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Abstract: W h e n  the cycle of  a mul t ip l ica t ive  congruent ia l  gene ra to r  with a modulus  that  is a power  of  
two is spli t  into two par ts ,  then  the p s e u d o r a n d o m  number s  across par t s  turn  out  to lie on only two 
para l le l  lines. These  ' long  r ange '  cor re la t ions  have consequences  for  compu te r s  with a t r ad i t iona l  or  a 
new archi tec ture .  Fo r  vec tor  compute r s ,  s imple  a l te rna t ive  c o m p u t e r  imp lemen ta t i ons  are  p re sen ted .  
These  imp lemen ta t i ons  are  fas ter  than  the  s t anda rd  subrout ines  avai lable  on a specific vec tor  compute r ,  
namely  the  C Y B E R  205. 

Keywords: Simulat ion;  M o n t e  Carlo;  pa ra l l e l  a lgor i thms;  r a n d o m  numbers ;  sof tware  

I. Introduction 

Is the re  real ly  any need  for more  research  on 
p s e u d o r a n d o m  n u m b e r  genera to rs ;  is it no t  like 
bea t ing  a dead  horse?  But  no: new p rope r t i e s  of  
old  gene ra to r s  a re  still be ing  discovered,  and  new 
gene ra to r s  must  be  deve loped  to a c c o m m o d a t e  
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new arch i tec tures  of  compute r s ,  as this p a p e r  will 
show. Recen t ly  some in teres t ing  resul ts  on pseu-  
d o r a n d o m  n u m b e r  gene ra to r s  have been  pub-  
l ished; unfor tuna te ly  these  results  are  sca t t e red  
over  var ious  journa l s  tha t  are  not  easily accessible  
to r eade r s  of  this journal .  This  p a p e r  gives a 
p rac t i ce -o r i en t ed  survey, and  does  not  requi re  
ma the ma t i c a l  sophis t icat ion.  

W e  concen t ra t e  on one  class of  genera tors ,  
namely  l inear  congruen t ia l  genera tors .  So we do 
not  discuss tha t  o the r  impor t an t  class. Taus-  
wor the  genera to rs .  M o r e o v e r  we focus on l inear  
congruen t ia l  gene ra to r s  with zero  addi t ive  con- 
s tant  (c = 0 in (2.1)) and  a modu lus  that  is a 
power  of  two (m = 2 w in (2.1)). This  is a class of  
gene ra to r s  tha t  a re  widely  used,  a l though they 
are  not  ideal .  R e c e n t  publ ica t ions  on p se udo ra n -  
dom n u m b e r  gene ra t ion  are:  Af f i e rbach  and 
G r o t h e  (1988), Bra t ley  et al. (1987), Durs t  (1989), 
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Kalos and Whitlock (1986), L 'Ecuyer  (1990), 
Knuth (1981), Marsaglia et al. (1990), Morgan 
(1984), Park and Miller (1988), and Ripley (1987). 

This paper  is based on the number  theoretic 
results of De Matteis and Pagnutti (1988), but 
presents their results in simpler terms, including 
a number  of graphs. Their  results are extended to 
antithetic pseudorandom numbers; moreover  sta- 
tistical tests are applied to corroborate their 
number-theoret ic  results. (Note that De Matteis 
and Pagnutti 's  results do not come out of the 
blue; see, for example, Ripley (1987, p. 42)). In 
the light of these results, alternative generators 
for supercomputers  are examined. 

There  are several types of computers: vector 
computers  should be distinguished from tradi- 
tional scalar computers  and truly parallel com- 
puters. Traditional computers  such as the IBM 
370 and the VAX series, execute one instruction 
after the other; so they operate  sequentially. Truly 
parallel computers  such as the H Y P E R C U B E ,  
have many Central Processing Units (CPUs) that 
can operate  independently of each other; this is 
called coarse grain parallelism. Vector computers  
such as the CRAY 1 and the CYBER 205, have a 
'vector  processing' capability: fine grain paral- 
lelism. This paper  focusses on the CYBER 205, 
but generators for other supercomputers  can be 
evaluated and improved along the same lines. 

