DISCRETE

 MATHEMATICS
Graphs with constant μ and $\bar{\mu}$

Edwin R. van Dam*, Willem H. Haemers
Tilburg University, Department of Econometrics, P.O. Box 90153. 5000 LE Tilburg, Netherlands

Received 18 August 1995; received in revised form 25 July 1996; accepted 15 May 1997

Abstract

A graph G has constant $\mu=\mu(G)$ if any two vertices that are not adjacent have μ common neighbours. G has constant μ and $\bar{\mu}$ if G has constant $\mu=\mu(G)$, and its complement \bar{G} has constant $\bar{\mu}=\mu(\bar{G})$. If such a graph is regular, then it is strongly regular, otherwise precisely two vertex degrees occur. We shall prove that a connected graph has constant μ and $\bar{\mu}$ if and only if it has two distinct nonzero Laplace eigenvalues. This leads to strong conditions for existence. Several constructions are given and characterized. A list of feasible parameter sets for graphs with at most 40 vertices is generated.

1. Introduction

We say that a noncomplete graph G has constant $\mu=\mu(G)$ if any two vertices that are not adjacent have μ common neighbours. A graph G has constant μ and $\bar{\mu}$ if G has constant $\mu=\mu(G)$, and its complement \bar{G} has constant $\bar{\mu}=\mu(\bar{G})$. It turns out that only two vertex degrees can occur. Moreover, we shall prove that a graph has constant μ and $\bar{\mu}$ if and only if it has two distinct restricted Laplace eigenvalues. The Laplace eigenvalues of a graph are the eigenvalues of its Laplace matrix. This is a square matrix Q indexed by the vertices, with $Q_{x x}=d_{x}$, the vertex degree of $x, Q_{x y}=-1$ if x and y are adjacent, and $Q_{x y}=0$ if x and y are not adjacent. Note that if G has v vertices and Laplace matrix Q, then its complement \bar{G} has Laplace matrix $v I-J-Q$ (where I is an identity matrix and J is an all-one matrix). Since the Laplace matrix has row sums zero, it has an eigenvalue 0 with the all-one vector as eigenvector. The eigenvalues with eigenvectors orthogonal to the all-one vector are called restricted (for a connected graph the restricted Laplace eigenvalues are just the nonzero ones). The restricted multiplicity of an eigenvalue is the dimension of the eigenspace orthogonal to the all-one vector. For more on the Laplace matrix we refer to [5]. Note

[^0]that the graphs with one restricted Laplace eigenvalue are the complete and the empty graphs.

Graphs with constant μ and $\bar{\mu}$ form a common generalization of two known families of graphs. The regular ones are precisely the strongly regular graphs and for $\mu=1$ we have the (nontrivial) geodetic graphs of diameter two.

Some similarities with so-called neighbourhood-regular or $\Gamma \Delta$-regular graphs (see $[8,10]$) occur. These graphs can be defined as graphs G with constant $\hat{\lambda}$ and $\bar{\lambda}$, that is, in G any two adjacent vertices have λ common neighbours, and in \bar{G} any two adjacent vertices have $\bar{\lambda}$ common neighbours. In such graphs also only two vertex degrees can occur, but there is no easy algebraic characterization.

2. Laplace eigenvalues and vertex degrees

In this section we shall derive some basic properties of graphs with constant μ and $\bar{\mu}$. We start with an algebraic characterization.

Theorem 2.1. Let G be a graph on v vertices. Then G has constant μ and $\bar{\mu}$ if and only if G has two distinct restricted Laplace eigenvalues θ_{1} and θ_{2}. If so then only two vertex degrees k_{1} and k_{2} can occur, and $\theta_{1}+\theta_{2}=k_{1}+k_{2}+1=\mu+v-\bar{\mu}$ and $\theta_{1} \theta_{2}=k_{1} k_{2}+\mu=\mu v$.

Proof. Let G have Laplace matrix Q. Suppose that G has two distinct restricted Laplace eigenvalues θ_{1} and θ_{2}. Then $\left(Q-\theta_{1} I\right)\left(Q-\theta_{2} I\right)$ has spectrum $\left\{\left[\theta_{1} \theta_{2}\right]^{1}\right.$, $\left.[0]^{v-1}\right\}$ and row sums $\theta_{1} \theta_{2}$, so it follows that $\left(Q-\theta_{1} I\right)\left(Q-\theta_{2} I\right)=\left(\theta_{1} \theta_{2} / v\right) J$. If x is not adjacent to y, so $Q_{x y}=0$ then $Q_{x y}^{2}=\theta_{1} \theta_{2} / v$, and so $\mu=\theta_{1} \theta_{2} / v$ is constant. Since the complement of G has distinct restricted Laplace eigenvalues $v-\theta_{1}$ and $v-\theta_{2}$, it follows that $\bar{\mu}=\left(v-\theta_{1}\right)\left(v-\theta_{2}\right) / v$ is also constant.

Now suppose that μ and $\bar{\mu}$ are constant. If x and y are adjacent then $(v I-J-Q)_{x y}^{2}=\bar{\mu}$, so $\bar{\mu}=\left(v^{2} I+v J+Q^{2}-2 v J-2 v Q\right)_{x y}=Q_{x y}^{2}+v$, and if x and y are not adjacent, then $Q_{x y}^{2}=\mu$. Furthermore $Q_{x x}^{2}=d_{x}^{2}+d_{x}$, where d_{x} is the vertex degree of x. Now

$$
\begin{aligned}
Q^{2} & =(\bar{\mu}-v)\left(\operatorname{diag}\left(d_{x}\right)-Q\right)+\mu\left(J-I-\operatorname{diag}\left(d_{x}\right)+Q\right)+\operatorname{diag}\left(d_{x}^{2}+d_{x}\right) \\
& =(\mu+v-\bar{\mu}) Q+\operatorname{diag}\left(d_{x}^{2}-d_{x}(\mu+v-\bar{\mu}-1)-\mu\right)+\mu J .
\end{aligned}
$$

Since Q and Q^{2} have row sums zero, it follows that $d_{x}^{2}-d_{x}(\mu+v-\bar{\mu}-1)-\mu+$ $\mu v=0$ for every vertex x. So $Q^{2}-(\mu+v-\bar{\mu}) Q+\mu v I=\mu J$. Now let θ_{1} and θ_{2} be such that $\theta_{1}+\theta_{2}=\mu+v-\bar{\mu}$ and $\theta_{1} \theta_{2}=\mu v$, then $\left(Q-\theta_{1} I\right)\left(Q-\theta_{2} I\right)=\left(\theta_{1} \theta_{2} / v\right) J$, so G has distinct restricted Laplace eigenvalues θ_{1} and θ_{2}. As a side result we obtained that all vertex degrees d_{x} satisfy the same quadratic equation, thus d_{x} can only take two values k_{1} and k_{2}, and the formulas readily follow.

If the restricted Laplace eigenvalues are not integral, then they must have the same multiplicities $m_{1}=m_{2}=\frac{1}{2}(v-1)$. If the Laplace eigenvalues are integral, then their multiplicities are not necessarily fixed by v, μ and $\bar{\mu}$. For example, there are graphs on 16 vertices with constant $\mu=2$ and $\bar{\mu}=6$ with Laplace spectrum $\left\{[8]^{m},[4]^{15-m}\right.$, $\left.[0]^{1}\right\}$ for $m=5,6,7,8$ and 9 .

