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Abstract. Equilibria in dynamic games are often formulated under the assump-
tion that players have full knowledge of the dynamics they are subject to. Here we
formulate equilibria in which players are looking for robustness and take model un-
certainty explicitly into account in their decisions. Specifically we consider feedback
Nash equilibria in indefinite linear-quadratic differential games on an infinite time
horizon. Model uncertainty is represented by a malevolent input which is subject to
a cost penalty or to a direct bound. We derive conditions for the existence of robust
equilibria in terms of solutions of sets of algebraic Riccati equations.

Key Words. Feedback Nash equilibrium, robust design, linear-quadratic differ-
ential games, soft-constrained differential games, risk sensitivity.
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1 Introduction

Dynamic game theory brings together three features that are key to many situa-
tions in economy, ecology, and elsewhere: optimizing behavior, presence of multiple
agents, and enduring consequences of decisions. In this paper we add a fourth as-
pect, namely robustness with respect to variability in the environment. In usual
formulations of dynamic games, a set of differential or difference equations is spec-
ified including input functions that are controlled by the players, and players are
assumed to optimize a criterion over time. The dynamic model is supposed to be an
exact representation of the environment in which the players act; optimization takes
place with no regard of possible deviations. It can safely be assumed, however, that
agents in reality follow a different strategy. If an accurate model can be formed at
all, it would in general be complicated and difficult to handle. Moreover it may be
unwise to optimize on the basis of a too detailed model, in view of possible changes
in dynamics that may take place in the course of time and that may be hard to
predict. It makes more sense for agents to work on the basis of a relatively simple
model and to look for strategies that are robust with respect to deviations between
the model and reality. In an economic context, the importance of incorporating
aversion to specification uncertainty has been stressed for instance by Ref. 1.
In control theory, an extensive theory of robust design is already in place; see

Ref. 2 for a survey. We use this background to arrive at suitable ways of describing
aversion to model risk in a dynamic game context. We assume linear dynamics
and quadratic cost functions. These assumptions are reasonable for situations of
dynamic quasi-equilibrium, where no large excursions of the state vector are to be
expected; also from the point of view of development of theory, the linear-quadratic
case is a natural place to start. Following a pattern that has become standard in
control theory, we introduce a malevolent disturbance input that will be used in the
modeling of aversion to specification uncertainty. Our dynamic model is therefore
the following:

ẋ(t) = Ax(t) +

NX
i=1

Biui(t) + Ew(t), x(0) = x0 (1)

where N is the number of players, x is the n-dimensional state of the system, ui

contains the mi (control) variables that are chosen by player i, w is a q-dimensional
disturbance vector affecting the system, x0 is the initial state of the system, and A,
Bi, and E are constant matrices containing system parameters. By combining (1)
with an equation that expresses the disturbance w(t) as a function of the state x(t),
one can express deviations from the nominal dynamics represented by the matrix
A.
We have to specify the strategy space and the information structure available

to players. In this paper we will assume a full state information structure, and we
restrict the players to stabilizing constant linear feedback strategies. So we shall only
consider controls ui of the type ui = Fix, with Fi ∈ IRmi×n, and where (F1, · · · , FN)
belongs to the set

F := {F = (F1, · · · , FN) | A+
PN

i=1BiFi is stable}.
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The stabilization constraint is imposed to ensure the finiteness of the infinite-horizon
cost integrals that we will consider; also, the assumption helps to justify our basic
supposition that the state vector remains close to the origin. Obviously the con-
straint is a bit unwieldy since it introduces dependence between the strategy spaces
of the players. However, we will focus below on equilibria in which the inequalities
that ensure the stability property are inactive constraints. It will be a standing as-
sumption that the set F is non-empty; a necessary and sufficient condition for this
to hold is that the matrix pair (A, [B1 · · ·BN ]) is stabilizable. Given that we work
below with an infinite horizon, restraining the players to constant feedback strategies
seems reasonable; to prescribe linearity may also seem natural in the linear-quadratic
context that we assume, although there is no way to exclude a priori equilibria in
nonlinear feedback strategies. Questions regarding the existence of such equilibria
are outside the scope of this paper.
We now come to the formulation of the objective functions of the players. Our

starting point is the usual quadratic criterion which assigns to player i the cost
function

Ji :=

Z ∞

0

{x(t)TQix(t) +
NX

j=1

uj(t)
TRijuj(t)}dt. (2)

Here, Qi is symmetric and Rii is positive definite for all i = 1, . . . , N . In many
applications, state changes that are beneficial to some players may be harmful to
other players, and so we allow for the state weighting matrices Qi to be indefinite.
This is in contrast with the bulk of the control literature, in which the state weighting
matrix is assumed to be positive definite. Allowing the matrices Qi to be indefinite
brings considerable technical complications, but we believe that in the multi-player
context this generality is natural. In particular we are able in this way to formulate
two-person games that are zero-sum as far as the state variable is concerned. On
the other hand, the term uT

i (t)Riiui(t) is interpreted as a measure of the effort
expended by player i, and so we let Rii be positive definite. Here we stay in line
with standard control theory.5 Under our assumption that the players use constant
linear feedbacks, the criterion in (2) may be rewritten as

Ji :=

Z ∞

0

{xT (Qi +
NX

j=1

F T
j RijFj)x}dt (3)

where Fi is the feedback chosen by player i. Written in the above form, the criterion
may be looked at as a function of the initial condition x0 and the state feedbacks
Fi.
The description of the players’ objectives given above needs to be modified in

order to express a desire for robustness. Here we consider two alternatives, which

5We note though that for some problems (where the control weighting term is not interpreted
as spent energy) it may be natural to let the matrix Rii be indefinite. It has been shown recently
in a stochastic context that the resulting control problem may still be well-posed (Ref. 3). Here
we do not consider this generalization, however.
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both are well known in control theory. The first alternative consists of modifying
the criterion (3) to

J̄SC
i (F1, · · · , FN , x0) := sup

w∈Lq
2(0,∞)

Ji(F1, · · · , FN , w, x0) (4)

where

Ji(F1, · · · , FN , w, x0) :=

Z ∞

0

{xT (Qi +
NX

j=1

F T
j RijFj)x− wTViw}dt. (5)

The weighting matrix Vi is symmetric and positive definite for all i = 1, . . . ,N .
Because it occurs with a minus sign in (5), this matrix constrains the disturbance
vector w in an indirect way so that it can be used to describe the aversion to model
risk of player i. Specifically, if the quantity wTViw is large for a vector w ∈ Rq, this
means that player i does not expect large deviations of the nominal dynamics in
the direction of Ew. In most of the paper we use this so-called “soft-constrained”
formulation, which has been used extensively in control theory. Note that since we
do not assume positive definiteness of the state weighting matrix, our development
extends even in the one-player case the standard results that may be found for
instance in Refs. 2, 4, 5, 6 (Section 20.2), 7, 8 (Section 6.6).
We also spend attention on a second way of describing aversion to model risk:

again a minmax problem is solved, but the disturbance is not restrained by a cost
term but simply by a direct norm bound. This formulation is sometimes referred to
as the disturbance attenuation problem, or the problem with hard-bounded uncer-
tainty; see Refs. 2 and 9. In control theory (see for instance Ref. 5), this problem is
usually considered for a zero initial state. Here we carry out an analysis allowing a
nonzero initial state, extending earlier results by Ref. 9 to the infinite-horizon and
multiple-player context.
The remainder of the paper is organized as follows. The next section considers

some preliminaries. Section 3 treats the soft-constrained case whereas Section 4
considers the hard-bounded case. The paper ends with some concluding remarks.