This paper  is organized as follows. Section 2 
summarizes basic results for linear congruential 
generators,  needed in the sequel. In Section 3 the 
full cycle of the multiplicative generator  with 
modules 2 ~ is split into equal parts, first into two 
parts (Section 3.1), then into 2 ~ parts (Section 
3.2), which shows that the pseudorandom num- 
bers lie on two and on no more than 2 k-  l paral- 
lel lines if k < 2 and k > 3, respectively. Anti- 
thetic pseudorandom numbers are briefly consid- 
ered in Section 3.3; the conditional variances and 
the correlation coefficient of the pseudorandom 
numbers paired across two parts (of the 2 k parts) 
are studied in Section 3.4. The disadvantages of 
splitting a pseudorandom number  stream into 
parts are summarized in Section 3.5. Section 4 
gives alternative computer  implementations for 
vector computers.  First the 'assembly line' archi- 
tecture of vector computers,  such as the CYBER 
205, is explained. Next Section 4.1 gives one 
implementat ion that requires computat ion of J 
multipliers, and Section 4.2 gives a related paral- 

lel algorithm that requires computation of a sin- 
gle multiplier and initializing a vector with J 
successive numbers. Finally Section 4.3 compares 
these two implementations to the standard scalar 
routine R A N F  and the standard vector routine 
V R A N F  on the CYBER 205. Section 5 summa- 
rizes our conclusions. 

2. Linear congruential generators 

Linear congruential generators have the form 

x j + , = ( a x j + c )  mod m,  j = 0 ,  1 ,2  . . . .  (2.1) 

where a, c, m, and x 0 are integers; the seed x 0 
and the multiplier a are positive, but smaller than 
the modulus m; the additive constant c is a 
non-negative integer smaller than m. When c is 
zero, the generator  is called multiplicative con- 
gruential. The generator  has a specific cycle 
length or period h, which means that if the 
generator  starts with seed x 0, then x h = x  o, so 
xh+ ~ = x  I and so on. Obviously the pseudoran- 
dom numbers rj = x J m  satisfy 0 < ri < 1. An effi- 
cient algorithm results when m = 2 ~ where w 
depends on the computer 's  word size; for exam- 
pie, CDC's  vector computer  CYBER 205 uses 
m = 2 47 (see CDC, 1986), but IMSL uses m = 2 31 

- 1 for traditional computers; NAG uses m = 259 
(double word on traditional computers). How- 
ever, there are other considerations besides effi- 
ciency. 

Generators  should yield pseudorandom num- 
bers that are statistically independent;  that is, the 
observed sequence r 0, r~ , . . . ,  r n should not pro- 
vide any information about the next sequence 
rn+|, rn+ 2 . . . .  It is extremely difficult to meet 
this requirement; see the earlier references. 

It is possible to derive mathematical  conditions 
that are necessary but not sufficient. For exam- 
ple, the following lemma is well known, and will 
be used later on. 

Lemma I.  I f  in (2.1), m = 2 w (with w > 3) and 
c = 0, then the max imum cycle length is h = 2~-2; 
this max imum is reached if  a = 4g + 1 with odd 
integer g. 

Note that if m is a prime number  (so m ~ 2w), 
then longer cycles are possible; see the references 
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a: 5 

6 
~ : 2  : 6 4  

F igure  1. Plot  of all  successive pai rs  (X2j , XI+2j)  with j =  
0, 1 . . . . .  ½h - 1 for a mul t ip l ica t ive  g e n e r a t o r  wi th  m = 2 6 and 

a = 5  

cited above. Because these mathematical condi- 
tions are not sufficient, statistical tests should be 
applied to the generator's output (r  0, r 1, . . . )  to 
check if several types of statistical dependence 
are absent indeed. For example, two-tuples 
( r o ,  r l )  , ( r 2 ,  r 3 )  , ( r 4 ,  rs) , etc. should be uniformly 
distributed over the unit square. Figure 1 shows 
results for a pedagogical example that can be 
easily checked by the reader; to improve the 
readability 'dots' are shown as 'big black squares'. 
We shall return to this figure. 

3. Partitioning the cycle 

rj, j = 0 , . . . ,  h, are statistically independent. Un- 
fortunately, the numbers rj, or equivalently the 
integers xj, are statistically dependent. More 
specifically, De Matteis and Pagnutti (1988) give 
number-theoretic results that guide our present 
research. 

