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Abstract

Let � be a distance regular graph with adjacency matrix A. Let I be the

identity matrix and J the all-1 matrix. Let p be a prime. We study the p-rank of

the matrices A + bJ � cI for integral b; c.

1 Introduction

In this paper we will deal with the following problem: Given the spectrum of a (regular)
graph, what can we say about the p-ranks of A� cI or, more general, A+ bJ� cI, where
A is the adjacency matrix and b and c integers. Which of these p-ranks are completely
determined by the spectrum and which are not? Some of these remaining p-ranks can be
determined if we furthermore assume that the graph is distance-regular. Our main tool

to determine the p-ranks is the minimal polynomial of A considered as a matrix over IFp.
We will �rst mention some properties of the minimal polynomial and then show how
this determines most of the p-ranks of some regular graph, given its spectrum. In the
third section we consider the Hamming and Doob graphs as our main example. Some
more examples are considered in the last section. Most results of the �rst two sections
can also be found in [3].

1.1 The minimal polynomial

Let F be any �eld and A a v � v-matrix over F . A polynomial f (x) 2 F [x] is called an

annihilating polynomial of A if f(A) = O. The minimal polynomial of A is the unique

monic annihilating polynomial of A that has minimal degree. Let '
0
(x) be the minimal

polynomial of A and let c 2 F , then equivalent are:

1. r(A� cI) < v,

2. c is a root of det(xI �A),

3. c is a root of '
0
(x).
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Let '
0
(x) = (x � �

1
)h1 � � � (x � �n)

hn'
1
(x), where '

1
(x) has no roots in F and let

det(xI �A) = (x � �
1
)m1 � � � (x� �n)

mnf(x) where f (x) has no roots in F , then '
1
(x)

divides f (x) and there exists a regular v � v-matrix S such that

S�1AS = diag(A
1
; : : : ;An; B)

where Ai is a mi �mi-matrix such that (Ai � �iI) is nilpotent with index hi and B is a
(v�

P
mi)�(v�

P
mi)-matrix that has no eigenvalues in F . Now r((A��iI)

hi) = v�mi

and

v �mi + hi � 1 � r(A� �iI) � v �
mi

hi

so �i is a simple root of '
0
(x) if and only if r(A� �iI) = v �mi.

Furthermore, ker((A��iI)
hi)�h(A��iI)

hii = F v and ker((A��iI)
hi)\h(A��iI)

hii =

f0g.

In this paper we will only consider the minimal polynomial of the adjacency matrix

of a graph considered as a matrix over IR or IFp. Dealing with this situation, we have
the following lemma:

Lemma 1 (cf. [5]) Let A be an integral v � v-matrix, then the minimal polynomial of
A over IR, '

0
(x) say, has integral coe�cients. 2

So if we consider A as a matrix over IFp, '0(x) (mod p) is an annihilating polynomial
of A and the minimal polynomial of A modulo p divides '

0
(x) (mod p).

A connected graph � is called distance-regular if it is regular of valency k, and if for

any two points ; � 2 � at (graph)distance i, there are precisely ci neighbours of � at
distance i� 1 from  and bi neighbours of � at distance i+ 1 from . The sequence

�(�) = fb
0
; b

1
; : : : ; bd�1; c1; c2; : : : ; cdg;

where d is the diameter of �, is called the intersection array of �; the numbers ci; bi and

ai, where
ai = k � bi � ci

is the number of neighbours of � at distance i from , are called the intersection numbers

of �. The intersection matrix of � is the tridiagonal matrix

0
BBBBBBBB@

a
0

b
0

0 � � � 0

c
1

a
1

b
1

. . .
...

0
. . .

. . .
. . . 0

...
. . . cd�1 ad�1 bd�1

0 � � � 0 cd ad

1
CCCCCCCCA

and has the same eigenvalues as �. More about distance-regular graphs can be found in

[2].
For determining the minimal polynomial of the adjacency matrix of a distance-regular

graph over IFp, the following lemma is very useful.

2



Lemma 2 Let A be the adjacency matrix of a distance-regular graph with intersection

matrix B and let p be a prime, then, when calculating modulo p, A and B have the same

minimal polynomial. Let e := minfd + 1; ijci � 0 (mod p); i � 0g and Be the e � e-

submatrix of B consisting of the �rst e rows and columns, then this minimal polynomial

is equal to det(xI �Be).