2 Preliminaries

The following notations and terminologies will be used throughout this paper.

- To indicate that a symmetric matrix P is positive (semi) definite, we write
P > 0 (P ≥ 0).

- Given a positive definite matrix P of size n×n, the P -norm of a vector a ∈ Rn

is denoted by kakP := (a
TPa)1/2.

- For an N-tuple γ = (γ1, . . . , γN) ∈ Γ1 × . . .ΓN for given sets Γi, we write
γ−i(α) := (γ1, . . . , γi−1,α, γi+1, . . . , γN), with α ∈ Γi.

- We use
PN

i6=j ai as an abbreviation for a1 + · · ·+ aj−1 + aj+1 + · · ·+ aN .
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- The space of IRk-valued functions that are quadratically integrable on (0,∞)
is denoted by Lk

2(0,∞). With the usual inner product and induced norm, we
denote the norm of a vector v ∈ Lk

2(0,∞) by kvk.
- A matrix A is called stable if all its eigenvalues are in the open left-half complex
plane.

- For matrices A and Bi, i = 1, . . . , N , the set FN is defined by

FN := {(F1, . . . , FN) | A+
NX

i=1

BiFi is stable}.

- For matrices Bi, Rij , E and Vi matrices Si, Sij and Mi are defined as follows:

Si := BiR
−1
ii B

T
i , Sij := BjR

−1
jj RijR

−1
jj B

T
j , Mi := EV

−1
i ET .

- Consider the algebraic Riccati equation

Q+ATX +XA+XPX = 0 (ARE)

where Q and P are symmetric. A symmetric solution X is called a stabilizing
solution of (ARE) if A + PX is stable. It is well-known (see e.g. Ref. 7,
Theorem 13.5) that if such a solution exists, it is unique.

3 Soft-Constrained Nash Equilibria

The robust equilibrium concepts to be introduced in this and the next section are
both inspired by the game-theoretic approach to H∞ control theory. In that theory
the uncertainty in a system is expressed by an additive disturbance term in the
differential equation. As outlined in the introduction we take a similar approach in
an N -player context, i.e. we consider the differential equation

ẋ = Ax+

NX
i=1

Biui + Ew, x(0) = x0 (6)

where w ∈ Lq
2(0,∞) represents the unknown disturbance. We assume that the

information structure of the players is a feedback pattern and that they are restricted
to linear time-invariant stabilizing strategies, i.e. their control functions are of the
form

ui = Fix, (F1, . . . , FN) ∈ FN . (7)

As motivated in the introduction we consider in this section the cost functions (4).
These adjusted cost functions do not depend on the disturbance term. They only
depend on the strategies and the initial state. According to the feedback informa-
tion structure a set of equilibrium strategies should be independent of the initial
state. Furthermore, the strategies should satisfy the usual equilibrium inequalities.
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A formal definition is given below.

Definition 3.1
An N-tuple F̄ = (F̄1, . . . , F̄N) ∈ FN is called a soft-constrained Nash equilibrium if
for each i = 1, . . . ,N the following inequality holds:

J̄SC
i (F̄ , x0) ≤ J̄SC

i (F̄−i(F ), x0) (8)

for all x0 ∈ IRn and for all F ∈ IRmi×n that satisfy F̄−i(F ) ∈ FN . ¤

In the next subsection we will discuss the one-player case. The results obtained
for that particular case are the basis for the derivation of results for the general
N-player case. We stress here the point again that in contrast to the usual H∞-
approach (see e.g. Ref. 5) we consider a cost criterion without assuming the state
weighting matrix to be positive semidefinite. The general N-player case is dealt
with in Subsection 3.2. In Subsection 3.3 we treat the scalar case in more detail.

3.1 One-Player Case

In this subsection we study the one-player case, i.e. we consider

ẋ = (A+BF )x+ Ew, x(0) = x0, (9)

with (A,B) stabilizable, F ∈ F and

J(F,w, x0) =

Z ∞

0

(xT (Q+ F TRF )x− wTV w)dt. (10)

The matrices Q,R and V are symmetric, R > 0, and V > 0. The problem is to
determine for each x0 ∈ IRn the value

inf
F∈F

sup
w∈Lq

2(0,∞)

J(F,w, x0). (11)

Furthermore, if the infimum is finite, it is of interest to determine whether there is a
feedback matrix F̄ ∈ F that achieves the infimum, and to determine all matrices that
have this property. This soft-constrained differential game can also be interpreted
as a model for a situation where the controller designer is minimizing the criterion
(10) by choosing an appropriate F ∈ F , while the uncertainty is maximizing the
same criterion by choosing an appropriate w ∈ Lq

2(0,∞).
A necessary condition for the expression in (11) to be finite is that the supremum

supw∈Lq
2(0,∞) J(F,w, x0) is finite for at least one F ∈ F . This condition is not suffi-

cient (see Remark 3.1 (iii) below). We now first present a lemma that gives necessary
and sufficient conditions for the supremum in (11) to attain a finite value for a given
stabilizing feedback matrix F . The lemma will be used later on in Theorem 3.1,
which provides a sufficient condition under which the soft-constrained differential
game associated to (9)—(10) has a saddle point.
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Lemma 3.1 Let A be stable. Consider the system

ẋ = Ax+ Ew (12)

and the corresponding cost functional

φ(w, x0) :=

Z ∞

0

(xTQx− wTV w)dt, x(0) = x0,

with Q = QT and V > 0. Let M := EV −1ET . The following conditions are
equivalent.

(i) For each x0 ∈ IRn there exists a w̄ ∈ Lq
2(0,∞) such that φ(w, x0) ≤ φ(w̄, x0).

(ii) The Hamiltonian matrix

H :=

µ
A M
−Q −AT

¶
has no eigenvalues on the imaginary axis.

(iii) The algebraic Riccati equation

Q+ATX +XA+XMX = 0 (13)

has a stabilizing solution (see (ARE)).

If these conditions hold, the maximum of φ(w, x0) is uniquely attained by

w̄(t) := V −1ETXet(A+MX)x0

where X is the stabilizing solution of (13). Furthermore we have φ(w̄, x0) = x
T
0Xx0.

Proof We will show the following implications: (i) ⇒ (ii) ⇒ (iii) ⇒ (i). The
second part of the lemma follows from the proof that (iii) implies (i).

