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Let n P 1 and f : Rn ! R a convex function. Given distinct points
z1; z2; . . . ; zN in Rn we consider the problem of finding a quadratic
function g : Rn ! R such that k½f ðz1Þ � gðz1Þ; . . . ; f ðzNÞ � gðzNÞ	k is
minimal for a given norm k 
 k. For the Euclidean norm this is the well-
known quadratic least squares problem. (If the norm is not specified
we will simply refer to g as the quadratic approximation.) In this paper
we prove the result that the quadratic approximation is not neces-
sarily convex for n � 2, even though it is convex if n ¼ 1. This result
has many consequences both for the field of statistics and optimi-
zation. We show that the best convex quadratic approximation can be
obtained in the multivariate case by using semidefinite programming
techniques.

Key words and Phrases: convex function, quadratic regression,
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1 Introduction

Interpolation and approximation are widely used techniques in many research fields;

see BOX and DRAPER (1987), MONTGOMERY (1984), and MYERS (1999). In this paper

we investigate whether the quadratic interpolation and quadratic approximation of a

convex function in a finite number of points is convex or not. We call this the

convexity preserving property. We will prove that the quadratic approximation is
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convexity preserving for the univariate case, but that even the quadratic interpolation

function for the multivariate case is not convexity preserving.

To the best of our knowledge these results are not described in the literature. Our

conjecture is that the result for the multivariate case has not been discovered since

quadratic approximation is mostly used for the univariate case. Also, we could not

find a proof in the literature for the convexity preserving property of quadratic

approximation for the univariate case.

The consequences of these results are significant, in both the field of statistics

and optimization. Several optimization methods use quadratic interpolation or

quadratic least squares approximations to (locally) approximate the objective and/

or the constraint functions; see BARTHELEMY and HAFTKA (1993), BOOKER et al.

(1990), CONN and TOINT (1996), CONN et al. (1997), DEN HERTOG (1996), DEN

HERTOG and STEHOUWER (2000), POWELL (1994), POWELL (1996), SCHOOFS (1987),

SOBIESZANSKI-SOBIESKI and HAFTKA (1997), TOROPOV (1992), and TOROPOV et al.

(1993).

Due to the absence of the convexity preserving property, it may happen that the

resulting optimization problem is nonconvex. Such a nonconvex problem is not only

difficult to solve, but may also be a bad approximation of the original problem.

We show that convexity can be enforced via semidefinite programming

formulations. More precisely, the problem of finding the best convex quadratic

approximation in the least squares sense may be formulated as a semidefinite

programming problem. Semidefinite programming problems can be solved efficiently

nowadays; see ALIZADEH (1991), DE KLERK (1997), NESTEROV and NEMIROVSKII

(1992), NESTEROV and NEMIROVSKII (1994), and STURM (1997).

We note that particularly in the field of Computer Aided Design much attention has

been given to convexity preserving properties for several interpolation and

approximation techniques (KUIJT, 1998, LE MEHAUTE and UTRERAS, 1994). However,

this research is mostly restricted to splines and to the univariate and bivariate cases.

This paper is organized as follows. After some preliminaries in Section 2, we treat

the univariate case in Section 3. We show that the quadratic approximation is

convexity preserving. In Section 4 we give an example for the bivariate case which

shows that the quadratic interpolation function is not convexity preserving. We show

that requiring convexity of a quadratic approximation leads to a semidefinite

programming problem, which can be solved efficiently. In Section 5 we suggest some

future research.

2 Preliminaries

Let n P 1 and f : Rn ! R a convex function. Given distinct points z1; z2; . . . ; zN in Rn

we consider the problem of finding a quadratic function g : Rn ! R such that

f ðziÞ ¼ gðziÞ; i ¼ 1; 2; . . . ;N : ð1Þ
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The function g being quadratic, we can write it as

gðzÞ ¼ zTQzþ rT zþ c ð2Þ

for some suitable symmetric n � n matrix Q, n-vector r and some scalar c. Hence, the

problem of finding g such that (1) holds amounts to finding Q, r and c such that

zTi Qzi þ rT zi þ c ¼ f ðziÞ; i ¼ 1; 2; . . . ;N : ð3Þ

This is a linear system of N equations in the unknown entries of Q, r and c. The

number of unknowns in Q is equal to n þ 1
2 ðn2 � nÞ, hence the total number of

unknowns is given by

nþ 1
2ðn

2 � nÞ þ nþ 1 ¼ 1
2ðnþ 1Þðnþ 2Þ:

Let us call the points z1; z2; . . . ; zN quadratically independent if

zTi Qzi þ rT zi þ c ¼ 0; i ¼ 1; 2; . . . ;N ) Q ¼ 0; r ¼ 0; c ¼ 0: ð4Þ

Note that in this case N � 1
2 ðn þ 1Þðn þ 2Þ. Moreover, if N ¼ 1

2 ðn þ 1Þðn þ 2Þ then

system (3) has a unique solution. We conclude that if the given points z1; z2; . . . ; zN

are quadratically independent and N ¼ 1
2 ðn þ 1Þðn þ 2Þ then there exists a unique

quadratic function g such that (1) holds. This is the interpolation case. When

N > 1
2 ðn þ 1Þðn þ 2Þ, the linear system (3) is overdetermined and we can find a least

norm solution:

min
Q;r;c

xk k

where

xi :¼ zTi Qzi þ rT zi þ c � f ðziÞ; i ¼ 1; . . . ;N :

If the norm is the Euclidean norm, then the function g is the quadratic least squares

approximation.

3 Quadratic approximation in the univariate case

In this section we consider the univariate case (n ¼ 1), i.e. f is a one-dimensional

convex function. It is obvious that for any three quadratically independent points

z1; z2; z3 the function g will be convex. In other words, the quadratic interpolation

function is convexity preserving. We proceed to show that also the quadratic

approximation is convexity preserving. More precisely, we show that the

quadratic approximation g of f with respect to a set of quadratically independent

points

Z :¼ fz1; z2; . . . ; zNg

is convex for any norm.
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THEOREM 1. Let z1 < z2 < 
 
 
 zN be quadratically independent points in R, and let

yi ¼ fðziÞ ði ¼ 1; . . . ;NÞ, where f is a given univariate convex function. The quadratic

approximation to this data set, i.e. g, is a convex quadratic function.

PROOF. Assume that the quadratic approximation g to the data set is strictly

concave; see Figure 1.

Now we distinguish between two possibilities:

(i) the function g intersects f in two points;

(ii) the function g intersects f in at most one point.

Case (i) is illustrated in Figure 1. One can now construct the chord through the two

points of intersection. This chord then defines an affine function which is clearly a

better approximation to the data set at each data point in Z.

In case (ii) the relative interiors of the epigraph of the function f, namely

epið f Þ ¼ fðz; yÞjy P f ðzÞg;

and the set

fðz; yÞjy O gðzÞg

are disjoint. These are convex sets, and therefore there exists a line separating

them, by the well-known separation theorem for convex sets (see e.g. Theorem

11.3 in ROCKAFELLAR 1970). This line again gives a better approximation to the

data than g. (

Fig. 1. Illustration of the proof of Theorem 1.
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4 Quadratic approximation for the multivariate case

As already stated in the previous section, it is obvious that if n ¼ 1 (univariate case)

then for any three quadratically independent points z1; z2; z3 the function g will be

convex. Surprisingly enough the analogous property does not hold if n is larger than

1 (multivariate case). This means that quadratic interpolation in the multivariate

case is not convexity preserving. Consequently, also quadratic approximation in all

norms (including 1-norm, 2-norm (least squares), 1-norm) is not convexity

preserving. In this section we will first give a bivariate example for which the

quadratic interpolation is not convexity preserving. Then we will show that

convexity can be preserved by using semidefinite programming techniques.

A counter-example for the bivariate case

The following (bivariate) example shows that quadratic interpolation is not

convexity preserving in multivariate cases.

EXAMPLE 1. Consider the case where f is given by

f ðxÞ ¼ � ln x1x2; x1 > 0; x2 > 0;

which is clearly a convex function, and the points are the 6 columns of the matrix Z

given by

Z ¼ 1 2 3 2 4 6
2 1 2 3 4 6

� �
:

These points are quadratically independent since the coefficient matrix of the linear

system (4), and hence also of (3), is given by

1 2 4 1 2 1
4 2 1 2 1 1
9 6 4 3 2 1
4 6 9 2 3 1
16 16 16 4 4 1
36 36 36 6 6 1

0
BBBBBB@

1
CCCCCCA
:

and this matrix is nonsingular. The (unique, but rounded) solution of (3) is given by

Q ¼ �0:2050 0:2628
0:2628 �0:2050

� �
; r ¼ �0:7804

�0:7804

� �
; c ¼ 1:6219:

The eigenvalues of Q are �0:4677 and 0:0578, showing that Q is indefinite. Hence the

quadratic approximation g of f determined by the given points z1; z2; . . . ; z6, is not

convex. Figure 4.1 shows some of the level curves of f (dashed) and g (solid) as well

as the points zi; i ¼ 1; 2 . . . ; 6.