Proof: Let f(x) be a polynomial with integral coe�cients, then f(A) � O (mod p)

if and only if f(B) � O (mod p). In fact f (A) � O (mod p) if and only if the �rst
column of f (B) is all-zero. Let

B =

 
Be C

O Bd�e

!
; then f(B) =

 
f(Be) C 0

O f (Bd�e)

!

for each polynomial f (x). Since the matricesB0

e = I;B1

e ; B
2

e ; : : : ; B
e�1
e are clearly linearly

independent, the minimal polynomial of Be has degree at least e, so it must be equal to

det(xI �Be). 2

2 Integral matrices with given spectrum

In this section we consider three special cases of the following problem: Given the spec-
trum of a symmetric integral matrix with constant row sum, M say, (think of the adja-
cency matrix of some regular graph with prescribed spectrum). Which p-ranks ofM�cI

(for integral c) are determined by the spectrum of M and which are not (in general)?
The three special cases we will consider here cover all possibilities of regular graphs with

at most four eigenvalues, see [5]. Further cases can be treated similarly.
Since the spectrum of M is known, also its minimal polynomial over IR, '

0
(x) say,

is known as well as its characteristic polynomial. Most p-ranks of the matrices M � cI

follow from the properties of the minimal polynomial of M over IFp.

2.1 CASE 1

Let M be a symmetric, integral v � v-matrix with constant row sum �
0
and n distinct

integral eigenvalues �1=m0

0
; �m1

1
; �m2

2
; : : : ; �

mn�1

n�1 , where the exponents denote the multi-
plicities and

Pn�1
i=0 mi = v. So the minimal polynomial of M over IR is

Qn�1
i=0 (x� �i). Let

p be a prime. We are interested in the p-ranks of the matrices M + cI for integral c.

If �i 6� 0 (mod p) for i = 0; 1; 2; : : : ; n� 1 then rp(M ) = v.

If �i � 0 (mod p) for some i and �j 6� 0 (mod p) for all j 6= i then rp(M ) = v �mi.

If �
0
� �i � 0 (mod p) for some i 6= 0 and �j 6� 0 (mod p) for all j 6= 0; i then

rp(M ) = v �mi � 1 if 1

v

Qn�1
j=1 (�0 � �j) � 0 (mod p)

v �mi otherwise
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Indeed, �rst of all rp(M ) � Pfmij�i 6� 0 (mod p)g and rp(M ) � v � mi for each

eigenvalue �i that is divisible by p. These remarks prove the �rst two statements. Now

suppose we are in the third case. Then rp(M) is either v �mi or v �mi � 1. It follows

from the eigenvalues that
Qn�1

j=1 (M � �jI) =
1
v

Qn�1
j=1 (�0 � �j)J . So if 1

v

Qn�1
j=1 (�0 � �j) � 0

(mod p) then the minimal polynomial of M over IFp contains one factor x and hence

rp(M) = v�mi�1 and it contains two factors x (and hence rp(M) = v�mi) otherwise.

The p-ranks that are in general not determined by the spectrum are:

rp(M � �iI) for pj(�j � �i) with i 6= j 2 f1; 2; : : : ; n� 1g

2.2 CASE 2

Let M be a symmetric integral v � v-matrix with constant row sum �0 and n eigen-

values �1=m0

0 ; �m1

1 ; : : : ; �
mn�3

n�3 ; �n�2 =
1
2
(a+

p
b)mn�2 ; �n�1 =

1
2
(a�

p
b)mn�2 with integral

�1; : : : ; �n�3; a; b;
1
4
(a2 � b). Let p be a prime.

If p 6 jQn�1
i=1 �i then rp(M) = v.

If for some i 2 f0; 1;2; : : : ; n�3g �i � 0 (mod p) and p 6 jQj 6=i �j then rp(M ) = v�mi.

If for some i 2 f1; 2; : : : ; n� 3g both �0 � �i � 0 (mod p) and p 6 jQj 6=0;i �j then

rp(M ) = v �mi � 1 if 1
v

Qn�1
j=1 (�0 � �j) � 0 (mod p)

v �mi otherwise

For integral c the matrix M � cI has eigenvalues �i � c (i = 0; 1; 2; : : : ; n � 1). Now
pj(�n�2 � c)(�n�1 � c) if c is a solution of x2 � ax + a2�b

4
� 0 (mod p). This equation

has either no solution (irreducible polynomial), or one solution with multiplicity 2 or two
di�erent solutions. If p = 2 we have no solutions if both a and a2�b

4
are odd, we have

one solution (c = b

4
) if a is even and we have two solutions if a is odd and a2�b

4
is even.

