our findings lead us to propose a
new direction for normative game theory. The motivation of our study 1s as
follows:

According to the classical view, game theory 1s a normative science with
the aim to offer ““self-enforcing recommendations™ to rational players (see e.g.
Kohlberg and Mertens (1986, footnote 3) or van Damme (1987, pp 1-3)).
Most game theoretic solutions are pomnt-valued. If the solution 1s a good one,
cach profile selected should have the property that, once recommended to the
players, none of them should have an incentive to deviate.

However, there are several reasons why one might prefer to study set-valued
solutions, where each player 1s recommended a ser of strategies. First, as argued

' The authors wish to thank Geir Asheim, Jean-Jacques Herings, and Sjaak Hurkens for helpful
comments.
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by Basu and Weibull (1991), there 1s no obvious reason why recommendations
should take the form of a single strategy rather than a set of strategies. Second.
if one does not consider mixed strategies as reasonable objects of choice (see
e.g. Ariel Rubinstein’s arguments in Osborne and Rubinstein (1994), Section
3.2.1) then in many games no equilibria exist while appropriate set-valued so-
lutions might have no such problems. Third, some notions that arise in decision-
theoretic approaches to analyzing games, like the product set of rationalizable
strategies (Bernheim (1984), Pearce (1984)), fit quite nicely into the frame-
work of set-valued solutions. Fourth, in many games some player will have no
“strict”” incentive to comply with a recommended profile because he has mul-
tiple optimal choices given that all others comply. If all such strategies are
made part of the recommendation, this will come as a strategy set. Similar
concerns presumably motivate Nash’s (1951) notion of “‘strict solvability™.
and certainly motivate the work of Basu and Weibull (1991) and Hurkens
(1995, see especially pp 13-14).°

Peleg and Tis (1996) introduce the axiom of “consistency  for point-valued
solutions and show that 1t 1s a useful axiom for characterizing and under-
standing these solutions.’ Intuitively, a solution is consistent if any profile
selected by this solution 1s also selected in any “‘reduced game’™', in which only a
subset of the players i1s active as before while the remaining players make
choices 1n accordance with the profile under consideration and then “‘leave
the game’ . Given the classical view of game theory, consistency has a natural
interpretation: If a subset of players commit to following an nitially self-
enforcing recommendation, then the recommendation 1s still self-enforcing for
the remaining players. Arguably, this 1s a “‘desirable’” feature of a recommen-
dation.

A recent literature in non-cooperative game theory has emerged in which
the consistency axiom is in focus.” This literature focuses exclusively on point-
valued solutions. We show that the consistency principle and the notion of
a reduced game can be readily extended to set-valued solutions. However, a
“leaving player” of a reduced game 1s not necessarily restricted to make one
particular choice, so such a game has as many players as 1ts parent game. This
1S 1n contrast to the set-up of Peleg and Tis (1996), where reductions always
decrease the number of players. In order to allow for a comparison of results 1t
1s necessary to somewhat modify the traditional theory. A game, reduced with
respect to some particular profile, 1s viewed as a game with the same number

® We note that in the early days of game theory set-valued solutions were in focus. In a two-person
zero-sum game, the set of strategy profiles, in which each player uses a maxminimizer strategy, has a
product structure, and this observation 1s central to von Neumann's (1928) claim that he can solve
zero-sum games. Nash's (1951) various notions of solutions of (solvable) games are product sets of
strategies (he never promotes equilibrium points as solutions!). In contemporary game theory set-
valued solutions are in focus in Basu and Weibull (1991), Hurkens (1995, 1996), and also in Kohl-
berg and Mertens (1986). However, the *‘stable sets” of Kohlberg and Mertens need not have a
product structure, and so fit less conveniently into the recommendation setting we have described.
" Confer also Aumann (1987, p 479) who anticipates these results and Salonen (1992) who con-
ducts an analysis of the Nash equilibrium concept using an axiom closely related to consistency.
® See Peleg and Sudholter (1994), Patrone, Pieri, Tijs, and Torre (1995), van Heumen, Peleg, Tijs,
and Borm (1996), Norde, Potters, Reijnierse, and Vermeulen (1996), Peleg, Potters, and Tijs (1996),
Ray (1996) and Giith (1998). We do not include here references to the large literature in cooperative
game theory where a notion of consistency plays an important role. See Thomson (1996) for a
general survey (which also covers point-valued solutions for non-cooperative games).
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of players as the original game, but with a subset of players restricted to
choose from singleton strategy sets containing only the strategy prescribed by
the profile.