Let us return to the pedagogical example of 
Figure 1 with m = 2 6 and h = 2 6 - 2  = 16. Splitting 
the cycle into two parts yields a first part consist- 
ing of x o, x 1 . . . . .  x7, and a second part compris- 
ing Xs, x 9 . . . . .  x15. Now plot the pairs corre- 
sponding across  the two parts: (x o, x8), 
(Xl, X9),...,(X7, X15). So in this paper we are 
interested, not in first-order autocorrelation (Fig- 
ure 1), but in long-range correlation. This yields 
Figure 2. 

A more realistic generator has a bigger modu- 
lus m and hence a longer cycle h. We present 
plots only for m = 212 and a = 5 (these plots are 
easily obtained on a Personal Computer); Lemma 
2 implies that the pattern shown by these plots 
holds for all generators considered in this section 
(Lemma 2 is presented in the next subsection). 
Figure 3 shows the plot for partitioning into two 
parts: (x 0, Xh /2)  , ( X l ,  X(h /2)+ 1) . . . . .  (X(h /2)_ l, Xh), 
In both Figures 2 and 3 all ½h pairs lie on only 
two parallel lines, with slope one; these lines have 
no overlapping domains; a small number in the 
first part (0 < rj < 0.5) goes together with a high 
number in the second part (0.5 < r(h/2)+ j ~ 1); SO 
the pseudorandom numbers are negatively corre- 
lated (see Table 2 later on.) Figure 3 displays r 

Kleijnen (1989) surveys several types of linear 
congruential generators for vector computers. 
Section 4 will discuss vector computers; here it is 
only mentioned that Kleijnen (1989) discusses 
splitting the cycle of pseudorandom numbers into 
65535 ( = 2 1 6 -  1) non-overlapping parts. The 
present paper shows that this approach is wrong! 
The proof reveals properties of generators that 
also concern traditional computers. Section 3 is 
restricted to multiplicative generators with modu- 
lus m = 2 w, a multiplier resulting in a cycle length 
h = 2 w-z, and a seed x 0 = 1; see again Lemma 1. 

3.1. Part i t ioning into two par t s  

Suppose the cycle of length h = 2 w-z is split 
into two equal parts (of length ½h). Kleijnen 
(1989) assumes that the pseudorandom numbers 

| 

l 
| 

a: 5 

6 
Mult, gene~at0~ ~: 2 : 64 

1 
number 0£ Parts p= 2 = 2 

F igure  2. Pairs  across two par t s  (x j ,  Xj+h/2)  with j = 0 . . . . .  ½h 
- 1  6 for a mul t ip l ica t ive  gene ra to r  wi th  m = 2 and a = 5 
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a: 5 

12 
Nult, genex, ato~, N= 2 = 4g% 

I 
nu.l~er o£ Pa~ts P: 2 : 2 

Figure 3. Pairs across two parts for m = 212 and a = 5 

a: 5 

12 
~ult. 9eneratop N: 2 : 4896 

2 
ntmbee o£ Pacts p: 2 : 4 

Figure 4. Pairs across first two parts when splitting into four 
equal parts (m = 212 and a = 5) 

(0 < r  < 1), not the integers x (0 < x  < m ) ,  in or- 
der to make the plots independent  of the modu- 
lus m; the remaining Figures 4 through 7 also 
refer to the unit square (Figures 1 and 2 serve 
only pedagogical purposes). 

3.2. Partitioning into 2 k parts 

What happens if the number  of parts is dou- 
bled? First, notice the relationship between parti- 
tioning into two and four equal parts, respec- 
tively. Consider the didactic example with m = 26 
in Figure 2. When the cycle is split into two parts, 
the following pairs  are p lo t ted  (x 0, x8), 
(xl ,  Xg),...  ,(x7, xls). When the cycle is now par- 
titioned into four parts, each part  has length 
h = 2w-2 /4  = 26-2 /22  = 4; part  No. 1 is (xo, Xl, 

x 2, x3), part  No. 2 is (x4, xs, x6, XT), part  No. 3 
is (x s, x 9, Xlo, x[]), and part  No. 4 is (x]2, x]3, 
x]4, xms). Then the pairs across parts No. 1 and 
No. 3 are: (x0, xs), (xl ,  Xg), (x2, Xl0), (x3, Xll). 
But these four pairs also occurred in the plot for 
two parts only~ So if splitting into two parts gives 
unacceptable results, then splitting into four parts 
and using all parts does not help! The cycle must 
be split into more parts and only the first two 
parts can be used. Figure 4 displays the plot for 
parts No. 1 and No. 2: (x0, X h / 4 )  , (Xl, X(h/4)+l) , 
. . . .  ( X ( h / 4 ) _ l ,  X(h/2)_l). Again all ¼h pairs lie on 
only two parallel lines, with slope one; these lines 
still have no overlapping domains; compared  with 
splitting into only two parts (Figure 3) these lines 
are shifted to the left (the correlation is still 

negative but smaller in absolute magnitude; see 
Table 2). 

