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Abstract 

It is the purpose of  this paper to build a bridge between continuous time models, which 
are central in the modem finance literature, and (weak) GARCH processes in discrete time, 
which often provide parsimonious descriptions of  the observed data. The properties of  
continuous time processes which exhibit GARCH-type behavior at all discrete frequencies 
will be discussed. Several examples of  such processes illustrate the general theory. The 
class of  continuous time GARCH models can be divided into two subclasses. In the first 
group (GARCH diffusions) the sample paths are smooth and in the other group (GARCH 
jump-diffusions) the sample paths are erratic. A simple, complete characterization of  both 
types is given in terms of  the kurtosis of  the observed discrete time data. These two 
groups of  GARCH processes can be described by three and four coefficients, respectively. 
Explicit formulas of  all implied discrete time weak GARCH parameters are available. 
Moreover, knowledge of  the discrete time GARCH parameters at only one frequency 
completely determines the continuous time coefficients of  the GARCH process. So, in 
estimating a continuous time GARCH process it suffices to estimate the discrete time 
GARCH parameters for the available data frequency. The analysis carries over to models 
with an autoregressive component. 
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1. Introduction 

Since the seminal work o f  Black and Scholes (1973) continuous time models 
are one o f  the major tools in theoretical financial economics. They are used 
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in general asset pricing theory (see, e.g., Huang, 1987; Cox, Ingersoll, and 
Ross, 1985a,b) and, more specific, in option pricing theory (see, e.g., Johnson 
and Shanno, 1987; Scott, 1987; Melino and Turnbull, 1990; Amin and Ng, 
1993). These recent papers allow explicitly for a state variable influencing 
the asset price. Especially in the option pricing papers the volatility of the 
price process attracted much attention as an unobserved state variable. Pricing 
models for derivative securities heavily depend on the underlying model in 
continuous time (see, e.g., Melino and Turnbuli, 1990). Usually, the validity of 
these continuous time models is not straightforward to cheek because data are 
available at discrete time only. In the empirical literature it is well-known that 
GARCH(I,I) processes often yield parsimonious representations of the 
observed data at almost every frequency. It is natural to ask whether continuous 
time models can be compatible with discrete time GARCH(I,I) pro- 
cesses at every (discrete) frequency. It turns out that this class of continuous 
time GARCH processes is rich enough to contain both diffusions and jump 
processes. While recent literature uses, almost without exception, discrete time 
models to approximate models in continuous time (see, e.g., Gourieroux, 
Monfort, and Renault, 1992; Nelson and Foster, 1994), this paper derives exact 
properties of the underlying continuous time GARCH process. Several examples 
are given. 

We derive a simple criterion to discriminate between the smooth subgroup of 
continuous time GARCH models and the subgroup containing jumps. We show 
that it is sufficient to know the kurtosis of the implied discrete time difference 
process (at an arbitrary frequency) to distinguish between GARCH diffusions and 
jump-diffusions. Recognition of jumps is important in valuing derivative securi- 
ties. Out-of-the-money call options close to maturity will be virtually worthless 
if the underlying price process follows a diffusion while they will be valuable if 
the price process exhibits jumps. Diffusion models will underprice these options. 
For that reason Jorion (1988) has proposed a test procedure for the presence of 
jumps which relies on the normality of the conditional distribution of the nonjump 
component. 

Moreover, we show that the assumption of an underlying continuous time 
GARCH model leads to kurtosis parameters of the corresponding discrete time 
processes which are necessarily strictly larger than three, implying heavy tails. 
This confirms the results of Drost and Nijman (1993). They observe that not 
every discrete time GARCH process can arise as the sum of underlying higher- 
frequency GARCH processes. Many authors explicitly introduce heavy-tailed in- 
novation distributions, such as student t-distributions, to capture this phenomenon. 
In fact, we show that the common, implicit assumption of an underlying model 
in continuous time already implies the appearance of heavy tails. Normal inno- 
vations are excluded at any frequency. This is in line with the empirical finding 
that conditional distributions are leptokurtie (see, e.g., Diebold, 1988; Bollerslev, 
Chou, and Kroner, 1992). This also implies that Jorion's (1988) testing procedure 
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(directed to normal innovations) should be adapted to include other distributions. 
This is discussed in more detail in Drost, Nijman, and Werker (1994). 

Finally, we show that the coefficients of a continuous time GARCH process 
can be identified from the discrete time weak GARCH parameters at any arbitrary 
frequency and vice versa. This relation can be used to get fast, simple, consistent, 
correlation-based estimators of the parameters in the underlying continuous time 
model (see Drost and Nijman, 1993). In this way one may avoid the use of the 
recently developed simulation based estimators. These latter simulation methods 
are developed to estimate quite general models in continuous time (Duffle and 
Singleton, 1993; Gallant and Tauchen, 1992; (lourieroux, Monfort, and Renault, 
1992). Of course, the efficiency of these complicated, time-consuming methods 
is likely to be higher than correlation-based methods since the criterion function 
is close to the true maximum likelihood equations. On the other hand, how- 
ever, extra bias terms are introduced by the discrete time approximations of  the 
underlying continuous time model. Probably, other commonly used estimators, 
like quasi maximum likelihood and semi-parametric procedures (see, e.g., Weiss, 
1986; Linton, 1993; Drost and Klaassen, 1996), are also consistent (see, e.g., the 
small-scale simulation study of Drost and Nijman, 1993). 

The paper is organized along the following lines. In Section 2 the concept of  
continuous time GARCH processes is introduced and illustrated by some exam- 
ples. It will be shown that this class can be divided into two subgroups. In one 
of the groups we have smooth sanlple paths. These processes are called GARCH 
diffusions and are discussed i,-" Section 3. Section 4 is devoted to the other group: 
(lARCH jump-diffusions. For both subclasses the process will be characterized by 
a parameter vector of dimension three and four, respectively. These coefficients 
completely determine the discrete time weak GARCH parameters at all frequen- 
cies. A large variety of examples is included for both groups and an empirical 
example illustrates the general theory. The analysis carries over to models in 
which an autoregressive component is included (Section 5). Finally in Section 6 
we will discuss some more implications of  our results and conclude. 

2. Continuous time GARCH processes 

This section introduces the class of continuous time processes which exhibit 
GARCH-type behavior at all discrete frequencies. To make explicit calculations 
possible we concentrate on GARCH(1,1) processes. Of course, the theoretical 
framework of continuous time processes with GARCH behavior is easily extended 
to the general case. in this general setting, however, parameter restrictions and 
explicit formulas need numerical procedures and cannot be given in a closed 
form as in the GARCH(I,1) case. Restricting attention to (IARCH(I,I) in the 
remainder of the paper we will simplify notation by deleting the orders and 
writing GARCH. 
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It seems natural to call a continuous time process { Yt, t >I 0} GARCH if the 
first differences of  the implied discrete time processes {Yt, t Eh~d} are GARCH 
for all fixed h > 0. Generally, however, {Yt+h - Yt, t E h[~} cannot be GARCH in 
the sense of  Engle (1982) and Bollerslev (1986) for every h > 0 since Drost and 
Nijman (1993) have shown that this classical class is not closed under temporal 
aggregation. Instead of requiring that these differences are GARCH in this strong 
sense we will rely upon a weak GARCH definition (see Drost and Nijman, 1993). 