A central axiom, complementary to consistency, in Peleg and Tijs (1996) is
that of ““one-person rationality”, which imposes a rationality requirement on
decision making in games with only one player. This axiom has cutting power
in the theory of Peleg and Tijs because reduced games have fewer players than
parent games. With our new view of reductions this axiom no longer works
1owever. We replace it by another axiom, “‘rationality”, which imposes a
-ationality requirement on decision making in any game. Then, the essence of
the analysis of Peleg and Tys (1996) can be recaptured in the new framework
We propose.

We then turn to set-valued solutions, focusing on the class of finite games.
We generalize several axioms used in the traditional approach, present a few
set-valued solutions, and investigate whether these satisfy the new axioms. We
ask what set-valued solutions satisfy those axioms that generalize the axioms
that can characterize the Nash equilibrium concept in the traditional approach.
The answer 1s somewhat surprising: The collection of singleton sets, each 1n-
volving a Nash equilibrium, 1s not uniquely implied. Other solutions too qual-
1y, for example the collection of product strategy sets with the “*best response
property  1n the sense of Pearce (1984), which turns out to be the largest solu-
tion satisfying consistency and rationality. We henceforth refer to this solution
as BRP. This solution has the virtue of being non-empty for the class of finite
games, something ““the Nash singletons™ solution does not achieve.

For the traditional approach, Norde, Potters, Reijnierse, and Vermeulen
(1996) have shown that if one insists that a solution selects a non-empty col-
lection of profiles for each game that possesses a Nash equilibrium, then one
cannot move towards refinements of Nash equilibria without producing in-
consistent solutions. As consistency 1s often viewed as a desirable property (see
our remark above and also Aumann (1987, p 478-9) for a general appraisal).
this result has been taken as a set-back for the theories of equilibrium refine-
ments and equilibrium selection. For example, Eric van Damme and Robert
Aumann express some concern in the interview Aumann (1996, pp 28-30) and
Giuth (1998) attempts to “"avoid the impasse”™ by modifying the consistency
requirement. We argue that, given that consistency i1s viewed as a desirable
condition, the findings reported in the previous paragraph suggest a way out
of this dilemma. Instead of refining the point-valued Nash equilibrium solu-
tion, one should focus on the set-valued solution BRP and try to refine that
solution while retaining consistency and other properties deemed desirable.

In order to exemplify this line of research we use Basu and Weibull's (1991)
notion of a set “‘closed under rational behavior” to 1solate refinements of BRP
which are set-valued analogues of the strict equilibrium solution (Harsanyi
(1973)), and prove that the desirable properties satisfied by BRP still hold. As
these refinements concern product sets of strategies rather than strategy pro-
files, they look quite different from standard refinements. They need not always
imply Nash behavior, but in some cases they have considerably more cutting
power than standard refinements. We 1illustrate this using an example due to

Hurkens (1996).

Notation. Throughout this paper strict inclusion 1s denoted by < and weak
inclusion by <.
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2 Point-valued solutions

The main aim of this section 1s to modify the axiom of “consistency” for
point-valued solutions, introduced by Peleg and Tis (1996), such that 1t may
be viewed as a special case of the consistency principle for set-valued solu-
tions, which will be defined in Section 3. Moreover we will rephrase some of
the traditional results in this new setting.

