
76 European Journal of Operational Research 63 (1992) 76-85
North-Holland

Theory and Methodology

Pseudorandom number generators for
supercomputers and classical computers:
A practical introduction *

Jack P.C. Kleijnen and Ben Annink
Tilburg University, Tilburg, Netherlands

Received October 1989; revised February 1991

Abstract: W h e n the cycle of a mul t ip l ica t ive congruent ia l gene ra to r with a modulus that is a power of
two is spli t into two par ts , then the p s e u d o r a n d o m number s across par t s turn out to lie on only two
para l le l lines. These ' long r ange ' cor re la t ions have consequences for compu te r s with a t r ad i t iona l or a
new archi tec ture . Fo r vec tor compute r s , s imple a l te rna t ive c o m p u t e r imp lemen ta t i ons are p re sen ted .
These imp lemen ta t i ons are fas ter than the s t anda rd subrout ines avai lable on a specific vec tor compute r ,
namely the C Y B E R 205.

Keywords: Simulat ion; M o n t e Carlo; pa ra l l e l a lgor i thms; r a n d o m numbers ; sof tware

I. Introduction

Is the re real ly any need for more research on
p s e u d o r a n d o m n u m b e r genera to rs ; is it no t like
bea t ing a dead horse? But no: new p rope r t i e s of
old gene ra to r s a re still be ing discovered, and new
gene ra to r s must be deve loped to a c c o m m o d a t e

* The first author was sponsored by the Supercomputer Visit-
ing Scientist Program at Rutgers University, The State
University of New Jersey, during July 1988. In 1989, com-
puter time on the CYBER 205 in Amsterdam was made
available by SURF/NFS. Useful comments on earlier ver-
sions of this paper were made by Bert Bettonvil (Katholieke
Universiteit Brabant/Technische Universiteit Eindhoven)
and three referees.
Correspondence to: J.P.C. Kleijnen, Department of Infor-

mation Systems and Auditing, School of Business and Eco-
nomics, Katholieke Universiteit Brabant (Tilburg University)
P.O. Box 90153, 5000 LE, Tilburg, Netherlands.

new arch i tec tures of compute r s , as this p a p e r will
show. Recen t ly some in teres t ing resul ts on pseu-
d o r a n d o m n u m b e r gene ra to r s have been pub-
l ished; unfor tuna te ly these results are sca t t e red
over var ious journa l s tha t are not easily accessible
to r eade r s of this journal . This p a p e r gives a
p rac t i ce -o r i en t ed survey, and does not requi re
ma the ma t i c a l sophis t icat ion.

W e concen t ra t e on one class of genera tors ,
namely l inear congruen t ia l genera tors . So we do
not discuss tha t o the r impor t an t class. Taus-
wor the genera to rs . M o r e o v e r we focus on l inear
congruen t ia l gene ra to r s with zero addi t ive con-
s tant (c = 0 in (2.1)) and a modu lus that is a
power of two (m = 2 w in (2.1)). This is a class of
gene ra to r s tha t a re widely used, a l though they
are not ideal . R e c e n t publ ica t ions on p se udo ra n -
dom n u m b e r gene ra t ion are: Af f i e rbach and
G r o t h e (1988), Bra t ley et al. (1987), Durs t (1989),

0377-2217/92/$05.00 © 1992 - Elsevier Science Publishers B.V. All rights reserved

J.P.C. Kleijnen, B. Annink / Pseudorandom number generators for computers 77

Kalos and Whitlock (1986), L 'Ecuyer (1990),
Knuth (1981), Marsaglia et al. (1990), Morgan
(1984), Park and Miller (1988), and Ripley (1987).

This paper is based on the number theoretic
results of De Matteis and Pagnutti (1988), but
presents their results in simpler terms, including
a number of graphs. Their results are extended to
antithetic pseudorandom numbers; moreover sta-
tistical tests are applied to corroborate their
number-theoret ic results. (Note that De Matteis
and Pagnutti 's results do not come out of the
blue; see, for example, Ripley (1987, p. 42)). In
the light of these results, alternative generators
for supercomputers are examined.

There are several types of computers: vector
computers should be distinguished from tradi-
tional scalar computers and truly parallel com-
puters. Traditional computers such as the IBM
370 and the VAX series, execute one instruction
after the other; so they operate sequentially. Truly
parallel computers such as the H Y P E R C U B E ,
have many Central Processing Units (CPUs) that
can operate independently of each other; this is
called coarse grain parallelism. Vector computers
such as the CRAY 1 and the CYBER 205, have a
'vector processing' capability: fine grain paral-
lelism. This paper focusses on the CYBER 205,
but generators for other supercomputers can be
evaluated and improved along the same lines.