(i)⇒ (ii): Denote the state trajectory corresponding to w̄ by x̄. Then the maximum
principle (see e.g. Ref. 10) implies that there exists a costate variable p such that

˙̄x = Ax̄+ Ew̄, x̄(0) = x0

ṗ = −Qx̄− ATp

w̄(t) = arg max
w∈IRq

(x̄TQx̄− wTV w + 2pT (Ax̄+ Ew)).

A completion of squares shows that

−wTV w + 2pTEw = −(w − V −1ETp)TV (w − V −1ETp)− pTMp.

Since V > 0, it follows that w̄ = V −1ETp. Henceµ
˙̄x
ṗ

¶
=

µ
A M
−Q −AT

¶µ
x̄
p

¶
= H

µ
x̄
p

¶
, x̄(0) = x0.
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Since w̄ ∈ Lq
2(0,∞) and A is stable, x̄(t) → 0 for t → ∞ for all x0 ∈ IRn. This

shows that the spectral subspace corresponding to the eigenvalues in the open left-
half plane has at least dimension n. Since H is an Hamiltonian matrix this implies
that H has no eigenvalues on the imaginary axis.

(ii)⇒ (iii): This implication follows from e.g. Ref. 7, Theorem 13.6.

(iii)⇒ (i): Let w ∈ Lq
2(0,∞) and x be generated by (12). Since A is stable we have

that x(t)→ 0 for t→∞. Hence a completion of the squares shows that

φ(w, x0) =

Z ∞

0

(xTQx− wTV w +
d

dt
xTXx− d

dt
xTXx)dt

= xT
0Xx0 −

Z ∞

0

kw − V −1ETXxk2
V dt.

Hence φ(w, x0) ≤ xT
0Xx0 and equality holds if and only if w = V

−1ETXx. Substi-
tuting this in (12) shows that φ(·, x0) is uniquely maximized by w̄. ¤

Remark 3.1
(i) Note that the lemma does not imply that if the Hamiltonian matrix H has
eigenvalues on the imaginary axis, the cost will be unbounded. Consider e.g.
a = −1; q = r = e = v = 1. Then X = 1 is the unique (though not stabilizing) so-
lution of (13). A completion of squares (see proof above) shows that φ(w, x0) ≤ x2

0.
Furthermore, it is easily verified that with w = (1 − ε)x, for an arbitrarily small
positive ε, we can approach this cost arbitrarily closely.

(ii) From the above example we also immediately learn that if there exists a F̄ ∈ F
such that supw∈Lq

2(0,∞) J(F,w, x0) is finite, this does not imply that there is an open

neighborhood of F̄ ∈ F for which the supremum is also finite. Take e.g. a = −1
2
, b =

1
2
, f̄ = −1, q = r = e = v = 1. Then for every ε > 0, supw∈Lq

2(0,∞) J((f̄ + ε), w, x0)
is infinite.

(iii) Since we did not assume that the state weighting Q in (10) is nonnegative def-
inite, it may well happen that the value of the expression in (11) is −∞. For a
simple example, consider the scalar case with E = 0, A = −1, B = R = V = 1, and
Q = −2. ¤

Motivated by this result we define for each F ∈ F the Hamiltonian matrix

HF :=

µ
A+BF M

−Q− F TRF −(A+BF )T
¶
. (14)

and introduce the set

F̄ := {F ∈ F | HF has no eigenvalues on the imaginary axis}. (15)

The following lemma provides a convenient expression for the objective function of
the game that we consider.
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Lemma 3.2 Consider (9)—(10) with F ∈ F and w ∈ Lq
2(0,∞). Let X be an

arbitrary symmetric matrix; then

J(F,w, x0) =x
T
0Xx0 +

Z ∞

0

(xT (Q+ATX +XA−XSX +XMX)x
+ k(F +R−1BTX)xk2

R − kw − V −1ETXxk2
V ) dt

(16)

where S := BR−1BT and M := EV −1ET .

Proof Since F ∈ F and w ∈ Lq
2(0,∞), x(t)→ 0 for t→∞. Thus

J(F,w, x0) =

Z ∞

0

(xT (Q+ F TRF )x− wTV w +
d

dt
xTXx− d

dt
xTXx) dt

= xT
0Xx0 +

Z ∞

0

(xT (Q+ATX +XA)x+ xTF TRFx

+ 2xTF TBTXx− wTV w + 2wTETXx) dt.

Hence, the two completions of the squares

xTF TRFx+ 2xTF TBTXx = k(F +R−1BTX)xk2
R − xTXSXx

and
−wTV w + 2wTETXx = −kw − V −1ETXxk2

V + x
TXMXx

show that (16) holds. ¤

The above lemma shows that if X satisfies the algebraic Riccati equation (18) below,
an optimal choice for the minimizing player is −R−1BTX, which is an admissible
choice if X is the stabilizing solution of this equation. If the maximizing player
would be restricted to choose linear state feedback matrices as well, his optimal
choice would be the state feedback matrix V −1ETX. The following theorem shows
that under the open-loop information structure, the optimal choice for the maxi-
mizing player, given that the minimizing player chooses −R−1BTX, can indeed be
obtained from the feedback law x→ V −1ETXx. This theorem provides a set of suf-
ficient conditions for a saddlepoint solution to exist. Consequently, it also generates
a solution of problem (11).
To motivate the conditions in the theorem, consider for the moment the scalar

case, without going into too much detail. We replace the upper case symbols for
matrices by their lower case equivalents to emphasize that these matrices are now
just real numbers. Under the assumption that the conditions of Lemma 3.1 are
satisfied, the equation (cf. (13))

mx2 + 2(a+ bf)x+ 2fr = 0 (17)

holds for each f , and we have supw∈Lq
2(0,∞) J(f, w, x0) = x(f)x

2
0. In particular, the

minimizing f̄ satisfies x0(f̄) = 0. Differentiation of (17) with respect to f then yields
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that f̄ = −bx/r. Substitution of this relationship into (17) shows that x should be
a stabilizing solution of (m− s)x2 + 2ax+ q = 0 (see (18)). On the other hand, to
guarantee that f̄ indeed yields a minimum, the condition −a/b 6∈ F̄ suffices; this is
equivalent to a2 + qs > 0. This requirement is the scalar version of condition (19)
below.

Theorem 3.1 Consider (9)—(10) and let the matrices S and M be defined as in
Lemma 3.2. Assume that the algebraic Riccati equation

Q+ATX +XA−XSX +XMX = 0 (18)

has a stabilizing solution X and that additionally A − SX is stable. Furthermore,
assume that there exists a real symmetric n × n symmetric matrix Y that satisfies
the matrix inequality

Q+ATY + Y A− Y SY ≥ 0. (19)

Define F̄ := −R−1BTX and w̄(t) := V −1ETXet(A−SX+MX)x0. Then the matrix F̄
belongs to F̄ , the function w̄ is in Lq

2(0,∞), and for all F ∈ F and w ∈ Lq
2(0,∞)

we have

J(F̄ , w, x0) ≤ J(F̄ , w̄, x0) ≤ J(F, w̄, x0).