Throughout this paper we focus on finite strategic games. Such a game 1s a
tuple G = {N, A,u), where N is the finite player set, A = I1;c y A; 1s the product
set of the finite strategy sets 4; (i € N), and u = (u;),_ 15 the vector of payoft
functions u; : A — IR (i e N). If |4;| = 1| then i 1s called a dummy player of the
game G. Let /" be the collection of all finite strategic games. A point-valued
solution on I' 1s a map ¢ which assigns to every game G = (N, A, uy el a
collection of strategy profiles in 4. An example of a point-valued solution 1s
the solution NE which assigns to every game G € I the set of Nash equilibria

of (:

NE(G) = {a : a 1s a Nash equilibrium of G}.

The central axiom in the traditional approach to characterization of point-
valued solutions 1s that of consistency. The version of this axiom we use is based
on the following notion of a reduced game.

For a finite game G = (N, A,u), for a coalition § < N, and for a strategy
profile « = (a;);_y € A the reduced game of G with respect to S and a 1s the
game G\ = (N, ;esA; X Il;c y\siai},u), where u = (u;);_ 1S the vector
of restrictions of the payoff functions w; (ie N) to IljcsA; x IT;cnsiai}-
Note that the reduced game G> 1“1 belongs to /". G° %1 has as many players
as the game G, because the players in N\ § are stull present as dummy players,
whereas in the traditional definition of the notion of reduced game these players
leave the game. It is allowed that S = . in which case the game G>1“/ has
only dummy players.

Definition 2.1. A point-valued solution ¢ on 7" satisfies consistency (CONS)
if for every G = (N, A,ude ', S c N, a e §(G) we have a € ¢p(G> 191).

A second common axiom in the characterizations in the traditional hiterature
deals with optimization in one-person games. In Peleg and Tys (1996) and
Peleg, Potters, and Tis (1996) the axiom of one-person-rationality (OPR) 1s
used, requiring the selection of all maximizers in one-person games, whereas
in Norde et al. (1996) the weaker axiom of wutility maximization (UM ) 1s used,
which requires the selection of a subset of the set of all maximizers in one-
person games. The axioms (OPR) and (UM ) work well in these cases, because
reduction of games involves a reduction of the number of players. How-
ever, 1n our present definition of the notion of reduced game, the number of
players 1s not reduced and (OPR) or (UM) can not be used. As a substitute
we propose the axiom of rationality. In the definition of this axiom below the
set A(1;c iy Aj) 18 the collection of probability distributions (behefs) over
IT;cn\iyAj and we write w;(a;, p_;) for the expected utility for player 7 1f he
plays strategy a; and the other players play a strategy profile according to the
probability distribution p_; € A1 ;o ny (11 A)).
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Definition 2.2. A point-valued solution ¢ on I satishies rationality (RAT) 1if
for every G = (N, A,u) € I', for every b = (b;);. v € #(G) and for every i e N
there exists an p_; € A(I1;c y\(jy A;) such that b; € argmax,, . , ui(a;, p1_;).

The following proposition shows that point-valued solutions satisfying
(CONS) and (RAT) are refinements of the Nash equilibrium concept (cf.

Proposition 2.8 in Peleg and Tis (1996)).

Proposition 2.1. Let ¢ be a point-valued solution on I satisfying (CONS) and
(RAT). Then ¢(G) < NE(G) for every G e I'.

Proof. Let G = (N, A,up eI, a= (aj),.y € #(G), and i € N. By (CONS) we
have a € ¢(G'"1“1) and by (RAT) we get that a; is a best response to (), ;.
Hence a €e NE(G). N

Proposition 2.1 1s still true if we replace the axiom of rationality by a weaker

axiom, which requires that 1f a profile 1s selected in some game with one non-

dummy player, then that player must choose a utility maximizing strategy.
The following axioms are important in the traditional approach:

Definition 2.3. A point-valued solution ¢ on /" satishes

1) non-emptiness (NEM) if for every G € I" we have ¢(G) # J:
1) restricted non-emptiness (-NEM) if for every G € I' with NE(G) # (& we
have ¢(G) # .

