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Abstract 

In this paper, modified versions of the classical deterministic maximum flow and minimum cost network flow 
problems are presented in a stochastic queueing environment. In the maximum flow network model, the throughput 
rate in the network is maximized such that for each arc of the network the resulting probability of finding congestion 
along that arc in excess of a desirable threshold does not exceed an acceptable value. In the minimum cost network 
flow model, the minimum cost routing of a flow of given magnitude is determined under the same type of constraints 
on the arcs. After proper transformations, these models are solved by Ford and Fulkerson's labeling algorithm and 
out-of-kilter algorithm, respectively. 
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1. Introduction 

In this paper, stochastic versions of the deter- 
ministic m a x i m u m  f low  model  and of the deter- 
ministic m i n i m u m  cost  f l ow  model  in a single 
commodity, directed, and capacitated network are 
presented. We consider a network of queues. On 
each arc in the network there is a service unit. 
Jobs enter the network at a source and leave the 
network at a sink, and they require service at 
each arc that they pass on their way through the 
network. In order to be able to apply standard 
results for so-called open queueing networks with 
product-form solution, cf. Walrand (1988), we 
make the following assumptions: 

* Corresponding author. 

1) Jobs are generated at the sources according 
to Poisson (arrival) processes; 

2) at each arc the service unit consists of a 
fixed number of servers, and the service times are 
independent, identically, negative exponentially 
distributed random variables; 

3) the routing of jobs through the network 
occurs according to controllable random mecha- 
nisms, i.e., at each node the flows of jobs arriving 
at that node are superposed, while the departing 
flow can be split into separate streams over the 
outgoing arcs according to fixed but controllable 
probabilities (actually, these splitting probabilities 
are decision variables in our model); 

4) no blocking occurs, i.e., the buffer spaces at 
the arcs are unbounded; 

5) the network is in statistical equilibrium. 
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Under  these conditions, it is well known that 
the flow of jobs at each arc behaves as that at an 
infinite capacity multi-server Markovian (i.e., 
M / M / S / o o )  queueing system with a work-con- 
serving non-anticipating queueing discipline. 

For each arc in the network a threshold capac- 
ity is specified, together with an acceptable prob- 
ability of finding congestion in excess of this 
threshold. The aim o f  these models is either to 
maximize the throughput rate in the network or to 
minimize the cost o f  a given f low in the network 
such that the resulting probability o f  finding con- 
gestion along each arc o f  the network in excess o f  
the given threshold does not exceed an acceptable 
value. The decision variables are the intensities of 
the flows of jobs along the arcs, or, equivalently, 
the intensities of the Poisson arrival streams at 
the sources and the routing probabilities at the 
nodes. Without loss of generality we may assume 
that the network contains a single source and a 
single sink. In case of multiple sources (sinks) one 
can add an artificial node acting as a single 
source (sink) and connected to all real sources 
(sinks) by arcs containing service units with ser- 
vice capacity larger than that at any other arc, 
and with an acceptable probability of congestion 
equal to one. For the minimum cost problem we 
assume that each arc has a cost associated with it 
representing the cost of processing one job along 
that arc. 

The queue on arc representation has been 
chosen for conformity with deterministic flow 
problems. It should be noted that in a queueing 
context it is more usual to visualize queues as 
nodes of a network and flows of jobs from one 
queue to another as arcs of a network. 

These models can be applied for optimization 
of throughput or routing in a single product flexi- 
ble manufacturing system, where each item has to 
be processed through various manufacturing 
phases (the nodes). The source (sink) represents 
the starting (finishing) phase in the process. Due 
to the flexibility of the system there exist various 
ways to process an item from one stage to an- 
other (the arcs). The processing time of an item 
between two neighbouring stages is represented 
by a random variable with known exponential 
distribution. Alternatively, an arc may represent a 

transportation phase, with exponential travel time 
distribution and a limited number of transport 
units. The processing or transport cost per item 
between two neighbouring stages is deterministic. 