Definition 2.1. Suppose h > O. A symmetric discrete time process {y(h)t, t E h~} 
with finite fourth moments is called weak G A R C H  with parameter ~.h = (~h, ~h, 
~h, tch) i f  there exists a covariance-stationary process {(r~h)t, t E hF~} with 

(r~h)t+h = ~kh + ~hY~h)t 2 "F ~ha(h)t, t E hF~, (2 .1 )  

such that, for  t E h~,  a(h)t2 is the best linear predictor o f  2 Y(h)t in terms o f  1, 
4 2 2 a~h)o, and lagged values o f  Y(h)t and Y~h),. The parameter Xh = EY(h)t/(EY(h)t) 

denotes the kurtosis o f  the process. 

Throughout we assume the usual parameter restrictions ~h > 0, ~h /> 0, and 
either ~h = 0 (and thus /~h = 0 for identifiability reasons) or 0 < ~h + Ph < 1. It 
is easy to see that the usual definition of GARCIq with symmetric innovations 
and finite fourth moments (which will be called strong GARCH from now on) 
implies the weak GARCH one. In the general definition we still have EYgh)t = 
~bh/(1 -~ t ,  -/~h). For reference we define the pseudo-kurtosis of the rescaled 
residuals ~(h)t ~-" Y(h)t/CT(h)t by 

1 -- (~h "F t~h)2 + ~2 
xh = Xh (2.2) 

i - (~h + / ~ h )  2 + =~,Xh" 

This pseudo-kurtosis of  rescaled residuals is the kurtosis of the innovations if the 
process is strong GARCH. 

The class of weak GARCH models is closed under temporal aggregation (see 
Appendix A). Therefore, we adopt this weak definition in continuous time pro- 
cesses with conditional heteroskedastic behavior. 

Definition2.2 ( G A R C H  process). A continuous time process {Yt, t~>0} is 
called G A R C H  if, for  each starting time to and each f ixed time interval 
h > 0, the implied discrete time process { Yt,)+t+h--Yto+t, t E hM} is weak GARCH 
with parameter vector ~h = ( ~bh, ~h, [Jh, Xh ). 

Before deriving the implications of Definition 2.2 we wii,~ give four trivial 
examples. General classes of continuous time GARCH processes will be discussed 
in Sections 3-5. 
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Example 2.1. The most simple example is Brownian motion with variance 
parameter t7 2. At frequency h it satisfies the definition with ~h = (ha2,0,0,3). 

Example 2.2. Another simple example is the compound Poisson process, where 
the inter-arrival periods between jumps are assumed to be i.i.d, drawings from an 
exponential distribution with mean inter-arrival time/~ and where the jumps are 
realizations of independent normals with variance ~2. To verify the conditions 
let Nt be the number of jumps until time t aad let X~ be the ith jump. Then 
{Yt÷h - Yt, t ~ ht~} is an i.i.d, sequence of random variables with the same 
distribution as Yh = Yh-  Yo = z-,i=lx"Nh X/. Hence, using EYh=EY~ =0, Ey2=#Z(h/I~), 
and EY~ = 3a4(h/lO 2 + 3o'4(h//z), {Yt+h -- Yt, tEh[~} is weak GARCH with 
~h = (¢~2(h/Iz), O, O, 3 + 31~/h). 

Example 2.3. A less simple example with continuous sample paths is the diffu- 
sion process given by the following system of differential equations: 

d Yt = cx t dWo)t, (2.3) 

dc~ 2 = 0(co -- ¢~2)dt + ~ ¢ 2  dW(2)t, (2.4) 

where W(1)t and W(2)t are independent Brownian motions, co > 0, 0 > 0, and 
).E(0, I). [Nelson (1990) considers a slightly more general system with less 
parameter restrictions but we need the existence of fourth moments to be able to 
apply the aggregation results of Appendix A.] Nelson (1990) shows that these 
equations can be approximated by a sequence of discrete time GARCH processes 
with i.i.d, normal innovations. The hth approximating process is defined on the 
time scale hgl. Of course, all aggregates of every element in this approximating 
sequence are weak GARCH by Theorem A.l. This suggests that the correspond- 
ing limiting continuous time process for h £0 is likely to be a GARCH process. 
A formal proof using stochastic calculus is given in Appendix C for a much 
more general class of GARCH processes, see also Sections 3 and 4. The vector 
~h is given in Proposition 3.1. 

Example 2.4. From the diffusion (2.3)-(2.4) one can easily construct a GARCH 
process with jumps by, e.g., adding an independent compound Poisson process 
to the solution of these differential equations, see Example 4.2. Compare Merton 
(1990, Sec. 9.2) and Amin (1993). 

Theorem A.l (see also Drost and Nijman, 1993; Example 2) induces several 
relationships between the parameters at different frequencies. Since we are work- 
ing in a continuous time framework, we have an infinite number of equations. 
One might expect that there are four free parameters in a GARCtt process. How- 
ever, it will be shown below that, under the assumption of smooth sample paths, 
one only has three free parameters [for example, the diffusion (2.3)-(2.4)]. For 
nonsmooth GARCH processes there are still four parameters. So, the assumption 
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of an underlying diffusion in continuous time reduces the number of free param- 
eters by one; delete, e.g., the kurtosis parameter xh in the definition of Drost and 
Nijman (1993) since it will be completely determined by the variance parameters 
~h and/~.  This will have important implications in the sequel. To obtain these 
results we need the following regularity assumption. 

Assumption A. The vector ~h is a continuous function in h. 

Without this assumption Appendix A already implies that, for each fixed 
h0 > 0, the parameter function ( : h0Q + ~ ~4 is continuous and, hence, ((-) 
is smooth on dense subsets of ~+. Assumption A only excludes the possibility 
of a completely different behavior of the parameter vector on mutually exclusive 
dense subsets of I~ +. Therefore, Assumption A is harmless. 

Our first result shows that the class of GARCH processes can be divided into 
two groups. These groups are distinguished by the behavior of ElYh - Y0l 4. 

Theorem 2.1. Let {Yt, t >/0} be a G A R C H  process and assume that Assump- 
tion A is fulfilled. Then f ( h ) =  ElYt+h - Yt] 4 is a continuous function o f  h not 
dependino on t >>. O, f (h ) /h  2 converoes in (O,c~) as h ~ o o ,  and either f (h ) /h  2 
or f ( h ) / h  converges in (O,c~) as h$O. 

Proof. See Appendix B. [] 

The behavior of f ( h )  is an important tool to characterize the level of smooth- 
ness of a continuous time process. If f ( h ) /h  2 is bounded, Kolmogorov's criterion 
(see, e.g., Theorem 1.1.8 in Revuz and Yor, 1991) implies that {Yt} has a modi- 
fication I with continuous sample paths. This group of GARCH processes will be 
called GARCH diffusions. The other group is not as smooth as, e.g., Brownian 
motion since the fourth moments are only of the order h, similar to a compound 
Poisson process. Therefore, these processes are called GARCH jump-diffusions. 

Definition 2.3 (GARCH diffusion/jump-diffusion). Let { Yt, t >1 0} be a continu- 
ous time GARCH process such that Assumption A holds, l f  f ( h  )/h 2 is bounded, 
then { Yt, t >1 0} is called a G A R C H  diffusion. Otherwise it is called a GARCH 
jump-diffusion. 

3. GARCH diffusions 

In this section we derive some general results for GARCH diffusions. These 
results are exemplified by a broad class of GARCr-! diffusions (including the ones 
given in Section 2) and are applied to exchange rates. 