If p is odd then x2� ax+ a2�b
4

� 0 (mod p) is equivalent with (2x� a)2 � b (mod p),
so we have 0,1 or 2 solutions depending on whether b is a nonsquare, zero or a square

(mod p).
Suppose x2 � ax+ a2�b

4
� 0 (mod p) has two di�erent solutions c1 and c2 and that

�1; �2; : : : ; �n�3 are not solutions of this equation. Let c be either c1 or c2. Over IFp, the

polynomial det(xI�M ) contains mn�2 (if �0 6� 0 (mod p)) or mn�2+1 factors (x� c),
so rp(M � cI) is either v � mn�2 or v �mn�2 � 1. Clearly rp(M � cI) = v � mn�2 if

�0 6� c (mod p). If c � �0 (mod p) then

rp(M � cI) = v �mn�2 � 1 if 1
v

Qn�1
j=1 (�0 � �j) � 0 (mod p)

v �mn�2 otherwise.

Suppose p is an odd prime that divides (�n�2��n�1)2 precisely once. Suppose furthermore
that none of �1; �2; : : : ; �n�3 is a solution of x2 � ax + a2�b

4
� 0 (mod p). Let A :=

M � 1
2
(�n�2 + �n�1)I.

4



If �0 6� 1
2
(�n�2 + �n�1) (mod p) then pmn�2kdet(A) and rp((A)

2) = v � 2mn�2, so

rp(A) = v �mn�2.

If �0 � 1
2
(�n�2 + �n�1) then rp(A) is either v �mn�2 or v �mn�2 � 1. If furthermore

v 6� 0 (mod p) then rp(A) = v �mn�2 � 1. (Indeed 1 62 hAip and 1 2 hA+ Jip).
Now suppose that v � 0 (mod p) and �0 � 1

2
(�n�2 + �n�1), then

rp(A) = v �mn�2 � 1 if 1
v

Qn�1
i=1 (�0 � �i) � 0 (mod p)

v �mn�2 otherwise.

Indeed,
Qn�3

i=1 (M � �iI) has p-rank 1 + 2mn�2. If A has p-rank v �mn�2 then rp(A
2) =

v� 2mn�2, so
Qn�1

i=1 (M � �iI) =
1
v

Qn�1
i=1 (�0 � �i)J 6� O (mod p). If 1

v

Qn�1
i=1 (�0 � �i) 6� 0

(mod p) then 1 2 hA2ip and if (�0 � �n�2)(�0 � �n�1) contains precisely e factors p, also

v contains precisely e factors p. Let x and y be two vectors such that A2yT = 1
T and

xA = 1. Then x1T = xA2yT = 0, so there exists a vector x such that xA = 1 and

x1T = 0. It follows that A has the same p-rank as the (v+1)� (v+1)-matrix B de�ned
by

B :=

 
�0 � 1

2
(�n�2 + �n�1) 1

1
T A

!

We have that p divides v precisely once since (�0 � �n�2)(�0 � �n�1) = (�0 � 1
2
(�n�2 +

�n�1))
2� (�n�2��n�1)2

4
. If �i = �i� 1

2
(�n�2+�n�1) for i = 0; 1; : : : ; n�1 are the eigenvalues

of A, then B has spectrum:

(�0 +
p
v)1; (�0 �

p
v)1; �m1

1 ; : : : ; �
mn�1

n�1

It follows that det(B) contains mn�2 + 1 factors p (1 factor from (�0 +
p
v)(�0 �

p
v) =

�20 �v and mn�2 factors from (�n�2�n�1)
mn�2 since �n�2�n�1 = � (�n�2��n�1)

2

4
) so rp(A) =

rp(B) � v �mn�2. It follows that rp(A) = v �mn�2.

