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Abstract 

A graph G has constant # = #(G) if any two vertices that are not adjacent have # common 
neighbours. G has constant/~ and fi if G has constant ~ = #(G), and its complement G has 
constant fi = #(G). If such a graph is regular, then it is strongly regular, otherwise precisely two 
vertex degrees occur. We shall prove that a connected graph has constant # and fi if and only if 
it has two distinct nonzero Laplace eigenvalues. This leads to strong conditions for existence. 
Several constructions are given and characterized. A list of feasible parameter sets for graphs 
with at most 40 vertices is generated. 

1. Introduction 

We say that  a noncomplete  graph G has constant/~ =/~(G) if any two vertices that 

are not  adjacent have p c o m m o n  neighbours. A graph G has constant/~ and / i  if G has 

constant/~ = #(G), and its complement  G has constant/~ = #(G). It turns out that  only 

two vertex degrees can occur. Moreover ,  we shall prove that a graph has constant  

It a n d / i  if and only if it has two distinct restricted Laplace eigenvalues. The Laplace 

eigenvalues of a graph are the eigenvalues of its Laplace matrix. This is a square 

matrix Q indexed by the vertices, with Qxx = dx, the vertex degree of  x, Q~y = - 1 if 

x and y are adjacent, and Qxr -- 0 if x and y are not adjacent. Note  that if G has 

v vertices and Laplace matrix Q, then its complement  G has Laplace matrix 

v l  - J - Q (where I is an identity matrix and J is an all-one matrix). Since the Laplace 

matrix has row sums zero, it has an eigenvalue 0 with the all-one vector as eigenvector. 

The eigenvalues with eigenvectors or thogonal  to the all-one vector are called re- 

stricted (for a connected graph the restricted Laplace eigenvalues are just the nonzero  

ones). The restricted multiplicity of an eigenvalue is the dimension of the eigenspace 

or thogonal  to the all-one vector. For  more  on the Laplace matrix we refer to [5]. Note  
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that the graphs with one restricted Laplace eigenvalue are the complete and the empty 

graphs. 

Graphs with constant It and fi form a common generalization of two known families 

of graphs. The regular ones are precisely the strongly regular graphs and for It = 1 we 
have the (nontrivial) geodetic graphs of diameter two. 

Some similarities with so-called neighbourhood-regular or FA-regular graphs (see 
[8, 10]) occur. These graphs can be defined as graphs G with constant 2 and 2, that is, 

in G any two adjacent vertices have 2 common neighbours, and in 6 any two adjacent 

vertices have 2 common neighbours. In such graphs also only two vertex degrees can 
occur, but there is no easy algebraic characterization. 

2. Laplace eigenvalues and vertex degrees 

In this section we shall derive some basic properties of graphs with constant It and 
/2. We start with an algebraic characterization. 

Theorem 2.1. L e t  G be a graph on v vertices.  Then  G has cons tant  It and fi i f  and only 

i f  G has two dist inct  restr ic ted Laplace  eigenvalues 01 and 02. I f  so then only  two 

ver tex  degrees k l  and k2 can occur, and 01 + 02 = ks + k2 + 1 = It + v -  fi and 

0102 = k l k2  + It = Itv. 

Proof. Let G have Laplace matrix Q. Suppose that G has two distinct restricted 

Laplace eigenvalues 01 and 02. Then ( Q -  O s I ) ( Q - 0 2 I )  has spectrum {[OsO2] s, 

[0] ~-s} and row sums 0s02, so it follows that (Q - O f lXQ - 021) = (0102/v)J. I f x  is 
not adjacent to y, so Qxy = 0 then Q~y = OsOz/v, and so p = OsO2/v is constant. Since 

the complement of G has distinct restricted Laplace eigenvalues v - 01 and v - 02, it 

follows that fi = (v - O0(v - 02)Iv is also constant. 
Now suppose that It and fi are constant. If  x and y are adjacent then 

(vI  - J - Q)Zy = fi, so fi = (v2I  + vJ  + Q2 _ 2vJ  - 2vQ)~y = QZy + v, and if x and 

y are not adjacent, then Q~y = It. Furthermore Qx2x = d~ + d ,  where d~ is the vertex 

degree of x. Now 

Q2 -_ (fi _ v)(diag(dx) - Q) + I t(J  - I - diag(d~) + Q) + diag(d 2 + dx) 

= ( i t + v - f i ) Q + d i a g ( d ~  2 - d x ( I t + v - f i -  1 ) - # ) + l t d .  

Since Q and Q2 have row sums zero, it follows that d 2 - dx(# + v - fi - 1) - p + 

Itv = 0 for every vertex x. So Q 2  _ ( #  + V - -  f i ) Q  + ItVI = #J.  Now let 01 and 02 be 
such that 01 + 02 = It + v - fi and 0102 = pv, then (Q - OII)(Q - 02I)  = (Ox02/v)J, 

so G has distinct restricted Laplace eigenvalues 0s and 02. As a side result we obtained 
that all vertex degrees dx satisfy the same quadratic equation, thus d~ can only take 
two values kl and k 2 ,  and the formulas readily follow. [] 
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If the restricted Laplace  eigenvalues are not  integral, then they must  have the same 
multiplicities ml = m2 = l (v  - 1). If  the Laplace  eigenvalues are integral, then their 

multiplicities are not  necessarily fixed by v,/~ and ft. For  example,  there are graphs  on 
16 vertices with cons tant  /~ = 2 and fi = 6 with Laplace spec t rum {[8] m, [4] 15-",  

[0] 1 } for m =  5, 6, 7, S a n d 9 .  

The  following l emma implies that  the numbers  of vertices of the respective degrees 

follow from the Laplace  spectrum. 

L e m m a  2.2. Let G be a graph on v vertices with two distinct restricted Laplace 

eigenvalues OL and 02 with restricted multiplicities ml and mE, respectively. Suppose 

there are nl vertices of  degree ka and n2 vertices of degree k 2. Then ml + m2 + 1 = 

n 1 q- n 2 = V and mxO~ + m202 -~ nlkl  + n2k2. 