Moreover, J(F̄ , w̄, x0) = x
T
0Xx0.

Proof The matrices A − SX and A − SX + MX are stable by assumption,
which implies that F̄ ∈ F and w̄ ∈ Lq

2(0,∞), respectively. According to Lemma 3.2
we have

J(F,w, x0) = x
T
0Xx0 +

Z ∞

0

(k(F − F̄ )xk2
R − kw − V −1ETXxk2

V )dt.

From this it follows that

J(F̄ , w, x0) = xT
0Xx0 −

Z ∞

0

(kw − V −1ETXx̃k2
V )dt ≤ xT

0Xx0,

where x̃ is generated by ˙̃x = (A+BF̄ )x̃+Ew, x̃(0) = x0. Furthermore, if J(F̄ , w, x0) =
xT

0Xx0 then w = w̄. Hence J(F̄ , w, x0) < x
T
0Xx0 for all w 6= w̄, and J(F̄ , w̄, x0) =

xT
0Xx0. This, obviously, implies also that F̄ ∈ F̄ .
Next, we show that J(F, w̄, x0) ≥ J(F̄ , w̄, x0) for all F ∈ F . Let x̂ and x̄ be

generated by
˙̂x = (A+BF )x̂+ Ew̄, x̂(0) = x0

and
˙̄x = (A+BF̄ )x̄+ Ew̄, x̄(0) = x0

respectively. Define furthermore

ν := (F̄ − F )x̂, ζ := w̄ − V −1ETXx̂.

11



Then J(F, w̄, x0) − J(F̄ , w̄, x0) =
R∞

0
(kνk2

R − kζk2
V )dt. Introducing ξ := x̄ − x̂ we

have that

ξ̇ = (A+BF̄ )ξ +Bν (20)

with ξ(0) = 0, and ζ = V −1ETXξ. Since both x̂ and x̄ belong to Ln
2 (0,∞) it follows

that ξ and ν are quadratically integrable as well, which implies that ξ(t) → 0 for
t→∞. So, we conclude that R∞

0
d
dt
ξTXξdt = 0. Hence

J(F, w̄, x0)− J(F̄ , w̄, x0) =

Z ∞

0

[(kνk2
R − kζk2

V )−
d

dt
ξTXξ] dt =

=

Z ∞

0

(kνk2
R − 2νTBTXξ − ξT (ATX +XA− 2XSX +XMX)ξ) dt

=

Z ∞

0

(kν −R−1BTXξk2
R − ξT (ATX +XA−XSX +XMX)ξ) dt

=

Z ∞

0

(kν + F̄ξk2
R + ξ

TQξ) dt.

Next, define w := ν + F̄ξ = F̄ x̄ − Fx̂. Then, (20) shows that ξ̇ = Aξ + Bw. Since
ξ(0) = 0 and ξ(t)→ 0 for t→∞ we also have

R∞
0
( d

dt
ξTY ξ)dt = 0. Hence

J(F, w̄, x0)− J(F̄ , w̄, x0) =

Z ∞

0

[(kwk2
R + kξk2

Q) +
d

dt
ξTY ξ] dt =

=

Z ∞

0

(wTRw + 2wTBTY ξ + ξT (Q+ATY + Y A)ξ) dt

=

Z ∞

0

(kw +R−1BTY ξk2
R + ξ

T (Q+ATY + Y A− Y SY )ξ) dt ≥ 0

where the last inequality follows by assumption. ¤

Note that if Q ≥ 0, condition (19) is trivially satisfied by choosing Y = 0. The
following corollary summarizes the consequences of Theorem 3.1 for the problem
posed at the beginning of this subsection.

Corollary 3.1 Let the assumptions of Theorem 3.1 hold and let X, F̄ , and w̄
be as in the theorem. We have

min
F∈F

sup
w∈Lq

2(0,∞)

J(F,w, x0) = max
w∈Lq

2(0,∞)
J(F̄ , w, x0) = x

T
0Xx0 (21)

and

max
w∈Lq

2(0,∞)
inf

F∈F
J(F,w, x0) = min

F∈F
J(F, w̄, x0) = x

T
0Xx0. (22)

¤

The rest of this section is concerned with the question to what extent it is nec-
essary for the expression (11) to be finite that the algebraic Riccati equation (18)
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has a symmetric solution such that both A +MX − SX and A − SX are stable.
The theorem below shows that this condition must hold if the infimum in (11) is
achieved at some F̄ ∈ F̄ .

Theorem 3.2 Assume there exists an F̄ ∈ F̄ such that for each x0 ∈ IRn

min
F∈F̄

sup
w∈Lq

2(0,∞)

J(F,w, x0) = max
w∈Lq

2(0,∞)
J(F̄ , w, x0).

Then the algebraic Riccati equation (18) has a stabilizing solution X. Furthermore,
the matrix A− SX is stable.

Proof From the assumption it follows that F̄ ∈ F is such that the Hamiltonian
matrix HF̄ defined in (14) has no eigenvalues on the imaginary axis. This implies
that there is an open neighborhood OF̄ ⊂ F of F̄ such that for all F ∈ OF̄ , HF has
no eigenvalues on the imaginary axis. Let F ∈ OF̄ be an arbitrary element. This
implies that 3.1.(ii) holds with A, Q and φ(w, x0) replaced by A+BF , Q+ F

TRF
and J(F,w, x0), respectively. Hence, according to this lemma

J̄(F, x0) := max
w∈Lq

2(0,∞)
J(F,w, x0) = x

T
0 ψ(F )x0

where ψ : OF̄ → IRn×n is defined by ψ(F ) := X, where X is the stabilizing solution
of

Q+ F TRF + (A+BF )TX +X(A+BF ) +XMX = 0.

In Ref. 6, Section 11.3, it is shown that the maximal solution of

X̃(µ)D̃(µ)X̃(µ)− X̃(µ)Ã(µ)− ÃT (µ)X̃(µ)− C̃(µ) = 0 (23)

is a real-analytic function of k real variables µ ∈ Ω, where Ω is an open connected
set in IRk if (i) Ã(µ), C̃(µ) and D̃(µ) are real-analytic functions of µ, (ii) D̃(µ) ≥ 0,
(iii) (Ã(µ), D̃(µ)) is stabilizable, and (iv) the matrixµ −Ã(µ) D̃(µ)

C̃(µ) ÃT (µ)

¶
has no eigenvalues on the imaginary axis for all µ ∈ Ω. Under the conditions (ii)
and (iii), the maximal solution of (23) coincides with the unique solution of (23) for
which the spectrum of Ã(µ) − D̃(µ)X̃(µ) lies in the closed left-half plane (see e.g.
Ref. 6, Theorem 7.9.3). Note that −X is the maximal solution of (23) with

Ã(µ) = A+BF, C̃(µ) = −Q− F TRF, D̃(µ) =M and µ = vecF

(vecF denotes the vector obtained from F by stacking the columns of F ). Clearly,
condition (i) and (ii) hold; condition (iii) follows from the stability of A+ BF and
condition (iv) follows from the easily verifiable fact that the matrices HF andµ −A−BF M

−Q− F TRF (A+BF )T

¶
13



have the same spectrum. Hence, ψ is an analytic function of F in any open connected
subset of F̄ . In particular J̄ is differentiable with respect to F in such a set. Since J̄
attains its minimum at F̄ ∈ F , for each x0 ∈ IRn, a differentiation argument shows
(see Ref. 11 for details) that the Fréchet derivative ∂ψ(F̄ ) = 0. Next, define the
transformation Ψ : F̄ × IRn×n → IRn×n by

Ψ(F,X) := Q+ F TRF + (A+BF )TX +X(A+BF ) +XMX.