The following lemma implies that the numbers of vertices of the respective degrees follow from the Laplace spectrum.

Lemma 2.2. Let G be a graph on v vertices with two distinct restricted Laplace eigenvalues θ_{1} and θ_{2} with restricted multiplicities m_{1} and m_{2}, respectively. Suppose there are n_{1} vertices of degree k_{1} and n_{2} vertices of degree k_{2}. Then $m_{1}+m_{2}+1=$ $n_{1}+n_{2}=v$ and $m_{1} \theta_{1}+m_{2} \theta_{2}=n_{1} k_{1}+n_{2} k_{2}$.

Proof. The first equation is trivial, the second follows from the trace of the Laplace matrix.

The number of common neighbours of two adjacent vertices is in general not constant, but depends on the degrees of the vertices.

Lemma 2.3. Let G be a graph with constant μ and $\bar{\mu}$, and vertex degrees k_{1} and k_{2}. Suppose x and y are two adjacent vertices. Then the number of common neighbours $\lambda_{x y}$ of x and y equals

$$
\lambda_{x y}= \begin{cases}\lambda_{11}=\mu-1+k_{1}-k_{2} & \text { if } x \text { and } y \text { both have degree } k_{1} \\ \lambda_{12}=\mu-1 & \text { if } x \text { and } y \text { have different degrees } \\ \lambda_{22}=\mu-1+k_{2}-k_{1} & \text { if } x \text { and } y \text { both have degree } k_{2}\end{cases}
$$

Proof. Suppose x and y have vertex degrees d_{x} and d_{y}, respectively. The number of vertices that are not adjacent to both x and y equals $\bar{\mu}$. The number of vertices adjacent to x but not to y equals $d_{x}-1-\lambda_{x y}$, and the number of vertices adjacent to y but not to x equals $d_{y}-1-\lambda_{x y}$. Now we have that $v=2+\lambda_{x y}+\bar{\mu}+d_{x}-1-$ $\lambda_{x y}+d_{y}-1-\lambda_{x y}$. Thus $\lambda_{x y}=\bar{\mu}-v+d_{x}+d_{y}$. By using that $k_{1}+k_{2}=\mu+v-$ $\bar{\mu}-1$, the result follows.

Both Theorem 2.1 and Lemma 2.3 imply the following.
Corollary 2.4. A graph with constant μ and $\bar{\mu}$ is regular if and only if it is strongly regular.

Observe that G is regular if and only if $(\mu+v-\bar{\mu}-1)^{2}=4 \mu(v-1)$ or $n_{1}=0$ or $n_{2}=0$. Since we can express all parameters in terms of the Laplace spectrum, it
follows that it can be recognized from the Laplace spectrum whether a graph is strongly regular or not. This also follows from the fact that regularity of a graph follows from its Laplace spectrum.

Before proving the next lemma we first look at the disconnected graphs. Since the number of components of a graph equals the multiplicity of its Laplace eigenvalue 0 , a graph with constant μ and $\bar{\mu}$ is disconnected if and only if one of its restricted Laplace eigenvalues equals 0 . Consequently this is the case if and only if $\mu=0$. So in a disconnected graph G with constant μ and $\bar{\mu}$ any two vertices that are not adjacent have no common neighbours. This implies that two vertices that are not adjacent are in distinct components of G. So G is a disjoint union of cliques. Since the only two vertex degrees that can occur are $v-\bar{\mu}-1$ and $0, G$ is a disjoint union of $(v-\bar{\mu})$ cliques and isolated vertices.

Lemma 2.5. Let G be a graph with two restricted Laplace eigenvalues $\theta_{1}>\theta_{2}$ and vertex degrees $k_{1} \geqslant k_{2}$. Then $\theta_{1}-1 \geqslant k_{1} \geqslant k_{2} \geqslant \theta_{2}$, with $k_{2}=\theta_{2}$ if and only if G or \bar{G} is disconnected.

Proof. Assume that G is not regular, otherwise G is strongly regular and the result easily follows. First, suppose that the induced graph on the vertices of degree k_{1} is not a coclique. So there are two vertices of degree k_{1} that are adjacent. Then the 2×2 submatrix of the Laplace matrix Q of G induced by these two vertices has eigenvalues $k_{1} \pm 1$, and since these interlace (cf. [9]) the eigenvalues of Q, we have that $k_{1}+1 \leqslant \theta_{1}$. Since $k_{1}+k_{2}+1=\theta_{1}+\theta_{2}$, then also $k_{2} \geqslant \theta_{2}$.

Next, suppose that the induced graph on the vertices of degree k_{2} is not a clique. So there are two vertices of degree k_{2} that are not adjacent. Now the 2×2 submatrix of Q induced by these two vertices has two eigenvalues k_{2}, and since these also interlace the eigenvalues of Q, we have that $k_{2} \geqslant \theta_{2}$, and then also $\theta_{1}-1 \geqslant k_{1}$.

The remaining case is that the induced graph on the vertices of degree k_{1} is a coclique and the induced graph on the vertices of degree k_{2} is a clique. Suppose we have such a graph. Since a vertex of degree k_{1} only has neighbours of degree k_{2}, and $\lambda_{12}=\mu-1$, we find that $k_{1}=\mu$. Since any two vertices of degree k_{1} have μ common neighbours, it follows that every vertex of degree k_{1} is adjacent to every vertex of degree k_{2}, and we find that $k_{2} \geqslant k_{1}$, which is a contradiction. So the remaining case cannot occur, and we have proven the inequalities.

Now suppose that G or \bar{G} is disconnected. Then it follows from the observations before the lemma or looking at the complement that $k_{2}=\theta_{2}$. On the other hand, suppose that $k_{2}=\theta_{2}$. Then it follows that $k_{1}=\theta_{1}-1$ and from the equation $\theta_{1} \theta_{2}=k_{1} k_{2}+\mu$ it then follows that $k_{2}=\mu$. Now take a vertex x_{2} of degree k_{2} that is adjacent to a vertex x_{1} of degree k_{1}. If there are no such vertices then G is disconnected and we are done. It follows that every vertex that is not adjacent to x_{2}, is adjacent to all neighbours of x_{2}, so also to x_{1}. Since x_{1} and x_{2} have $\mu-1$ common neighbours, x_{1} is also adjacent to all neighbours of x_{2}. So x_{1} is adjacent to all other vertices, and so \bar{G} is disconnected.

We conclude this section with so-called Bruck-Ryser conditions.
Proposition 2.6. Let G be a graph with constant μ and $\bar{\mu}$ on v vertices, with v odd, and with restricted Laplace eigenvalues θ_{1} and θ_{2}. Then the Diophantine equation

$$
x^{2}=\left(\theta_{1}-\theta_{2}\right)^{2} y^{2}+(-1)^{1 / 2(v-1)} \mu z^{2}
$$

has a nontrivial integral solution (x, y, z).