Proof. The first equat ion is trivial, the second follows f rom the trace of the Laplace 

matrix.  [] 

The  number  of  c o m m o n  neighbours  of  two adjacent  vertices is in general not  

constant ,  but depends on the degrees of the vertices. 

L e m m a  2.3. Let G be a graph with constant # and fi, and vertex degrees ka and k2. 

Suppose x and y are two adjacent vertices. Then the number of common neighbours 2xr of 

x and y equals 

211 = p - -  1 + k l - k 2  

2~y= 212 / ~ - 1  

222 / ~ - 1  + k 2  kl 

if x and y both have degree kl, 

if x and y have different degrees, 

if x and y both have degree k2. 

Proof. Suppose x and y have vertex degrees dx and dy, respectively. The  number  of 

vertices that  are not  adjacent  to both  x and y equals ft. The  number  of vertices 
adjacent  to x but not  to y equals dx - 1 - 2~y, and the number  of  vertices adjacent  to 

y b u t n o t  t o x e q u a l s d  r - l - 2 ~ y .  Now we have t h a t v = 2 + 2 x r + f i + d ~ - l -  

2~ r + dy - 1 - 2xy. Thus  2xr = 12 - v + d~ + d r. By using that  kl + k 2  = fl q- V - -  

/7 - 1, the result follows. [] 

Both Theo rem 2.1 and L e m m a  2.3 imply the following. 

Corol lary 2.4. A graph with constant p and fi is regular if and only if it is s t rongly 
regular. [] 

Observe  that  G is regular  if and only if (p + v - fi - 1) / = 4#(v - 1) or  nl = 0 or 
n2 = 0. Since we can express all pa ramete rs  in terms of the Laplace  spectrum, it 
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follows that it can be recognized from the Laplace spectrum whether a graph is 
strongly regular or not. This also follows from the fact that regularity of a graph 
follows from its Laplace spectrum. 

Before proving the next lemma we first look at the disconnected graphs. Since the 
number of components of a graph equals the multiplicity of its Laplace eigenvalue 0, 
a graph with constant /~ and fi is disconnected if and only if one of its restricted 
Laplace eigenvalues equals 0. Consequently this is the case if and only if # = 0. So in 
a disconnected graph G with constant/ t  and fi any two vertices that are not adjacent 
have no common neighbours. This implies that two vertices that are not adjacent are 
in distinct components of G. So G is a disjoint union of cliques. Since the only two 
vertex degrees that can occur are v fi 1 and 0, G is a disjoint union of (v - /~)-  
cliques and isolated vertices. 

Lemma 2.5. Let G be a 9raph with two restricted Laplace eigenvalues O1 > 02 and 
vertex degrees kl >~ k2. Then 01 - 1 >~ kl >~ k2 >~ 02, with k 2 = 02 if and only if G or 
G is disconnected. 

Proof. Assume that G is not regular, otherwise G is strongly regular and the result 
easily follows. First, suppose that the induced graph on the vertices of degree kl is not 
a coclique. So there are two vertices of degree kl that are adjacent. Then the 2 × 2 
submatrix of the Laplace matrix Q of G induced by these two vertices has eigenvalues 

kl _+ 1, and since these interlace (cf. [-93) the eigenvalues of Q, we have that 
kl + 1 ~< 01. Since kl + k2 + 1 = 0K + 02, then also k2 >~ 02. 

Next, suppose that the induced graph on the vertices of degree k 2 is not a clique. So 
there are two vertices of degree k 2 that are not adjacent. Now the 2 x 2 submatrix of 
Q induced by these two vertices has two eigenvalues k2, and since these also interlace 
the eigenvalues of Q, we have that k2/> 02, and then also 0K -- 1 >~ kl. 

The remaining case is that the induced graph on the vertices of degree kl is a 
coclique and the induced graph on the vertices of degree k 2 is a clique. Suppose we 
have such a graph. Since a vertex of degree kl only has neighbours of degree k2, and 
212 =/~ - 1, we find that kl ---/~. Since any two vertices of degree kl have # common 
neighbours, it follows that every vertex of degree kl is adjacent to every vertex of 
degree k2, and we find that k2 >~ kl, which is a contradiction. So the remaining case 
cannot occur, and we have proven the inequalities. 

Now suppose that G or (~ is disconnected. Then it follows from the observations 
before the lemma or looking at the complement that k2 = 02. On the other hand, 
suppose that k2 = 02. Then it follows that kl = 0 1 -  1 and from the equation 
0102 = klk2 + It it then follows that k2 =/~. Now take a vertex x2 of degree k2 that is 
adjacent to a vertex xl of degree kl. If there are no such vertices then G is disconnected 
and we are done. It follows that every vertex that is not adjacent to x2, is adjacent to 
all neighbours of x2, so also to xl. Since Xl and x2 have/~ - 1 common neighbours, 
xl is also adjacent to all neighbours ofx2. So x I is adjacent to all other vertices, and so 
G is disconnected. [] 
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We conclude this section with so-called Bruck-Ryser conditions. 

Proposition 2.6. Let  G be a graph with constant # and fi on v vertices, with v odd, and 

with restricted Laplace eigenvalues On and 02. Then the Diophantine equation 

X 2 = (0 n - -  02)2)22 q- ( - -  1)1/2( r -  1)#Z2 

has a nontrivial integral solution (x, y, z). 

Proof. Let Q be the Laplace matrix of G, then 

1 (Q - ½(01 + 02)I)(Q - ~(0, + 02)I) T 

1 
_-- Q2 _ (01 + 02 )Q  + ~(01 + 02)21 

p J  n t- (¼(01 + 02) 2 0102)1 1 = _ = 2(01 - 02)21 + llJ.  