By definition, we have Ψ(F,ψ(F )) = 0 for all F ∈ OF̄ . Taking the derivative of this
equality at F = F̄ shows that F̄ = −R−1BTψ(F̄ ) (see again Ref. 11 for details).
Substituting this in Ψ(F̄ ,ψ(F̄ )) = 0 yields

Q+ATψ(F̄ ) + ψ(F̄ )A− ψ(F̄ )Sψ(F̄ ) + ψ(F̄ )Mψ(F̄ ) = 0.
This shows that ψ(F̄ ) satisfies (18) and furthermore, since it is the stabilizing solu-
tion of the equation Ψ(F̄ ,X) = 0 it follows that A+BF̄ +Mψ(F̄ ) = A− Sψ(F̄ ) +
Mψ(F̄ ) is stable. Finally, since F̄ ∈ F̄ , the matrix A− Sψ(F̄ ) is stable. ¤

3.2 N-Player Case

From Corollary 3.1, a sufficient condition for the existence of a soft-constrained feed-
back Nash equilibrium follows in a straightforward way.

Theorem 3.3 Consider the differential game defined by (1), (4) and (5). Assume
there exist N real symmetric n×n matrices Xi and N real symmetric n×n matrices
Yi such that

Qi +A
TXi +XiA−

NX
j 6=i

(XiSjXj +XjSjXi)−XiSiXi

+
NX

j 6=i

XjSijXj +XiMiXi = 0 (24)

A−
NX

j=1

SjXj +MiXi is stable for i = 1, . . . , N (25)

A−
NX

j=1

SjXj is stable (26)

Qi +A
TYi + YiA−

NX
j 6=i

(YiSjXj +XjSjYi)− YiSiYi +
NX

j 6=i

XjSijXj ≥ 0. (27)

Define the N-tuple F̄ = (F̄1, . . . , F̄N) by

F̄i := −R−1
ii B

T
i Xi. (28)

Then F̄ ∈ FN , and thisN -tuple is a soft-constrained Nash equilibrium. Furthermore

J̄SC
i (F̄1, . . . , F̄N , x0) = x

T
0Xix0. (29)

14



Proof The assumption (26) immediately implies that F̄ ∈ FN . Let x0 ∈ IRn and
1 ≤ i ≤ N . Let the functional φ be defined by

φ : {F ∈ IRmi×n | F̄−i(F ) ∈ FN

ª→ IR, φ(F ) = J̄SC
i (F̄−i(F ), x0).

We need to show that this functional is minimal at F = F̄i. We have

φ(F ) = sup
w∈Lq

2(0,∞)

∞Z
0

Ã
xT

Ã
Qi +

NX
j 6=i

XjSijXj + F
TRiiF

!
x− wTViw

!
dt

where x follows from

ẋ =

Ã
A−

NX
j 6=i

SjXj +BiF

!
x+ Ew, x(0) = x0.

Note that the functional φ coincides with the functional J , as defined in Theo-
rem 3.1, with A replaced by A −PN

j 6=i SjXj, B := Bi, Q := Qi +
PN

j 6=iXjSijXj ,
R := Rii, V = Vi, and the same values for E and x0. It is easily seen that the
conditions (24)—(27) guarantee that the conditions of Theorem 3.1 are satisfied with
X := Xi and Y = Yi. So, according to Theorem 3.1, the functional φ is minimal at
F = −R−1

ii B
T
i Xi = F̄i, and the minimal value is equal to x

T
0Xix0. ¤

Remark 3.2 If Qi ≥ 0 for all i = 1, . . . ,N , the matrix inequality (27) is triv-
ially satisfied with Yi = 0. ¤

3.3 Scalar Case

In this subsection we consider the scalar case of the one-player problem (9)—(10) in
some more detail. Specifically we are interested in the meaning of condition (19)
which plays a role only when the state weighting matrix in the objective function is
indefinite. First we obtain necessary and sufficient conditions for

J̄ := inf
f∈F

sup
w∈Lq

2(0,∞)

J(f, w, x0) (30)

to be finite. We begin with necessary and sufficient conditions under which the
supremum takes a finite value.

Lemma 3.3 Let f ∈ F be fixed. Then supw∈Lq
2(0,∞) J(f,w, x0) is finite if and

only if g(f) := (a+ bf)2−m(q+f 2r) ≥ 0. Furthermore, the value of the supremum
is −1

2
(q + f 2r)x2

0/(a+ bf) if e = 0, and is −(a+ bf +
p
g(f))x2

0/m otherwise.

Proof If e = 0, the supremum is achieved at w = 0 and so it is finite for any
f ∈ F . In this case we also have m = e2/v = 0 and so the condition of the lemma
holds. If e 6= 0, the pair (a+ bf, e) is controllable. Using Ref. 12 (or, in this scalar
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case, elementary analysis), we have that the supremum is finite if and only if the
algebraic Riccati equation

mx2 + 2(a+ bf)x+ q + f 2r = 0 (31)

has a real solution. Furthermore, the value of the supremum is x2
0xs, where xs is the

smallest solution of (31). From this, the above statement follows directly. ¤

Next, we consider the outer minimization. From the above lemma it is clear that
the case e = 0 is a special one. Therefore, we analyse this case first.

Proposition 3.1 Suppose that in the scalar version of (9)—(10) we have e = 0,
and write t := a2 + sq. If b 6= 0, the following holds.
(i) If t > 0, then J̄ = (qs+ (a+

√
t)2)/2s

√
t and f̄ = −(a+ t)/b.

(ii) If t = 0, then J̄ = a/s and the infimum in problem (30) is not achieved
(actually, the infimum is attained at f = −a/b).

(iii) If t < 0, then J̄ = −∞.
If b = 0, then necessarily a < 0 and the minimum J̄ = −q/(2a) is attained at f = 0.

Proof All statements follow by an elementary analysis of the function F 3 f 7→
−1

2
(q+f 2r)/(a+ bf) (see Lemma 3.3). If t > 0 this function has a unique minimum

at f̄ ; if t = 0 its graph is a line; if t < 0 it is a monotonic function that has a vertical
asymptote at f = −a/b. ¤

Next, consider the case e 6= 0 or, equivalently, m 6= 0. Let

F̄e := {f ∈ F | g(f) = (a+ bf)2 −m(q + f 2r) ≥ 0} (32)

(see Lemma 3.3). That is, F̄e is the set of all stabilizing feedback matrices for which
supw∈Lq

2(0,∞) J(f, w, x0) is finite. From Lemma 3.3 we know that the supremum

equals x2
0xs(f), where xs(f) is given by

xs(f) = −a+ bf +
p
g(f)

m
. (33)

We are looking for the minimum of xs(f) over all f in the set F̄e. To perform this
minimization we first consider the domain F̄e in some more detail.