In Norde et al. (1996) the Nash equilibrium concept on the class of mixed
extensions of all finite games 1s characterized by utility maximization, consis-
tency, and non-emptiness. For finite games this characterization was already
oiven in Peleg, Potters, and Tijs (1996). Since the Nash equilibrium set may be
empty in these games the axiom of non-emptiness had to be replaced by re-
stricted non-emptiness. Both proofs in Norde et al. (1996) and Peleg, Potters,
and Tis (1996) use a construction which associates with every game G and
every Nash equilibrium x of G an ancestor game H with a unique Nash equi-
librium y such that G may be viewed as a reduced game of H. Since a point-
valued solution, satisfying utility maximization, consistency, and (restricted)
non-emptiness should select y in A, one infers, by consistency, that it allows
x in G. In our present setting this argument breaks down because the an-
cestor game H has more players than G and reduced games do not have fewer
players. However, we can overcome this problem by adding the dummy out

property.

Definition 2.4. A point-valued solution ¢ on [ satisties the dummy out prop-
erty (DOP) if for every G = (N, A,u) and for every i € N with |4;| =1 and
G'=<(N\{i}, Hjen\(iyAj, (U) ;e yy iy 2 € I we have ¢9(G) = A; X #(G'). Here the

payoff functions u; (j € N\{i}) are defined by w;(a_;) = u;j(a_;,a;) where a; 1s
the unique element of A;.

Proposition 2.2. Let ¢ be a point-valued solution on I'. Then ¢ satisfies (CONS ),
(RAT), (DOP), and (r-NEM ) if and only if ¢ = NE.
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Proof. One easily verifies that NE satisfies (CONS), (RAT), (DOP), and
(r-NEM ). In order to prove the only-if-part, suppose that ¢ satisties (CONS),
(RAT), (DOP), and (r--NEM). We have to show that ¢(G) = NE(G) for every
G € I'. By Proposition 2.1 we get that ¢(G) < NE(G) forevery G € I'. For the
proof of the converse inclusion, let G = (N.A,u> € I' and x e NE(G). The
ancestor game H = (N', B,v) € I' 1s constructed in the same way as in the
proof of Theorem 3 in Peleg, Potters, and Tis (1996), 1.e N' = N u {0}, B, =
A; for every ie N, By = {«,f}, and the payoft function for player i e N is
defined by

vi(a, a) = u;(a)
vi(f,a) = —1 if a; # Xx;
;(/JJ fj) — 1f adi = X;

for every a € A and the payofl function for player 0 1s defined by

|
19

vo (o, a) Ha =%

vokiolsa)i==il31L @t
l'{](/j. (I) =/()

for every a € A. One easily verifies that («, x) 1s the unique Nash equilibrium
of H. Since ¢(H) < NE(H) we infer by (r-NEM) that («,x) e ¢(H). By
(CONS) we get (a,x) e p(HY 1*»¥1) Since player 0 is a dummy player in
HN =31 we get, by (DOP), x € ¢(G), which finishes the proof. =

In Peleg and Tys (1996) the Nash equilibrium concept 1s characterized by one-
person rationality, consistency, and converse mnsiqlemy This result could be
“duplicated” 1n the style of Proposition 2.2 by adjusting the definition of
(RAT) (such that 1t selects all maximizers in games with at most one non-
dummy player) and by giving a definition of converse consistency, which takes
into account the new notion of a reduced game. However, we will not focus
on converse consistency in this paper.

3 Set-valued solutions

We now turn our attention to set-valued solutions and generalize the axioms,
mentioned in Section 2, such that they apply to set-valued solutions. We then
present some examples and results.

A set-valued solution on I" 1s a map y which assigns to every game G =
(N,A,uy e I'a collecion y(G) of product sets, which are non-empty subsets
of A. With every point-valued bO]Ll'[lOl] ¢ we can dbelelL the set-valued solu-
tion ¢ which assigns to every G € I the collection ¢(G) = = {{x} : x e ¢(G)}. In
this way the set-valued solutions can be viewed as a gencmllzdtlon of the point-
valued solutions.