Proof. Let Q be the Laplace matrix of G, then

$$
\begin{aligned}
(Q & \left.-\frac{1}{2}\left(\theta_{1}+\theta_{2}\right) I\right)\left(Q-\frac{1}{2}\left(\theta_{1}+\theta_{2}\right) I\right)^{\mathrm{T}} \\
& =Q^{2}-\left(\theta_{1}+\theta_{2}\right) Q+\frac{1}{4}\left(\theta_{1}+\theta_{2}\right)^{2} I \\
& =\mu J+\left(\frac{1}{4}\left(\theta_{1}+\theta_{2}\right)^{2}-\theta_{1} \theta_{2}\right) I=\frac{1}{4}\left(\theta_{1}-\theta_{2}\right)^{2} I+\mu J
\end{aligned}
$$

Since $Q-\frac{1}{2}\left(\theta_{1}+\theta_{2}\right) I$ is a rational matrix, it follows from a lemma by Bruck and Ryser (cf. [2]) that the Diophantine equation

$$
x^{2}=\frac{1}{4}\left(\theta_{1}-\theta_{2}\right)^{2} y^{2}+(-1)^{1 / 2(r-1)} \mu z^{2}
$$

has a nontrivial integral solution, which is equivalent to stating that the Diophantine equation above has a nontrivial integral solution.

3. Cocliques

If $k_{1}-k_{2}>\mu-1$, then the induced graph on the set of vertices of degree k_{2} is a coclique, since two adjacent vertices of degree k_{2} would have a negative number λ_{22} of common neighbours. It turns out (see the table in Section 9) that this is the case in many examples. Therefore we shall have a closer look at cocliques. If G is a graph, then we denote by $\alpha(G)$ the maximal size of a coclique in G.

Lemma 3.1. Let G be a graph on v vertices with largest Laplace eigenvalue θ_{1} and smallest vertex degree k_{2}. Then $\alpha(G) \leqslant v\left(\theta_{1}-k_{2}\right) / \theta_{1}$.

Proof. Let C be a coclique of size $\alpha(G)$. Partition the vertices of G into C and the set of vertices not in C, and partition the Laplace matrix Q of G according to this partition of the vertices. Let B be the matrix of average row sums of the blocks of Q, then

$$
B=\left(\begin{array}{cc}
k & -k \\
-k \frac{\alpha(G)}{v-\alpha(G)} & k \frac{\alpha(G)}{v-\alpha(G)}
\end{array}\right)
$$

where k is the average degree of the vertices in C. Since B has eigenvalues 0 and $k v /(v-\alpha(G))$, and since these interlace the eigenvalues of Q (cf. [9]), we have that $k v /(v-\alpha(G)) \leqslant \theta_{1}$. The result now follows from the fact that $k_{2} \leqslant k$.

Another bound is given by the multiplicities of the eigenvalues.

Lemma 3.2. Let G be a connected graph with Laplace spectrum $\left\{\left[\theta_{1}\right]^{m_{1}},\left[\theta_{2}\right]^{m_{2}},[0]^{1}\right\}$, where $\theta_{1}>\theta_{2}>0$, such that \bar{G} is also connected. Then $\alpha(G) \leqslant \min \left\{m_{1}, m_{2}+1\right\}$.

Proof. Suppose C is a coclique with size greater than m_{1}. Consider the submatrix of the Laplace matrix Q induced by the vertices of C. This matrix only has eigenvalues k_{1} and k_{2}, and since these interlace the eigenvalues of Q, we find that $k_{2} \leqslant \theta_{2}$. This is in contradiction with Lemma 2.5, since G and \bar{G} are connected. If C is a coclique of size greater than $m_{2}+1$, we find by interlacing that $k_{1} \geqslant \theta_{1}$, which is again a contradiction.

As remarked before, if G is a graph with constant μ and $\bar{\mu}$ with $\lambda_{22}<0$, then the vertices of degree k_{2} form a coclique. If this is the case, then $n_{2} \leqslant m_{2}$, and we know the adjacency spectrum of the induced graph on the vertices of degree k_{1}.

Proposition 3.3. Let G be a connected graph with Laplace spectrum $\left\{\left[\theta_{1}\right]^{m_{1}},\left[\theta_{2}\right]^{m_{2}},[0]^{1}\right\}$, where $\theta_{1}>\theta_{2}>0$, such that \bar{G} is also connected. Suppose that the n_{2} vertices of degree k_{2} induce a coclique, then $n_{2} \leqslant m_{2}$, and the n_{1} vertices of degree k_{1} induce a graph with adjacency spectrum $\left\{\left[\lambda_{1}\right]^{1},\left[k_{1}-\theta_{2}\right]^{m_{2}-n_{2}},\left[\lambda_{2}\right]^{1},[-1]^{n_{2}-1}\right.$, $\left.\left[k_{1}-\theta_{1}\right]^{m_{1}-n_{2}}\right\}$, where λ_{1} and λ_{2} are such that $\lambda_{1}^{2}+\lambda_{2}^{2}=n_{1} k_{1}-n_{2} k_{2}-\left(m_{2}-n_{2}\right)$ $\left(k_{1}-\theta_{2}\right)^{2}-\left(n_{2}-1\right)-\left(m_{1}-n_{2}\right)\left(k_{1}-\theta_{1}\right)^{2}$ and $\lambda_{1}+\lambda_{2}=k_{1}-1$.

Proof. The adjacency matrix A_{1} of the graph induced by the vertices of degree k_{1} is a submatrix of the matrix $k_{1} I-Q$, where Q is the Laplace matrix of G. From interlacing it follows that A_{1} has second largest eigenvalue $k_{1}-\theta_{2}$ with multiplicity at least $m_{2}-n_{2}$ and smallest eigenvalue $k_{1}-\theta_{1}$ with multiplicity at least $m_{1}-n_{2}$. Note that we did not use here that the vertices of degree k_{2} induce a coclique. Now let

$$
A=\left(\begin{array}{ll}
A_{1} & N^{\mathbf{T}} \\
N & O
\end{array}\right)
$$

be the adjacency matrix of G, where the partition is induced by the degrees of the vertices. Two vertices of degrees k_{2} have μ common neighbours, so $N N^{\mathrm{T}}=k_{2} I+\mu(J-I)$. A vertex of degree k_{2} and a vertex of degree k_{1} have $\mu-1$ or μ common neighbours, depending on whether they are adjacent or not, so $N A_{1}=\mu J-N$. Let $\left\{v_{i} \mid i=1, \ldots, n_{2}\right\}$ be an orthonormal set of eigenvectors of $N N^{\mathrm{T}}$, with v_{1} the constant vector, then $N N^{\mathrm{T}} v_{i}=\left(k_{2}-\mu\right) v_{i}, i=2, \ldots, n_{2}$. Now

$$
A_{1}\left(N^{\mathrm{T}} v_{i}\right)=\left(N A_{1}\right)^{\mathrm{T}} v_{i}=(\mu-N)^{\mathrm{T}} v_{i}=-N^{\mathrm{T}} v_{i}, \quad i=2, \ldots, n_{2}
$$

Since $k_{2}>\mu$ (otherwise G or \bar{G} is disconnected), it follows that A_{1} has -1 as an eigenvalue with multiplicity at least $n_{2}-1$.