'A modification {l~t, t/> 0} of {It, t >I 0} is a process satisfying l?t = Yt (a.s.) for all t >/0. 
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The next proposition shows that GARCH diffusions can in fact be character- 
ized by three coefficients, say co > 0, 0 > 0, and 2 E (0, 1). The parameter ~h is 
uniquely determined by these coefficients at every frequency h, and vice versa. 
Therefore, we will call co, 0, and ,~, the characterizing coefficients o f  a GARCH 
diffusion. As an immediate consequence of  the proposition we obtain information 
about the rates at which ~h--> (0, 0, 1, 3/(1 - -2 ) ) .  This is summarized in a 
corollary. These rates are in agreement with the rates Nelson (1990) uses to ob- 
tain the system of  differential equations (2.3)-(2.4). We have parametrized these 
equations such that the parameters to, 0, and 2 are just the coefficients of  the 
corresponding GARCH diffusion. 

Proposition 3.1. Let {Yt, t >>. 0} be a G A R C H  diffusion with parameter vectors 
(h = (d/h,~h,~h, Kh) and suppose ~ho E ( 0 , 1 ) f o r  some ho > O. Then there exist 
toE(O, cx~), O~(O, cx~), ,~E(0,1), and Ch given by 

4{exp( -h0)  - 1 + hO} + 2h0{l ÷ hO(1 - ~)1~,} 
ch = 1 - exp( -2h0)  ' 

(3.1) 

such that ~h (with I hl < l)  is determined by 

~h = ho~{ 1 - exp(-h0)} ,  

• h = exp ( -h0 )  - fib, 

), e x p ( - h 0 )  - 1 + kO 
Kh = 3 + 6 1-~/~ (hO) 2 , (3.2) 

flh ch ex p ( -h 0 )  - 1 
1 + ~ = Ch{1 + e x p ( - 2 h 0 ) }  - 2" (3.3) 

Proof. See Appendix B. [] 

Corollary 3.2. Let {Yt, t >1 0} be a G A R C H  diffusion with coefficients to, 0, 
and 2. Then, as h ~ O, 

7shlh 
l - -  ~h - -  i~h ->tO, 

~<~ __>,~, 
1 - -  ~h - -  l ib  

1--~h--Ph +0, 
h 

~h --,3/(1 -- ,~,). (3.4) 

Moreover, EI Yh - yoi4/h 2 ' ' ~  3to2/(1 --A) as h 10 and Ei Yh - yoi4/h 2 ' ' ~  3to 2 as 
h - - , ~ .  

Remark 3.1. If ~h = 0 for all h > 0, then also flh = 0 for all h > 0 (otherwise 
the parameters are not identifiable). Such continuous white noise processes, like 
Brownian motions, are obtained as limits in Proposition 3.1 with t o E ( 0 , ~ ) ,  
0 = ~ ,  2 = 0 ,  and ~h = (hto,0,0,3). As an example Eqs. (2.3) and (2.4) are still 
valid with solutions Yt = ~ Wo)t and a~ = to (Brownian Motion). 
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Fig. 3. I. Discrete time variance parameters of  GARCH diffusions for several values of the coefficient 2. 

The quadratic equation in flh in (3.3) always admits exactly one solution with 
1/31,1 < !. Observe that flh will become negative for very large values of h. At first 
sight, this seems to violate the parameter constraints of Nelson and Cao (1992), 
however, they are fine as coefficients in the linear projections underlying the weak 
GARCH formulations. Note that to is a scale parameter. Since 0 only appears 
in the form hO it is normalized by the choice of the time unit. The parameter 
2 determines the slope of the kurtosis Xh, see also the discussion below and 
Fig. 3.1. 

Proposition 3.1 has several important implications. First, note that three of the 
four components of (h, say ~bh, ~h, and fib, at some given fixed frequency h 
determine the coefficients to, 0, and ). and, hence, they also fix the kurtosis xh. 
Since to is merely a scale parameter and 0 is a normalizing constant with respect 
to the time unit we c'mcentrate on the parameter 2. Straightforward calculations 
show 

2 = 2 In2(oth + fib) 
{ I -{  ~h+/h,)" )¢ ! -l~h): • h{t--/~h(~h+/~)} +61n(CCh+flh)+21n:(~h+flh)+4(l  --~h --fib)" 

Observe that the right-hand side will not depend on h. So, the variance parameters 
at one frequency also uniquely determine the variance parameters at all other 
frequencies. This is illustrated in Fig. 3.1, where the lines correspond to GARCH 
diffusions with different values of the slope parameter 2. The points at some given 
line are the variance parameters ~h and fit, of the discrete time weak GARCH 
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processes associated to the GARCH diff;, ion. High-frequency parameters are 
close to • = 0 and/~ = 1. Moving along a line to the left corresponds to lower 
(and lower) sample frequencies. This figure is comparable to Fig. 2 in Drost 
and Nijman (1993). The main difterence is that, in our situation, we do not 
have different lines passing through one point. This is caused by the assumption 
of an underlying diffusion in continuous time, implying that the kurtosis ~ch is 
completely fixed by ~h and/Ih. In GARCH diffusions the kurtosis will not vary 
freely like in Drost and Nijman (1993). See, however, Section 4 for GARCH 
jump-diffusions. 

Secondly, we direct attention to the kurtosis value of the process. It is clear 
from (3.2) that the kurtosis of the discrete time weak GARCH processes corre- 
sponding to a GARCH diffusion is strictly larger than three. This corresponds to 
the stylized fhct that financial data have fat tails. The definition of a GARCH 
diffusion immediately yields this property and, therefore, these processes seem to 
be useful while modeling financial data. In classical analyses of  GARCH pro- 
cesses, where the rescaled innovations are assumed to be independent, one also 
pays attention to the distributional aspects of the innovations. For strong GARCI-I 
processes the relationship between the kurtosis gh of the innovations, the kurto- 
sis tch of the GARCH process, and the GARCI-I parameters ~h and/~h is given 
by (2.2). In weak GARCH processes this parameter gh is called the pseudo- 
kurtosis since the innovations are not i.i.d. (cf. Drost and Nijman, 1993). The 
formulas from Proposition 3.1 are substituted into the right-hand side of  (2.2) 
to investigate whether GARCI-I diffusions imply leptokurtosis of the innovations, 
too. The pseudo-kurtosis is completely determined by the GARCI-I parameters ~h 
and/~h and one may verify that it is always larger than three, suggesting heavy- 
tailed innovations. Hence, the existence of an underlying diffusion in a conditional 
heteroskedastic framework confirms the empirical evidence that innovations are 
heavy-tailed; see Diebold (1988). This is outlined in Fig. 3.2. Contour lines are 
given for the pseudo-kurtosis in the area of  the (O~h,~h) space where GARCH 
diffusions are applicable. 

We present two additional examples. Example 3.1 introduces a general class 
of GARCI-I diffusions and Example 3.2 discusses contemporaneous aggregation 
of GARCH diffusions. 

Example 3.1. Let {Wt, t >>, 0} be a standardized Brownian motion, EWt2=t, inde- 
pendent of the standardized L6vy process {Lt, t/> 0}, EL 2 = t. Then the solution 
{ Yt, t I> 0} of the system of differential equations 

dYt = ~t- dWt , (3.5) 

d#t 2 = 0(co - a 2_ )dt + ~ a t  2_ dLt, (3.6) 

with co > 0, 0 > 0, and ~. 6 (0, 1), is a GARCH diffusion with characterizing 
coefficients co, 0, and A. 
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Fig. 3.2. Pseudo-kurtosis contour lines of GARCH diffusions. 