Lemma 3.4 The set F̄e defined in (32) is either

- empty,

- a single point,

- a halfline,

16



- a bounded interval, or

- the union of a halfline and a bounded interval.

Proof Define G := {f | (a + bf)2 −m(q + f2r) ≥ 0}. Then F̄e = G ∩ F . Note
that F is an open halfline. To determine G, we consider the graph of g(f) :=
(a + bf)2 − m(q + f 2r), f ∈ IR. If g is concave, G is a (possibly empty) closed
interval or just a single point. So F̄e is a (possibly empty) interval or single point
too. In case g is convex, G consists of either the whole real line or the union of two
closed halflines. From this the other possibilities mentioned in the lemma are easily
established. ¤

From this lemma we conclude that whenever F̄e is not empty or consists of a single
point, we can use differentiation arguments to investigate the finiteness of J̄ . There-
fore, we first analyse these two cases.

Proposition 3.2

(I.) F̄e = ∅ if and only if s < m and either i) a2+q(s−m) < 0 or ii) a2+q(s−m) ≥ 0;
a ≥ 0; and a2 + qs ≥ 0. In this case, J̄ = ∞.
(II.) F̄e consists of only one point if and only if simultaneously s−m < 0, a2+q(s−
m) = 0, and −ma/(s−m) < 0 hold. Then, J̄ = a/(s−m) and f̄ = −ab/(r(s−m)).

Proof

(I.) F̄e = ∅ if and only if (see Lemma 3.4) either G is empty, or the intersection
of F with G (with G a bounded interval) is empty. The first case occurs if both
s − m < 0 and a2 + q(s − m) < 0. The second case occurs if s − m < 0; a2 +
q(s − m) ≥ 0 and (assume without loss of generality b > 0) −a/b ≤ −(ab/r +p
m/r

p
a2 + q(s−m))/(s−m). This holds if and only if a ≥ 0 and a2 + qs ≥ 0.

(II.) F̄e consists of only one point if and only if g(f) = 0 has exact one solution in
F . Elementary calculations then show the stated result. ¤

The next case we consider is G = IR. This corresponds to the case s > m and
a2 + q(s −m) ≤ 0. It can be shown that under these conditions the derivative of
xs(f) is negative. So, the infimum is finite, but is attained at the boundary of F .
From this and Proposition 3.2 we see that the only case for which a2+ q(s−m) ≤ 0
we did not treat yet is the case s = m. Obviously, this case only occurs if a = 0. It
is easily verified that x0s(f) < 0 again, so the same conclusion as above holds.
Finally, consider the case that a2 + q(s − m) > 0. Elementary calculations

show that in that case the derivative of xs(f) has a unique zero f
∗. This zero

coincides with −(b/r)x∗, where x∗ is the smallest solution of the algebraic Riccati
equation (18). Furthermore, y00f (f

∗) < 0, so xs(f) has a minimum at f ∗. Moreover,
g(f ∗) = (a− sx∗ +mx∗)2 ≥ 0. So, f ∗ ∈ G. If additionally a− sx∗ ∈ F , then xs(f)
has a minimum in F̄e which, moreover, is a global minimum if e.g. F̄e is connected.
On the other hand it is clear that if a−sx∗ 6∈ F the infimum value is again attained
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at the boundary of F . The following example illustrates the case in which F̄e is not
connected.

Example 3.1 Let a = 5, b = 1, m = 1, r = 1
9
and q = −3. Then, F̄e = (−∞,−6)∪

(−51
4
,−5). Moreover, J(−5, w̄, x0) = −1

3

√
2x2

0, f
∗ = −63

4
and J(f ∗, w̄, x0) =

3
4
x2

0.
In this case the infimum is not achieved. Note that if f = −5 the worst case action
(from the player’s point of view) the disturbance can take is to stabilize the system
since the player’s aim is to maximize the revenues x (subject to the constraint that
the undisturbed closed-loop system must be stable). ¤

The next lemma gives conditions, in terms of the problem parameters, under which
a nonempty set F̄e is not connected.

Lemma 3.5 Assume that F̄e 6= ∅. Then F̄e is not connected if and only if the
following four conditions are satisfied:

(i) s−m > 0

(ii) a2 + q(s−m) ≥ 0
(iii) a2 + qs < 0

(iv) a > 0.

Proof If g is concave (see proof of Lemma 3.4), the set F̄e is an interval and is thus
connected. It is easily verified that this situation occurs if and only if s−m ≤ 0.
Next consider the case that g is convex. If g has no zeros it is obvious that

F̄e is connected. This occurs if and only if a2 + (s − m)q < 0. Otherwise,
G = (−∞, a0) ∪ (a1,∞). Then, F̄e is connected if and only if (assume without
loss of generality b > 0) −a/b ≤ −(ab +pa2b2 − (a2 −mq)(b2 −mr))/(r(s −m)).
This condition holds if and only if either a ≤ 0 or a2 + qs ≥ 0. ¤

If F̄e is not connected, J(f, w̄(f), x0) does not have a global minimum since

J(−a/b, w̄(−a/b), x0) = −(
p
−m(q + a2/s)/m)x2

0 < 0

< (a+
p
a2 + q(s−m))/(s−m)x2

0 = J(f
∗, w̄(f ∗), x0).

Actually one can show that xs(f) attains again an infimum at −a/b. So we conclude
the following.

Theorem 3.4 Consider the scalar version of the one-player game (9)—(10). As-
sume that the set F̄e defined in (32) has more than one element and that e 6= 0;
then the following statements hold.

(i) The one-player game has a solution if and only if either one of the four condi-
tions in Lemma 3.5 is violated and (18) has a stabilizing solution x∗ for which
additionally a−sx∗ is stable. In that case the solution is provided by Theorem
3.1.
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(ii) Otherwise, the infimum in (30) is achieved and J̄ = J(−a
b
, w̄(−a

b
), x0).

¤

Remark 3.3 The assumption that there exists a number y such that q+2ay−sy2 ≥ 0
(see Theorem 3.1) is equivalent to the assumption that a2 + qs ≥ 0. So, this condi-
tion indeed implies in the scalar case that F̄e is connected. ¤

We end this subsection by noting that for the two-player case one can study the
number of solutions to the algebraic Riccati equations like in Ref. 13. Rewriting
mi =: αisi for some positive αi, and using the same notation, one has to study the
solution set of the following (in)equalities:

(1 + αi)κ
2
i − 2κ3κi + σi = 0, i = 1, 2 (34)

κ3 := −a+ κ1 + κ2 > 0 (35)

κ3 − αiκi > 0, i = 1, 2. (36)

Equations (34)—(35) can be analysed similarly as in Ref. 13. By taking αi small it
is clear that the number of equilibria can vary again between zero and three.
Another interesting point is that the incorporation of noise by players into their

decision making may result in the fact that a situation of no equilibrium changes
into a situation in which an equilibrium does exist. Take e.g. qi = −1; bi = ri = vi =
e = 1 and a = −3

2
. For these parameters the undisturbed game has no equilibrium

(see Ref. 13, Theorem 3) whereas the disturbed game has the equilibrium κi = −1
2
,

i = 1, 2; κ3 =
1
2
.