This paper is organized as follows. Section 2
summarizes basic results for linear congruential
generators, needed in the sequel. In Section 3 the
full cycle of the multiplicative generator with
modules 2 ~ is split into equal parts, first into two
parts (Section 3.1), then into 2 ~ parts (Section
3.2), which shows that the pseudorandom num-
bers lie on two and on no more than 2 k- l paral-
lel lines if k < 2 and k > 3, respectively. Anti-
thetic pseudorandom numbers are briefly consid-
ered in Section 3.3; the conditional variances and
the correlation coefficient of the pseudorandom
numbers paired across two parts (of the 2 k parts)
are studied in Section 3.4. The disadvantages of
splitting a pseudorandom number stream into
parts are summarized in Section 3.5. Section 4
gives alternative computer implementations for
vector computers. First the 'assembly line' archi-
tecture of vector computers, such as the CYBER
205, is explained. Next Section 4.1 gives one
implementat ion that requires computat ion of J
multipliers, and Section 4.2 gives a related paral-

lel algorithm that requires computation of a sin-
gle multiplier and initializing a vector with J
successive numbers. Finally Section 4.3 compares
these two implementations to the standard scalar
routine R A N F and the standard vector routine
V R A N F on the CYBER 205. Section 5 summa-
rizes our conclusions.

2. Linear congruential generators

Linear congruential generators have the form

x j + , = (a x j + c) mod m, j = 0 , 1 ,2 (2.1)

where a, c, m, and x 0 are integers; the seed x 0
and the multiplier a are positive, but smaller than
the modulus m; the additive constant c is a
non-negative integer smaller than m. When c is
zero, the generator is called multiplicative con-
gruential. The generator has a specific cycle
length or period h, which means that if the
generator starts with seed x 0, then x h = x o, so
xh+ ~ = x I and so on. Obviously the pseudoran-
dom numbers rj = x J m satisfy 0 < ri < 1. An effi-
cient algorithm results when m = 2 ~ where w
depends on the computer 's word size; for exam-
pie, CDC's vector computer CYBER 205 uses
m = 2 47 (see CDC, 1986), but IMSL uses m = 2 31

- 1 for traditional computers; NAG uses m = 259
(double word on traditional computers). How-
ever, there are other considerations besides effi-
ciency.

Generators should yield pseudorandom num-
bers that are statistically independent; that is, the
observed sequence r 0, r~ , . . . , r n should not pro-
vide any information about the next sequence
rn+|, rn+ 2 It is extremely difficult to meet
this requirement; see the earlier references.

It is possible to derive mathematical conditions
that are necessary but not sufficient. For exam-
ple, the following lemma is well known, and will
be used later on.

Lemma I. I f in (2.1), m = 2 w (with w > 3) and
c = 0, then the max imum cycle length is h = 2~-2;
this max imum is reached if a = 4g + 1 with odd
integer g.

Note that if m is a prime number (so m ~ 2w),
then longer cycles are possible; see the references

78 J.P.C. Kleijnen, B. Annink / Pseudorandom number generators for computers

a: 5

6
~ : 2 : 6 4

F igure 1. Plot of all successive pai rs (X2j , XI+2j) with j =
0, 1 ½h - 1 for a mul t ip l ica t ive g e n e r a t o r wi th m = 2 6 and

a = 5

cited above. Because these mathematical condi-
tions are not sufficient, statistical tests should be
applied to the generator's output (r 0, r 1, . . .) to
check if several types of statistical dependence
are absent indeed. For example, two-tuples
(r o , r l) , (r 2 , r 3) , (r 4 , rs) , etc. should be uniformly
distributed over the unit square. Figure 1 shows
results for a pedagogical example that can be
easily checked by the reader; to improve the
readability 'dots' are shown as 'big black squares'.
We shall return to this figure.

3. Partitioning the cycle

rj, j = 0 , . . . , h, are statistically independent. Un-
fortunately, the numbers rj, or equivalently the
integers xj, are statistically dependent. More
specifically, De Matteis and Pagnutti (1988) give
number-theoretic results that guide our present
research.

Let us return to the pedagogical example of
Figure 1 with m = 2 6 and h = 2 6 - 2 = 16. Splitting
the cycle into two parts yields a first part consist-
ing of x o, x 1 x7, and a second part compris-
ing Xs, x 9 x15. Now plot the pairs corre-
sponding across the two parts: (x o, x8),
(Xl, X9),...,(X7, X15). So in this paper we are
interested, not in first-order autocorrelation (Fig-
ure 1), but in long-range correlation. This yields
Figure 2.