1 Since Q - ~(01 + 02)1 is a rational matrix, it follows from a lemma by Bruck and 
Ryser (cf. [2]) that the Diophantine equation 

X 2 =  1 ~(01 - -  02)2y 2 + ( - -  l )  1 /2(r -  1)~Z2 

has a nontrivial integral solution, which is equivalent to stating that the Diophantine 
equation above has a nontrivial integral solution. [] 

3. Cocl iques  

If kl - k2 > ].t - -  1, then the induced graph on the set of vertices of degree k 2 is 
a coclique, since two adjacent vertices of degree k 2 would have a negative number 
222 of common neighbours. It turns out (see the table in Section 9) that this is the case 
in many examples. Therefore we shall have a closer look at cocliques. If G is a graph, 
then we denote by ~(G) the maximal size of a coclique in G. 

Lemma 3.1. Let G be a graph on v vertices with largest Laplace eigenvalue Ox and 

smallest vertex degree k2. Then 7(G) <~ v(01 - k2)/01. 

Proof. Let C be a coclique of size c~(G). Partition the vertices of G into C and the set of 
vertices not in C, and partition the Laplace matrix Q of G according to this partition 
of the vertices. Let B be the matrix of average row sums of the blocks of Q, then 

B = _ k - - a ( G )  
v ~(G) k 

- v - 

where k is the average degree of the vertices in C. Since B has eigenvalues 0 and 
kv/(v - c~(G)), and since these interlace the eigenvalues of Q (cf. [9]), we have that 
kv/(v - c~(G)) ~< 01. The result now follows from the fact that k2 ~< k. [] 
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Another bound is given by the multiplicities of the eigenvalues. 

Lemma 3.2. Let G be a connected graph with Laplace spectrum {[01]"', [02] "2, [011}, 
where 01 > 02 > O, such that G is also connected. Then ~(G) <~ rain{m1, m2 + 1}. 

Proof. Suppose C is a coclique with size greater than ma. Consider the submatrix 
of the Laplace matrix Q induced by the vertices of C. This matrix only has eigen- 
values kl and k2, and since these interlace the eigenvalues of Q, we find that k 2 ~< 82. 

This is in contradiction with Lemma 2.5, since G and G are connected. If C is 
a coclique of size greater than m2 + 1, we find by interlacing that kl >~ 01, which is 
again a contradiction. [] 

As remarked before, if G is a graph with constant p and/7 with 2 2 2  <~ 0 ,  then the 
vertices of degree k2 form a coclique. If this is the case, then n2 ~< m2, and we know the 
adjacency spectrum of the induced graph on the vertices of degree kx. 

Proposition 3.3. Let G be a connected graph with Laplace spectrum 
{[81] "1, [82] "2, [011}, where 01 > 82 > O, such that G is also connected. Suppose that 

the n2 vertices of degree k2 induce a coclique, then n2 <~ m2, and the nx vertices of degree 
kl induce a graph with adjacency spectrum {[21] 1, [ k l -  82] m2-"~, [22] 1, [ - 1 ]  "2-1, 
[ k l -  81]"'-"2}, where 21 and 22 are such that 22 + 22 = n l k l -  n 2 k 2 -  ( m 2 -  n2) 
( k  1 - -  82 )  2 - -  (n 2 - -  1) - -  (ml - nz)(kl - -  8 1 )  2 and 21 -~ 22 = kl - 1. 

Proof. The adjacency matrix A1 of the graph induced by the vertices of degree kl is 
a submatrix of the matrix k l I  - Q, where Q is the Laplace matrix of G. From 
interlacing it follows that A1 has second largest eigenvalue k, - 02 with multiplicity at 
least m 2 - -  n2 and smallest eigenvalue kl - 81 with multiplicity at least ml - n2. Note 
that we did not use here that the vertices of degree k 2 induce a coclique. Now let 

° 

be the adjacency matrix of G, where the partition is induced by the degrees of 
the vertices. Two vertices of degrees k2 have p common neighbours, so 
N N  ~ = k2I + p(J  - I). A vertex of degree k2 and a vertex of degree kl have p - 1 or 
p common neighbours, depending on whether they are adjacent or not, so 
NA1 = #J - N. Let {viii = 1 . . . . .  n2} be an orthonormal set of eigenvectors of N N  T, 
with vl the constant vector, then NNXvl = (k2 -/ l)vi ,  i = 2 . . . . . .  n2. Now 

Al(NVvl) = (NA1)Vvi = (p - -  N ) T V i  = - -  N T v i ,  i = 2,, ... ,he. 

Since k 2 > / /  (otherwise G or d is disconnected), it follows that A1 has - 1  as an 
eigenvalue with multiplicity at least n2 - 1 .  
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By Lemma 3.2 we have r/2 ~< m 2 + 1. Suppose that n 2 = m 2 q- 1. Then nl = m~ and it 
follows that A~ has spectrum {[21] 1, [ - 1 ]  "2-1, [ k l -  01] m'-"2} for some 21. Since 
AI has zero trace, and using Lemma 2.5, we have 21 = n 2 -  1 + ( m l -  n2) 
(01 - k~) > nl - 1 ,  which is a contradiction. Hence n2 ~< m2. Now let 21 >~ 22 be the 
remaining two eigenvalues of A1. These eigenvalues (i.e., the equations in the state- 
ment) follow from the trace of A1 and the trace of A 2. Since 21 ~< kl (interlacing), it 

follows that 22 ~> - 1 .  [] 

If the vertices of degree k 2 form a coclique, then Lemma 3.1 implies that 

n2 <~ v(01 - k 2 ) / 0 1 .  

If this bound is tight, then it follows from tight interlacing that the partition of the 
vertices into vertices of degree k~ and vertices of degree k2 is regular, that is, every 
block in the partitioned matrix in the proofs of Lemmas 3.1 and 3.3 has constant row 
sums. So N is the incidence matrix of a 2-(nz, x, 11) design, where x = n z k 2 / n l .  

Furthermore, the adjacency matrix of the induced graph G~ on the vertices of degree 
k~ has spectrum 

{ [ k ,  - ~ ] I ,  [ k l  - 0~] ~ +  ~-"~, [ - I ]  "~- 1, [ k ,  - 0~] m'-"~} 

so G~ is a regular graph with at most four eigenvalues. It follows from the multiplic- 
ities that 0~ and 02 must be integral. 