The p-ranks that are in general not determined by the spectrum are:

rp(M � �iI) with pj(�i � �j) for i 6= j 2 f1; 2; : : : ; n� 3g
rp(M � �iI) with pj(�i � �n�2)(�i � �n�1) for i 2 f1;2; : : : ; n� 3g
r2(M � �n�2�n�1I) if �n�2 + �n�1 is even

rp(M � 1
2
(�n�2 + �n�1)I) for odd p2j(�n�2 � �n�1)

2

Example

According to Haemers and Spence [7] there are ten graphs on 24 vertices with spectrum

71;
p
7
8
;�17;�p7

8
. One of these, the so-called Klein graph, is distance-regular with

intersection array f7; 4; 1; 1; 2; 7g. The p-ranks that are still open in this case are r2(A+
I) and r3(A + I). Figure 1 denotes the ranks we �nd for the ten graphs with the

mentioned spectrum (The number after the value for the rank is the unique b0 such that
rp(A� cI + b0J) =rp(A� cI + bJ) � 1 for all b 6= b0, or '�' in case rp(A � cI + bJ) is

independent of b).
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jAut(�)j r2(A+ I) r3(A+ I)

1 2 14 � 16 �
2 12 14 � 16 �
3 3 15 1 16 �
4 2 13 1 16 �
5 16 12 � 16 �
6 8 11 1 16 �
7 6 13 1 16 �
8 6 15 1 16 �
9 42 15 1 16 �
10 336 9 1 16 � Klein graph

Figure 1: The relevant p-ranks of all graphs cospectral with the Klein graph

2.3 CASE 3

Let A be the v � v-adjacency matrix of a k-regular graph with spectrum k1; �k; �k2; �
k
3 ,

so v = 3k + 1, �1 + �2 + �3 = �1, �1�2 + �2�3 + �3�1 = �k, q = �1�2�3 = k + 1
3
(q3 + 1),

with q3 = �31+ �32 + �33 = 6�� k2+ 2�
k
, where � is the number of triangles per point (cf.

[5]). We study the p-ranks of the matrices M � cI with M := A+ bJ for integral b and
c. So M � cI has spectrum (k+ bv� c)1; (�1� c)k; (�2� c)k; (�3� c)k. Let p be a prime.

If p 6 j(k + bv � c)(�1 � c)(�2 � c)(�3 � c) then rp(M) = v.

If pj(k + bv � c) and p 6 j(�1 � c)(�2 � c)(�3 � c) then rp(M) = v � 1.

If pj(�1 � c)(�2 � c)(�3 � c) then c is a solution of

x3 + x2 � kx� q � 0 (mod p): (1)

Now there are �ve possibilities:

1. This equation has no solutions, so it is an irreducible polynomial over IFp.

2. It has one solution, c say, with multiplicity 1.

3. It has three di�erent solutions, c1; c2; c3 say. So x3 + x2 � kx � q � (x � c1)(x �
c2)(x� c3) (mod p).

4. It has one solution with multiplicity 3.

5. It has two di�erent solutions. One, c1 say, with multiplicity 1 and one (c2) with
multiplicity 2.

Suppose that the equation (1) has one solution (c say) with multiplicity 1. So x3 +

x2 � kx � q � (x � c)(monic irr. pol. of deg. 2) (mod p). Now rp(M � cI) is either
v � k or v � k � 1. Clearly if p 6 j(k + bv � c) then rp(M � cI) = v � k. In general
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rp(M � cI) = v � k � 1 if 1
v

Q3
i=1(k + bv � �i) � 0 (mod p) and rp(M � cI) = v � k

otherwise.

Suppose that (1) has three di�erent solutions c1; c2 and c3. Let c be one of these three

solutions. If c 6� (k + bv) (mod p) then rp(M � cI) = v � k. If c � (k + bv) (mod p)

then
rp(M � cI) = v � k � 1 if 1

v

Q3
i=1(k + bv � �i) � 0 (mod p)

v � k otherwise

Suppose that (1) has one solution (c say) with multiplicity 3, so x3+ x2 � kx� q �(x�
c)3 �x3� 3cx2+ 3c2x� c3 (mod p). Since (x� c)3 � x3 � c (mod 3) we may assume
that p 6= 3. It follows that c = �1

3
and the equivalence holds if pjv.

Suppose that (1) has two solutions c1 and c2, so x3 + x2 � kx � q � (x � c1)(x � c2)
2

(mod p). If c1 6� (k+ bv) (mod p) then rp(M � c1I) = v�k. If c1 � (k+ bv) (mod p)

then rp(M � c1I) = v�k�1 if 1
v

Q3
i=1(k+ bv� �i) � 0 (mod p) and rp(M �c1) = v�k

otherwise. If p = 3 then x3 + x2 � kx� q � (x+ k)2(x+ k + 1) (mod 3) if and only if

3j(k2 + k + q). If p = 2 then x3 + x2 � kx� q � x2(x+ 1) (mod 2) if and only if both
k and q are even. If p 6= 2; 3 then it follows that c1 = �k + 6�

k
+ 2 and c2 = �1

2
(c1 + 1)

with the condition that p divides (k � 3� 32�
k
)2 � 4(1 + 2�

k
).