A more realistic generator has a bigger modu-
lus m and hence a longer cycle h. We present
plots only for m = 212 and a = 5 (these plots are
easily obtained on a Personal Computer); Lemma
2 implies that the pattern shown by these plots
holds for all generators considered in this section
(Lemma 2 is presented in the next subsection).
Figure 3 shows the plot for partitioning into two
parts: (x 0, Xh /2) , (X l , X(h /2)+ 1) (X(h /2)_ l, Xh),
In both Figures 2 and 3 all ½h pairs lie on only
two parallel lines, with slope one; these lines have
no overlapping domains; a small number in the
first part (0 < rj < 0.5) goes together with a high
number in the second part (0.5 < r(h/2)+ j ~ 1); SO
the pseudorandom numbers are negatively corre-
lated (see Table 2 later on.) Figure 3 displays r

Kleijnen (1989) surveys several types of linear
congruential generators for vector computers.
Section 4 will discuss vector computers; here it is
only mentioned that Kleijnen (1989) discusses
splitting the cycle of pseudorandom numbers into
65535 (= 2 1 6 - 1) non-overlapping parts. The
present paper shows that this approach is wrong!
The proof reveals properties of generators that
also concern traditional computers. Section 3 is
restricted to multiplicative generators with modu-
lus m = 2 w, a multiplier resulting in a cycle length
h = 2 w-z, and a seed x 0 = 1; see again Lemma 1.

3.1. Part i t ioning into two par t s

Suppose the cycle of length h = 2 w-z is split
into two equal parts (of length ½h). Kleijnen
(1989) assumes that the pseudorandom numbers

|

l
|

a: 5

6
Mult, gene~at0~ ~: 2 : 64

1
number 0£ Parts p= 2 = 2

F igure 2. Pairs across two par t s (x j , Xj+h/2) with j = 0 ½h
- 1 6 for a mul t ip l ica t ive gene ra to r wi th m = 2 and a = 5

J.P.C. Kleijnen, B. Annink / Pseudorandom number generators for computers 79

a: 5

12
Nult, genex, ato~, N= 2 = 4g%

I
nu.l~er o£ Pa~ts P: 2 : 2

Figure 3. Pairs across two parts for m = 212 and a = 5

a: 5

12
~ult. 9eneratop N: 2 : 4896

2
ntmbee o£ Pacts p: 2 : 4

Figure 4. Pairs across first two parts when splitting into four
equal parts (m = 212 and a = 5)

(0 < r < 1), not the integers x (0 < x < m) , in or-
der to make the plots independent of the modu-
lus m; the remaining Figures 4 through 7 also
refer to the unit square (Figures 1 and 2 serve
only pedagogical purposes).

3.2. Partitioning into 2 k parts

What happens if the number of parts is dou-
bled? First, notice the relationship between parti-
tioning into two and four equal parts, respec-
tively. Consider the didactic example with m = 26
in Figure 2. When the cycle is split into two parts,
the following pairs are p lo t ted (x 0, x8),
(xl , Xg),... ,(x7, xls). When the cycle is now par-
titioned into four parts, each part has length
h = 2w-2 /4 = 26-2 /22 = 4; part No. 1 is (xo, Xl,

x 2, x3), part No. 2 is (x4, xs, x6, XT), part No. 3
is (x s, x 9, Xlo, x[]), and part No. 4 is (x]2, x]3,
x]4, xms). Then the pairs across parts No. 1 and
No. 3 are: (x0, xs), (xl , Xg), (x2, Xl0), (x3, Xll).
But these four pairs also occurred in the plot for
two parts only~ So if splitting into two parts gives
unacceptable results, then splitting into four parts
and using all parts does not help! The cycle must
be split into more parts and only the first two
parts can be used. Figure 4 displays the plot for
parts No. 1 and No. 2: (x0, X h / 4) , (Xl, X(h/4)+l) ,
. . . . (X (h / 4) _ l , X(h/2)_l). Again all ¼h pairs lie on
only two parallel lines, with slope one; these lines
still have no overlapping domains; compared with
splitting into only two parts (Figure 3) these lines
are shifted to the left (the correlation is still

negative but smaller in absolute magnitude; see
Table 2).

The pattern of the plots changes as we go on
doubling the number of equal parts/Figure 5 gives
the plot for the first two parts in case of 2 3 parts:

(X O, Xh/8), (X 1, X(h/8)+ 1) (X(h/8)- 1, X(h/4)-l)"
Again all ¼h pairs lie on parallel lines with slope
one, but there are now four lines and some of
these lines have partially overlapping domains; a
small number in the first part 'goes together ' with
two different values in the second part (strictly
speaking, one particular value of xj corresponds
to a unique value for X(h/8).. j since all numbers x
are different in a multiplicative generator; we
shall return to this issue).