In this way it can be proved that there is no graph on 25 vertices with constant 
11 = 2 and/7 = 12, with 10 vertices of degree 6. These 10 vertices induce a coclique for 
which the bound is tight. The induced graph on the remaining 15 vertices has 
spectrum {[4] 1, [3] 3, [--1"] 9, [--212},  but such a graph cannot exist (cf. [7]). 

Examples for which the bound is tight are obtained by taking an affine plane for the 
design and a disjoint union of cliques for G1. This is family b of Section 4. Another 
example is constructed from a polarity with qx/-q + 1 absolute points in PG(2, q) 
where q is the square of a prime power (cf. Section 5). 

In Section 6 we find a large family of graphs for which the bound of Lemma 3.2 is 
tight. 

Also if 222 = 0, so that the vertices of degree k2 do not necessarily form a coclique, 
we find a bound on the number of vertices n2 of degree k2. 

Lemma 3.4. I f  k l  - k z  >~ p - 1, t hen  n 2 <~ v - -  I 1. 

Proof. Fix a vertex xl  of degree kl. If xl has no neighbours of degree k2 then 
nl ~> k~ + 1 >~ p + k2 ~> 11, and so n2 ~< v - p. If x~ has a neighbour x2 of degree k2, 
then x~ and x2 cannot have a common neighbour Y2 of degree k2, since otherwise 
x2 and Y2 have a common neighbour x~, so that 0 >~ p - 1  + k2 - kl = 222 > 0, 
which is a contradiction. So all common neighbours of Xa and x2 have degree kl, so 

n~ ~> /~12 + 1 = p, and so n2 <~ v - -  11. [ ]  
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4. Geodetic graphs of diameter two 

A geodetic graph is a graph in which any two vertices are connected by a unique 
shortest path. Thus a geodetic graph of diameter two is a graph with constant/t  = 1. It 
is proved (see I-3, Theorem 1.17.1]) that if G is a geodetic graph of diameter two, then 
either 

(i) G contains a vertex adjacent to all other vertices, or 
(ii) G is strongly regular, or 

(iii) precisely two vertex degrees kl > k2 occur. If X1 and X2 denote the sets of 
vertices with degrees kl and kz, respectively, then X2 induces a coclique, maximal 
cliques meeting both X1 and X2 have size two, and maximal cliques contained in 
X1 have size kl - k2 + 2. Moreover, v = klk 2 + 1. 

If G is of type (i), then G need not have constant/7. Note that its complement is 
disconnected, so see Section 2. If G is of type (ii), then clearly it has constant/7. Now 
suppose that G is of type (iii). Since/~ = 1, every edge is in a unique maximal clique. 
Let x and y be two adjacent vertices, then x and y cannot both be in X2. If one is in 
X1, and the other in X2, then they have no common neighbour, since maximal cliques 
meeting both X1 and X 2 have size 2. So 212 = 0 and then /[~12 ~---/-)- k l -  k2- If 
both x and y are in X1, then by the previous argument they have no common 
neighbours in X2, and since every maximal clique contained in X1 has size 
kl - k2 + 2, they have kl - k2 common neighbours in X1. So 211 = kl - k2, and 
then also 1711 = v - kl - k2. So G has constant ft. 

The following four families of graphs are all known examples of type (iii). 
(a) Take a clique and a coclique of size kl, and an extra vertex. Join the vertices of 

the clique and the coclique by a matching, and join the extra vertex to every vertex of 
the coclique (see also Section 6). 

(b) Take an affine plane. Take as vertices the points and lines of the plane. A point 
is adjacent to a line if it is on the line, and two lines are adjacent if they are parallel. 

(c) Take the previous example and add the parallel classes to the vertices. Join each 
line to the parallel class it is in, and join all parallel classes mutually. 

(d) Take a projective plane with a polarity a. Take as vertices the points of the 
plane, and join two points x and y if x is on the line y" (cf. Section 5). 

5. Symmetric designs with a polarity 

Let D be a symmetric design. A polarity of D is a one-one correspondence tr between 
its points and blocks such that for any point p and any block b we have that p ~ b if 
and only if b" ~ p'. A point is called absolute (with respect to ~) if p ~ p~. Now D has 
a polarity if and only if it has a symmetric incidence matrix A. An absolute point 
corresponds to a one on the diagonal of A. 

Suppose that D is a symmetric 2-(v, k, 2) design with a polarity tr. Let G = P(D) 
be the graph on the points of D, where two distinct points x and y are adjacent if 
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x ~ yL Then the only vertex degrees that can occur are k and k - 1. The number of 
vertices with degree k - 1  is the number of absolute points of or. Let A be the 
corresponding symmetric incidence matrix, then Q = k l  - A is the Laplace matrix of 
G. Since A is a symmetric incidence matrix of D, we find that ( k l  - Q)2 = A 2 = 
A A  T = (k - }L)I + 2J ,  so Q2 _ 2kQ + ( k  2 - k -t- Z)I = 2J. Thus Q has two distinct 

restricted eigenvalues k + x f l k -  2. The converse is also true. 

Theorem 5.1. Le t  G be a 9raph with cons tant  p and [t on v vertices,  with ver tex  degrees 

k and k - 1 .  Then  G comes f r o m  a symmetr ic  2-(v, k, It) design with a polarity.  

Proof. Let G have restricted Laplace eigenvalues 01 and 02, then 01 + 0 2  = 2k and 
=- 0102/v  = k(k  - 1)/(v -1).  Hence we have that Q2 _ 2kQ + v t t l =  l~J. Now let 

A = k l - Q ,  then A is a symmetric (0,1)-matrix with row sums k, and 
A A  1" = A 2 = k2I  - 2kQ + Q2 = ( k 2  _ u].,l)I Av I tJ  = (k -- p ) I  + p J,  so A is the inci- 
dence matrix of a symmetric 2-(v, k,/~) design with a polarity. [] 

Since the polarities in the unique 2-(7, 3, 1), 2-(11, 5, 2) and 2-(13, 4, 1) designs are 
unique, the graphs we obtain from these designs are also uniquely determined by their 
parameters. 