By Lemma 3.2 we have $n_{2} \leqslant m_{2}+1$. Suppose that $n_{2}=m_{2}+1$. Then $n_{1}=m_{1}$ and it follows that A_{1} has spectrum $\left\{\left[\lambda_{1}\right]^{1},[-1]^{n_{2}-1},\left[k_{1}-\theta_{1}\right]^{m_{1}-n_{2}}\right\}$ for some λ_{1}. Since A_{1} has zero trace, and using Lemma 2.5, we have $\lambda_{1}=n_{2}-1+\left(m_{1}-n_{2}\right)$ $\left(\theta_{1}-k_{1}\right)>n_{1}-1$, which is a contradiction. Hence $n_{2} \leqslant m_{2}$. Now let $\lambda_{1} \geqslant \lambda_{2}$ be the remaining two eigenvalues of A_{1}. These eigenvalues (i.e., the equations in the statement) follow from the trace of A_{1} and the trace of A_{1}^{2}. Since $\lambda_{1} \leqslant k_{1}$ (interlacing), it follows that $\lambda_{2} \geqslant-1$.

If the vertices of degree k_{2} form a coclique, then Lemma 3.1 implies that

$$
n_{2} \leqslant v\left(\theta_{1}-k_{2}\right) / \theta_{1} .
$$

If this bound is tight, then it follows from tight interlacing that the partition of the vertices into vertices of degree k_{1} and vertices of degree k_{2} is regular, that is, every block in the partitioned matrix in the proofs of Lemmas 3.1 and 3.3 has constant row sums. So N is the incidence matrix of a $2-\left(n_{2}, \kappa, \mu\right)$ design, where $\kappa=n_{2} k_{2} / n_{1}$. Furthermore, the adjacency matrix of the induced graph G_{1} on the vertices of degree k_{1} has spectrum

$$
\left\{\left[k_{1}-\kappa\right]^{1},\left[k_{1}-\theta_{2}\right]^{m_{2}+1-n_{2}},[-1]^{n_{2}-1},\left[k_{1}-\theta_{1}\right]^{m_{1}-n_{2}}\right\}
$$

so G_{1} is a regular graph with at most four eigenvalues. It follows from the multiplicities that θ_{1} and θ_{2} must be integral.

In this way it can be proved that there is no graph on 25 vertices with constant $\mu=2$ and $\bar{\mu}=12$, with 10 vertices of degree 6 . These 10 vertices induce a coclique for which the bound is tight. The induced graph on the remaining 15 vertices has spectrum $\left\{[4]^{1},[3]^{3},[-1]^{9},[-2]^{2}\right\}$, but such a graph cannot exist (cf. [7]).

Examples for which the bound is tight are obtained by taking an affine plane for the design and a disjoint union of cliques for G_{1}. This is family b of Section 4. Another example is constructed from a polarity with $q \sqrt{q}+1$ absolute points in $\operatorname{PG}(2, q)$ where q is the square of a prime power (cf. Section 5).

In Section 6 we find a large family of graphs for which the bound of Lemma 3.2 is tight.

Also if $\lambda_{22}=0$, so that the vertices of degree k_{2} do not necessarily form a coclique, we find a bound on the number of vertices n_{2} of degree k_{2}.

Lemma 3.4. If $k_{1}-k_{2} \geqslant \mu-1$, then $n_{2} \leqslant v-\mu$.

Proof. Fix a vertex x_{1} of degree k_{1}. If x_{1} has no neighbours of degree k_{2} then $n_{1} \geqslant k_{1}+1 \geqslant \mu+k_{2} \geqslant \mu$, and so $n_{2} \leqslant v-\mu$. If x_{1} has a neighbour x_{2} of degree k_{2}, then x_{1} and x_{2} cannot have a common neighbour y_{2} of degree k_{2}, since otherwise x_{2} and y_{2} have a common neighbour x_{1}, so that $0 \geqslant \mu-1+k_{2}-k_{1}=\lambda_{22}>0$, which is a contradiction. So all common neighbours of x_{1} and x_{2} have degree k_{1}, so $n_{1} \geqslant \lambda_{12}+1=\mu$, and so $n_{2} \leqslant v-\mu$.

4. Geodetic graphs of diameter two

A geodetic graph is a graph in which any two vertices are connected by a unique shortest path. Thus a geodetic graph of diameter two is a graph with constant $\mu=1$. It is proved (see [3, Theorem 1.17.1]) that if G is a geodetic graph of diameter two, then either
(i) G contains a vertex adjacent to all other vertices, or
(ii) G is strongly regular, or
(iii) precisely two vertex degrees $k_{1}>k_{2}$ occur. If X_{1} and X_{2} denote the sets of vertices with degrees k_{1} and k_{2}, respectively, then X_{2} induces a coclique, maximal cliques meeting both X_{1} and X_{2} have size two, and maximal cliques contained in X_{1} have size $k_{1}-k_{2}+2$. Moreover, $v=k_{1} k_{2}+1$.
If G is of type (i), then G need not have constant $\bar{\mu}$. Note that its complement is disconnected, so see Section 2. If G is of type (ii), then clearly it has constant $\bar{\mu}$. Now suppose that G is of type (iii). Since $\mu=1$, every edge is in a unique maximal clique. Let x and y be two adjacent vertices, then x and y cannot both be in X_{2}. If one is in X_{1}, and the other in X_{2}, then they have no common neighbour, since maximal cliques meeting both X_{1} and X_{2} have size 2. So $\lambda_{12}=0$ and then $\bar{\mu}_{12}=v-k_{1}-k_{2}$. If both x and y are in X_{1}, then by the previous argument they have no common neighbours in X_{2}, and since every maximal clique contained in X_{1} has size $k_{1}-k_{2}+2$, they have $k_{1}-k_{2}$ common neighbours in X_{1}. So $\lambda_{11}=k_{1}-k_{2}$, and then also $\bar{\mu}_{11}=v-k_{1}-k_{2}$. So G has constant $\bar{\mu}$.

The following four families of graphs are all known examples of type (iii).
(a) Take a clique and a coclique of size k_{1}, and an extra vertex. Join the vertices of the clique and the coclique by a matching, and join the extra vertex to every vertex of the coclique (see also Section 6).
(b) Take an affine plane. Take as vertices the points and lines of the plane. A point is adjacent to a line if it is on the line, and two lines are adjacent if they are parallel.
(c) Take the previous example and add the parallel classes to the vertices. Join each line to the parallel class it is in, and join all parallel classes mutually.
(d) Take a projective plane with a polarity σ. Take as vertices the points of the plane, and join two points x and y if x is on the line y^{σ} (cf. Section 5).

5. Symmetric designs with a polarity

Let D be a symmetric design. A polarity of D is a one-one correspondence σ between its points and blocks such that for any point p and any block b we have that $p \in b$ if and only if $b^{\sigma} \in p^{\sigma}$. A point is called absolute (with respect to σ) if $p \in p^{\sigma}$. Now D has a polarity if and only if it has a symmetric incidence matrix A. An absolute point corresponds to a one on the diagonal of A.

Suppose that D is a symmetric $2-(v, k, \lambda)$ design with a polarity σ. Let $G=P(D)$ be the graph on the points of D, where two distinct points x and y are adjacent if
$x \in y^{\sigma}$. Then the only vertex degrees that can occur are k and $k-1$. The number of vertices with degree $k-1$ is the number of absolute points of σ. Let A be the corresponding symmetric incidence matrix, then $Q=k I-A$ is the Laplace matrix of G. Since A is a symmetric incidence matrix of D, we find that $(k I-Q)^{2}=A^{2}=$ $A A^{\mathbf{T}}=(k-\lambda) I+\lambda J$, so $Q^{2}-2 k Q+\left(k^{2}-k+i\right) I=\hat{\lambda} J$. Thus Q has two distinct restricted eigenvalues $k \pm \sqrt{k-\lambda}$. The converse is also true.