~tdt, generator N= 2 : 4096

3
nuMi~er o£ Pa~ts p: 2 : 8

Figure 5. Pairs across first two parts for 2 3 parts (m = 2 I2 and
a= 5)

80 J.P.C. Kleijnen, B. Annink / Pseudorandom number generators for computers

I
!

I

0 I

I
l

l

0 ~

|1 |

, t
I l I

l I
l I

t

.!

||
|

I

t

I

a: 5

12
.u l t , ~enePatol, . : 2 : 4096

4
ntt.ber of Parts p: 2 -- 16

F igure 6. Pairs across two par t s for 2 4 par ts (m = 212 and

a = 5)

Figure 6 plots the pairs when the cycle is split
i n t o 2 4 parts. Again all ~6 h pairs lie on parallel
lines with slope one, but there are now eight such
lines with more overlap of domains. Finally Fig-
ure 7 gives results for 25 parts. All ~ h pairs still
lie on parallel lines with slope one, but there are
now so many lines that these lines are hard to
distinguish (there are few points per line). And so
we could continue. Actually De Matteis and Pag-
nutti (1988, p.604) prove the following lemma.

Lemma 2. Suppose the modulus o f the multiplica-
tiue generator is m = 2 ~ with w > 4, the multiplier
a is chosen such that the cycle length is h = 2 w-2,
and the seed is x o = 1. Divide the resulting se-
quence into 2 k parts with k < w - 2. I f k < 2, then
the points (x~, X (h / 2 k) + j) l i e o n two parallel lines
with slope one (0 < j < h / 2 *) . I f k > 2, then there

. i
" ' a: 5

I I | I .u l t , gene~ato~ . : 212= q896

| 5
nttnl:e~ ot" Pa~,ts p: 2 : 32

l l

I

l l
I

l

| |

|

| |
I

| I |

|

Figure 7. Pai rs across two par ts for 25 par t s (m = 2 ~2 and

a = 5)

are no more than 2 *-1 parallel lines with slope
one.

3.3. Anti thetic pseudorandom numbers

Kleijnen (1974, p.254) proves that the anti-
thetic pseudorandom numbers 1 - r j can be gen-
erated by starting with the seed m - x 0. Hence
the antithetic numbers (say) yj satisfy yi = m - x~
for j = 1, 2 , . . . , h - 1, h; that is, the points (xj, yj)
lie on a single line with slope minus one. We
combine this result with Lemma 2 (which implies
slope plus one) to conclude that the cycle o f the
antithetic numbers yj has no element in common
with the cycle o f the 'original' numbers xj:

(Y~ Yh} • (x , , . . . , x~} = ¢.
Lemma 1 stated that a multiplicative generator

with m = 2 w has a maximum cycle of length h =
2 w-2. Now we can explain this cycle length as
follows. The modulus m = 2 w results in odd val-
ues only: half the cycle running from 0 through
m - 1 is lost that way. Another half lies in the
antithetic cycle!

3.4. Statistical analysis

The preceding plots illustrated number-theo-
retic results. What are the statistical conse-
quences? First note that, within a cycle, no num-
ber xj occurs more than once, whereas the statis-
tical analysis of simulation output assumes that
random numbers are sampled independently and
hence specific values can occur more than once.
In the statistical analysis this phenomenon is al-
ways ignored. In the same way the analysis of the
preceding plots assumed continuous lines, paral-
lel and equidistant in the unity quadrant.

We assume that the generator does yield a
uniform marginal distribution; hence v a r (r) = ~2.
It is easy to derive the variance of r(h/2*)+ j given
rj and a partitioning of the cycle into 2 K parts
(j = 0 (h / 2 *) - 1) . For example, for k = 3 ,
Figure 5 gives four lines such that two values
r~h/8)+ ~ correspond with each rj. For simplicity's
sake we assume that these two values are equally
probable. Obviously the distance between two

1 neighboring lines is 7. Hence

var(r th/S)+j lr j) = ((¼)2+ (¼) 2) 1 _ 116.

J.P.C Kleijnen, B. Annink / Pseudorandom number generators for computers 81

This yields Table 1. This Table shows that the
conditional variance increases monotonically to
~2, which is the variance if the second part would
be independent of the first part (so the assump-
tions used to derive this table seem realistic).