In a projective plane of order n, where n is not a square, any polarity has n + 1 
absolute points. If n is a square, then the number of absolute points in a polarity lies 
between n + 1 and n,,fn + 1. The projective plane PG(2,  q) admits a polarity with 
q + 1 absolute points for every prime power q and a polarity with qx/-q + 1 absolute 
points whenever q is the square of a prime power. If a polarity in a projective plane of 
order n has n + 1 absolute points then the set of absolute points forms a line if n is 
even, and an oval if n is odd, that is, no three points are on one line (cf. I-2, Section 
VIII.9]). Using this, we find that there is precisely one graph from a polarity with 
5 absolute points in the projective plane of order 4, and precisely one graph from 
a polarity with 6 absolute points in the projective plane of order 5. Using the remarks 
in Section 3 we also find precisely one graph from a polarity with 9 absolute points in 
the projective plane of order 4. 

By Paley's construction of Hadamard matrices (cf. [2, Theorem 1.9.11]) we obtain 
symmetric 2-(2~(q + 1) - 1, 2~-1(q + 1) - 1, 2e-2(q + 1) - 1) designs with a polarity 
with 2e-l(q + 1) - 1 absolute points, for every odd prime power q and every e > 0. 

Furthermore, we found polarities with 0, 4, 8, 12 and 16 absolute points in a 
2-(16, 6, 2) design, a polarity in the 2-(37, 9, 2) design from the difference set (cf. [2, 
Example VI.4.3]) and a polarity with 16 absolute points in the 2-(40, 13, 4) design 
PG2(3, 3). Spence (private communication) found polarities with 3, 7, 11 and 15 
absolute points in 2-(15, 7, 3) designs, polarities in 2-(25, 9, 3) and 2-(30, 13, 3) designs, 
polarities with 5, 11, 17, 23, 29 and 35 absolute points in 2-(35, 17, 8) designs, polarities 
with 0, 6, 12, 18, 24, 30 and 36 absolute points in 2-(36, 15, 6) designs and polarities 
with 10, 16, 22, 28, 34 and 40 absolute points in 2-(40, 13, 4) designs. 
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6. Other graphs from symmetric designs 

Let D be a symmetric  2-(w, k, 4) design. Fix a point  x. We shall construct  a graph 

G = G(D) that  has constant/~ and ft. The vertices of  G are the points  and the blocks of  

D, except for the point  x. Between the points there are no edges. A point  y and a block 

b will be adjacent if and only if precisely one of  x and y is incident with b. Two blocks 

will be adjacent if and only if both  blocks are incident with x or both blocks are not  

incident with x. It is not  hard  to show that the resulting graph G has constant  

# = k - 2 and constant  fi = w - k - 1 + 4. In G the nl ---- W blocks have degrees 
k~ = w - 1, and the n2 = w - 1  points have degrees k2 = 2(k - 4). Note  that D and 

the complement  of  D give rise to the same graph G. We have the following character-  

ization of G(D). 

Theorem 6.1. Let  G be a graph with constant p and fi on 2w - 1 vertices, such that both 

G and G are connected. Suppose G has w vertices o f  degree k l, and w - 1  vertices o f  

degree k2, and suppose that the vertices o f  degree k 2 induce a coclique. Then kl = w - l, 

k2 = 2p, and G = G(D), where D is a symmetric 2-(w, k, k - p) design. 

Proof. Let 

be the adjacency matrix of  G, where the part i t ion is induced by the degrees of  the 

vertices. It follows from Lemmas  3.2 and 3.3 that ml = m2 = n2, and that  A1 has 

spectrum {[21] 1, [22] 1, [ -  1]w-E}, with 21 + 22 = kl - 1, and 21 ~> 22 ~> - 1. On  the 

other  hand, it follows from the trace of  A~ that 21 + hE = W -- 2, SO that kl = w - 1. 

Since klk2 = p(v - 1 ) ,  we then find that  k2 = 2~. 

Suppose that 22 = - 1, then 21 = w - 2 - 22 = w - 1, so A~ = J - I. But then G is 

disconnected, which is a contradict ion.  N o w  AI + I is positive semidefinite of  rank 

two with diagonal  1, and so it is the G r a m  matrix of  a set of  vectors of  length 1 in N 2, 

with mutual  inner products  0 or  1. It follows that  there can only be two distinct 

vectors, and A~ is the adjacency matrix of  a disjoint union of  two cliques, say of  sizes 

k and w - k. 

Let N = (N1N2) be part i t ioned according to the part i t ion of  A1 into two 

cliques, where N1 has k columns and N2 has w -  k columns. F r o m  the equat ion 
NA1 = p J  - N we derive that  N 1 J  = N 2 J  = ~J,  so both Nl  as N2 have row sums/~. 

N o w  let 

J - -  N 1  N2 

then M is square of  size w, with row sums k. Furthermore,  we find that  
(J  - N~) ( J  - N1) v + N2NT2 = (k -- 2/~)J + N N  T = (k - 21~)J + (k2 - / 0 I  + p J  = 



E.R. van Dam, W.H. Haemers / Discrete Mathematics 182 (1998) 293-307 303 

#I + ( k -  #)J, and so we have that M M X =  pI  + ( k - / ~ ) J ,  so M is the incidence 

matrix of a symmetric 2-(w, k, k - p) design D, and G = G(D). [] 