In order to give the definition of the consistency axiom for set-valued solu-
tions, we first have to define the notion of a reduced game with respect to some
product set and some coalition.

Fora G = (N,A,u) e I', for a coalition S = N, and for a product set B =
IlicnB;i < A, B # () the reduced game of G with respect to S and B 1s the game
G> P =(N,H;csA; x ;e\ sB;, ), where &t = (#;);. v is the vector of restric-
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tions of the payofl functions w; (i € N) to IljcsA; x Il;. y\sB;. Note that this
game belongs to /', that it has |N| players, regardless of whether any B; is a
singleton or not, and that, if B is a singleton set, this definition coincides with
the definition of a reduced game 1n Section 2.

The definitions of consistency, rationality, non-emptiness, restricted non-
emptiness, and the dummy out property for set-valued solutions are straight-
forward.

Definition 3.1. A set-valued solution iy on /" satisfies

(1) cmz.v{gtgnc‘_r (CONS) 1if for every Gel', Sc N, Be y(G) we have Be
WG );

(1) rationality (RAT) 1if for every G={(N,A,u>el’, Bey(G), ie N,
and b;e€ B; there exists a u_;ed(Iljcny1A4;) such that b;e
argmax, . 4 ui(a;, p_;);

(111) non-emptiness (NEM) 1f for every G € I" we have y(G) # O;

(1v) restricted non-emptiness (-NEM ) if for every G € I with NE(G) # & we
have (G) # ;

(v) the dummy out property (DOP) if for every G = (N, A,u> e I" and for
every ie N with [4;|=1 and G" = (N \{i}, I1;e n\(iy 4), (z}j)fw,wpe [ we

have (G) = A; x y(G"). Here, again, the payoff functions u; (j € N\{i})
are defined by w;(a_;) = u;(a_;,a;) where a; 1s the unique element of A4;.

We now give several examples of set-valued solutions. The two first ones are
included for illustrative purposes and the others turn out to be important for
the results in this section.

Example 3.1. Examples of set-valued solutions are

(1) the solution EMP on /" which assigns to every G € I' the empty collec-
tion:

(11) the solution ALL on /" which assigns to every G = (N, A, u) € I the col-
lection of all non-empty product sets B < A:

(111) the solution NE on 7', associated with the point-valued solution NE,
which assigns to every G € I the collection of singleton sets that contain
a Nash equilibrium;

(1v) the solution BRP on 7', which assigns to every G = (N, A,u) € I' the
collection of product sets, having the best response property, 1.e. the
collection of product sets B = Il,cyB; such that for every ie N
and for every b;e B; there exists a u_; € A(Iljen\(nyBj) with b; e
argmax,, . 4 ui(ai, pt_;):

(v) the solution BRP™ on 7', which assigns to every G € I" the collection of
maximal product sets, having the best response property:

(vi) the solution BRP™ on /7, which assigns to every G € I the collection of
minimal product sets, having the best response property.

The first three examples are self-explanatory. BRP is a coarsening of NE. If
x 1s a Nash equilibrium of a game G then {x} has the best response property.
However, elements of BRP((G) are not required to be singletons, so BRP(G) 1s
a superset of NE(G) for any game G. BRP™ is a refinement of BRP. For every
G € I', BRPT(G) consists of all product sets B with the best response prop-
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erty, such that there is no product set B > B having this property. In fact, 1t
follows from the work of Bernheim (1984) and Pearce (1984) that this last
collection contains only one set, namely the product set of rationalizable strat-
egies, where a strategy a; of player i i1s rationalizable if there exists a B =
I1;. v B; with the best response property such that a; € B;.” For every G e I,
BRP (G) consists of all product sets B with the best response property, such
that there is no product set B’ = B having this property.

In Proposition 2.1 we showed that every point-valued solution, satisfying
(CONS) and (RAT), is a refinement of the Nash equilibrium concept. In the
following proposition we show that set-valued solutions, satisfying (CONS)
and (RAT), are refinements of BRP.