Theorem 5.1. Let G be a graph with constant μ and $\bar{\mu}$ on v vertices, with vertex degrees k and $k-1$. Then G comes from a symmetric $2-(v, k, \mu)$ design with a polarity.

Proof. Let G have restricted Laplace eigenvalues θ_{1} and θ_{2}, then $\theta_{1}+\theta_{2}=2 k$ and $\mu=\theta_{1} \theta_{2} / v=k(k-1) /(v-1)$. Hence we have that $Q^{2}-2 k Q+v \mu I=\mu J$. Now let $A=k I-Q$, then A is a symmetric $(0,1)$-matrix with row sums k, and $A A^{T}=A^{2}=k^{2} I-2 k Q+Q^{2}=\left(k^{2}-v \mu\right) I+\mu J=(k-\mu) I+\mu J$, so A is the incidence matrix of a symmetric 2-($v, k, \mu)$ design with a polarity.

Since the polarities in the unique $2-(7,3,1), 2-(11,5,2)$ and $2-(13,4,1)$ designs are unique, the graphs we obtain from these designs are also uniquely determined by their parameters.

In a projective plane of order n, where n is not a square, any polarity has $n+1$ absolute points. If n is a square, then the number of absolute points in a polarity lies between $n+1$ and $n \sqrt{n}+1$. The projective plane $P G(2, q)$ admits a polarity with $q+1$ absolute points for every prime power q and a polarity with $q \sqrt{q}+1$ absolute points whenever q is the square of a prime power. If a polarity in a projective plane of order n has $n+1$ absolute points then the set of absolute points forms a line if n is even, and an oval if n is odd, that is, no three points are on one line (cf. [2, Section VIII.9]). Using this, we find that there is precisely one graph from a polarity with 5 absolute points in the projective plane of order 4, and precisely one graph from a polarity with 6 absolute points in the projective plane of order 5 . Using the remarks in Section 3 we also find precisely one graph from a polarity with 9 absolute points in the projective plane of order 4.

By Paley's construction of Hadamard matrices (cf. [2, Theorem I.9.11]) we obtain symmetric $2-\left(2^{e}(q+1)-1,2^{e-1}(q+1)-1,2^{e-2}(q+1)-1\right)$ designs with a polarity with $2^{e-1}(q+1)-1$ absolute points, for every odd prime power q and every $e>0$.

Furthermore, we found polarities with $0,4,8,12$ and 16 absolute points in a $2-(16,6,2)$ design, a polarity in the $2-(37,9,2)$ design from the difference set (cf. [2, Example VI.4.3]) and a polarity with 16 absolute points in the $2-(40,13,4)$ design $\mathrm{PG}_{2}(3,3)$. Spence (private communication) found polarities with $3,7,11$ and 15 absolute points in $2-(15,7,3)$ designs, polarities in $2-(25,9,3)$ and $2-(30,13,3)$ designs, polarities with $5,11,17,23,29$ and 35 absolute points in 2-($35,17,8$) designs, polarities with $0,6,12,18,24,30$ and 36 absolute points in $2-(36,15,6)$ designs and polarities with $10,16,22,28,34$ and 40 absolute points in $2-(40,13,4)$ designs.

6. Other graphs from symmetric designs

Let D be a symmetric $2-(w, k, \lambda)$ design. Fix a point x. We shall construct a graph $G=G(D)$ that has constant μ and $\vec{\mu}$. The vertices of G are the points and the blocks of D, except for the point x. Between the points there are no edges. A point y and a block b will be adjacent if and only if precisely one of x and y is incident with b. Two blocks will be adjacent if and only if both blocks are incident with x or both blocks are not incident with x. It is not hard to show that the resulting graph G has constant $\mu=k-\lambda$ and constant $\bar{\mu}=w-k-1+\lambda$. In G the $n_{1}=w$ blocks have degrees $k_{1}=w-1$, and the $n_{2}=w-1$ points have degrees $k_{2}=2(k-\lambda)$. Note that D and the complement of D give rise to the same graph G. We have the following characterization of $G(D)$.

Theorem 6.1. Let G be a graph with constant μ and $\bar{\mu}$ on $2 w-1$ vertices, such that both G and \bar{G} are connected. Suppose G has w vertices of degree k_{1}, and $w-1$ vertices of degree k_{2}, and suppose that the vertices of degree k_{2} induce a coclique. Then $k_{1}=w-1$, $k_{2}=2 \mu$, and $G=G(D)$, where D is a symmetric $2-(w, k, k-\mu)$ design.

Proof. Let

$$
A=\left(\begin{array}{cc}
A_{1} & N^{\mathrm{T}} \\
N & O
\end{array}\right)
$$

be the adjacency matrix of G, where the partition is induced by the degrees of the vertices. It follows from Lemmas 3.2 and 3.3 that $m_{1}=m_{2}=n_{2}$, and that A_{1} has spectrum $\left\{\left[\lambda_{1}\right]^{1},\left[\lambda_{2}\right]^{1},[-1]^{w-2}\right\}$, with $\lambda_{1}+\lambda_{2}=k_{1}-1$, and $\lambda_{1} \geqslant \lambda_{2} \geqslant-1$. On the other hand, it follows from the trace of A_{1} that $\lambda_{1}+\lambda_{2}=w-2$, so that $k_{1}=w-1$. Since $k_{1} k_{2}=\mu(v-1)$, we then find that $k_{2}=2 \mu$.

Suppose that $\lambda_{2}=-1$, then $\lambda_{1}=w-2-\lambda_{2}=w-1$, so $A_{1}=J-I$. But then G is disconnected, which is a contradiction. Now $A_{1}+I$ is positive semidefinite of rank two with diagonal 1 , and so it is the Gram matrix of a set of vectors of length 1 in \mathbb{R}^{2}, with mutual inner products 0 or 1 . It follows that there can only be two distinct vectors, and A_{1} is the adjacency matrix of a disjoint union of two cliques, say of sizes k and $w-k$.

Let $N=\left(N_{1} N_{2}\right)$ be partitioned according to the partition of A_{1} into two cliques, where N_{1} has k columns and N_{2} has $w-k$ columns. From the equation $N A_{1}=\mu J-N$ we derive that $N_{1} J=N_{2} J=\mu J$, so both N_{1} as N_{2} have row sums μ.

Now let

$$
M=\left(\begin{array}{cc}
j^{\mathrm{T}} & 0^{\mathrm{T}} \\
J-N_{1} & N_{2}
\end{array}\right)
$$

then M is square of size w, with row sums k. Furthermore, we find that $\left(J-N_{1}\right)\left(J-N_{1}\right)^{\mathrm{T}}+N_{2} N_{2}^{\mathrm{T}}=(k-2 \mu) J+N N^{\mathrm{T}}=(k-2 \mu) J+\left(k_{2}-\mu\right) I+\mu J=$
$\mu I+(k-\mu) J$, and so we have that $M M^{\mathrm{T}}=\mu I+(k-\mu) J$, so M is the incidence matrix of a symmetric $2-(w, k, k-\mu)$ design D, and $G=G(D)$.