The pattern of  the plots changes as we go on 
doubling the number of  equal parts/Figure 5 gives 
the plot for the first two parts in case of 2 3 parts: 

(X O, Xh/8), (X 1, X(h/8)+ 1) . . . . .  (X(h/8)- 1, X(h/4)-l)" 
Again all ¼h pairs lie on parallel lines with slope 
one, but there are now four lines and some of 
these lines have partially overlapping domains; a 
small number  in the first part  'goes together '  with 
two different values in the second part  (strictly 
speaking, one particular value of xj corresponds 
to a unique value for X(h/8).. j since all numbers x 
are different in a multiplicative generator;  we 
shall return to this issue). 

~tdt, generator N= 2 : 4096 

3 
nuMi~er o£ Pa~ts p: 2 : 8 

Figure 5. Pairs across first two parts for 2 3 parts (m = 2 I2 and 
a= 5) 
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F igure  6. Pairs  across two par t s  for 2 4 par ts  (m  = 212 and 

a =  5) 

Figure 6 plots the pairs when the cycle is split 
i n t o  2 4  parts. Again all ~6 h pairs lie on parallel 
lines with slope one, but there are now eight such 
lines with more overlap of domains. Finally Fig- 
ure 7 gives results for 25 parts. All ~ h  pairs still 
lie on parallel lines with slope one, but there are 
now so many lines that these lines are hard to 
distinguish (there are few points per line). And so 
we could continue. Actually De Matteis and Pag- 
nutti (1988, p.604) prove the following lemma. 

Lemma 2. Suppose the modulus  o f  the multiplica- 
tiue generator is m = 2 ~ with w > 4, the multiplier 
a is chosen such that the cycle length is h = 2 w-2, 
and the seed is x o = 1. Divide the resulting se- 
quence into 2 k parts with k < w - 2. I f  k < 2, then 
the points (x~, X ( h / 2 k ) + j )  l i e  o n  two parallel lines 
with slope one (0 < j < h / 2 * ) .  I f  k > 2, then there 

. i  
" ' a: 5 

I I | I .u l t ,  gene~ato~ . :  212= q896 

| 5 
nttnl:e~ ot" Pa~,ts p: 2 : 32 
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Figure  7. Pai rs  across  two par ts  for 25 par t s  (m = 2 ~2 and  

a =  5) 

are no more than 2 *-1 parallel lines with slope 
one. 

3.3. Anti thetic pseudorandom numbers 

Kleijnen (1974, p.254) proves that the anti- 
thetic pseudorandom numbers 1 - r j  can be gen- 
erated by starting with the seed m -  x 0. Hence 
the antithetic numbers (say) yj satisfy yi = m - x~ 
for j = 1, 2 , . . . ,  h - 1, h; that is, the points (xj, yj) 
lie on a single line with slope minus one. We 
combine this result with Lemma 2 (which implies 
slope plus one) to conclude that the cycle o f  the 
antithetic numbers yj has no element in common 
with the cycle o f  the 'original' numbers xj: 

(Y~ . . . . .  Yh} • ( x , , . . . ,  x~} = ¢. 
Lemma 1 stated that a multiplicative generator 

with m = 2 w has a maximum cycle of length h = 
2 w-2. Now we can explain this cycle length as 
follows. The modulus m = 2 w results in odd val- 
ues only: half the cycle running from 0 through 
m - 1 is lost that way. Another  half lies in the 
antithetic cycle! 

3.4. Statistical analysis 

The preceding plots illustrated number-theo- 
retic results. What  are the statistical conse- 
quences? First note that, within a cycle, no num- 
ber xj occurs more than once, whereas the statis- 
tical analysis of simulation output assumes that 
random numbers are sampled independently and 
hence specific values can occur more than once. 
In the statistical analysis this phenomenon is al- 
ways ignored. In the same way the analysis of the 
preceding plots assumed continuous lines, paral- 
lel and equidistant in the unity quadrant. 