We also test the correlation coefficient be-
tween the pairs (rj, r<h/zk)+j). If the r 's were
multivariate normally distributed, then zero cor-
relation would imply independence. In case of
non-normality this is not true; for example, when

rj for 0 < r~ < 0.5, (3.2)
r~h /2*)+i = 1 - rj for 0 . 5 < r j < l ,

then their correlation is zero; yet they are not
independent (as (3.2) shows). To test for zero
correlation of the uniformly distributed r 's we
use the 'Spearman rank correlation test'; see
Churchill (1983, pp.596-598). Because this test
assumes independent pairs, we assume that
short-range correlations can be ignored, and we
test long-range correlations. So if the rank of rj is
vi and that of r~h/2,)+ j is w~h/2,)+ j, then we
compute

6 ~ (vj - W~h/2*)+j) 2

R = 1 - j = 1 (3.3)
n (n 2 - - 1)

Obviously max(R) - -1 . The following statistic
has an approximate t-distribution with n - 2 de-
grees of freedom:

R (n - 2) 1/2

T (1 - R 2) '/2 " (3.4)

Table 2 shows T for n = 1000 and a popular
generator, namely m = 232 and a = 69069. This
table gives non-significant correlation for k = 3,
since t~_ 1 = 1.65 for o~ = 0.05 and n = 1000. Nev-
ertheless Figure 5 and Table 1 suggest a strong
dependence; also see the example in (3.2).

In summary, this subsection shows that split-
ting the cycle into a few parts (small k) does not
give independent pseudorandom numbers, even

T a b l e 2

S p e a r m a n r a n k tes t fo r z e ro c o r r e l a t i o n o f (r(h/2k)+j, r)),
w h e n p a r t i t i o n i n g the cycle in to 2 k par t s ; m = 23~ a n d a =

69069; n = 1000

k = l 2 3 4 5

T = - 17.94 - 4.56 - 1.05 0.68 - 0.19

though the estimated correlation coefficient may
be non-significant. But, if pseudorandom num-
bers are dependent, then the simulation fed by
these numbers does not give independent results.
Yet the statistical analysis of the simulation out-
put assumes independence when estimating vari-
ances and confidence intervals; so this analysis
may then give misleading results.

3.5. Summary of spfitting approach

Kleijnen (1989) assumes that the pseudoran-
dom number rj are truly independent. Then it
makes sense to generate (say) J numbers in par-
allel by selecting J seeds such that the full cycle
is split into J equal parts. However, number-the-
oretical results derived by De Matteis and Pag-
nutti (1988) imply that these parts may be corre-
lated, especially if J is small. Acceptable statisti-
cal behavior requires that the cycle be split into
at least 25 parts and that only the first two parts
be used. So only 2 × 2 ~-2-5 numbers of the full
cycle of length h = 2 w-2 can be used! That useful
part can be split into J subparts for parallel
generation of pseudorandom numbers; see Kleij-
nen (1989). Long-range correlation also causes
problems on traditional computers, if relatively
many pseudorandom numbers are needed.

4. Vector computers and generators

This section gives generators for vector com-
puters that produce pseudorandom numbers not
spread over the full cycle (because of long-range
correlation). Moreover, these generators produce

T a b l e 1
C o n d i t i o n a l v a r i a n c e o f r~h/2%+ j given rj for 2 k p a r t s as a p e r c e n t a g e o f var(r~h/2k)+ i) =

k 1 2 3 4 5 6 7

var(rth/2k~+ilrj) 0 0 7 5 % 93 .75% 98 .44% 99 .61% 99 .90%

82 J.P.C. Kleijnen, B. Annink / Pseudorandom number generators for computers

numbers in exactly the same order as generators
on traditional computers do; this characteristic
facilitates debugging.

First consider the pipeline architecture of vec-
tor computers such as the CYBER 205. A simple
example is provided by the inner product of two

' = E J This computation re- vectors, VlV 2 j= iVljV2j.
quires J scalar multiplications VlY2~; these J
operations can be done in parallel because the
product VljZ2j does not need the product
Vl(j_l)V2(j_l), The pipeline architecture means
that the computer works as an assembly line;
hence, efficiency improves drastically if a large
number of identical operations can be executed,
independently of each other; see Levine (1982),
Miller and Walker (1989), Oed (1982), and Zenios
and Mulvey (1986). Vector computers are effi-
cient only if these operations can be executed
independently or in parallel, which excludes re-
cursive statements. Unfortunately, the linear con-
gruential generator is recursive: (2.l) shows that
the computation of xi+ 1 needs the predecessor
xj. Moreover, because of fixed set-up costs, the
'assembly line' is efficient only if the number of
basic operations is large; the literature suggests
J > 50. Because the CYBER 205 uses 16 bits for
addressing there is a technical upper limit on J,
namely J < 2 1 6 - 1 =65535; see SARA (1984,
p.26). So the computer should generate J pseu-
dorandom numbers in parallel with 50 <J_<
65535. Hence a simulation experiment that re-
quires N pseudorandom numbers calls this paral-
lel routine [N i l] times where [] denotes round-
ing upwards to the next integer; for example, if
N = 1000000 and J = 65535, then 16 calls are
necessary. So image an (I × J)-matrix of pseudo-
random numbers, where J numbers are gener-
ated in parallel and I calls are made to that
vector routine. Kleijnen (1989) surveys different
solutions to this problem (namely, J different
multipliers m r and J additive constants ci; sam-
pling J seeds; selecting J seeds I apart; also see
Section 3). He rejects the following idea because
of overflow on the computer; we shall show,
however, how to solve this problem.