Proof See Appendix C. [] 

Recall that L6vy processes have independent stationary increments and that 
these processes will exhibit jumps unless {Lt} is a Brownian motion (see Theo- 
rem II.38 of Protter, 1990). Important examples are the compound Poisson pro- 
cess and the Gamma process (see, e.g., Heston, 1993). Several special cases of the 
class of processes defined by (3.5) and (3.6) have been studied before. If ate =o~ 
is constant, then the implied spot price St = exp(Yt) is a geometric Brownian mo- 
tion. The system of differential equations (2.3)-(2.4) (Nelson, 1990) is another 
example of (3.5) and (3.6) where the L6vy process is specialized to Brownian 
motion. Eq. (3.6) explicitly allows for volatility processes {a, 2} with jumps by 
taking other L~vy processes. Naik (1993) discusses the pricing of options when 
the volatility process exhibits jumps. Note that the characterizing coefficients do 
not depend on the choice of {Lt}. So, the same parameter configuration holds 
for all solutions of (3.5) and (3.6). The distribution of the continuous time pro- 
cess { Yt} is not completely determined by the coefficients oJ, 0, and 2 but also 
by the choice of {Lt}. This implies that estimation of (3.5)-(3.6) via GARCH 
parameters does not depend on the specification of {Lt}. 

Example 3.2. Let {Y{ot, t >i 0}, i = 1 . . . . .  k, be independent GARCH diffusions 
with characterizing coefficients (o~i, Oi, 2i) with either Oi = 00 E (0, c~) or jointly 
0~ = c~ and 2~ = 0. So the ith GARCH diffusion is either a stochastic process 
satisfying the conditions of Proposition 3.1 or a continuous white noise process 
as sketched in Remark 3.1. Suppose, for simplicity, that at least one of the Oi's 
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equals 0o. Then the sum process {Yt = ~,ik=l Yo)t, t >1 O} is a GARCH diffusion 
with coefficients co = Y']/k=l coi, 0 = 00, and A determined by 

)~ k fci 2 / [ k ,~2 
, - = 

Proof. Along the lines of Nijman and Sentana (1993) one obtains that the sum 
process is GARCH at each discrete frequency with, e.g., ~h = Y~.~k=l coih{1 - 
exp(-00h)} and ~h + flh = exp(-00h). Obviously the sum process is a GARCH 
diffusion. The relations concerning ~h and Uh + flh determine co and 0. To obtain 
the required equation for 2, observe that the relationship between the kurtosis uh 
of the sum process and the kurtosises Kti)h of the separate parts is given by 

tch - -  3 = E ( ~ q i ) h  - 3 )co  co~ . 
i - I  i=1 

Using the GARCH diffusion property (3.2), one obtains (3.7) by takip~g the limit 
for hi.0. [] 

Aggregation of a large set of independent "balanced' GARCH diffusions yields 
a GARCH diffusion with a 2 value close to zero, implying sCh ~ 3, for all h > 0. 
As usual, aggregated data exhibits less leptokurtosis. 

As a special case of the formulas above we obtain that the sum of the GARCH 
diffusion (3.5)-(3.6) and a Brownian motion with variance parameter 0 .2 is a 
GARCH diffusion with coefficients ~ = co + ~2, 0 = 0, and ~ determined by 

_ _;" ~2)2. 1-~ 1 , ~ c o 2 / ( c o +  

We conclude this section with an empirical example considering six exchange 
rates under the assumption that the underlying DGP is a GARCH diffusion in 
continuous time. The implications of jumps will be examined in Section 4. Our 
estimates of the characterizing coeffÉcients 0 and ,;, are obtained from Proposi- 
tion 3.1 by plugging in the daily estimates of the GARCH parameters u and / / as  
reported in Baillie and Bollerslev (1989). Their estimated value of the kurtosis is 
ignored in these calculations and it is confronted with the kurtosis implied by the 
assumed underlying GARCH diffusion. These results are presented in Table 3.1. 
For the JY/$, FF/$, and BP/$ exchange rates the difference between the kurtosis 
implied by the GARCH process and the direct estimate is rather large. This sug- 
gests that the assumption of an underlying diffusion is not very realistic in these 
cases. Probably jumps are present. For the other exchange rates this difference 
is rather small and one may expect that a diffusion model yields a satisfactory 
description. Plugging in the estimates of the GARCH coefficients into, e.g., (3.5) 
and (3.6) yields an estimate of the DGP in continuous time. This estimate of the 
price process can be used to value options or to construct hedge portfolios. 
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Table 3.1 
Estimates of GARCH parameters for six exchange rotes; March I, 1980 to January 28, 1985 

The first three columns are direct daily GARCH estimates (Baillie and Bollerslev, 1989). The other 
columns contain the implied GARCH diffusion coefficients and the implied kurtosis. 

GARCH estimates Diffusion estimates 

JW$ 0.049 0.94 ! 5.62 0.010 0.357 3.34 
FF/$ 0. ! 14 0.829 4.92 0.059 0.533 4.07 
BP/$ 0.06 ! 0.910 4.16 0.029 0.272 3.45 
IL/$ 0.1 ! 3 0.848 3.89 0.040 0.637 4.04 
GM/$ 0.085 0.88 ! 3.41 0.035 0.427 3.69 
SF/$ 0.073 0.907 3.41 0.020 0.450 3.56 

4. GARCH jump-diffusions 

This section contains the counterpart of  Section 3: GARCH jump-diffusions. 
Similar results are derived for this nonsmooth subclass of  continuous time GARCH 
models. The following proposition shows that these processes can be character- 
ized by four coefficients. 

Proposition 4.1. Let { Yt, t >1 0} be a G A R C H  jump-diffusion with parameter 
vectors ~h =( ~lh, Oth, flh, Kh ) and suppose ~ho > O for  some ho > O. Then there exist 
toE(O, oo), OE(O,c~), dpE(O, oo), and vE(O, oo), such that ~h (with I hl < 1) 
is determined by Eqs. (3.2) and (3.3) with ch and Xh replaced by 

f v+2hO 4{exp( -h0 )  - 1 + hO} + 2hO I 1 + 
J 

Ch = 1 -- exp( -2h0)  ~ ' (4.1) 

v + tk)exp(-h0)  - 1 + hO 
Xh = 3 + ~ + 3vtk(2 (h0) 2 (4.2) 

Proof. See Appendix B. [] 

Corollary 4.2. Let {)'i, t >1 0} be a G A R C H  jump-diffusion with coefficients to, 
O, q~, and v. Then, as h 1 O, 

~ h / h  1 - ~h - I~h ~ O, 
l--O~h--flh +to' h 

Oth ÷ dp, hOtCh ---~ v. (4.3) 
! - ~h  - - / ~ h  

Moreover, EIYh - yol4/h--~ vto2/O as h l O and EIYh - yol4/h2--~ 3to 2 as h--*oo. 
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Remark  4.1. If gh = /~h = 0 for all h > 0, then GARCH jump-diffusions are 
obtained as limits with to E (0, c~), 0 = c~, ~b = 0, v = c¢, v* = limhto htch E (0, c¢), 
and ~h = (hto,0,0,3 + v*/h). An example is given by the compound Poisson 
process of  Section 2 with to = a2/It and v* = 3/t. 

The discussion of  GARCH diffusions carries over to the class of  jump-diffusions. 
As before the time unit normalizes 0 and scale is denoted by to. The parameters 
~b and v are slope parameters. Similar to 2 in diffusions, ~b will denote slopes in 
the (~h, flh) plane (compare Fig. 3.1) while v determines the slope of  the kur- 
tosis ~t very high frequencies. In contrast to the situation in diffusions and due 
to the additional free kurtosis parameter we have four characterizing coefficients. 
The ~veridentifying restriction in Section 3 is missing. Finally, note that given 
the weak GARCH parameters ~h and flh we obtain identical values for 0 and Ch 
in Propositions 3.1 and 4.1, respectively. One readily verifies that the kurtosis 
for GARCH jump-diffusions is larger than the one for GARCH diffusions. As in 
GARCH diffusions this confirms the empirical finding of  heavy tails both in the 
innovations and the log-prices themselves. It also yields another interpretation of  
Fig. 3.2. Given the weak GARCH parameters 0Oh and flh this figure determines 
lower bounds for the pseudo-kurtosis. If  the true kurtosis is larger than or equal 
to the value obtained from the figure, then an underlying jump process or dif- 
fusion is possible, respectively. Otherwise an underlying process in continuous 
time does not exist. This also explains why Drost and Nijman (1993) could not 
determine the weak GARCH parameters at very high frequencies in some special 
occasions. In these situations the kurtosis value is too low. 