We assume that the generator does yield a 
uniform marginal distribution; hence v a r ( r ) =  ~2. 
It is easy to derive the variance of r(h/2*)+ j given 
rj and a partitioning of the cycle into 2 K parts 
( j = 0  . . . . .  ( h / 2 * ) - 1 ) .  For example, for k = 3 ,  
Figure 5 gives four lines such that two values 
r~h/8)+ ~ correspond with each rj. For simplicity's 
sake we assume that these two values are equally 
probable. Obviously the distance between two 

1 neighboring lines is 7. Hence 

var(r th/S)+j lr j )  = ( (¼)2+ ( ¼ ) 2 ) 1  _ 116. 
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This yields Table 1. This Table shows that the 
conditional variance increases monotonically to 
~2, which is the variance if the second part would 
be independent of the first part (so the assump- 
tions used to derive this table seem realistic). 

We also test the correlation coefficient be- 
tween the pairs (rj, r<h/zk)+j). If the r 's  were 
multivariate normally distributed, then zero cor- 
relation would imply independence. In case of 
non-normality this is not true; for example, when 

rj for 0 < r~ < 0.5, (3.2) 
r~h /2*)+i = 1 -  rj for 0 . 5 < r j < l ,  

then their correlation is zero; yet they are not 
independent (as (3.2) shows). To test for zero 
correlation of the uniformly distributed r 's  we 
use the 'Spearman rank correlation test'; see 
Churchill (1983, pp.596-598). Because this test 
assumes independent pairs, we assume that 
short-range correlations can be ignored, and we 
test long-range correlations. So if the rank of rj is 
vi and that of r~h/2,)+ j is w~h/2,)+ j, then we 
compute 

6 ~ (vj - W~h/2*)+j) 2 

R = 1 - j =  1 (3.3) 
n ( n 2 - -  1 )  

Obviously max(R) - -1 .  The following statistic 
has an approximate t-distribution with n -  2 de- 
grees of freedom: 

R ( n  - 2) 1/2 

T (1 - R 2 )  '/2 " (3.4) 

Table 2 shows T for n = 1000 and a popular 
generator, namely m = 232 and a = 69069. This 
table gives non-significant correlation for k = 3, 
since t~_ 1 = 1.65 for o~ = 0.05 and n = 1000. Nev- 
ertheless Figure 5 and Table 1 suggest a strong 
dependence; also see the example in (3.2). 

In summary, this subsection shows that split- 
ting the cycle into a few parts (small k) does not 
give independent pseudorandom numbers, even 

T a b l e  2 

S p e a r m a n  r a n k  tes t  fo r  z e ro  c o r r e l a t i o n  o f  (r(h/2k)+j, r)), 
w h e n  p a r t i t i o n i n g  the  cycle in to  2 k par t s ;  m = 23~  a n d  a = 

69069;  n = 1000 

k = l  2 3 4 5 

T = - 17.94 - 4.56 - 1.05 0.68 - 0.19 

though the estimated correlation coefficient may 
be non-significant. But, if pseudorandom num- 
bers are dependent,  then the simulation fed by 
these numbers does not give independent results. 
Yet the statistical analysis of the simulation out- 
put assumes independence when estimating vari- 
ances and confidence intervals; so this analysis 
may then give misleading results. 

3.5. Summary of  spfitting approach 

Kleijnen (1989) assumes that the pseudoran- 
dom number rj are truly independent.  Then it 
makes sense to generate (say) J numbers in par- 
allel by selecting J seeds such that the full cycle 
is split into J equal parts. However, number-the- 
oretical results derived by De Matteis and Pag- 
nutti (1988) imply that these parts may be corre- 
lated, especially if J is small. Acceptable statisti- 
cal behavior requires that the cycle be split into 
at least 25 parts and that only the first two parts 
be used. So only 2 × 2 ~-2-5  numbers of the full 
cycle of length h = 2 w-2 can be used! That  useful 
part can be split into J subparts for parallel 
generation of pseudorandom numbers; see Kleij- 
nen (1989). Long-range correlation also causes 
problems on traditional computers, if relatively 
many pseudorandom numbers are needed. 