The level sets of g are clearly not convex and differ very much from the

corresponding level sets of f.
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In many cases it is important to have a convex quadratic approximation of f. In

the next section we show how this can be achieved.

Convex quadratic approximations for the multivariate case

Our aim is to obtain a good convex quadratic approximation g of f on the points in

the finite set

Z :¼ fz1; z2; . . . ; zNg:
Convexity of g is equivalent to the matrix Q in (2) being positive semidefinite,

yielding the condition

Q � 0: ð5Þ
It is clear from the above example that it is impossible to guarantee convexity if we

want g to coincide with f on Z. Therefore, to achieve a convex quadratic

approximation we need to relax the condition (1). This can be done in several ways.

Here we will treat the infinity norm, the 1-norm and the 2-norm.

First one may want to minimize the infinity norm of f � g at Z, yielding the

objective

min max
z2Z

jf ðzÞ � gðzÞj: ð6Þ

It will be convenient to use the notation

sðzÞ ¼ f ðzÞ � zTQz� rT z� c; z 2 Z:

With the above objective we can find g by solving the problem

min t : �t � sðzÞ � t ð8 z 2 ZÞ; Q � 0ð Þ: ð7Þ
One also might minimize the 1-norm of f � g at Z, yielding the objective

min
X
z2Z

jf ðzÞ � gðzÞj: ð8Þ

Then g can be found by solving

min
X
z2Z

tz : �tz O sðzÞO tz ð8 z 2 ZÞ; Q � 0

 !
: ð9Þ

Finally, we can minimize the 2-norm of f � g at Z (least squares), yielding the

objective

min
X
z2Z

ðf ðzÞ � gðzÞÞ2; ð10Þ

and then g can be found by solving

min t :
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
z2Z

sðzÞ2
r

O t; Q � 0

 !
: ð11Þ

For the first two cases the resulting problems (7) and (9) have linear constraints

and a semidefinite constraint Q � 0. Such a semidefinite programming problem can
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efficiently be solved (ALIZADEH, 1991, DE KLERK, 1997, NESTEROV and NEMIROVSKII,

1992, NESTEROV and NEMIROVSKII, 1994, STURM, 1997, VANDENBERGHE and BOYD,

1996). The third resulting problem (11) again can be efficiently solved, since the new

constraint is a second order cone (Lorentz cone) constraint (STURM, 1997).

In practice one sometimeswants to add the condition that the approximation is exact

or an upper- or underestimate in several points in Z. Observe that such additional

properties that fðzÞ � gðzÞ; z 2 Z (or fðzÞ � gðzÞ; z 2 Z) then we simply add the

constraints sðzÞ � 0 (respectively sðzÞ � 0) to the above minimization problems. The

resulting problems can still be formulated as semidefinite programming problems.

EXAMPLE 2. For the bivariate example given above we calculated the least squares

solution while preserving convexity. Using SeDuMi (STURM, 1999) we solved

problem (11). We obtained the following (rounded) solution:

Q ¼ 0:02750
1 1
1 1

� �
; r ¼ �0:7287

1
1

� �
; c ¼ 1:2196:

The eigenvalues of Q are 0:55 and 0, showing that Q is positive semidefinite. Hence

the quadratic approximation g of f determined by the given points z1; z2; . . . ; z6, is

convex, but degenerate. Note that Q is not positive definite because the constraint

Q � 0 is binding at the optimal solution of problem (11). (If we remove the constraint

Q � 0, then we get the non-convex interpolation function of the previous example.)

Figure 3 shows some of the level curves of f (dashed) and g (solid) as well as the

points zi; i ¼ 1; 2 . . . ; 6. Comparing this with Figure 2 we see that the convex

approximation approximates f much better within the convex hull of the six specified

points if the measure of quality is the maximum error or integral of the error function

errðzÞ ¼ jf ðzÞ � gðzÞj

Fig. 2. Level curves of f and g and the points where they coincide.
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over the convex hull. (The convex hull defines a natural trust region for the

approximation.)

5 Future research

As already mentioned in the introduction, several optimization methods for

solving problems with expensive function evaluations use quadratic interpolation

or approximation. A consequence of this paper is that for convex problems the

interpolation or approximation may be nonconvex, which may increase the

number of iterations of such optimization methods. In the near future we will

investigate how we can improve these methods by exploiting the convex

structure.
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