The matrix N that appears in the proof above is the incidence matrix of a structure, that is called a pseudo design by Marrero and Butson [11] and a 'nearsquare' λ-linked design by Woodall [15]. An alternative proof of Theorem 6.1 uses Theorem 3.4 of [11] that states that a pseudo $\left(w \neq 4 \mu, k_{2}=2 \mu, \mu\right)$-design comes from a symmetric design in the way described above. The problem then is to prove the case $w=4 \mu$, however.

For every orbit of the action of the automorphism group of the design D on its points, we get a different graph $G(D)$ by taking the fixed point x from that orbit. Since the trivial $2-\left(k_{1}+1,1,0\right)$ (here we get family a of geodetic graphs given in Section 5), the $2-(7,3,1)$, the $2-(11,5,2)$ and the $2-(13,4,1)$ designs are unique and have an automorphism group that acts transitively on the points, the graphs we obtain are uniquely determined by their parameters. According to Spence (private communication), the five $2-(15,7,3)$ designs have respectively $1,2,3,2$ and 2 orbits, the three $2-(16,6,2)$ designs all have a transitive automorphism group, and the six 2-(19,9,4) designs have respectively $7,5,3,3,3$ and 1 orbits. Thus we get precisely ten graphs on 29 vertices with constant $\mu=4$ and $\bar{\mu}=10$, three graphs on 31 vertices with constant $\mu=4$ and $\bar{\mu}=11$, and 22 graphs on 37 vertices with constant $\mu=5$ and $\bar{\mu}=13$.

7. Switching in strongly regular graphs

Let G be a strongly regular graph with parameters ($v=2 k+1, k, \lambda, \mu^{*}$). Fix a vertex x and 'switch' between the set of neighbours of x and the set of vertices (distinct from x) that are not neighbours of x, that is, a vertex that is adjacent to x and a vertex that is not adjacent to x are adjacent if and only if they are not adjacent in G. All other adjacencies remain the same. If the adjacency eigenvalues of G are k, r and s, then we obtain a graph with restricted Laplace eigenvalues $2(\lambda+1)-s$ and $2(\lambda+1)-r$. The graph has constant $\mu=k-\mu^{*}=\lambda+1$ and $\bar{\mu}=\mu^{*}$, and there is one vertex of degree k and $2 k$ vertices of degree $2(\lambda+1)$. Almost all examples have $k=2(\lambda+1)=2 \mu^{*}$, so that we get a (strongly) regular graph. The only known (to us) examples for which $k \neq 2(\lambda+1)$ are the triangular graph $T(7)$ and its complement. (Note that from one pair of complementary graphs we get another pair of complementary graphs.) $T(7)$ is the strongly regular graph on the unordered pairs $\{i$, $j\}, i, j=1, \ldots, 7, i \neq j$, where two distinct pairs are adjacent if they intersect. From the complement of $T(7)$ we get a graph with constant $\mu=4$ and $\bar{\mu}=6$ on 21 vertices with one vertex of degree 10 and 20 vertices of degree 8 . The subgraph induced by the neighbours of the vertex x of degree 10 is the Petersen graph (the complement of $T(5)$).

This construction can be reversed, that is, if G is a graph on v vertices with constant μ and $\bar{\mu}$, such that there is one vertex of degree $k=\frac{1}{2}(v-1)$ and $2 k$ vertices of degree 2μ, then it must be constructed from a strongly regular graph in the above way. Since
$T(7)$ is uniquely determined by its parameters, and it has a transitive automorphism group it follows that there is precisely one graph with constant $\mu=4$ and $\bar{\mu}=6$ on 21 vertices with one vertex of degree 10 and 20 vertices of degree 8 .

Next, let G be a strongly regular graph with parameters $\left(v^{*}=2 k+1, k, \lambda, \mu^{*}\right)$ with a regular partition into two parts, where one part has k_{2} vertices and the induced graph is regular of degree $k_{2}-\mu^{*}-1$, and the other part has $v^{*}-k_{2}$ vertices and the induced graph is regular of degree $k-\mu^{*}$. (Then $k_{2}\left(k-k_{2}+\mu^{*}+1\right)=\left(v^{*}-k_{2}\right) \mu^{*}$.) Add an isolated vertex to the second part and then switch with respect to this partition, that is, two vertices from different parts will be adjacent if and only if they are not adjacent in G, and two vertices from the same part will be adjacent if and only if they also are adjacent in G. The obtained graph has one vertex of degree k_{2} and v^{*} vertices of degree $k_{1}=k_{2}+k-2 \mu^{*}$. If the adjacency eigenvalues of G are k, r and s, then we obtain a graph with restricted Laplace eigenvalues $k_{1}-s$ and $k_{1}-r$, and it has constant $\mu=k_{2}-\mu^{*}$ and $\bar{\mu}=k+1-k_{2}+\mu$. Again, we obtain a (strongly) regular graph if $k=2 \mu^{*}$.

Also here the construction can be reversed. A graph on v vertices with constant μ and $\bar{\mu}$, such that $\mu+\bar{\mu}=\frac{1}{2} v$ and there is one vertex of degree k_{2} must be constructed from a strongly regular graph in the above way.

If we take $T(7)$ and take for one part of the partition a 7 -cycle or the disjoint union of a 3 -cycle and a 4 -cycle, then we find that there are precisely two nonisomorphic graphs on 22 vertices with constant $\mu=3$ and $\bar{\mu}=8$, with 21 vertices of degree 9 and one vertex of degree 7 . In $T(7)$ there cannot be a regular partition with $k_{2}=12$ (which is the other value satisfying the quadratic equation) since this would give a graph which is the complement of a graph with $\lambda_{22}=0$ and $n_{1}<\mu$, contradicting Lemma 3.4.

8. The number of small strongly regular graphs

For completeness, here we shall give some results on the numbers of nonisomorphic strongly regular graphs with parameters (v, k, λ, μ) on $v \leqslant 40$ vertices.

The 15 graphs with parameters $(25,12,5,6)$ and 10 graphs with parameters ($26,10,3,4$) were found by Paulus [12]. An exhaustive computer search by Arlazarov et al. [1] showed that these are all the graphs with these parameters. In the same paper 41 graphs with parameters ($29,14,6,7$) were found by an incomplete search (see also [6]). Independent exhaustive searches by Bussemaker and Spence (cf. [14]) showed that these are all. Bussemaker et al. [6] also give 82 graphs with parameters (37, 18, 8, 9).

According to Spence [14] there exist at least 3854 graphs with parameters $(35,16,6,8), 32548$ graphs with parameters $(36,15,6,6)$ and 180 graphs with parameters ($36,14,4,6$). Spence (private communication) recently classified all graphs with parameters ($40,12,2,4$): there are 28 such graphs, one more than the 27 that were already mentioned in [13].

For other parameter sets occurring in the table in Section 9 we refer to [4].

9. Feasible parameter sets

By computer we generated all feasible parameter sets for graphs on v vertices with constant μ and $\bar{\mu}$, having restricted Laplace eigenvalues $\theta_{1}>\theta_{2}$ and vertex degrees $k_{1} \geqslant k_{2}$, for $v \leqslant 40$, satisfying $0<\mu \leqslant \bar{\mu}$. If $\lambda_{22}<0$, then also the condition $n_{2} \leqslant v\left(\theta_{1}-k_{2}\right) / \theta_{1}$ is satisfied. The results are given in Table 1 .