4. Vector computers and generators 

This section gives generators for vector com- 
puters that produce pseudorandom numbers not 
spread over the full cycle (because of long-range 
correlation). Moreover, these generators produce 

T a b l e  1 
C o n d i t i o n a l  v a r i a n c e  o f  r~h/2%+ j given rj for  2 k p a r t s  as  a p e r c e n t a g e  o f  var(r~h/2k)+ i) = 

k 1 2 3 4 5 6 7 

var(rth/2k~+ilrj) 0 0 7 5 %  93 .75% 98 .44% 99 .61% 99 .90% 
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numbers in exactly the same order as generators 
on traditional computers do; this characteristic 
facilitates debugging. 

First consider the pipeline architecture of vec- 
tor computers such as the CYBER 205. A simple 
example is provided by the inner product of two 

' = E J This computation re- vectors, VlV 2 j= iVljV2j. 
quires J scalar multiplications VlY2~; these J 
operations can be done in parallel because the 
product VljZ2j does not need the product 
Vl(j_l)V2(j_l), The pipeline architecture means 
that the computer works as an assembly line; 
hence, efficiency improves drastically if a large 
number of identical operations can be executed, 
independently of each other; see Levine (1982), 
Miller and Walker (1989), Oed (1982), and Zenios 
and Mulvey (1986). Vector computers are effi- 
cient only if these operations can be executed 
independently or in parallel, which excludes re- 
cursive statements. Unfortunately, the linear con- 
gruential generator is recursive: (2.l) shows that 
the computation of xi+ 1 needs the predecessor 
xj. Moreover, because of fixed set-up costs, the 
'assembly line' is efficient only if the number of 
basic operations is large; the literature suggests 
J > 50. Because the CYBER 205 uses 16 bits for 
addressing there is a technical upper limit on J, 
namely J < 2 1 6 -  1 =65535; see SARA (1984, 
p.26). So the computer should generate J pseu- 
dorandom numbers in parallel with 50 <J_< 
65535. Hence a simulation experiment that re- 
quires N pseudorandom numbers calls this paral- 
lel routine [ N i l ]  times where [ ] denotes round- 
ing upwards to the next integer; for example, if 
N =  1000000 and J =  65535, then 16 calls are 
necessary. So image an ( I  × J)-matrix of pseudo- 
random numbers, where J numbers are gener- 
ated in parallel and I calls are made to that 
vector routine. Kleijnen (1989) surveys different 
solutions to this problem (namely, J different 
multipliers m r and J additive constants ci; sam- 
pling J seeds; selecting J seeds I apart; also see 
Section 3). He rejects the following idea because 
of overflow on the computer; we shall show, 
however, how to solve this problem. 

4.1. Vector o f  multipliers 

Fishman (1978) proves that, given a seed x0 
and J calls to the traditional multiplicative gener- 
ator (see (2.1) with c = 0), the resulting number 

xj  can be derived without knowing the intermedi- 
ate numbers (x  1, x 2 . . . . .  x j_ l ) :  

x j =  (aJXo) mod m. (4.1) 

So J pseudorandom numbers can be gener- 
ated in parallel, provided we first generate, once 
and for all, the vector of J multipliers a = 
(al,  a 2 . . . . .  a j_  1, a j ) '  with elements 

a j = ( a  j) mod m, j = l  . . . . .  J. (4.2) 

The vector a is multiplied by the scalar x 0 to 
give the vector (x l ,  x 2 . . . .  , x  j_  l, x j ) ' .  Replacing 
the scalar x o by the last element of the latter 
vector, namely x s, yields the next vector 
(xs+t,  Xs+e . . . . .  X z j - l ,  Xzs)',  and so on. In this 
way the pseudorandom numbers are generated in 
exactly the same order as they would have been 
produced in scalar mode. t 

At the end of the simulation run the last 
pseudorandom number should be stored, so that 
the simulation experiment can be continued later 
on or a new (unrelated) simulation experiment 
can start at a seed different from the default x0; 
also see Celmaster and Moriarty (1986) and De 
Matteis and Pagnutti (1988, p.602). We shall re- 
turn to this generator after we have discussed a 
closely related generator. 

4.2. Vector o f  J successive numbers 

Suppose there is available a vector of J succes- 
sive pseudorandom numbers, which can be gener- 
ated in the traditional way through (2.1): 

x =  ( x o, x 1, x 2 , . . . , x j _  e, x j _ l ) ' .  (4.3) 

Multiplying this vector by the scalar multiplier 
(a J) mod m gives a new vector that is identical to 
the new vector obtained by the technique of 
Section 4.1. Now, however, the vector of the last 
J numbers should be stored at the end of a 
simulation. 