We present two additional examples. Example 4.1 introduces a general class 
of  jump-diffusions and Example 4.2 discusses contemporaneous aggregation of  
GARCH processes. 

Example 4.1. Let {Lt, t >t 0} and {Mr, t >i 0} be two independent standardized 
L6vy processes, EL 2 = EM 2 = t, and suppose that {Lt} is symmetric with v~ = 
EL 4 - 3 < ~ .  Consider the system of  differential equations 

d lit = at -  dLt,  

da 2 = 0(o9 - a L ) dt + v / ~  a 2 dMt, 

(4.4) 

(4.5) 

with to > 0, 0 > 0, and ~/E (0, 1 ). If {Lt } is Brownian motion, then we are in the 
situation of  Example 3.1. Otherwise, the solution {Yt, t >1 0} of  (4.4) and (4.5) 
is a GARCH jump-diffusion with characterizing coefficients to, O, v = Ova.~(1 - ~l), 
and ~ determined by 

v~bC~b + 2) = 2~//(1 - ~/). 

Proof. See Appendix C. [] 
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Specializing {Lt}  to the sum of a Brownian motion and an independent com- 
pound Poisson process and assuming that the variance process {tr 2} is constant 
yields the price process considered in Merton (1990, Sec. 9.2) and Amin (1993). 
The same form of {Lt} ,  but with stochastic volatility driven by (4.5), is discussed 
in Drost, Nijman, and Werker (1994). Eq. (4.4) explicitly allows for nonconstant 
volatility processes in addition to jumps. Note that the characterizing coefficients 
only depend on {Lt}  through v~. 

E x a m p l e  4.2. Let {Yo)t, t/> 0}, i = 1 . . . . .  kl +k2, be independent GARCH pro- 
cesses, where the first kl processes are GARCH diffusions with characterizing 
coefficients (co/, Oi, 2i)  with either Oi = 0o E (0, ~ )  or jointly Oi = cx~ and ~i "~" 0 
and where the latter k2 processes are GARCH jump-diffusions with characterizing 
coefficients (¢oi, Oi, c~i, vi) with either Oi = 0o or joir.tly Oi = vi = ~ and ~i = 0. So 
the separate stochastic processes satisfy either the conditions of Propositions 3.1 
and 4.1 or the ones sketched in Remarks 3.1 and 4.1. Assume, for simplicity, that 
at least one of the Oi's equals 00 and redefine v, by vi = Oo l imhtohX(oh = OOVT 

if vi = exp. Then the sum process { Yt ~,k,+k2 = z-~i=l Y{i)t, t >1 0} is a GARCH jump- 
diffusion with coefficients c o -  ~-,k,+k2 co. 0 = 00, and ¢p and v determined by - -  L . . a i =  I I ,  

k~+k2 / i% +k2 ,, 2 
z . 

i=kl + I 

v ,(2 + = 2 7 - w ,  + v; i(2 + . 
i=kl+l \ i=l 

The proof is completely similar to the proof of Example 3.2. Evaluate the limit 
of h(xh - 3) both for hJ.0 and h--+~. 

As in Example 3.2, leptokurtosis is less pronounced in aggregated series. The 
parameter v will generally decrease to 0 as kl + k2---+ cx~ and, hence, xh ~ 3 unless 
h small. 

As a special case of  the formulas above we obtain that the sum of the GARCH 
diffusion (3.5)-(3.6) and the compound Poisson process of Section 2 yields a 
GARCH jump-diffusion with coefficients ¢5 = co + a2/it, 0 = 0, and ~ and P 
determined by 

= OK~4#-II(r~ + 02//02, 

~¢~(~ "l" 2)  = 2 l--"-~O) /(£0 -'1"- O'2/fl) 2. 

Finally, we reconsider the empirical example about exchange rates. Many 
empirical studies suggest the presence of jumps in exchange rates; cf., e.g., 
Jorion (1988) and Vlaar and Palm (1993). Large jumps may be caused by re- 
alignments but frequent small jumps have also been observed. The characterizing 
GARCH jump coefficients 0, ~b, and v are obtained from Proposition 4.1 by 
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Table 4.1 
Estimates of GARCH parameters for six exchange rates, March I, 1980 to January 28, 1985 

The first three columns are direct daily GARCH estimates (Baillie and Bollerslev, 1989). The other 
columns contain the implied GARCH jump coefficients. 

GARCH estimates Jump estimates 

JY/$ 0.049 0.941 5.62 0.010 0.044 8.03 0.640 1.58 
FF/$ 0.114 0.829 4.92 0.059 0.060 6.65 0.634 0.38 
BP/$ 0.061 0.910 4.16 0.029 0.021 5.98 0.337 0.48 
IL/$ 0. ! 13 0.848 3.89 t 
GM/$ 0.085 0.881 3.4 ! f 
SF/$ 0.073 0.907 3.41 t 

f The estimated kurtosis value is too small to admit an underlying jump-diffusion in continuous time. 

plugging in the daily estimates of the GARCH parameters ~t and fl and the 
estimated kurtosis parameter ~ (Baillie and Bollerslev, 1989). The results are 
given in Table 4.1. For the IL/$, GM/$, and SF/$ exchange rates it is not possible 
to obtain the characterizing jump parameters since the estimates of the kurtosis 
are somewhat smaller than the corresponding critical values (obtainable from 
Fig. 3.2). Observe, however, that the difference between the estimated kurtosis 
and this value is not very large. Hence, diffusion models or jump-diffusions with 
less pronounced jump components seem to be a good descriptions in these cases. 
As suggested in Section 3, the figures for the other exchange rates point to more 
pronounced jumps. In Table 4.1 we also give the corresponding values of r/and 
v~. in Example 4.1. In this way we obtain an estimate of the underlying DGP 
in continuous time. The value v~. fixes the kurtosis parameter of {Lt}. Other 
characteristics of the L6vy processes can be chosen freely by the researcher. 
Estimation and testing in GARCH (jump-)diffusions are investigated in Drost, 
Nijman, and Werker (1994). 