Table 1

v	μ	$\bar{\mu}$	θ_{1}	θ_{2}	k_{1}	k_{2}	n_{1}	n_{2}	λ_{22}		\#		Notes	Section
5	1	1	3.6180	1.3820	2	2			0		\times	(1)	$C_{5}, \quad G(3,1,0)$	6. 8
7	1	2	4.4142	1.5858	3	2	4	3	-1		1		$G(4,1,0), P(7,3,1)$	4.a,d,
9	1	3	5.3028	1.6972	4	2	5	4	-2		1		$G(5,1,0)$	4.a, 6
9	2	2	6	3	4	4			1		\times	(1)	L_{2} (3)	8
10	1	4	5	2	3	3			0		\times	(1)	Petersen	8
11	1	4	6.2361	1.7639	5	2	6	5	-3		1		$G(6,1,0)$	4.a, 6
11	2	3	6.7321	3.2679	5	4	6	5	0		1		$P(11,5,2)$	5
13	1	5	7.1926	1.8074	6	2	7	6	-4		1		$G(7,1,0)$	4.a, 6
13	1	6	5.7321	2.2679	4	3	9	4	-1		1		$P(13,4,1)$	4.c, d,
13	2	4	7.5616	3.4384	6	4	7	5	-1		1		$G(7,3,1)$	6
13	3	3	8.3028	4.6972	6	6			2		\times	(1)	Paley(13)	8
15	1	6	8.1623	1.8377	7	2	8	7	- 5		1		$G(8,1,0)$	4.a, 6
15	2	5	8.4495	3.5505	7	4	8	7	-2		0		$G(D)$	
15	3	4	9	5	7	6			1	\geq	3	(1)	$P(15,7,3)(\bar{T}(6))$	5,8
16	2	6	8	4	6	5			0	\geq	4	(3)	$\mathrm{p}(16,6,2)$ (Clebsch, $L_{2}(4)$, Shrikhande)	5,8
17	1	7	9.1401	1.8599	8	2	9	8	-6		1		$G(9,1,0)$	4.a. 6
17	2	6	9.3723	3.6277	8	4	9	8	-3		0		Bruck-Ryser (3), G(D)	2,6
17	3	5	9.7913	5.2087	8	6	9	8	0		0		Bruck-Ryser (7)	2
17	4	4	10.5616	6.4384	8	8			3		\times	(1)	Paley(17)	8
19	1	8	10.1231	1.8769	9	2	10	9	-7		1		$\mathrm{G}(10,1,0)$	4.a, 6
19	1	10	7.4495	2.5505	6	3	11	8	-3		0		Bruck-Ryser (3)	2, 4
19	2	7	10.3166	3.6834	9	4	10	9	-4		0		$G\{D)$	6
19	4	5	11.2361	6.7639	9	8	10	9	2	\geq	1		P $(19,9,4)$	5
21	1	9	11.1098	1.8902	10	2	11	10	-8		1		$G(11,1,0)$	4.a, 6
21	1	12	7	3	5	4			-1		2		P $\{21,5,1$)	4.b, ${ }^{\text {a }}$,
21	2	8	11.2749	3.7251	10	4	11	10	-5		0		Bruck-Ryser (3), G(D)	2, 6
21	3	7	11.5414	5.4586	10	6	11	10	-2		1		$G(11,5,2)$	6
21	4	6	12	7	10	8			1	\geq	1	(1)	T(7), switched $T(7)$	7, 8
21	5	5	12.7913	8.2087	10	10			4		\times	(0)	Bruck-Ryser (3)	2,8
22	3	8	11	6	9	7			0	\geq	2		switched $T(7)$	7
23	1	10	12.0990	1.9010	11	2	12	11	-9		1		$G(12,1,0)$	4.a, 6
23	2	9	12.2426	3.7574	11	4	12	11	-6		0		$G(D)$	6
23	3	8	12.4641	5.5359	11	6	12	11	-3		0		$G(D)$	6
23	4	7	12.8284	7.1716	11	8	12	11	0		?			
23	5	6	13.4495	8.5505	11	10	12	11	3	\geq	1		$P(23,11,5)$	5
25	1	11	13.0902	1.9098	12	2	13	12	-10		1		$G(13,1,0)$	4.a, 5
25	1	15	7.7913	3.2087	6	4	16	9	-2		1			4.c
25	2	10	13.2170	3.7830	12	4	13	12	-7		0		$G(D)$	6
25	2	12	10	5	8	6			-1		?	(1)	L_{2} (5)	3, 8
25	3	9	13.4051	5.5949	12	5	13	12	-4		1		$G(13,4,1)$	6
25	3	10	11.4495	6.5505	9	8	16	9	1	\geq	1		P($25,9,3$)	5
25	5	7	14.1926	8.8074	12	10	13	12	2		?			
25	6	6	15	10	12	12			5		\times	(15)	$L_{3}(5)$	8
26	4	9	13	8	10	10			3		\times	(10)		8
27	1	12	14.0828	1.9172	13	2	14	13	-11		1		$G(14,1,0)$	4.a, 6
27	2	11	14.1962	3.8038	13	4	14	13	-8		0		$G(D)$	6
27	3	10	14.3589	5.6411	13	6	14	13	-5		0		$G(D)$	6
27	5	8	15	9	13	10			1		$?$	(1)	Schläfli	8
27	6	7	15.6458	10.3542	13	12	14	13	4	\geq	1		$P(27,13,6)$	5
28	4	10	14	8	12	9			0		$?$	(4)	$T(8)$, Chang	8

Table 1. Continued.