4.1. Vector o f multipliers

Fishman (1978) proves that, given a seed x0
and J calls to the traditional multiplicative gener-
ator (see (2.1) with c = 0), the resulting number

xj can be derived without knowing the intermedi-
ate numbers (x 1, x 2 x j_ l) :

x j = (aJXo) mod m. (4.1)

So J pseudorandom numbers can be gener-
ated in parallel, provided we first generate, once
and for all, the vector of J multipliers a =
(al, a 2 a j_ 1, a j) ' with elements

a j = (a j) mod m, j = l J. (4.2)

The vector a is multiplied by the scalar x 0 to
give the vector (x l , x 2 , x j_ l, x j) ' . Replacing
the scalar x o by the last element of the latter
vector, namely x s, yields the next vector
(xs+t, Xs+e X z j - l , Xzs)', and so on. In this
way the pseudorandom numbers are generated in
exactly the same order as they would have been
produced in scalar mode. t

At the end of the simulation run the last
pseudorandom number should be stored, so that
the simulation experiment can be continued later
on or a new (unrelated) simulation experiment
can start at a seed different from the default x0;
also see Celmaster and Moriarty (1986) and De
Matteis and Pagnutti (1988, p.602). We shall re-
turn to this generator after we have discussed a
closely related generator.

4.2. Vector o f J successive numbers

Suppose there is available a vector of J succes-
sive pseudorandom numbers, which can be gener-
ated in the traditional way through (2.1):

x = (x o, x 1, x 2 , . . . , x j _ e, x j _ l) ' . (4.3)

Multiplying this vector by the scalar multiplier
(a J) mod m gives a new vector that is identical to
the new vector obtained by the technique of
Section 4.1. Now, however, the vector of the last
J numbers should be stored at the end of a
simulation.

There is a computational problem in both ap-
proaches: overflow occurs when computing high
powers of the multiplier a, such as a J. (Overflow
in traditional generators is discussed in Park and
Miller, 1988, p.1195.) That problem, however, can
be solved through 'controlled integer overflow'
(Law and Kelton, 1982, pp.219-232), combined
with the CYBER 205 'binary complement ' repre-
sentation of negative integers: the Appendix gives

J.P.C. Kleijnen, B. Annink / Pseudorandom number generators for computers 83

a computer program based on (4.3), which will be
the most efficient implementat ion in the next
subsection.

4.3. Comparison of four implementations

Table 3 compares the computer execution
times of different computer implementations of
the same generator on the CYBER 205. This
computer can use F O R T R A N 200 (a superset of
F O R T R A N 77) that allows vector and scalar
programming; see CDC (1986). Implementat ion
No. 1 is RANF, a standard scalar subroutine that
uses a multiplicative generator with m = 247 and
a = 84000335758957 (or in hexadecimal notation,
a = 00004C65DA2C866D); see C D C (1986,
pp.10-29). The CYBER 205 uses words of 64
bits; 48 bits are used to represent integers, includ-
ing one sign bit; hence m = 2 47. Implementat ion
No. 2 is VRANF, a standard vectorized subrou-
tine that uses the same modulus m and multiplier
a as R A N F does; see CDC (1986, p p . l l - 1) . Im-
plementat ion No. 3 uses the vector of multipliers
of (4.2). Implementat ion No. 4 uses the vector of
J preceding numbers xj plus the multiplier ag;
see (4.3); Implementat ions Nos. 3 and 4 also have
the same modulus and multiplier as R A N F has.
The last two generators can be implemented not
only in vector mode but also in scalar mode; of
course R A N F is in scalar mode, and V R A N F is
in vector mode. The measurements in Table 3 do
not include storing the last vector or scalar to
continue simulation at the last pseudorandom
number.