5. Extension to autoregressive components 

Some financial series, like, e.g., interest rates, exhibit both autocorrelation and 
conditional heteroskedasticity. A continuous time model that is able to generate 
both features (and a possible trend) is given by the following system of differ- 
ential equations 

dYt -- (6 - zYt_)dt + at_ dLt, (5.1) 

da 2 = O(co - a2t_ )dt + V/2-~ a2 t_ dMt. (5.2) 

Note that /i = z = 0 leads to the GARCH processes discussed in Examples 3.1 

and 4.1 and that ~ = 0 = 0 leads to the familiar Omstein-Uhlenlxck process. 
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Similar to the derivations in Sections 2-4 we may define an autoregressive 
GARCH process as a process which, for each discrete frequency, is a shifted auto- 
regressive time-series model of  order one with GARCH innovations. By putting 
the autoregressive parameter exp(-hz)  equal to one, the unit root case, we obtain 
Definition 2.2. Although we do not go into details one can derive results simi- 
lar to the ones before, using a generalization of  Theorem A. 1 for autoregressive 
GARCH models. Explicit formulas of  this generalization can be obtained along 
the lines in the proofs of  Drost and Nijman (1993). Their formulas in Examples 1 
and 2 are a special case if  the autoregressive parameter is equal to zero and one, 
respectively. Theorem 2.1 also applies in this extended setting. Continuous time 
autoregressive GARCH models can be divided into a smooth and a nonsmooth 
class. The differential equation above generates examples in both groups. Similar 
to Propositions 3.1 and 4.1 the parameters of  the implied discrete time models 
are determined by five and six coefficients, respectively. We have to add two 
parameters, say 6 and z, to account for the trend and the autoregressive compo- 
nent in the model. At frequency h the shift equals/~h = 6/3 and the autoregressive 
parameter Ph is given by Ph = exp(-h3).  Furthermore, the discrete time scale pa- 
rameter is given by 

1 - exp(-2h~) (5.3) 
~h = ho~{ 1 - exp(-h0)} 2h~ 

The GARCH variance parameters are determined by 

flh ah exp(-h0)  - 1 
~h = exp(-h0)  - Ph, 1 + p-----~ = ah{l + exp(-2h0)} - bh' (5.4) 

where ah and bh are some complicated formulas; see Appendix D. If  3 = 0, 
bh = 2 and ah specializes to the Ch values in Propositions 3.1 and 4.1. Finally the 
kurtosis values of  the GARCH component in GARCH diffusions and GARCH 
jump-diffusions are given by 

). 
Kh = 3 + 6v---~,A(h,O,3), (5.5) 

v 1 + exp(-2h3) 2h3 
rh = 3 + + 3v~b(2 + ~b)A(h, 0, z), (5.6) 

hO 2 1 - exp(-2h3) 

respectively, with 

A(h,O,3) 

2h3 ~2 e x p ( - h { O + 2 3 } ) - e x p ( - 4 h O + h ~ ( O - 2 3 )  f 
~, 1 -ex-~--2h3) ] h2(0+23)(0-23) 

If  3=0,  then we obtain the propositions in Sections 3 and 4 as a special example. 
If  3 = 20, replace the expression A(h, 0, 3) by the corresponding limit. 
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6. Conclusions 

In this paper we have shown that the common assumption of an underly- 
ing model in continuous time can perfectly agree with the empirical finding of 
GARCH at all discrete frequencies. An explicit one-one relationship between 
parameters in continuous and discrete time models is available for the GARCH 
(1,1) case. A computer program evaluating these expressions is available on re- 
quest from the authors. Moreover, these relations can be used for testing and 
fast estimation, avoiding simulation techniques. The class of continuous GARCH 
models contains models with continuous as well as jumpy sample paths. Our 
results suggest straightforward tests to distinguish between these two classes. Fi- 
nally, our results provide an explanation why fat-tailed conditional distributions 
are obtained, without exception, in empirical work. 

Appendix A: Discrete time GARCH aggregation 

We introduce the following convention: an element x belongs to a set, like 
hr~ or hQ +, i fx /h belongs to N or Q+, respectively. Drost and Nijman (1993, 
Example 2) shows that the class of  weak GARCH processes is closed under 
temporal aggregation. 

Theorem A.1. Let h > 0 and suppose {y(h)t, t Eh•} is a weak GARCH process 
with parameter (h = (d/h,~h, flh, Kh). Then, for each integer m >>. 1, the process 
¢ (m) ~-~m-I 
lYimh)t = 2--~i=0 Y(h)t+ih, t E mhN} is symmetric weak GARCH with parameter 
~mh = (~lmh, O~mh, flmh, ICmh ) (with [flmhl < 1 ) determined by 

1 -- (~h'+'flh) m 
~mh=m~h 1 - - ( ~ h + f l h ) '  (A.l) 

~ m h = ( ~ h - i ' f l h )  m --flmh, (A.2) 

flmh a(~h, fib, ICh, m)(~th d- flh )m _ b(~th, flh, m) 
1 + r2  h = a(Oth, flh,/Oh, m){ 1 -F (Oth d- fib) 2m} -- 2b(Oth, flh,m)" 

(A.3) 

r h -  3 
Kmh =3 + - - +  6(rh -- 1) 

m 

× {m(l --c~h--~h)-- I -l-(~h-i-flh)'n } {~h( I --(~h"{-~h)2)"{"~2({~h"{-~h)} 
m2( 1 - -~h --  fib)2 { 1 --  (Cth d- fib)2 -I- 0t 2 } 

(A.4) 
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where 

a(~h,  ]~h, K;~, m )  

= m( 1 --/~h )2 + 2m(m -- 1 ) ( i -- ~h - - /~h)2  { 1 -- (0t,~ + / ~ h ) 2  + ~ } 
(Kh -- 1 ){  1 -- (~h + ~h)  2 } 

+ 4  {m(!--O~h--~h)--lq-(~hq-~h)m}{~h( I --(O~h q-~h )2)q-O~2(Oth q-~h )} 
1 - (o~h +]~h) 2 

1 - (~h + ~h )2n, 
b(oth,[Jh,m) = { ~ h ( l  - (~h + / t h )  2) + ~2(~,~ + / Y h ) }  ] - - ~ h  ~ "  

Let q be the transfer function corresponding to Theorem A.I that transforms 
high-frequency parameters into low-frequency ones, i.e., q((h,m)= (mh. The in- 
terpretation of  Theorem A. 1 implies q(q((h, m), n) = q((h, ran) for all integers m 
and n. Tedious calculations, using a formula handling package (e.g., Mathemat- 
ica), show that the latter equaIity also holds true if the integers m and n are 
replaced by arbitrary reals. This observation will be useful in our derivations in 
a continuous time context. E.g., if  a weak GARCH process with parameter (h 
is known to be the aggregate over m periods of  some other higher-frequency 
GARCH process, then the parameter of  the latter high-frequency process is given 
by ~h/m : q((h, I/m). If one assumes that the observed process at frequency, say, 
g is infinitely divisible, i.e., if  one assumes that for each integer m there exists 
an underlying high-frequency GARCH process such that the observed process is 
the sum over m periods of  the high-frequency process, then the transfer function 
q determines the parameters by (h = q((q,h/g) for all h E ,qQ+. 

Appendix B: Proofs of main results 

Proof of Theorem 2.1. Observe that the continuity of  the GARCH parameters 
together with the remarks at the end of  Appendix A imply that knowledge of  the 
GARCH parameter at some specific frequency, say given (, ,  completely deter- 
mines (h for all h > 0 by (h = q((,,h/g). Hence, if h, is a sequence decreasing 
to zero as n--~ ,v~, 

~h = q(~.h,,,h/hn) = lim q(~h,,h/h,,). (B.I)  

Choose the sequence h, such that 

IPh./h, 
--'~o E [0,eel. 

I - ~h,, - / h , °  

I -- ~h,, -- //h,, .0  E [ 0 , 2 ] ,  
h, 
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(1 -~h.--/~h.)Khn --,v ~ [0, c~], 

l)~h,,{ 1 - (~h. + ]Jh~) 2 } + 0C~(CZh. + ~ffh,,) 
(~:h,, 1 - (~hn + / ~ h . )  2 + ~ .  + p  E [0 ,  cx~]. 

i 

The calculations in the following equations are based on the combination of  
Theorem A.I and (B.1). 

• h +/~h = lim (~h. + ~h. )h/h. : exp(-h0) .  