ν	μ	$\bar{\mu}$	θ_{1}	θ_{2}	k_{1}	k_{2}	n_{1}	n_{2}	λ_{22}	\#		Notes	Section
29	1	13	15.0765	1.9235	14	2	15	14	-12	1		G(15, 1, 0)	4.a, 6
29	2	12	15.1789	3.8211	14	4	15	14	-9	0		Bruck-Ryser (3), G(D)	2, 6
29	2	15	10.4495	5.5505	8	7	21	8	0	0		Bruck-Ryser (3), P(D)	2, 5
29	3	11	15.3218	5.6782	14	6	15	14	-6	0		Bruck-Ryser (31), G(D)	2, 6
29	4	10	15.5311	7.4689	14	8	15	14	-3	10		$G(15,7,3)$	6
29	5	9	15.8541	9.1459	14	10	15	14	0	?			
29	6	8	16.3723	10.6277	14	12	15	14	3	0		Bruck-Ryser (11)	2
29	7	7	17.1926	11.8074	14	14			6		(41)	Paley(29)	8
31	1	14	16.0711	1.9289	15	2	16	15	-13	1		$G(16,1,0)$	4.a, 6
31	1	20	8.2361	3.7639	6	5	25	6	-1	1		$P(31,6,1)$	4.d, 5
31	2	13	16.1644	3.8356	15	4	16	15	-10	0		$G(D)$	6
31	3	12	16.2915	5.7085	15	6	16	15	-7	0		$G(D)$	6
31	3	14	12.6458	7.3542	10	9	21	10	1			$P(31,10,3)$	5
31	4	11	16.4721	7.5279	15	8	16	15	-4	3		$G(16,6,2)$	6
31	6	9	17.1623	10.8377	15	12	16	15	2	?			
31	7	8	17.8284	12.1716	15	14	16	15	5	≥ 1		$P(31,15,7)$	5
33	1	15	17.0664	1.9336	16	2	17	16	-14	1		$G(17,1,0)$	4.a, 6
33	1	21	9.5414	3.4586	8	4	19	14	-4	0			
33	2	14	17.1521	3.8479	16	4	17	16	-11	0		Bruck-Ryser (3), G(D)	2, 6
33	3	13	17.2663	5.7337	16	6	17	16	-8	0		Bruck-Ryser (7), G(D)	2, 6
33	4	12	17.4244	7.5756	16	8	17	16	-5	0		$G(D)$	6
33	6	10	18	11	16	12			1	?			
33	7	9	18.5414	12.4586	16	14	17	16	4	?			
33	8	8	19.3723	13.6277	16	16			7	\times	(0)	Bruck-Ryser (3)	2, 8
34	5	12	17	10	15	11			0	?			
35	1	16	18.0623	1.9377	17	2	18	17	-15	1		$G(18,1,0)$	4.a, 6
35	2	15	18.1414	3.8586	17	4	18	17	-12	0		$G(D)$	
35	3	14	18.2450	5.7550	17	6	18	17	-9	0		$G(D)$	6
35	4		18.3852	7.6148	17	8	18	17	-6	0		$G(D)$	6
35	6	11	18.8730	11.1270	17	12	18	17	0	?			
35	7	10	19.3166	12.6834	17	14	18	17	3	?			
35	8	9	20	14	17	16			6	≥ 5	(≥ 3854)	$P(35,17,8)$	5, 8
36	1	24	9	4	7	5			-2	1			3. 4.6
36	2		12	6	10	7			-2	?	(1)	$L_{2}(6)$	
36	4		16	9	14	10			-1	?	(1)	T(9)	8
36	6		18	12	15	14			4	≥ 5	(≥ 32728)	$P(36,15,6) \quad\left(L_{3}(6)\right)$	5, 8
37	1		19.0586	1.9414	18	2	19	18	-16	1		$G(19,1,0)$	4.a. 6
37	2		19.1322	3.8678	18	4	19	18	-13	0		$G(D)$	6
37	2	20	13.5311	5.4689	12	6	20	17	-5	0		Bruck-Ryser (5)	2
37	2		11.6458	6.3542	9	8	28	9	0	≥ 1		$P(37,9,2)$	5
37	3	15	19.2268	5.7732	18	6	19	18	-10	0		$G(D)$	6
37	4		19.3523	7.6477	18	8	19	18	-7	0		$G(D)$	5
37	5	13	19.5249	9.4751	18	10	19	18	-4	22		$G(19,9,4)$	6
37	5	14	17. 3166	10.6834	15	12	20	17	1	?			
37	7	11	20.1401	12.8599	18	14	19	18	2	?			
37	8	10	20.7016	14.2984	18	16	19	18	5	?			
37	9	9	21.5414	15.4586	18	18			8	\times	(≥ 82)	Paley(37)	8
39	1	18	20.0554	1.9446	19	2	20	19	-17	1		$G(20,1,0)$	4.a. 6
39	2	17	20.1240	3.8760	19	4	20	19	-14	0		$G(D)$	6
39	3	16	20.2111	5.7889	19	6	20	19	-11	0		$G(D)$	6
39	4	15	20.3246	7.6754	19	8	20	19	-8	0		$G(D)$	6
39	5	14	20.4772	9.5228	19	10	20	19	-5	0		$G(D)$	6
39	7		21	13	19	14			1	?			
39	8	11	21.4641	14.5359	19	16	20	19	4	$?$			
39	9	10	22.1623	15.8377	19	18	20	19	7	≥ 1		P(39, 19, 9)	5
40	3	20	15	8	13	9			-2	?			
40	4	18	16	10	13	12			2	≥ 5	(28)	P(40, 13, 4)	5, 8
40	6	14	20	12	18	13			0	?			

Note: By \# we denote the number of nonregular graphs. If there are any strongly regular graphs, then their number is denoted in between brackets. By Bruck-Ryser(p) we denote that the Bruck-Ryser condition is not satisfied modulo p.

10. References

[1] V.L. Arlazarov, A.A. Lehman, M.Z. Rosenfeld, Computer-Aided Construction and Analysis of Graphs with 25, 26 and 29 Vertices, Institute of Control Problems, Moscow, 1975 (in Russian).
[2] Th. Beth, D. Jungnickel, H. Lenz, Design Theory, Wissenschaftsverlag, Mannheim, 1985.
[3] A.E. Brouwer, A.M. Cohen, A. Neumaier, Distance-Regular Graphs, Springer, Heidelberg, 1989.
[4] A.E. Brouwer, J.H. van Lint, Strongly regular graphs and partial geometries, in: D.M. Jackson, S.A. Vanstone. (Eds.), Enumeration and Design - Proc. Silver Jubilee Conf. on Combinatorics, Waterloo, 1982, Academic Press, Toronto, 1984, pp. 85-122.
[5] R.A. Brualdi, H.J. Ryser, Combinatorial Matrix Theory, Cambridge Univ. Press, Cambridge, 1991.
[6] F.C. Bussemaker, R.A. Mathon, J.J. Seidel, Tables of two-graphs, in: S.B. Rao (Ed.), Combinatorics and Graph Theory, Proceedings, Calcutta, 1980, Springer, Berlin, 1980, pp. 70-112.
[7] E.R. van Dam, Regular graphs with four eigenvalues, Linear Algebra Appl. 226-228 (1995) 139-162.
[8] C.D. Godsil, B.D. McKay, Graphs with regular neighbourhoods, in: R.W. Robinson et al. (Eds.), Combinatorial Mathematics, vol. VII, Springer, Berlin, 1980, pp. 127-140.
[9] W.H. Haemers, Interlacing eigenvalues and graphs, Linear Algebra Appl. 226-228 (1995) 593-616.
[10] T. Kloks, An infinite sequence of $\Gamma \Delta$-regular graphs, Discrete Math. 73 (1989) 127-132.
[11] O. Marrero, A.T. Butson, Modular Hadamard matrices and related designs, J. Combin. Theory Ser. A 15 (1973) 257-269.
[12] A.J.L. Paulus, Conference matrices and graphs of order 26, T.H.-Report 73-WSK-06, Eindhoven University of Technology, 1973.
[13] E. Spence, (40, 13,4)-Designs derived from strongly regular graphs, in: J.W.P. Hirschfeld, D.R. Hughes, J.A. Thas, (Eds.), Advances in Finite Geometries and Designs, Proc. 3rd Isle of Thorns Conf., 1990, Oxford Science, 1991, pp. 359-368.
[14] E. Spence, Regular two-graphs on 36 vertices, Linear Algebra Appl. 226-228 (1995) 459-497.
[15] D.R. Woodall, Square λ-linked designs, Proc. London Math. Soc. 320 (1970) 669-687.

[^0]: * Corresponding author. E-mail: edwin.vandam@kub.n1.