The remaining p-ranks are:

rp(M + 1
3
I) for 3 6= pjv

r2(M) if 2jk and 2jq
r3(M + kI) if 3j(k2 + k + q)

rp(M � 1
2
(k � 6�

k
� 3)I) for 2; 3 6= pj((k � 3� 3 2�

k
)2 � 4(1 + 2�

k
))

3 Hamming and Doob graphs

3.1 De�nitions

The Kronecker product of two matrices A and B is the matrix with blocks aijB and is

denoted by A
B. By de�nition (A
 P )(B 
Q) = AB 
 PQ where A and B resp. P
and Q have �tting sizes.

Let G1 = (V1; E1) and G2 = (V2; E2) be two graphs with adjacency matrices A1 and

A2 respectively. The direct product of G1 and G2 is the graph with vertex set V1 � V2
and two vertices (v1;w1) and (v2; w2) are adjacent i� ((v1 = v2) ^ (w1; w2) 2 E2) or
((w1 = w2) ^ (v1; v2) 2 E1). So by de�nition the direct product of G1 and G2 has

adjacency matrix I 
A1 + A2 
 I. Usually this is called the Kronecker sum of A1 and
A2 (notation: A1 �A2). If f�ig and f�jg are the eigenvalues of A1 and A2 respectively,

then f�i + �jg are the eigenvalues of A1 �A2.

Let X be a �nite set of cardinality q � 2. The Hamming graph � (with diameter
d on X) has vertex set Xd, the cartesian product of d copies of X; two vertices of �

are adjacent whenever they di�er in precisely one coordinate. An equivalent de�nition
is that a Hamming graph is the direct product of d copies of a complete graph on q
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vertices. Because only d and q will be relevant here, we denote � as well as its adjacency

matrix by H(d; q).

Hamming graphs are distance-regular with diameter d and parameters bj = (d�j)(q�
1), cj = j and aj = j(q� 2) for 0 � j � d. As distance-regular graphs they are uniquely

determined by their parameters, except when q = 4. In this case the Doob graphs,

which we will denote here by D(n;m) and which are de�ned as the direct product of a

Hamming graph H(n; 4) with m copies of a Shrikhande graph, are distance-regular with

the same parameters as H(n+2m; 4). There are no other exceptions, see [2] Section 9.2.

Hamming graphs have eigenvalues �j = q(d � j) � d with multiplicities fj =
�
d

j

�
(q � 1)j

(j = 0; 1; : : : ; d). Because the eigenvalues of a distance-regular graph are determined by

its parameters the Doob graph D(n;m) has the same eigenvalues as H(2n+m; 4).

3.2 The p-ranks

In this section we will determine the p-ranks of matrices A� cI for integral c where A
is the adjacency matrix of a Pseudo Hamming graph, that is a distance-regular graph

with the same parameters as some Hamming graph H(d; q). It turns out that almost
all of these p-ranks follow from the minimal polynomial of A, considered as matrix over
IFp. In order to determine the remaining p-ranks we have to use the structure of the
considered Hamming or Doob graph.

Theorem 3 Let A be the adjacency matrix of a distance-regular graph with the same

parameters as the Hamming graph H(d; q), then

Ap �A � O (mod p) if p6 jq
Ap + dI � O (mod p) if pjq

Proof: The theorem is trivial if d < p since then the characteristic polynomial of B
divides xp � x if p6 jq and xp + d if pjq. If d � p then cp � 0 (mod p), so A has

characteristic polynomial '0(x) of degree p. If pjq then all eigenvalues are equal to �d
modulo p, so '0(x) = (x+ d)p = xp + d. If p6 jq then modulo p the �rst p eigenvalues of
B are all di�erent, so '0(x) contains a factor x � c for each c 2 IFp which implies that

'0(x) = xp � x. 2

More precisely, the minimal polynomial '0(x) of A over IFp is

'0(x) =

8>>><
>>>:

Q
d

i=0(x� �i) if p6 jq and d < p

xp � x if p6 jq and d � p

(x+ d)d if pjq and d < p

xp + d if pjq and d � p

Since each element of IFp is a simple root of xp�x, almost all p-ranks of Pseudo Hamming

graphs follow from the eigenvalues and the intersection numbers. In particular we have:
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Corollary 4 Let A be the adjacency matrix of a distance regular graph with the same

parameters as a Hamming graph H(d; q). Let c be an integer and p a prime, then

rp(A� cI) = qd �
P

�i�c�0 (mod p) fi if p6 jq
rp(A� cI) = qd if pjq and c+ d 6� 0 (mod p)

rp((A+ dI)e) � p�e

p
qd for 0 � e � p if pjq

So using the minimal polynomial of A over IFp we can determine all p-ranks except

rp(A+ dI) for pjq:

We will now determine the p-rank of the matrix AH(d; q)+dI for every prime number

p dividing q and the corresponding 2-rank for the Doob graphs. Hamming and Doob

graphs are the only distance-regular Pseudo Hamming graphs (cf. [2]). Using the fact
that these graphs are direct products of complete graphs and/or Shrikhande graphs,
we derive a recurrence relation for the considered p-rank. We will denote the matrix
AH(d; q)+ dI by B(d; q). For two matrices M and N , the expression M �p N will mean

that, considered as matrices over IFp, M and N have the same rank.

Lemma 5 Let p be a prime dividing q, let M be an integral matrix and l 6� 0 (mod p)
an integer, then

(Iq 
M k) + l(Jq 
M k�1) �p diag(M
k�1; (M k)q�2;Mk+1):

Proof:

0
BBBBBBB@

Mk + lM k�1 lM k�1 � � � � � � lMk�1

lMk�1 Mk + lM k�1 lM k�1 � � � lMk�1

... lM k�1 . . .
. . .

...
...

...
. . .

. . . lMk�1

lMk�1 lM k�1 � � � lM k�1 M k + lMk�1

1
CCCCCCCA
�p

�p

0
BBBBBBB@

Mk + lMk�1 lMk�1 � � � � � � lMk�1

�M k Mk 0 � � � 0
... 0 M k

. . .
...

...
...

. . .
. . . 0

�M k 0 � � � 0 M k

1
CCCCCCCA
�p

�p

0
BBBBBBB@

Mk lM k�1 � � � � � � lMk�1

0 M k 0 � � � 0
...

. . .
. . .

. . .
...

...
. . .

. . . 0

0 � � � � � � 0 M k

1
CCCCCCCA
�p

0
BBBBBBB@

Mk lMk�1 0 � � � 0

0 M k 0 � � � 0
...

. . . Mk
. . .

...
...

. . .
. . . 0

0 � � � � � � 0 Mk

1
CCCCCCCA
�p

9



�p

0
BBBBBBB@

0 lMk�1 0 � � � 0

�1

l
Mk+1 M k 0 � � � 0

0 0 Mk
. . .

...
...

. . .
. . . 0

0 � � � � � � 0 Mk

1
CCCCCCCA
�p diag(M

k�1;Mk+1; (Mk)q�2)

2

Lemma 6 Let Sh be the adjacency matrix of the Shrikhande graph, then

(I16 
M ) + (Sh 
 I) �2 diag((I)6; (M)4; (M2)6)

Proof: The proof is as straightforward as the proof of the previous lemma, but contains
too many steps to write down here. 2

3.2.1 Hamming graphs

Because B(d; q) = H(d; q) + dI, we have the following recurrence relation for B(d; q):

B(d; q) = I 
B(d� 1; q) + J 
 I

from which we derive that

B(d; q)k = Iq 
B(d� 1; q)k + kJq 
B(d � 1; q)k�1 (2)

B(0; q) = (0), so by induction B(d; q)p � 0 (mod p). From Lemma 5 and (2) we get

the following recurrence relation for the p-rank of powers of the matrix B(d; q):

Theorem 7

rpB(d; q)
k = rpB(d� 1; q)k�1 + (q � 2)rpB(d� 1; q)k + rpB(d� 1; q)k+1

for k = 1; : : : ; p � 1 and with pjq.