Suppose ~h,, > 0 for some h0 > 0 (the case with ~h = flh = 0 for all h > 0 is sim- 
ple). Since 0 < ~h0 +fib0 < 1, this implies 0E (0,o¢). Using 0 < ,2,  one obtains 
in a similar manner 

~bh = h~{ I - exp(-h0)} ,  

with oJ E (0, c~), and 

v 6 e x p ( - h 0 ) -  ! + hO 
p (B.2) 

By the weak GARCH assumption xh is finite for each h, implying v E [0, oo) and 
p E [0, c¢). Observe that, for each frequency h, explicit formulas of  ~kh, ~h + fib, 
and xh are obtained only depending upon the limiting variables 09, 0, v, and p. 
This shows that these limits cannot depend upon the chosen sequence; the same 
values are obtained for all sequences tending to zero. The proof is completed by 
noting that limh--~ ElYt+h - Ytla/h 2 = 3co 2 and 

o r  

limElYt+h -- Ytl4/h2 =l imxh hlo 1 -- ~h__/ho~h -- ~h ) 2 = 3(! + p)°92 

limElYt+h-- ytl4/h=limhxh hlO I -~--~bh/h Phil2 

if  xh is bounded or unbounded near h = 0, respectively. 

= vco2/O 

[] 

Proof o f  Proposition 3.1. We continue with the proof of  Theorem 2.1 as starting 
point and consider the class of  GARCH processes with bounded kurtosis, i.e., 
v = 0. Two of  the required relations are already obtained. Suppose that, along the 
sequence hn, w e  also have 

1 - ~h,, - Bh,, 
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The proof of  the proposition is complete if  the relation for fin and the restrictions 
2 E (0, 1 ) and p = 2/(i - 2) are proven. Similar to the calculations above we 
obtain 

a(~h,,, finn, xn,, h/hn ) ~ h02 + h2022/p + 22{exp(-h0) - 1 + hO} , (B.3) 

b(~n,, fin,, h/h,  ) ~ h O2 1 - exp(-2h0) 
' 2hO ' 

(B.4) 

where the functions a and b are given in Theorem A.1. Suppose that 2 = 0 
(thus p = 0). Then the limit of  the b function equals zero while the limit of 
the a function is still positive (possibly infinite). Hence the aggregation formula 
for fl in Theorem A.1 implies ill, = limn.-~ ~tj, n + finn = 1 for all h > 0. This 
is in contradiction with the weak GARCH assumption. Using 2 > 0 and the 
aggregation formula for x, this implies that xnn ~ too E [0,c~) as n---, c~, and, 
moreover, that p = (to0 - 1)2/(2 + 2). Plugging in this value for p into (B.2) 
and taking the limit on both sides for h ~ 0 yields no = 3/(1 - 2) and hence 
2 < I. This yields the desired value~ for p and xn. Finally insert p into the limit 
of  the a function in (B.3) and obtain the value cn. This proves the parameter 
configuration for GARCH diffusions. [] 

Remark  B. 1. Suppose { Yt, t >1 0} has continuous sample paths. Then a continu- 
ity condition on f ( h ) =  El Yn - Yol 4 is equivalent to Assumption A. Proof: let h, 
be a sequence with h,--*h as n ~ c ~ .  Since f ( h , : ) ~ f ( h )  we obtain from Theo- 
rem 5.4 in Billingsley (1968) that the sequence lYnn- Y014 is uniformly integrable. 
Using 

labll{labl>L ~ <~ [al21llal>v,Z) + Ibl21llbl>v,Z}, 

this also implies uniform integrability of  ](Yhn - Yo) (Y (m+l )h .  - Ymh. ) l  2 for each 
m E N. Since fi, - Y0 is continuous the autocovariances of  {[Yt+n - Yt[ 2, t E h N }  
are continuous functions of  h. Finally, as the parameter (h = (~bh,~n,/ln, tCn) is 
a continuous function of  the autocovariances, we obtain the desired continuity 
o f  ~n. 

P r o o f  o f  Proposition 4.1. This proof is completely similar to the proof of  Propo~ 
sition 3.1 by requiring 

1 - ~ h , , - - f l h o  

(Re-)consideration of  the sequences hlf l a(~h,, ilia,,, tqh,,, h/hn ) and h~ I b(Oth,,, fib,,, h/hn ) 
proves the result. The details are omitted. [] 
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Appendix C: Proofs  o f  examples 

Proof of  Examples 3.1 and 4.1. We consider solutions of  

dYt = a t -  dLt, (C.1) 

da 2 = 0(oJ - t r 2 ) d t  + 2V/~a~_ dM,, (C.2) 

where {Lt,  t >1 0} and {Mr, t >1 0} are independent standardized L6vy processes 
such that {Lt} is symmetric, ELt 2 = EMt 2 = t, and xt L = EL4/t 2 exists and where 
to > 0, 0 > 0, and ~/E (0, 1). We consider covariance stationary solutions of  
{at 2, t /> 0}, i.e., Ea~ and Ea 4 are constant over time. Let Yo = 0 and de- 
fine the filtration ~ t  = .~(Yo, a~,Ls, Ms, sE(O,t]),  t /> 0, and the a-field ff = 
,~(a2o,gs, s > 0). 

To show that the solution { Yt, t >i 0} is GARCH according to Definition 2.2 
we need to show that all discrete difference processes are weak GARCH or, 
equivalently, that the squares of  the differences follow an ARMA(1,1) process. 
To prove the latter statement we will show that, for each m E I~ and h E I~, 

C O v { ( Y t  - -  Yt -h )  2, (Yt-mh -- Yt-tm+l)h) 2} : Ch(oJ, O,q)exp(-mhO), (C.3) 

the autocovariances are exponentially decaying. 
First we derive some results for {at2}. Using Fatou, the martingale property of  

{Mr}, the definition of  [., .] on p. 58 of  Protter (1990) and Theorem II.20, ibid., 
and Exercise 1.5.20 of  Karatzas and Shrove (1988), we obtain, for fixed t >t 0, 

E( Mt - Mr- )2 <~ lim inf E( Mt - Mt-h )2 = lira inf E(Mt 2 - Mt2_h ) 
hi0 hi,0 

= lim inf E([M, M]t - [M, g]t-h ) = O. 
h J,o 

Hence, by Theorem If.13 of  Protter (1990), a 2 = a~_ (a.s.) and, thus, for s ~< t, 

E (a2 I.~s) = E ( a 2  I,~'s), 

E (a4 I . ~ s ) =  E (a4_ I J"s) .  

Furthermore using Fubini's theorem we obtain, for s ~< t, 

\(s, tl 

= f O( to-E(a2- i .~s) )du .  
(s, t] 
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Solving this differential equation yields, for s ~< t, 

E ( a 2 1 ~ ) =  E ( a 2  I ~ s ) = 0 9 + ( 4 - 0 9 ) e x p { - ( t - s ) O } ,  (C.4) 

implying Ea 2 = Etrtz._ =09. Using Theorem II.29 of Protter (1990) and (C.4) we 
obtain 

Ea 4 = Ea 4 = Ea4t_ 

_2 da2 = Ea~ + E[tr 2 - 0"02,0 .2 - o'02]t + 2E f o,_ , 
(0,t] 

=Ea~+2~/O f Ea~_du+2 f E{a~_O(09-a~_)}du 
(Oot] (O,t] 

= Ea~ + 2t009 2 + 2tO(t 1 - 1 )Ea 4 

= t o 2 / ( 1  - ~/), 

Eo. t20. s2 = 092 "1- 092 T-:-~r/ exp(-lt  - s]O). (C.5) 

These relations about {a 2} can be used to establish, using Theorem 11.29 of 
Protter (1990) once more, 