Our results for R A N F and V R A N F deviate
substantially from An MeT (1983): he finds that

Table 3
Computer time in microseconds of different implementat ions
on a CYBER 205

Type of Vector length J

implementat ion 5 500 50000 65535

No. 1. RANF:
scalar mode 0.014 0.520 51.553 67.465

No. 2. VRANF:
vector mode 0.021 0.208 19.507 25.652

No. 3. J multipliers:
vector mode 0.013 0.079 7.713 9.923
scalar mode 0.026 1.572 157.763 206.843

No. 4. J numbers & a J:
vector mode 0.013 0.079 7.425 9.631
scalar mode 0.024 1.561 157.098 206.083

V R A N F is always slower than RANF, and his
CPU times are a factor 1000 higher! (We
double-checked our results, so we are convinced
of the correctness of our data; we cannot explain
An Mey's results.) Implementat ion No. 4 is
slightly faster than No. 3 is. The latter implemen-
tation must store and fetch the last element of
the vector of numbers xy. Moreover, No. 3 needs
two vectors, namely one vector for the multipliers
a/ and one vector for the numbers xj. So we
recommend implementat ion No. 4. Of course it
remains to be investigated, whether the generator
implemented this way has acceptable statistical
behavior. For example, the generator should have
small short-range correlations; see the references
in Section 1.

5. Conclusions

Kalos and Whitlock (1986, p.180) state: "The
question of independence of separate sequences
to be used in parallel remains a major research
issue. Not enough is known about the long-term
correlations within linear congruential generators
to use equal subsequences with confidence".
Matteis and Pagnutti (1988) prove that each mul-
tiplicative generator shows very strong ' long
range' correlations: splitting its cycle into 2 k parts
gives pseudorandom numbers that lie on no more
than 2 k - I parallel lines if k > 3; if k < 3, then
they lie on only two parallel lines. Consequently,
on vector computers, pseudorandom numbers
could be generated by partitioning the cycle into
25 parts and using only the first two parts. There
are two bet ter techniques, however, that require
the computation, once and for all, of either J
multipliers (aj = a j mod m) or the computation
of one muItiplier (a g mod m) and the initializa-
tion of one vector with J successive numbers.
These two techniques are faster than the stan-
dard subroutines (RANF and VRANF) on a
well-known vector computer, the CYBER 205.

Appendix: The FORTRAN 200 program for im-
plementation No. 4.

P R O G R A M V A R I A N T 4
I M P L I C I T R E A L (U-Z),

I N T E G E R (A-T)
P A R A M E T E R (N1 = 5,N4 = 65535,K = 1)

84 J.P.C. Kleijnen, B. Annink /Pseudorandom number generators for computers

C
C

C

P A R A M E T E R (A1 = 37772072706109)
I N T E G E R M V A S T
BIT B V A S T
D E S C R I P T O R M V A S T , B V A S T
D I M E N S I O N T(N4), S I (N 1)
D I M E N S I O N X I (N 1)
D A T A M I N T / X '0000800000000000 ' /
C A L L R A N S E T (K)
D O 5 I = 1,N4
U = R A N F ()
C A L L RANGET(T(I))

5 C O N T I N U E
! N = 5
! S C A L A R
S I (1 ; N 1) = T(1 ;N1)
Z P U 1 = S E C O N D ()
D O 1 0 I = I , N 1
SI(IO=AI*SI(I)
IF (S I (I) .LT .0) S I (I) = S I (1) - M I N T
X I (I 0 = SI(I)/MINT

10 C O N T I N U E
Z P U 2 = S E C O N D ()
U1 = Z P U 2 - Z P U 1
! V E C T O R

A S S I G N M V A S T , . D Y N . N 1
A S S I G N B V A S T , . D Y N . N 1
SI(1;N1) = T(1;N1)
ZPU1 = S E C O N D ()
SI(1;N1) = A1 • SI(1;N1)
B V A S T = SI(1;N1) .LT.O
M V A S T = SI(1;N1)-MINT
SI(1;N1) = Q 8 V C T R L (M V A S T , B V A S T ;

SI(1;N1))
XI(1;N1) = S I (1 ; N 1) / M I N T
Z P U 2 = S E C O N D ()
Z1 = Z P U 2 - Z P U 1
F R E E
P R I N T . , 'BEGIN: V E C T O R I S E

SCALAR'
P R I N T . , ' N = 5' ,Zl , ' ',U1
E N D

To enable the reader to check this program,
we give three of the J = 5 seed values (x0, x , , x 2)
and the outcomes of the first ten random num-
bers for those seeds. So we display x 5, x6, x 7 on
the first row, xlo , Xll , x12 on the second row, and
so on (to save space we do not display x8, x 9 and
xl3, x14, etc.) in Table 4.