Proposition 3.1. Let  be a set-valued solution on I satisfying (CONS) and
(RAT). Then y(G) < BRP(G) for every G e I.

Proof. Let G=<{(N,A,uye . If [N|=1 then y(G) < BRP(G) follows by
(RAT). Suppose now that G has at least two players. Let B = I1;-yBi € Y(G)
and i € N. By (CONS) we have B e y(G'''8) and hence, by (RAT), we infer
that every b; € B; 1s a best response (of all strategies in 4;) to some behlet p_; €
ﬁ(ﬂ_;e*\.’*\{,‘}B;). So, B e BRP(G) [

The following proposition shows which solutions in Example 3.1 satisty
(CONS) and (RAT).

Proposition 3.2. The solutions EMP, NE, BRP, and BRP* satisfy (CONS)
and (RAT).

Proof. One easily verifies that EMP satisfies (CONS) and (RAT). In order to
prove that NE and BRP satisfy (CONS) note that a (pure) Nash equilibrium «
in a G € I" remains a Nash equilibrium in the reduced game G* 1! for every
S = N and every product set B with the best response property has still the
best response property in the reduced game G>'# for every S = N. To prove
that also BRP™ satisfies (CONS) let GeI', S < N, and R = Il;cyR; be the
product set of rationalizable strategies in G. Denote furthermore by R’ =
IT;c yR! the product set of rationalizable strategies in G**. Since R has the
best response property in G, it also has the best response property in G>*.
Therefore R; = R! for every i € N. In fact, by definition of G*>*, R; = R! for
every i € N\S. Since for every i € N\S any r; € R/(= R;) 1s a best response
to some belet p_; € A(Il;jc (i Rj) S _/J('HJ-E._.\.-W}R;) and for every i € § any
ri € R’ 1s a best response to some belief p_; € A(H_;EJ.W,-}R;) the set R’ has the
best response property in G. Therefore R’ = R and hence R’ = R, which
proves that R satisfies (CONS). ’

In order to prove that the solutions NE, BRP, and BRP" satisfy (RAT) it
1s sufficient to note that these solutions only select product sets with the best
response property. [#

” We note that this definition allows for “*correlated beliefs”™ which 1s common nowadays (see e.g.
Osborne and Rubinstein (1994, Definition 55.1)) but was precluded in the original 1984 papers.
See Bernheim (1986) for some related discussion.
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An example of an inconsistent refinement of BRP 1s the solution BRP .

Example 3.2. Let G = (N, A,u) € I' be the bimatrix game with N = {I,2},
A, ={a,b}, A» ={c,d,e}, and u given by

¢ (d e
L3 2.
1] I

a 1.
(5 7 )

::DL.J
N O

One easily verifies that B = {a.b} x {d} 1s a minimal set having the best re-
sponse property. However, with § = {1}, the reduced game of G with respect
to S and B 1s the bimatrix game with payofl matrix

(d
7 7]

i ] 5]

which admits only {a} x {d} and {b} x {d} as minimal sets having the best re-
sponse property. Therefore, the solution BRP ™ on 7" does not satisfy (CONS).

For some finite games G the collection NE(G) may be empty. Therefore NE
satisfies (-NEM) but not (NEM). However, BRP~, BRP, and BRP" all satisfy
(NEM). In order to see this note that the mixed extension of any finite strategic
game G = (N, A, u) possesses a Nash equilibrium x = (x;)._ v (Nash (1951)).
Now let, for every i e N, B; < A; be the support of x;. Then the product set
B = Il;- yB; has the best response property. So every finite strategic game G
admits a product set with the best response property and. a fortiort, a mimnimal
set with the best response property. Since (NEM) 1s a stronger axiom than
(r-NEM) we infer that the solutions BRP ', BRP, and BRP" also satisty
(r-NEM). One easily verifies that all :-.olullom in Example 3.1 satisty (DOP).