E( Yt - Yt-h ) 2= f Ea2 du=h09 
(t-h,t] 

and, by repeated use of the arguments above, 

E{(Yt- Yt-h )2( yt-mh - Yt-(m+ l )h ) 2} 

= E { E  ((Y,  - Yt_h) 2 [ ~ , - m h )  (g t -mh -- gt-(m+" I)h )2 } 

=E{( f l a2 -duE(Y , -mh-Y , - (m+l )h )2  ' (#) } 

/ } =E (h09 + (tr2mh -- 09) -~ exp(-mhO) ) f tr2_du 
(t-(m+ I )h, t-mh] 

=h2092 + exp(h0) - I exp(-mhO) f E{(aL . ,h  - 09)a~_ }du 
0 (t-(m+ I )h, t-mhl 

exp(h0) - 1 exp(_mhO)to2~_____~_ 1 - exp(-h0) 
0 l - t /  0 

=h209 2 + 
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Hence (C.3) follows. The process defined by (C.l) and (C.2) is GARCH with 
parameter, say, (~=($h v, oe~', fl~, r~' ). In particular this implies that {Lr} is GARCH 

• L _ _  L L L L __ * with parameter ~ h -  (~b~.,~h,/~h,t%)--(h, 0, 0, 3 + vL/h). 
Next we will derive the characterizing coefficients of {Y t}. Two values are 

easily derived from the relations above: 

6~ = E(Yt - Vt-h)2 = ho, 
1 - % 

= c o v { ( V ,  - V , _ h ) 2 , ( r , _ 2 h  - -  V,_3h) 2} 
c o v { ( V t  - r t_h)2,(Vt_h -- Y t _ 2 h )  2 }  = e x p ( - h 0 ) .  

It remains to derive 2 if {Lt} is Brownian motion and v and $ in all other 
situations. To obtain these parameters we will consider the kurtosis of Yt - Yt-h. 
Define 

2" - I 

S n = ~ at_h+ih 2-,(Lt_h+(i+l)h2-,, -- Lt_h+ih2-n ), n E [~. 
i = 0  

If {S,,} is a Cauchy sequence in Lea, then, by Theorem II.21 of Protter (1990), 

So 4 Yt - Yt-h. Hence, using (C.5), 

~ = E(Y, - Y,_h)"/h202 
= lim ES2/h202 

~ ---'*OO 

2 ° -  I 

= lim ~ e{c74_h+ih2-,,(Lt_h+(i+l)h2-, - -  Lt-h+ih2- ')4}/ / /202 
/I ~ c x ~  i = 0  

2 " - -  1 2 " - -  I 
+6 lim ~ ~ 2 2 E { a t -h+ih2-', et  -h+jh2-" (Lt - h + ( i +  I )h2 - " - -  Lt -h+ih2 - ,  )2 

n---.cx~ i = 0  j = i + l  

x(Lt-h+U+l)h2-" -- Lt-h+jh2-" )2}/h202 
2 ' ~ -  I 

= l im  ~ ( I  - r / ) - I x~2_ ,2  -2"  
n -.-~0,o i = 0  

+6 lira ~ ~ 1+ e x p ( - ( j - i ) h 2 - n O )  2 -2 "  
n -.-*cx~ i = 0  j = i + l  

v___.._~ + 6 t/ e x p ( - h 0 ) -  I + hO 
3 + 

(1 - tl )h l - i 1 h202 " 

and we obtain the desired relationships for 2, v, and $. 
To complete the proof we establish EISn - Sm]4-'oO. Note, for m > n, 

2 '~- I 2 m- ' -  I 
Sn - Sn, = E E (¢Yt-h+ih2-" -- ITt-h+ih2-"+jh2-m ) 

i~-O j=O 

x ( Lt-h+ih2-"+(j+l ) h 2 - "  - -  Lt-h+ih2-'+jh2-" ). 
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Using, for a, b/> O, ( a -  b) 4 ~< (a 2 -  b2) 2, (C.5), and Cauchy-Schwarz we obtain 

2"-- I 2"-"-- I 
4 2 --2m EISn-Sml  4 = ~ ~ E(tTt_h+ih2-.- at_h+ih2-o+jh2- . ,  ) K~h2-.,h 2 

i=0 j=O 

2"-- 1 2 m-n -  I 2"-- 1 2 m-n -  I 

i=0 j=O p=i q=(j+l)bi,=p 
E { ( cTt_h+ih2_. __ at_h+ih2_,%j h2-m )2 

X(CTt_h+ph2_" ~ x2/L2.~-2m --  Ut_h+ph2-n+qh2-m ) i u  z. 

2 m-n -  I f 
~<h2~2  r/ 2n_m ~ ( l - e x p ( - j h 2 - m ) ) ~ 3 +  v~ "[2_ m 

1 - r/ j=o h2 -m J 

2 m-'~ -- I 1 +3h2to2~--~ 2 n-m ~ (1 - exp( - jh2-m))  I/2 
- -  j = O  

4 0 ,  

as m >~ n---,oo. [] 

Appendix D: Some additional formulas 

The coefficients oh and bh in Eq. (5.4) for GARCtt diffusions and GARCH 
jump-diffusions are determined by 

C C C C ah = --ajdh,  bh = bh/d h , 

and 

a,, 

respectively, where 

at ,c = 2h2 exp{ -h (  0 + 2z)} - exp(-4h3)  + h( O - 23 ~, I-expt-ahOah, 
h2(O + 2z)(O - 2z) 

+h( l  - 2) (1  - exp( -2hQ'~  2 
/ '  

~b)exp{-h(O + 2z)} - e x p ( - 4 h O  + h(O - 23) t-~p¢-4hO4h~ 
~, = 2h05(2 + h2(O + 23)(0 - 2z) 

+2hOv-t ( l - exp(-2h3) ~ 2 
2h3 ] + 

1 - e x p ( - 4 h Q  
4h3 
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{ b~ = (---~_ 2z)2- {1 + exp(-2hO)} 1 - exp(-4hQ 
4h~ 

+{ 1 + exp(-4hQ} 1 - exp(-2hO) 
2hO 

-211 + exp{-h(O + 2z)}] 1 - exp{-h(O + 2z)} "[ 
h(O + 2z) J 

02~2 { 
~ - ( 0 -  202 {1 + exp(-2hO)} 1 - exp(-4hQ 

4hz 

+{l + exp(-4hz)} 1 - exp(-2hO) 
2hO 

-211 + exp{-h(O + 2z)}] 1 - exp{-h(O + 2z)} 
J 

Oq~ {2{ 1 + exp(-2hO)} 1 - exp(-4hz) 
-t (O=2z) 4h, 

- 211 + exp{-h(O + 2Q}] 1 - exp{-h(O + 23)} "[ 
j ,  

20 { (1 - exp(-4hQ 1 - exp{-h(O + 2Q})  
d ~ - ( O _ 2 z )  2 exp(-hO) 4hz - h(O + 2 0  

+ e x p ( _ 2 h Q ( 1 - e x p ( - 2 h O ) _  1 - exp{-h(O + 2"r)}) } 
2hO h(O + 2z) " 

• 02~ 2 { (1 - exp(-4hz) l - e x p { - h ( O + 2 z ) } )  
d ~ - - ~ ( 0 ~ ) 2  exp(-hO) 4hz - h(O+2z) 

+ exp(-2hz) ( 1 - exp(-2hO) 1 - exp{-h(O + 23)} "~ "[ 
2hO - -h-~ 7 " ~  ] J 

O~b f 1 - exp(-4hz) 
-~ _---Z-2z ) [2exp(-hO) 

(0 4hz 

- {exp(-hO) + exp(-2hQ} 1 - exp{-h(O + 23)} "[ 

If zero's appear in the denominators due to z = 0 or 0 = 2z, then one should 
take the corresponding limits to obtain ah and bh. 
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