There is a computational problem in both ap- 
proaches: overflow occurs when computing high 
powers of the multiplier a, such as a J. (Overflow 
in traditional generators is discussed in Park and 
Miller, 1988, p.1195.) That problem, however, can 
be solved through 'controlled integer overflow' 
(Law and Kelton, 1982, pp.219-232), combined 
with the CYBER 205 'binary complement '  repre- 
sentation of negative integers: the Appendix gives 
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a computer  program based on (4.3), which will be 
the most efficient implementat ion in the next 
subsection. 

4.3. Comparison of four implementations 

Table 3 compares the computer  execution 
times of different computer  implementations of 
the same generator  on the CYBER 205. This 
computer  can use F O R T R A N  200 (a superset of 
F O R T R A N  77) that allows vector and scalar 
programming; see CDC (1986). Implementat ion 
No. 1 is RANF,  a standard scalar subroutine that 
uses a multiplicative generator  with m = 247 and 
a = 84000335758957 (or in hexadecimal notation, 
a = 00004C65DA2C866D); see C D C  (1986, 
pp.10-29). The CYBER 205 uses words of 64 
bits; 48 bits are used to represent  integers, includ- 
ing one sign bit; hence m = 2 47. Implementat ion 
No. 2 is VRANF,  a standard vectorized subrou- 
tine that uses the same modulus m and multiplier 
a as R A N F  does; see CDC (1986, p p . l l - 1 ) .  Im- 
plementat ion No. 3 uses the vector of multipliers 
of (4.2). Implementat ion No. 4 uses the vector of 
J preceding numbers xj plus the multiplier ag; 
see (4.3); Implementat ions Nos. 3 and 4 also have 
the same modulus and multiplier as R A N F  has. 
The last two generators can be implemented not 
only in vector mode but also in scalar mode; of 
course R A N F  is in scalar mode, and V R A N F  is 
in vector mode. The measurements  in Table 3 do 
not include storing the last vector or scalar to 
continue simulation at the last pseudorandom 
number. 

Our  results for R A N F  and V R A N F  deviate 
substantially from An MeT (1983): he finds that 

Table 3 
Computer  time in microseconds of different implementat ions 
on a CYBER 205 

Type of Vector length J 

implementat ion 5 500 50000 65535 

No. 1. RANF:  
scalar mode 0.014 0.520 51.553 67.465 

No. 2. VRANF:  
vector mode 0.021 0.208 19.507 25.652 

No. 3. J multipliers: 
vector mode 0.013 0.079 7.713 9.923 
scalar mode 0.026 1.572 157.763 206.843 

No. 4. J numbers  & a J: 
vector mode 0.013 0.079 7.425 9.631 
scalar mode 0.024 1.561 157.098 206.083 

V R A N F  is always slower than RANF,  and his 
CPU times are a factor 1000 higher! (We 
double-checked our results, so we are convinced 
of the correctness of our data; we cannot explain 
An Mey's results.) Implementat ion No. 4 is 
slightly faster than No. 3 is. The latter implemen- 
tation must store and fetch the last element of 
the vector of numbers xy. Moreover,  No. 3 needs 
two vectors, namely one vector for the multipliers 
a/ and one vector for the numbers xj. So we 
recommend implementat ion No. 4. Of  course it 
remains to be investigated, whether  the generator  
implemented this way has acceptable statistical 
behavior. For example, the generator  should have 
small short-range correlations; see the references 
in Section 1. 

5. Conclusions 

Kalos and Whitlock (1986, p.180) state: "The  
question of independence of separate sequences 
to be used in parallel remains a major research 
issue. Not enough is known about the long-term 
correlations within linear congruential generators 
to use equal subsequences with confidence". 
Matteis and Pagnutti (1988) prove that each mul- 
tiplicative generator  shows very strong ' long 
range'  correlations: splitting its cycle into 2 k parts 
gives pseudorandom numbers that lie on no more 
than 2 k - I  parallel lines if k > 3; if k < 3, then 
they lie on only two parallel lines. Consequently, 
on vector computers,  pseudorandom numbers 
could be generated by partitioning the cycle into 
25 parts and using only the first two parts. There  
are two bet ter  techniques, however, that require 
the computation, once and for all, of either J 
multipliers (aj = a j mod m) or the computation 
of one muItiplier (a g mod m) and the initializa- 
tion of one vector with J successive numbers. 
These two techniques are faster than the stan- 
dard subroutines (RANF and VRANF)  on a 
well-known vector computer,  the CYBER 205. 