For a discussion of the deterministic versions 
of network flow problems, see, e.g. Murty (1976). 
In spite of the abundant amount of literature on 
performance analysis of stochastic queueing net- 
works, the notion of optimization of flows is not 
extensively dealt with in literature. Kleinrock 
(1976, Chapter 5) considers a traffic flow assign- 
ment problem with the aim of minimizing the 
total average delay for networks of single-server 
queues. Several static optimization problems in 
the context of the design of manufacturing sys- 
tems are discussed in Buzacott and Shanthikumar 
(1993). Dynamic optimization of flows, using dy- 
namic programming arguments, in simple net- 
work structures is addressed by several authors 
(see Walrand, 1988, for references). The main 
issue of this note is that the static optimization of 
routing a single commodity within a stochastic 
environment is translated into well studied deter- 
ministic flow optimization problems. For a similar 
perspective regarding the transportation model 
we refer to Pourbabai (1990). 

2. Notation 

Let M denote the set of all nodes in the 
network, and let A denote the set of all arcs in 
the network, i.e., the set of all queueing stations. 
There  is a single source s ~ M and a single sink 
t ~ M. For each node k ~ M the set I k contains 
all incoming arcs, and the set O h contains all 
outgoing arcs at node k, i.e., 

I~ = {i ~ M : i  such that ( i ,  k)  ~ A } ,  

O k = { j ~ M : j  such that ( k ,  j )  ~A } .  

For each arc (i, j ) ~ A  the following quantities 
are given: 
• Si /  The number of parallel servers at the arc. 
• /xij: The processing rate of a job by a server at 

the arc. 
• Kit: The desirable threshold for the number of 

jobs present at the arc; it is assumed that the 
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threshold Kiy is larger than or equal to the 
number of servers S~i. 

• a~j: The acceptable probability of finding con- 
gestion along the arc in excess of Ksy, aij > 0. 

• cij: The cost of processing one job along the 
arc. 

For each arc (i, j )  ~ A ,  Air will denote the flow 
rate of jobs along the arc. These rates are the 
decision variables of the optimization problems to 
be considered. 

Let Nij be the random variable denoting the 
number of jobs present at arc (i, j ) ~ A .  The 
probability mass function of N o- is the same as 
the queue length distribution of an M/M/Sir  
queueing system which is a function of the fixed 
quantities /zir and So., and of the flow rate "~ij, 
see, e.g. Walrand (1988) for the explicit formulas. 
The flow rate Ai~ is not allowed to exceed the 
service capacity Sir × [-£ij at any arc (i, j ) ~ A  in 
order to maintain stability of the network. 

3. Maximum flow rate problem 

The maximum flow rate problem for a directed 
single commodity capacitated Markovian open 
queueing network problem can be stated as the 
following stochastic (i.e., chance constrained) op- 
timization problem. 

Maximize 3' (1) 

subject to 

3" if k=s ,  
E Akj-  E A i k =  --3" i f k = t ,  (2) 

J~Ok i~lk 0, otherwise, 

Pr(Niy>~Kiy)<ai/ f o r a l l ( i , j ) ~ A ,  (3) 

Ai//> 0 for all (i ,  j )  c A .  (4) 

In the above model, the objective function (1) 
expresses that the throughput rate 3' in the net- 
work has to be maximized; constraints (2) are the 
flow rate conservation equations for the nodes of 
the network; constraints (3) express that the 
probability of finding at least Kij units along arc 
(i, j )  is not allowed to exceed aij for any arc 
(i, j )  ~A;  and constraints (4) ensure that the flow 

rate along each arc is non-negative. The aim of 
constraints (3) is to avoid queues to exceed the 
regular buffer space Kii for each arc (i, j)  ~ A  as 
much as possible. Stability of the queueing sys- 
tems at the arcs of the network is implicitly 
guaranteed by constraints (3). 