[f we consider the solutions mentioned in Example 3.1 on /" then the fol-
lowing table summarizes the statements made above:

EMP ALL NE BRP BRP' BRP-

(CONS) . sbsaouskapcrds lad + g
(RATY 7 B & Apngap D . "
(NEM) - g = o + i
(r-NEM) - TN S + +
(DOPRY a1 b tenal 3 sk 4 e !

The axioms (CONS). (RAT), (r-NEM ), and (DOP) are logically independent.
To see this, note that the solution BRP™ satisfies (RAT), (r-NEM), and (DOP)
but not (CONS), the solution ALL satisfies (CONS), (r-NEM ), and (DOP) but
not (RAT), and the solution EMP satisfies (CONS), (RAT), and (DOP) but
not (r-NEM). The solution, which coincides with NE for games with at most
three players and which coincides with BRP for games with at least four
players, satisfies (CONS), (RAT), and (r-NEM) but not (DOP).
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In the case of point-valued solutions the Nash equilibrium concept NE 1s
completely characterized on /7 by consistency, rationality, restricted non-
emptiness, and dummy out property (Proposition 2.2). The table above shows
that this 1s not the case for set-valued solutions. These axioms are not only
satisfied by NE but also by BRP and BRP". Morcover, as seen above, the two
latter solutions even have the virtue of being non-empty for every finite game.

4 Refining BRP

In this section we accept as a working hypothesis that the consistency criterion
1s “‘desirable”. Then, as argued 1n the Introduction, the result that there 1s no
proper refinement of the Nash equilibrium concept satislying consistency, ra-
tionality, and non-emptiness is troubling for the theory of equilibrium refine-
ments. In Section 3 1t was shown that several set-valued solutions satisty these
properties, and the Propositions 3.1 and 3.2 together imply that BRP 1s the
unique maximal such solution. In light of this result we suggest a new approach
for normative game theory: Shift attention from the point-valued solution NE
to the set-valued solution BRP and refine the latter while preserving consistency
and other properties deemed desirable! In this section we suggest one way of
following this line of research.

Say a product set of strategies i1s recommended to the players. One might
argue that this recommendation 1s not really self-enforcing unless for every
player / and every belief consistent with the other players confirming with
the recommendation, no strategy outside /'s recommended set 1s optimal for
him to use. Basu and Weibull (1991), Hurkens (1995, pp 13-14), and also
Nash (1951, pp 290-291) discuss related 1deas. Here we make use of Basu and
Weibull's (1991) notion of a set closed under rational behavior — a curb set.
The definition of a curb set, as well as of two finer notions that turn out to
be useful, are as follows:

Definition 4.1. Let G = (N, A.u) € I'. A non-empty product set B = Il;-yB;
< A 1s called

(1) curb 1f for every i € N and a; € A;, which 1s a best response to some belief
pu_; € A(1lje y\(n Bj), we have a; € B;;
(11) tight curb 1f B 1s curb and has the best response property:
(111) minimal curb 1f B 1s curb and there 1s no product set B = B which is curb.

Basu and Weibull (1991) show that every finite game admuits at least one min-
imal curb set and that the minimal curb sets and the minimal tight curb sets
coincide. Therefore every finite game also possesses at least one tight curb set.

Since we are interested 1n refinements of BRP we will investigate whether
the two set-valued solutions, which select the tight curb and minimal curb sets
espectively, satisfy consistency and other properties. We hence define the fol-
lowing solutions on /:

t-CURB(G) = {B < A4 : B is tight curb};

min-CURB(G) = {B € 4 : B is minimal curb}
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for every G = (N, A,u) € I'. Every tight curb set or every minimal curb set
which 1s singleton contains a strict equilibrium. Therefore t-CURB and min-
CURB may be viewed as set-valued analogues of the point-valued solution
assigning to every game the collection of strict equilibria. Of course there are
finite games without strict equilibria. The following proposition shows that the
solutions t-CURB and min-CURB satisfy (NEM ) as well as (CONS), (RAT).
and (DOP).

Proposition 4.1. The solutions t-CURB and min-CURB satisfy (CONS).
(RAT), (NEM ), and (DOP).