Appendix: The FORTRAN 200 program for im- 
plementation No. 4. 

P R O G R A M  V A R I A N T 4  
I M P L I C I T  R E A L  (U-Z), 

I N T E G E R  (A-T)  
P A R A M E T E R  (N1 = 5,N4 = 65535,K = 1) 
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C 
C 

C 

P A R A M E T E R  (A1 = 37772072706109) 
I N T E G E R  M V A S T  
BIT B V A S T  
D E S C R I P T O R  M V A S T ,  B V A S T  
D I M E N S I O N  T(N4),  S I ( N 1 )  
D I M E N S I O N  X I ( N 1 )  
D A T A  M I N T  / X '0000800000000000 '  / 
C A L L  R A N S E T ( K )  
D O  5 I = 1,N4 
U = R A N F (  ) 
C A L L  RANGET(T( I)) 

5 C O N T I N U E  
! N = 5  
! S C A L A R  
S I ( 1 ; N 1 )  = T(1 ;N1)  
Z P U 1  = S E C O N D (  ) 
D O  1 0 I = I , N 1  
SI(IO=AI*SI(I) 
IF (S I ( I ) .LT .0 )  S I ( I )  = S I ( 1 ) - M I N T  
X I ( I 0  = SI(I)/MINT 

10 C O N T I N U E  
Z P U 2  = S E C O N D (  ) 
U1 = Z P U 2 - Z P U 1  
! V E C T O R  

A S S I G N  M V A S T , . D Y N . N 1  
A S S I G N  B V A S T , . D Y N . N 1  
SI(1;N1) = T(1;N1) 
ZPU1 = S E C O N D (  ) 
SI(1;N1) = A1 • SI(1;N1) 
B V A S T  = SI(1;N1) .LT.O 
M V A S T  = SI(1;N1)-MINT 
SI(1;N1) = Q 8 V C T R L ( M V A S T , B V A S T ;  

SI(1;N1)) 
XI(1;N1)  = S I ( 1 ; N 1 ) / M I N T  
Z P U 2  = S E C O N D (  ) 
Z1 = Z P U 2 - Z P U 1  
F R E E  
P R I N T . ,  'BEGIN: V E C T O R I S E  

SCALAR'  
P R I N T . ,  ' N =  5' ,Zl , '  ',U1 
E N D  

To enable the reader to check this program, 
we give three of  the J = 5 seed values (x0,  x , ,  x 2) 
and the outcomes  of  the first ten random num- 
bers for those seeds. So we display x 5, x6, x 7 on 
the first row, xlo , Xll , x12 on the second row, and 
so on (to save space we do not display x8, x 9 and 
xl3, x14, etc.) in Table 4. 

Table  4 

Starting values  x 0, x 1, x2: 

84000335758957 42546483841641 

Random numbers  (x 5, x6, xT), (Xlo, xll, xt2), etc.: 

51635577448441 
113554934179413 
110015530009153 
110447784126845 
46264685920969 
80793675172325 
69425314839441 
82909967323533 
32167420825241 
55571152067189 

R a n d o m  numbers  r( = x/247): 

0.3668928446276 
0.8068563359089 
0.7817073566880 
0.7847787069213 
0.3287303650336 
0.5740735898905 
0.4932965313702 
0.5891107500384 
0.2285632719551 
0.3948567841916 

112073726270213 
42036299976753 
81298600819629 
115384045819961 
121717687575957 
56567339750529 
129916739502781 
92291160590089 
120236138515749 
39458910421457 

0.7963317207086 
0.2986858758671 
0.5776613023984 
0.8198529557998 
0.8648561872061 
0.4019351234101 
0.9231139550733 
0.6557681373215 
0.8543291479821 
0.2803724216097 

118602654327989 

28809031491361 
24524090886877 
42705761318569 
106866938963525 
117131050270321 
119127659069677 
128201070008441 
49025954510037 
85010458949313 
94340002081789 

0.2047004805047 
0.1742541463079 
0.3034426848001 
0.7593352717345 
0.8322661690152 
0.8464529278006 
0.9109233901117 
0.3483503584081 
0.6040356407006 
0.6703260317080 
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