4. Minimum cost flow rate problem 

The minimum cost flow rate problem for a 
directed single commodity capacitated Markovian 
open queueing network problem is stated as fol- 
lows: 

Minimize ~ cijl~ij (5) 
(i,j)~A 

subject to 

y if k = s ,  

E Akj -- E Aik = --Y if k = t, (6) 
J~Ok i~lk 0, otherwise, 

Pr(Nij>~gij ) <~ctij for all ( i ,  j )  ~ A ,  (7) 

l~ij ~ 0 for all ( i ,  j )  ~ A .  (8) 

In this model, the objective function (5) repre- 
sents the total processing cost rate which has to 
be minimized; constraints (6) are the flow rate 
conservation equations which reflect the require- 
ment that the flow through the network should be 
of a given size 3'. Finally, constraints (7) and (8) 
have similar interpretations as constraints (3) and 
(4) in the maximum flow rate problem. 

5. The solution algorithm 

To solve the above optimization problems the 
stochastic constraints (3) and (7) will be replaced 
by equivalent deterministic upperbounds for the 
flow rates Aij. More specifically, we will show 
that constraints (3) and (7) are equivalent to 
constraints of the form 

/~ij ~ /~i*J" for all ( i ,  j )  ~ A ,  (9) 

in which, for each arc (i, j )  ~ A ,  hi* j is the unique 
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solution of the following non-linear programming 
problem: 

/~i*j = max{Air ~ (0, Sij/zij): 

Pr(N/j/> Kit ) <~ OZij } . (10) 

For brevity the indices (i, j) will be ignored in the 
next part of this section. The excess probability 
Pr(N >~ K) for an M / M / S  system, with threshold 
K >/S, can be written as 

s S (  h K 

P r ( N > ~ K )  = S-1 ~.l (~)m( S )  " 
1+ Y', 1 -  

m=l 
(11) 

In order to prove that constraints (9) are well 
defined and equivalent to constraints (3) and (7) 
it is sufficient to show that Pr(N >1 K) is a strictly 
increasing function of A with range the interval 
(0, 1). This property can be proved directly by 
showing that the derivative of this probability 
with respect to A is positive. It also follows from 
the fact that N is stochastically increasing in A, 
cf., e.g., Shaked and Shanthikumar (1988). To 
reduce the search area for the solution of the 
non-linear programming problems (10) we note 
that the denominator in (11) satisfies the follow- 
ing inequalities for A < S/z: 

S-1 ~-'~.T ( ~ ' ~ ) m ( S )  
1~<1+ ~ 1 -  

rn=l 

S-l s )  ss 
~< 1 + ~ 1 - = - -  ( 1 2 )  

m=l m! ~ S! 

The foregoing discussion leads to the following 
results. 

probability satisfies the following inequalities for 
0 <h  <S/z: 

I ~< Pr( N >/K) ~< min ' S-I 

(13) 

Because Pr(N >i K) increases from 0 to 1 when 
A increases from 0 to S/Z, this lemma implies: 

Corollary. There exists for every a, 0 < a < 1, a 
unique arrival rate A = A(/Z, S, K, a) such that 

Pr(N>~K) = 1+ Y'~ S-1 ~----~i ( ~ ) m  ( 1 -  S )  =a"  

m=l 
(14) 

This arrival rate A(/Z, S, K, a) satisfies the follow- 
ing bounds: 

s / Z K ~  <~A(/Z, S, K, a) <~s/ZK~. (15) 

Having solved the non-linear programming 
problems (10) corresponding to each arc, which 
means having solved numerically the non-linear 
equations (14) for each arc of the network, con- 
straint sets (3) and (7) can be replaced by the 
following constraint set: 

'Lj < Zi*j = A(/zi~, S~j, K~j, aij) 
for all (i, j )  c A .  (16) 

Then, the resulting problem (1), (2), (16), (4) 
transforms into the classical deterministic, di- 
rected, capacitated, single commodity maximum 
flow problem, which can be solved by Ford and 
Fulkerson's labeling algorithm, while (5), (6), (16), 
(8) represents the deterministic, directed, capaci- 
tated, single commodity minimum cost flow prob- 
lem, which can be solved by the out-of-kilter 
algorithm. For further discussions, see Murty 
(1976, Chapter 12). 