Proof. In order to prove that t-CURB satisfies (CONS) let G = (N, A, uy e I,
B = Il;c nB; a tight curb set in G and § = N. Since BRP satisfies (CONS) and
B has the best response property in G i1t also has the best response property
in G°%. Since by changing from G to G*'” no best responses to beliefs in B
are deleted B is also curb in G° 8. Hence B is a tight curb set in G*'? which
proves that t-CURB satisfies (CONS). For the proof of the consistency of
min-CURB assume that B = I1;,-.yB; 1s a mimimal curb set in G = (N, A4, u)
and S = N. Suppose there is B’ = B which is a curb set in G*>'?. One easily
verifies in that case that B’ 1s a curb set in G, which contradicts the minimality
of B. Hence B is also a minimal curb set in G # which proves the consistency
of min-CURB.

Since the solutions t-CURB and min-CURB only select sets with the best
response property both solutions satisty (RAT).

In Proposition | of Basu and Weibull (1991) the authors show that every
finite game admits at least one minimal curb set and in Proposition 2 they show
that the minimal curb sets and the minimal tight curb sets coincide. As a con-
sequence we get that both solutions t-CURB and min-CURB satisfy (NEM ).

One easily verifies that the solutions t-CURB and min-CURB satisty
(DOP). &

Proposition 4.1 illustrates that the research program we have proposed 1s fea-
sible. We believe the program promises to deliver solutions that have cutting
power in certain applications. To argue this point, consider the following game
which 1s a special case of a “"Burning Money ™ example discussed by Hurkens
(1996, Figure 2 with ¢ = 1):
¢ / J I

@& .98 5 9% ... 0.4, 0.4

b''4.4 4.4 6,7 6,7

¢ 8,5 —-1,.4 8,5 -1,4

;g 1 S TR R 7 SR T
In this game {a} x {e, f'} 1s the unique minimal curb set (see Hurkens (1996,
p 188) for a proof). Note that the strategies ¢ and g are not involved, despite
the fact that (¢, ¢g) is a proper equilibrium. "

This is not to say that minimal curb sets a/ways promote sharper predic-
tions than does standard equilibrium concepts. For example, in a “matching

' Note also that. as observed by Hurkens (1996), iterated elimination of weakly dominated
strategies has no cutting power in this game. There are no weakly dominated strategies.
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pennies’ game the entire set of strategy profiles i1s the unique minimal curb set
while no equilibrium exists. (If the game’s mixed extension 1s considered the
entire set of strategy profiles 1s again the unique minimal curb set, while the
game has a unique equilibrium.)

5 Summary

The axiom of consistency for point-valued solutions of strategic games 1s 1n-
troduced in Peleg and Tijs (1996). They show that any consistent point-valued
solution which satisfies a rationality requirement must be a refinement of the
Nash equilibrium concept. Norde et al. (1996) show that requiring also the
solution to be non-empty in games that do possess equilibria leads to a char-
acterization of the Nash equilibrium concept. Given that the consistency con-
dition 1s regarded as ““desirable’, this result may be taken as troublesome for
the theory of equilibrium refinements.

We argue that ser-valued solutions are natural objects of study for the clas-
sical theory of games which 1s concerned with offering self-enforcing recom-
mendations to rational players. We extend the axiom of consistency to apply
to such solutions. In the new context the aforementioned problems disappear.
although the Nash equilibrium concept no longer takes center stage. Any
consistent set-valued solution satisfying a rationality requirement must be a
refinement of BRP, the solution assigning to each game the collection of sets
with the best response property.

BRP 1tself satishies these properties and also many refinements do so. Based
on this finding we propose to refine BRP instead of the Nash correspondence.
while requiring that consistency and other properties deemed desirable are
preserved. To exemplify this line of research, we use Basu and Weibull's (1991)
notion of a curb set. This leads for example to the solution min-CURB, the
refinement of BRP which selects all product sets which are minimal curb. This
solution has considerable cutting power n certain games. We show that min-
CURB satisfies consistency, a rationality requirement, and non-emptiness.
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