The matrix N that appears in the proof above is the incidence matrix of a struc- 
ture, that is called a pseudo design by Marrero and Butson [11] and a 'near- 
square' 2-1inked design by Woodall [15]. An alternative proof of Theorem 6.1 uses 
Theorem 3.4 of [11] that states that a pseudo (w 4: 4/~, k2 = 2/~,/~)-design comes from 
a symmetric design in the way described above. The problem then is to prove the 

case w = 4#, however. 
For  every orbit of the action of the automorphism group of the design D on its 

points, we get a different graph G(D) by taking the fixed point x from that orbit. Since 
the trivial 2-(kl + 1, 1, 0) (here we get family a of geodetic graphs given in Section 5), 
the 2-(7, 3, 1), the 2-(11, 5, 2) and the 2-(13, 4, 1) designs are unique and have an 
automorphism group that acts transitively on the points, the graphs we obtain are 
uniquely determined by their parameters. According to Spence (private communication), 
the five 2-(15, 7, 3) designs have respectively 1, 2, 3, 2 and 2 orbits, the three 2-(16, 6, 2) 
designs all have a transitive automorphism group, and the six 2-(19, 9, 4) designs have 
respectively 7, 5, 3, 3, 3 and 1 orbits. Thus we get precisely ten graphs on 29 vertices 
with constant/~ = 4 and fi = 10, three graphs on 31 vertices with constant/~ = 4 and 

= 11, and 22 graphs on 37 vertices with constant ~ = 5 and/~ = 13. 

7. Switching in strongly regular graphs 

Let G be a strongly regular graph with parameters (v = 2k + 1, k, 2, /~*). Fix 
a vertex x and 'switch' between the set of neighbours of x and the set of vertices 
(distinct from x) that are not neighbours of x, that is, a vertex that is adjacent to x and 
a vertex that is not adjacent to x are adjacent if and only if they are not adjacent in G. 
All other adjacencies remain the same. If the adjacency eigenvalues of G are k, r and s, 
then we obtain a graph with restricted Laplace eigenvalues 2(2 + 1 ) -  s and 
2(2 + 1) - r. The graph has constant p = k - p* = 2 + 1 and fi =/~*, and there is one 
vertex of degree k and 2k vertices of degree 2(2 + 1). Almost all examples have 
k = 2(2 + 1) = 2p*, so that we get a (strongly) regular graph. The only known (to us) 
examples for which k # 2 ( 2 + 1 )  are the triangular graph T(7) and its 
complement. (Note that from one pair of complementary graphs we get another pair of 
complementary graphs.) T(7) is the strongly regular graph on the unordered pairs {i, 
j},  i,j = 1, . . . ,  7, i # j ,  where two distinct pairs are adjacent if they intersect. From the 
complement of T(7) we get a graph with constant p = 4 and fi = 6 on 21 vertices with 
one vertex of degree 10 and 20 vertices of degree 8. The subgraph induced by the 
neighbours of the vertex x of degree 10 is the Petersen graph (the complement of T (5)). 

This construction can be reversed, that is, if G is a graph on v vertices with constant 
1 p and fi, such that there is one vertex of degree k = 7(v - 1) and 2k vertices of degree 

2p, then it must be constructed from a strongly regular graph in the above way. Since 
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T(7) is uniquely determined by its parameters, and it has a transitive automorphism 
group it follows that there is precisely one graph with constant # = 4 and/~ = 6 on 21 
vertices with one vertex of degree 10 and 20 vertices of degree 8. 

Next, let G be a strongly regular graph with parameters (v* = 2k + 1, k, 2, #*) with 
a regular partition into two parts, where one part has k2 vertices and the induced 
graph is regular of degree kz  - #* - 1, and the other part has v* - k2 vertices and the 
induced graph is regular of degree k - kL*. (Then k 2 ( k  - -  /£2 -~ ~ *  ~- i )  = (I)* - -  k 2 ) ~ * .  ) 

Add an isolated vertex to the second part and then switch with respect to this 
partition, that is, two vertices from different parts will be adjacent if and only if they 
are not adjacent in G, and two vertices from the same part will be adjacent if and only 
if they also are adjacent in G. The obtained graph has one vertex of degree k2 and 
v* vertices of degree kl = k2 "~ k - -  2p*. If the adjacency eigenvalues of G are k, r 
and s, then we obtain a graph with restricted Laplace eigenvalues kl - s and k~ - r, 
and it has constant # = k2 - I~* and/~ -- k + 1 - k2 +/~. Again, we obtain a (strong- 
ly) regular graph if k = 2/t*. 

Also here the construction can be reversed. A graph on v vertices with constant 
/~ and/~, such that/~ +/~ = ½v and there is one vertex of degree k2 must be constructed 
from a strongly regular graph in the above way. 

If we take T(7) and take for one part of the partition a 7-cycle or the disjoint union 
of a 3-cycle and a 4-cycle, then we find that there are precisely two nonisomorphic 
graphs on 22 vertices with constant/~ = 3 and fi = 8, with 21 vertices of degree 9 
and one vertex of degree 7. In T(7) there cannot be a regular partition with kz = 12 
(which is the other value satisfying the quadratic equation) since this would give a 
graph which is the complement of a graph with 222 = 0 and nl < #, contradicting 
Lemma 3.4. 

8. The number of small strongly regular graphs 

For completeness, here we shall give some results on the numbers of nonisomorphic 
strongly regular graphs with parameters (v, k, 2,/~) on v ~< 40 vertices. 

The 15 graphs with parameters (25, 12, 5, 6) and 10 graphs with parameters 
(26, 10, 3, 4) were found by Paulus [12]. An exhaustive computer search by Arlazarov 
et al. [1] showed that these are all the graphs with these parameters. In the same paper 
41 graphs with parameters (29, 14, 6, 7) were found by an incomplete search (see 
also [6]). Independent exhaustive searches by Bussemaker and Spence (cf. [14]) 
showed that these are all. Bussemaker et al. [6] also give 82 graphs with parameters 
(37, 18, 8, 9). 

According to Spence [14] there exist at least 3854 graphs with parameters 
(35, 16, 6, 8), 32548 graphs with parameters (36, 15, 6, 6) and 180 graphs with param- 
eters (36, 14, 4, 6). Spence (private communication) recently classified all graphs with 
parameters (40, 12, 2, 4): there are 28 such graphs, one more than the 27 that were 
already mentioned in [13]. 
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For other parameter sets occurring in the table in Section 9 we refer to [4]. 