Lemma. The probability Pr(N >>. K ), with threshold 
K >1 S, in an M / M / S  queueing system is a strictly 
increasing function of  the arrival rate A for fixed 
service rate /z, for 0 <A <S/Z. Moreover, this 

6.  E x t e n s i o n s  

Several extensions of the basic queueing model 
as described in Section 2 are possible without 
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affecting the results. To mention just a few, con- 
sider the situation in which every service station 
is equipped with an automated inspection unit for 
detecting defective (but repairable) items. Upon 
identification of such an item the inspection unit 
reroutes it back to the associated workstation the 
item will travel another time along the same arc). 
This leads to a queueing network with instanta- 
neous Bernoulli feedback along the individual 
arcs. Let qii denote the probability that an item 
has to be reprocessed along arc (i, j ) c A .  The 
resulting maximum flow rate problem and mini- 
mum cost flow rate problem can be formulated as 
in Sections 3 and 4 with the only difference that 
[£ij has to be replaced by (1 - q i j ) ~ i j  in Eq. (14) 
for each arc (i, j ) c A .  In fact, we have intro- 
duced here a situation with a tandem queueing 
system at an arc (first a service unit, then an 
inspection unit). This concept can be generalized 
to arcs with an arbitrary number of service units 
arranged as an open Markovian sub-network, with 
fixed (non-controllable) routing probabilities. 
Suppose there is a chance constraint of the form 
(3) for each service unit in such a sub-network. 
For each service unit we can determine an upper- 
bound on the flow through the sub-network by 
solving an equation of the form (14) in which the 
service ra te /x  should be replaced by/z  divided by 
the average number of visits to the service unit by 
a job entering the sub-network. For the arc con- 
taining such a sub-network we finally obtain a 
single upperbound for the flow rate on that arc, 
being the minimum of the upper  bounds of all 
service units at that arc. 

Variants of our optimization problems are ob- 
tained when the constraint sets (3) and (7) are 
replaced (or supplemented by) any set of con- 
straints of the form 

e{q~ij(Niy)} <~ aij for all (i, j) cA, (17) 

with functions (~ij " ~ --¢ ~ such that E{~bij(N/j)} 
are increasing functions of A. For all such func- 
tions the chance or moment  constraints can be 
replaced by deterministic constraints of the form 
(9). As shown by Shaked and Shanthikumar (1988) 
functions of the type E{~b(N)}, with N the num- 
ber of jobs in a stable M / M / S  system, are in- 

creasing in A for every increasing function 
4,: N ---, R. 

Another  extension of our model is the intro- 
duction of losses (or gains) of items at arcs. If 
each item has a probability Pij of getting lost at 
arc (i, j )  c A  (e.g., because of an irreparable de- 
fect), then a product-form solution remains avail- 
able, while the chance constraint optimization 
problems can be reduced to deterministic f lows 
with gains problems, cf. Gondran and Minoux 
(1984). 

Further generalizations of our problems can 
be obtained by adding a finite number L of 
constraints on the total number of jobs in the 
system of the form 

~</3 k for k = 1, 2 , . . . , L ,  

(18) 

with 0k : ~ --> R, k = 1 . . . .  , L, convex and increas- 
ing functions, or by replacing the objective func- 
tion (5) by a separable convex and increasing 
function of the flow rates Aij at the arcs (i, j )  c A .  
The resulting optimization problems are less 
structured, but polynomial time algorithms exist 
for solving such problems, cf. Hochbaum and 
Shanthikumar (1990). 

Finally, we note that the ideas as presented in 
this paper can also be used to translate stochastic 
multi-commodity network flow problems into 
their deterministic counterparts by considering 
multi-class queueing networks. However, the 
translation of a chance constraint on the total 
number of jobs of all classes present at an arc 
into a deterministic upper bound on the sum of 
the flow rates at the arc over all job classes can 
only be performed if the service rates are class-in- 
dependent  at every arc; otherwise, there exists no 
product-form solution to the network, cf. Wal- 
rand (1988). 
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