Table 4

Starting values x 0, x 1, x2:

84000335758957 42546483841641

Random numbers (x 5, x6, xT), (Xlo, xll, xt2), etc.:

51635577448441
113554934179413
110015530009153
110447784126845
46264685920969
80793675172325
69425314839441
82909967323533
32167420825241
55571152067189

R a n d o m numbers r(= x/247):

0.3668928446276
0.8068563359089
0.7817073566880
0.7847787069213
0.3287303650336
0.5740735898905
0.4932965313702
0.5891107500384
0.2285632719551
0.3948567841916

112073726270213
42036299976753
81298600819629
115384045819961
121717687575957
56567339750529
129916739502781
92291160590089
120236138515749
39458910421457

0.7963317207086
0.2986858758671
0.5776613023984
0.8198529557998
0.8648561872061
0.4019351234101
0.9231139550733
0.6557681373215
0.8543291479821
0.2803724216097

118602654327989

28809031491361
24524090886877
42705761318569
106866938963525
117131050270321
119127659069677
128201070008441
49025954510037
85010458949313
94340002081789

0.2047004805047
0.1742541463079
0.3034426848001
0.7593352717345
0.8322661690152
0.8464529278006
0.9109233901117
0.3483503584081
0.6040356407006
0.6703260317080

J.P.C. Kleijnen, B. Annink / Pseudorandom number generators for computers 85

References

Afflerbach, L., and Grothe, H. (1988), "The lattice structure
of pseudo-random vectors generated by matrix generators",
Journal of Computational and Applied Mathematics 23,
127-131.

An Mey, D. (1983), "Erste Erfahrungen bei der Vek-
torisierung numerischer Verfahren", (First experiences
when vectorizing numerical procedures), Computer Cen-
ter, Technical University, Aachen Germany.

Bratley, P,, Fox, B.L., and Schrage, L.E. (1987), A Guide to
Simulation, Springer-Verlag, New York.

CDC (1986), "Fortran 200 Version 1 reference manual",
Publication No. 60480200, Control Data Corporation, Sun-
nyvale, CA.

Celmaster, W., and Moriarty, K.J.M. (1986), "A method for
vectorized random number generators", Journal of Com-
putational Physics 64, 271-275.

Churchill, G. (1983), Marketing Research, 3rd ed., Dryden
Press, Chicago, IL.

De Matteis, A., and Pagnutti, S. (1988), "Parallelization of
random number generators and long-range correlations",
Numerische Mathematik 53, 595-608.

Durst, M.J. (1989), "Using linear congruential generators for
parallel random number generation", in: E.A. MacNair,
K.J. Musselman and P. Heidelberger (eds.), Proceedings of
the 1989 Winter Simulation Conference, 462-466.

Fishman, G.S. (1978), Principles of Discrete Event Simulation,
Wiley/Interscience, New York.

Kalos, M.H., and Whitlock, P.A. (1986), Monte Carlo Meth-
ods, Volume I: Basics, Wiley, New York.

Kleijnen, J.P.C. (1974), Statistical Techniques in Simulation,
Voh~me 1, Marcel Dekker, New York.

Kleijnen, J.P.C. (1989). "Pseudorandom number generation
on supercomputers", Supercomputer 6, 34-40.

Knuth, D.E. (1981), The Art of Computer Programming, Vol-
ume 2: Semi-numerical Algorithms, Addison-Wesley, Read-
ing, MA.

Law, A., and Kelton, W. (1982), Simulation Modelling and
Analysis, McGraw-Hill, New York.

L'Ecuyer, P. (1990), "Random numbers for simulation", Com-
munications of the ACM 33, 85-97.

Levine, R.D. (1982), "Supercomputers", Scientific American,
112-125.

Marsaglia, G., Zaman, A., and Tsang, W.W. (1990), "Towards
a universal random number generator", Statistics and
Probability Letters 8, 35-39.

Miller, R.K., and Walker, T.C. (1989), Parallel Processing,
The Fairmont Press, Lilburn, CA.

Morgan, B.J.I. (1984), Elements of Simulation, Chapman &
Hall, London.

Oed, W. (1982), "Monte Carlo simulation on vector ma-
chines", Angewandte Informatik 7, 358-364.

Park, S.K., and Miller, K.W. (1988), "Random number gener-
ators: Good ones are hard to find", Communications of the
ACM 31, 1192-1201.

Ripley, B.D. (1987), Stochastic Simulation, Wiley, New York.
SARA (1984), "Cyber 205 user's guide, Part 3. Optimization

of Fortran programs", SARA (Stichting Academisch
Rekencentrum Amsterdam, Foundation Academic Com-
puter Center Amsterdam), Amsterdam.

Zenios, S.A., and Mulvey, J.M. (1986), "Nonlinear network
programming on vector supercomputers: A study on the
Cray X-MP", Operations Research 34, 667-682.