9. Feasible parameter sets 

By computer we generated all feasible parameter sets for graphs on v vertices with 
constant # and/7, having restricted Laplace eigenvalues 0~ > 02 and vertex degrees 
kl>~k2, for v~<40, satisfying 0 < / ~ < 3 .  If 2 n < 0 ,  then also the condition 
n 2 <<. v ( O  1 - -  k2)/01 is satisfied. The results are given in Table 1. 

Table 1 

v ~u ,u 81 0 2 k, k 2 n~ n~ t n # Notes Section 

5 1 1 3.6180 1.3820 2 2 0 × (i) C s, G(3,1,0) 6, 8 

7 1 2 4.4142 1.5858 3 2 4 3 -i 1 G(4,1,05, P(7,3,1) 4.a,d, 5, 6 

9 1 3 5.3028 1.6972 4 2 5 4 -2 1 G(5,1,05 4.a, 6 
9 2 2 6 3 4 4 1 × (i) L2(3) 8 

i0 1 4 5 2 3 3 0 x (15 Petersen 8 

ii 1 4 6.2361 1.7639 5 2 6 5 -3 1 G(6,1,0) 4.a, 6 
ii 2 3 6.7321 3.2679 5 4 6 5 0 1 P(II,5,2) 5 

13 1 5 7.1926 1.8074 6 2 7 6 -4 1 G{7,1,05 4.a, 6 
13 1 6 5.7321 2.2679 4 3 9 4 -i 1 P(13,4,1) 4.c,d, 5 
13 2 4 7.5616 3.4384 6 4 7 6 -i 1 G(7,3,1) 6 
13 3 3 8.3028 4.6972 6 6 2 × (i) Paley(13) 8 

15 1 6 8.1623 1.8377 7 2 8 7 -5 1 G(8,1,0) 4.a, 6 
15 2 5 8.4495 3.5505 7 4 8 7 -2 0 G(D) 6 
15 3 4 9 5 7 6 1 ~ 3 (i) P(15,7,3) (T(6)) 5, 8 

16 2 6 8 4 6 5 0 ~ 4 (3) P(16,6~2) (Clebsch, 5, 8 
L~(4), Shrikhande) 

17 1 7 9.1401 1.8599 8 2 9 8 -6 1 G(9,1,0) 4.a, 6 
17 2 6 9.3723 3.6277 8 4 9 8 -3 0 Bruck-Ryser(3), G(D) 2, 6 
17 3 5 9.7913 5.2087 8 6 9 8 0 0 Bruck-Ryser(7) 2 
17 4 4 10.5616 6.4384 8 8 3 × (15 Paley(17) 8 

19 1 8 10.1231 1.8769 9 2 i0 9 -7 1 G(10,1,0) 4.a, 6 
19 1 i0 7.4495 2.5505 6 3 ii 8 -3 0 Bruck-Ryser(3) 2, 4 
19 2 7 10.3166 3.6834 9 4 i0 9 -4 0 G(D) 6 
19 4 5 11.2361 6.7639 9 8 I0 9 2 ~ 1 P(19,9,4) 5 

21 1 9 11.1098 1.8902 10 2 ii i0 -8 1 G(II,I,0) 4.a, 6 
21 1 12 7 3 5 4 -i 2 P(21,5,1) 4.b,d, 5 
21 2 8 11.2749 3.7251 10 4 ii i0 -5 0 Bruck-Ryser(3), G(D) 2, 6 
21 3 7 11.5414 5.4586 10 6 ii i0 -2 1 G(II,5,2) 6 
21 4 6 12 7 i0 8 1 ~ 1 (i) T(7), switched T(7) 7, 8 
21 5 5 12.7913 8.2087 i0 i0 4 x (0) Bruck-Ryser(3) 2, 8 

22 3 8 ii 6 9 7 0 ~ 2 switched T(7) 7 

23 1 i0 12.0990 1.9010 ii 2 12 ii -9 1 G(12,1,0) 4.a, 6 
23 2 9 12.2426 3.7574 ii 4 12 ii -6 0 G(D) 6 
23 3 8 12.4641 5.5359 Ii 6 12 ii 3 0 G(D) 6 
23 4 7 12.8284 7.1716 ii 8 12 ii 0 ? 
23 5 6 13.4495 8.5505 Ii i0 12 ii 3 ~ 1 P(23,11,5) 5 

25 1 ii 13.0902 1.9098 12 2 13 12 -i0 l G(13,1,05 4.a, 6 
25 1 15 7.7913 3.2087 6 4 16 9 -2 1 4.c 
25 2 i0 13.2170 3.7830 12 4 13 12 -7 0 G(D) 6 
25 2 12 10 5 8 6 -i ? (I) L2(5) 3, 8 
25 3 9 13.4051 5.5949 12 6 13 12 -4 1 G(13,4,1) 6 
25 3 i0 11.4495 6.5505 9 8 16 9 1 ~ 1 P(25,9,35 5 
25 5 7 14.1926 8.8074 12 i0 13 12 2 ? 
25 6 6 15 i0 12 12 5 × (155 L3(5) 8 

26 4 9 13 8 i0 i0 3 × (i0) 8 

27 1 12 14.0828 1.9172 13 2 14 13 -ii 1 G(14,1,0) 4.a, 6 
27 2 ii 14.1962 3.8038 13 4 14 13 -8 0 G(D) 6 
27 3 I0 14.3589 5.6411 13 6 14 13 -5 0 G(D) 6 
27 5 8 15 9 13 i0 1 ? (I) Schlafli 8 
27 6 7 15.6458 10.3542 13 12 14 13 4 ~ 1 P(27,13,6) 5 

28 4 i0 14 8 12 9 0 ? (4) T(8), Chang 8 
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Table 1. Continued. 