Furthermore, using the implicit function theorem, one can analyse the conse-
quences of a change in the αi parameters on the equilibrium location. Assuming
that the equilibrium (κ∗1,κ

∗
2) can be described locally as a function h(α1,α2), it is

easily verified that

h0 =
−1

2(p1p2 − κ∗1κ∗2)
µ −p2 κ∗1
κ∗2 −p1

¶µ
κ∗

2

1 0

0 κ∗
2

2

¶
where pi := κ

∗
3−αiκ

∗
i > 0 (see (36)). From this it is immediately clear, for example,

that at a positive equilibrium an increase in α1 will have an opposite effect on the
entries of the equilibrium location. One entry will increase, the other will decrease.
That is, the response to a more risk-averse behavior by one player is a more risk-
seeking behavior by the other player. We do not undertake a more detailed analysis
here since such an analysis can be carried out best in the context of a specific
application.

4 Hard-Bounded Nash Equilibria

In this section we consider again the system

ẋ = Ax+
NX

i=1

Biui + Ew, x(0) = x0, (37)
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with strategies

ui = Fix (38)

and cost functions

JHB
i (F1, . . . , FN , w, x0) =

∞Z
0

xT

Ã
Qi +

NX
j=1

F T
j RijFj

!
x dt. (39)

In the hard-bounded modeling approach we consider as objective functions for the
players the adjusted cost functions

J̄HB
i (F1, . . . , FN , x0) = sup

kwk≤ri

JHB
i (F1, . . . , FN , w, x0). (40)

The numbers ri express the players’ degrees of aversion against model risk; in this
sense their role is similar to that of the matrices Vi in the soft-constrained problem
given by the objective functions (5).

Definition 4.1 An N -tuple F̄ = (F̄1, . . . , F̄N) ∈ FN is called a hard-bounded Nash
equilibrium if for each i = 1, . . . ,N the following inequality holds:

J̄HB
i (F̄ , x0) ≤ J̄HB

i (F̄−i(F ), x0) (41)

for all F ∈ IRmi×n that satisfy F̄−i(F ) ∈ FN . ¤

Note that here, in contrast to Section 3, players have a memoryless perfect state in-
formation structure (see Ref. 8), so that the linear stabilizing feedback control may
depend on the initial state. A sufficient condition for the existence of hard-bounded
Nash equilibria is presented in Theorem 4.2 below. We present first a result on a
minmax problem, corresponding to a one-player situation, on which the proof of
the theorem will be based. For x0 = 0, the minmax problem reduces to the state
feedback H∞ control problem. For nonzero unknown initial state, the corresponding
maxmin problem has been studied in Ref. 15. Here we study the minmax problem
with known x0 6= 0, i.e. we study the worst-case disturbance attenuation problem
with known nonzero initial state. The problem addressed here is a direct general-
ization of Ref. 9.

Theorem 4.1 Let r > 0, x0 ∈ IRn, A,Q ∈ IRn×n, B ∈ IRn×m, E ∈ IRn×q,
R ∈ IRm×m, with (A,B) stabilizable, Q ≥ 0 and R > 0. Define

S := BR−1BT (42)

F := {F ∈ IRm×n | A+BF is stable}. (43)

Assume there exists a real symmetric n × n matrix X, an n × n matrix P , and a
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real number γ 6= 0, such that
X ≥ 0 (44)

Q+ATX +XA−XSX + γ−2XEETX = 0 (45)

A0 := A− SX + γ−2EETX is stable (46)

AT
0 P + PA0 = −XEETX (47)

γ−4xT
0 Px0 = r

2. (48)

Define F̄ := −R−1BTX. Then F̄ ∈ F and the functional J : F → IR, defined by

J : F 7→ sup
kwk≤r

∞Z
0

xT (Q+ F TRF )x dt (49)

where x follows from

ẋ = (A+BF )x+ Ew, x(0) = x0, (50)

is minimal at F = F̄ . Furthermore, the corresponding minimal value is equal to
xT

0Xx0 + γ
2r2.

Proof Note that the matrix X is the stabilizing solution of the ARE (45). Since X
is positive semidefinite, it follows from Ref. 7, Lemma 16.6, that A− SX is stable.
Hence F̄ ∈ F . Next, define the functional φ : F × Lq

2(0,∞)→ IR by

φ(F,w) =

∞Z
0

xT (Q+ F TRF )x dt

where x follows from (50). Furthermore, define w̄ ∈ Lq
2(0,∞) by

w̄(t) := γ−2ETXetA0x0. (51)

Due to the stability of the matrix A0 we have indeed w̄ ∈ Lq
2(0,∞). Furthermore,

kw̄k2 = γ−4xT
0

 ∞Z
0

etAT
0XEETXetA0dt

x0 = γ
−4xT

0 Px0 = r
2.

Next, we will show that6

φ(F̄ , w) ≤ φ(F̄ , w̄) ≤ φ(F, w̄) (52)

6The set of inequalities (52) is equivalent to stating that the pair (F̄ , w̄) is a saddlepoint solution
of the zero-sum game with minimization set F , maximization set {w ∈ Lq

2(0,∞)| kwk ≤ r}, and
objective function φ (see for instance Ref. 5, Chapter 2, for a brief overview of zero-sum game
theory).
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for all F ∈ F and for all w ∈ Lq
2(0,∞) with kwk ≤ r. In order to prove these

inequalities, we apply two completions of the squares which allow to rewrite φ(F,w)
as

φ(F,w) =

∞Z
0

µ
xT (Q+ F TRF )x+

d

dt
xTXx− d

dt
xTXx

¶
dt =

= xT
0Xx0 + γ

2kwk2 +

∞Z
0

k(F − F̄ )xk2
R dt− γ2kw − γ−2ETXxk2.(53)

Here we used the fact that x(t)→ 0 as t→∞, which holds because x, ẋ ∈ Ln
2 (0,∞)

(see for instance Ref. 15, Exercise 6.10). From (53) we deduce

φ(F̄ , w̄) = xT
0Xx0 + γ

2r2 − kw̄ − γ−2ETXx̄k2

where x̄ is defined by ˙̄x = (A + BF̄ )x̄ + Ew̄ and x̄(0) = x0. From this and (51), it
is easily seen that w̄ = γ−2ETXx̄. Thus

φ(F̄ , w̄) = xT
0Xx0 + γ

2r2. (54)

Furthermore, from (53) we also deduce for each w ∈ Lq
2(0,∞) with kwk ≤ r that

φ(F̄ , w) ≤ xT
0Xx0 + γ

2r2 = φ(F̄ , w̄)

which is the first inequality in (52). In order to show the second inequality, we
introduce the variables x̄w, ν, ζ, and ξ by

˙̄xw = (A+BF )x̄w + Ew̄, x̄w(0) = x0

ν := (F̄ − F )x̄w

ζ := w̄ − γ−2ETXx̄w

ξ := x̄− x̄w.