v ,u ~ 0~ O 2 k~ k 2 n~ n 2 3.22 # Notes Section 

29 1 13 15.0765 1.9235 14 2 15 14 -12 1 
29 2 12 15.1789 3.8211 14 4 15 14 -9 0 
29 2 15 10.4495 5.5505 8 7 21 8 0 0 
29 3 ii 15.3218 5.6782 14 6 15 14 -6 0 
29 4 I0 15.5311 7.4689 14 8 15 14 -3 I0 
29 5 9 15.8541 9.1459 14 i0 15 14 0 ? 
29 6 8 16.3723 10.6277 14 12 15 14 3 0 
29 7 7 17.1926 11.8074 14 14 6 × (41) 

31 1 14 16.0711 1.9289 15 2 16 15 -13 1 
31 1 20 8.2361 3.7639 6 5 25 6 -i 1 
31 2 13 16.1644 3.8356 15 4 16 15 -i0 0 
31 3 12 16.2915 5.7085 15 6 16 15 -7 0 
31 3 14 12.6458 7.3542 10 9 21 i0 1 ~ 1 
31 4 ii 16.4721 7.5279 15 8 16 15 -4 3 
31 6 9 17.1623 10.8377 15 12 16 15 2 ? 
31 7 8 17.8284 12.1716 15 14 16 15 5 ~ 1 

33 1 15 17.0664 1.9336 16 2 17 16 -14 1 
33 1 21 9.5414 3.4586 8 4 19 14 -4 0 
33 2 14 17.1521 3.8479 16 4 17 16 -ii 0 
33 3 13 17.2663 5.7337 16 6 17 16 -8 0 
33 4 12 17.4244 7.5756 16 8 17 16 -5 0 
33 6 10 18 ii 16 12 1 ? 
33 7 9 18.5414 12.4586 16 14 17 16 4 ? 
33 8 8 19.3723 13.6277 16 16 7 × (0) 

34 5 12 17 i0 15 ii 0 ? 

35 1 16 18.0623 1.9377 17 2 18 17 -15 1 
35 2 15 18.1414 3.8586 17 4 18 17 -12 0 
35 3 14 18.2450 5.7550 17 6 18 17 -9 0 
35 4 13 18.3852 7.6148 17 8 18 17 -6 0 
35 6 ii 18.8730 11.1270 17 12 18 17 0 ? 
35 7 i0 19.3166 12.6834 17 14 18 17 3 ? 
35 8 9 20 14 17 16 6 ~ 5 (~ 3854) 

36 1 24 9 4 7 5 -2 1 
36 2 20 12 6 i0 7 -2 ? (i) 
36 4 15 16 9 14 i0 -i ? (I) 
36 6 12 18 12 15 14 4 

37 1 17 19.0586 1.9414 18 2 19 18 -16 1 
37 2 16 19.1322 3.8678 18 4 19 18 -13 0 
37 2 20 13,5311 5.4689 12 6 20 17 -5 0 
37 2 21 11.6458 6.3542 9 8 28 9 0 ~ 1 
37 3 15 19,2268 5.7732 18 6 19 18 -10 0 
37 4 14 19,3523 7.6477 18 8 19 18 -7 0 
37 5 13 19,5249 9.4751 18 i0 19 18 -4 22 
37 5 14 17.3166 10.6834 15 12 20 17 1 ? 
37 7 ii 20,1401 12.8599 18 14 19 18 2 ? 
37 8 10 20.7016 14.2984 18 16 19 18 5 ? 
37 9 9 21.5414 15.4586 18 18 8 × (2 82) 

39 1 18 20,0554 1.9446 19 2 20 19 -17 1 
39 2 17 20,1240 3.8760 19 4 20 19 -14 0 
39 3 16 20,2111 5.7889 19 6 20 19 -ii 0 
39 4 15 20.3246 7.6754 19 8 20 19 -8 0 
39 5 14 20.4772 9.5228 19 i0 20 19 -5 0 
39 7 12 21 13 19 14 1 ? 
39 8 Ii 21.4641 14.5359 19 16 20 19 4 ? 
39 9 i0 22.1623 15.8377 19 18 20 19 7 ~ 1 

40 3 20 15 8 13 9 -2 ? 
40 4 18 16 i0 13 12 2 ~ 5 (28) 
40 6 14 20 12 18 13 0 ? 

G(15,1,0) 4.a, 6 
Bruck-Ryser(3), G(D) 2, 6 
Bruck-Ryser(3), P(D) 2, 5 
Bruck-Ryser(31), G(D) 2, 6 
G(15,7,3) 6 

Bruck-Ryser(ll) 2 
Paley(29) 8 

G(16,1,0) 4.a, 6 
P(31,6,1) 4.d, 5 
G(D) 6 
G(D) 6 
P(31,I0,3) 5 
G(16,6,2) 6 

P(31,15,7) 5 

G(17,1,0) 4.a, 6 
4 

Bruck-Ryser(3), G(D) 2, 6 
Bruck-Ryser(7), G(D) 2, 6 
G(D) 6 

Bruck-Ryser(3) 2, 8 

G(18,1,O) 4.a, 6 
G(D) 6 
G(D) 6 
G(D) 6 

P(35,17,8) 

L2(6) 
T(9) 

5 (2 32728) P(36,15,6) (L3(6)) 

G{19,1,0) 
G(D) 
Bruck-Ryser(5) 
P(37,9,2) 
G(D) 
G(D) 
G(19,9,4) 

5, 8 

3, 4.b 
8 
8 
5, 8 

4.a, 6 
6 
2 
5 
6 
6 
6 

Paley(37) 8 

G(20,1,0) 4.a, 6 
G(D) 6 
G(D) 6 
G(D) 6 
G(D) 6 

P(39,19,9) 5 

P(40,13,4) 5, 8 

Note: By # we denote the number of nonregular graphs. If there are any strongly regular graphs, then their 
number is denoted in between brackets. By Bruck-Ryser(p) we denote that the Bruck-Ryser condition is not 
satisfied modulo p. 
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