Then, (53) and (54) imply that

φ(F, w̄)− φ(F̄ , w̄) =
∞Z

0

kνk2
R dt− γ2kζk2 =

∞Z
0

¡
νTRν − γ−2ξTXEETXξ

¢
dt.

It is easily seen that ξ̇ = (A + BF̄ )ξ + Bν, ξ(0) = 0, and ξ(t) → 0 for t → ∞, so
that a completion of the squares yields

φ(F, w̄)− φ(F̄ , w̄) =
∞Z

0

µ
νTRν − γ−2ξTXEETXξ − d

dt
ξTXξ

¶
dt =

=

∞Z
0

¡kν −R−1BTXξk2
R + ξ

TQξ
¢
dt.
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Since Q is positive semidefinite, this expression is clearly nonnegative. This com-
pletes the proof of the second inequality in (52). The inequalities (52) imply

J(F̄ ) = sup
kwk≤r

φ(F̄ , w) = φ(F̄ , w̄) ≤ φ(F, w̄) ≤ sup
kwk≤r

φ(F,w) = J(F ).

This shows that the functional J is minimal at F = F̄ . The last part of the theorem
immediately follows from (54). ¤

Remark 4.1 The ARE (45) also appears in the context of H∞ control theory, see
e.g. Refs. 5, 7, 16 or 17. It is well-known that under the additional assumption that
(A,Q1/2) has no unobservable eigenvalues on the imaginary axis, a positive number
γ∗ exists such that there exists a unique real symmetric n× n matrix X satisfying
(44)—(46) if and only if γ > γ∗. Hence, for each γ > γ∗, one can determine a matrix
X from (44)—(46). Equation (47) is a Lyapunov equation and since the matrix A0

is stable, a unique matrix P can easily be determined from this equation. Equation
(48) requires a bit more care. Under some weak conditions, it can be shown that
the function γ 7→ γ−4xT

0 Px0 is strictly decreasing in γ for γ > γ∗. Furthermore,
the expression γ−4xT

0 Px0 typically approaches infinity in the limit γ ↓ γ∗. Thus in
principle it is straightforward to construct a numerical scheme producing a triple
(X,P, γ) satisfying (44)—(48). For a further discussion of these aspects we refer to
Ref. 11, Section 6.3. ¤

On the basis of the one-player results derived above, the theorem below follows
rather straightforwardly.

Theorem 4.2 Let Qi ≥ 0 for each i = 1, . . . , N . Assume there exist N real
symmetric n× n matrices Xi, N symmetric n× n matrices Pi, and N nonzero real
numbers γi, such that

Xi ≥ 0 (55)

Qi +A
TXi +XiA−

NX
j 6=i

(XiSjXj +XjSjXi)−XiSiXi

+

NX
j 6=i

XjSijXj + γ
−2
i XiEE

TXi = 0 (56)

Ai := A−
NX

j=1

SjXj + γ
−2
i EETXi is stable for each i = 1, . . . ,N (57)

AT
i Pi + PiAi = −XiEE

TXi (58)

γ−4
i xT

0 Pix0 = r
2
i . (59)

Then the N -tuple (F̄1, . . . , F̄N ) defined by

F̄i := −R−1
ii B

T
i Xi (60)
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is a hard-bounded Nash equilibrium, and

J̄HB
i (F̄1, . . . , F̄N , x0) = x

T
0Xix0 + γ

2
i r

2
i . (61)

Proof We have to show that the functional φ : F 7→ J̄HB
i (F̄−i(F ), x0) is minimal

in the set
{F ∈ IRmi×n | A−PN

j 6=i SjXj +BiF is stable }.
if F = F̄i. We have

J̄HB
i (F̄−i(F ), x0) = sup

kwk≤ri

∞Z
0

xT

Ã
Qi +

NX
j 6=i

XjSijXj + F
TRiiF

!
x dt

where x follows from

ẋ =

Ã
A−

NX
j 6=i

SjXj +BjF

!
x+ Ew, x(0) = x0.

Note that the functional φ coincides with the functional J , as defined in Theorem
4.1, with A replaced by A−PN

j 6=i SjXj, B := Bi, r := ri, Q := Qi +
PN

j 6=iXjSijXj ,
R := Rii, and the same values for E and x0. It is easily seen that the condi-
tions (55)—(59) guarantee that the conditions (44)—(48) are satisfied with X := Xi,
P := Pi, and γ := γi. So, according to Theorem 4.1, the functional φ is minimal if
F = −R−1

ii B
T
i Xi = F̄i, and the minimal value is equal to x

T
0Xix0 + γ

2
i r

2
i . ¤

Note that the solvability of (59) is unclear. In the one-player case, the left-hand
side of (59) is decreasing in γ for γ > γ∗. In the N -player case, we deal with a
coupled system of N nonlinear equations in the unknowns γ1, . . . , γN which need to
be solved in a set Γ, defined as the collection of N -tuples (γ1, . . . , γN ) of nonzero
real numbers with the property that there exists an N-tuple X1, . . . ,XN satisfying
(55)—(57).

5 Concluding Remarks

In this paper we studied the existence of Nash equilibria in linear-quadratic differen-
tial games on an infinite planning horizon if the system is disturbed by deterministic
noise and the strategy spaces are of the static linear feedback type. We considered
the soft-constrained and hard-bounded cases. For the soft-constrained case we dis-
cussed the general indefinite control problem. For the hard-bounded case we just
considered the definite control problem.
The soft-constrained problem has been extensively discussed for the one-player

case. A set of sufficient conditions was given under which we can conclude that there
exists a saddlepoint solution. Under a further restriction on the strategy spaces,
some of these conditions were found to be necessary as well. In the scalar case,
we have provided necessary and sufficient conditions for existence of a saddlepoint
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solution. It turns out that these conditions are intimately related to the question
whether the outer optimization takes place over a connected set or not.
A sufficient condition was provided for the existence of soft-constrained equilibria

in the N-player case, and it was argued that for the two-player scalar case one can
expect that the corresponding algebraic Riccati equations again have from zero up
to three solutions. For the definite control problem one can show (see Ref. 13) that
the soft-constrained equilibria can also be interpreted in a stochastic environment
as risk-sensitive equilibria.
Finally, we derived sufficient conditions for existence of hard-bounded equilibria.

We indicated an algorithm to calculate such equilibria. Considerable development is
still required to get efficient numerical methods for solving the systems of equations
associated with the equilibria that we have discussed; this is left as an item of future
research.
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