Together with the obvious relations

rpB(0; q)
k = 0 for k > 0

rpB(d; q)
p = 0 for d � 0

rpB(d; q)
0 = qd for d � 0

these determine the p-ranks of the powers of B(d; q) completely. If we de�ne r
d to be the

vector of length p with the k-th coe�cient equal to rpB(d; q)
k�1, then the above relations

can be rewritten as

r
d
= Qr

d�1

10



with

r0 = (1; 0; 0; : : : ; 0)T and Q =

0
BBBBBBBBBBB@

q 0 0 � � � � � � 0

1 q � 2 1 0 � � � 0

0 1 q � 2 1
. . .

...
...

. . .
. . .

. . .
. . . 0

...
. . .

. . .
. . . 1

0 � � � � � � 0 1 q � 2

1
CCCCCCCCCCCA

So

r
d
= Qdr0

For p 6= 2; 3 this will be the most useful expression we get for the p-rank of H(d; q) + dI

and its powers. For p = 2; 3 we can derive explicit formulas for the p-ranks we are looking

for by diagonalizing the matrix Q. Namely if p = 2 then

Q =

 
q 0
1 q � 2

!
=

 
2 0
1 1

! 
q 0
0 q � 2

! 
2 0
1 1

!
�1

and if p = 3 then

Q =

0
B@ q 0 0

1 q � 2 1
0 1 q � 2

1
CA =

0
B@ 3 0 0

2 1 1
1 1 �1

1
CA
0
B@ q 0 0

0 q � 1 0
0 0 q � 3

1
CA
0
B@ 3 0 0

2 1 1
1 1 �1

1
CA
�1

which yields:

Corollary 8 If p = 2, then

r
d =

 
qd

1
2
(qd � (q � 2)d)

!
(3)

If p = 3, then

rd =

0
B@ qd

2

3
qd � 1

2
(q � 1)d � 1

6
(q � 3)d

1
3
qd � 1

2
(q � 1)d + 1

6
(q � 3)d

1
CA (4)

In fact we can �nd for every p and k 2 f1; 2; : : : ; p � 1g coe�cients �1; �2; : : : ; �p

depending on p and k only, such that

rpB(d; q)
k = �1q

d + �2(q � 2 + x1)
d + � � �+ �p(q � 2 + xp�1)

d

with x1; x2; : : : ; xp�1 zero's of the polynomial Sp�1(x) de�ned by Sn(x) = det(Sn + xIn),
where Sn is the n�n matrix with one's on the codiagonals and zero's elsewhere. One can

prove that the roots xi lie symmetric with respect to 0 and jxij < 2 for i = 1; 2; : : : ; n.

11



jAut(�)j r3(A) r2(A+ I)

1 288 13 � 19 1

2 72 14 � 17 1

3 1296 12 � 19 1 H 0(3; 3)

4 1296 14 � 13 1 H(3; 3)

Figure 2: The relevant p-ranks of all graphs cospectral with the Hamming graph H(3; 3)

3.2.2 Doob graphs

Let Sh(m) denote the adjacency matrix of the direct product ofm copies of a Shrikhande
graph, then it satis�es the following recurrence relation:

Sh(m) = I16 
 Sh(m� 1) + Sh
 I16m�1

So by induction Sh(m)2 � 0 (mod 2). Using Lemma 6 we get that

r2Sh(m) = 6 � 16m�1 + 4 � r2Sh(m� 1)

which yields:

r2Sh(m) =
1

2
(16m � 4m) = r2B(2m; 4) (5)

If we denote the adjacency matrix of the Doob graph D(d;m) also by D(d;m), we �nd

for its 2-rank:

Corollary 9

r2(D(d;m) + dI) =
1

2
(4d+2m � 2d+2m) = r2(H(d + 2m; 4) + dI)

Proof: By induction on d (or m) using Lemma 5 and (5) (or Lemma 6 and (3)). 2

From Corollary 9 we get that each p-rank of a Doob graph is the same as the one

for the Hamming graph with the same parameters as this Doob graph. Finally, it fol-

lows from the recurrence relations for B(d; q) and D(d;m) that for p dividing q we
have 1 2 hH(d; q) + dIip and 1 2 hD(d;m) + dIi2, so rp(H(d; q) + dI + bJ) and
r2(D(d;m) + dI + bJ) (for integral b) are independent of b.

Example

The Hamming graph H(3;3) on 27 vertices has spectrum 61; 36; 012;�38. Given a graph

with this spectrum, � say, with adjacency matrix A, all p-ranks of A � cI (c integral)
are determined by the spectrum, except possibly for r3(A) and r2(A + I). According

to Haemers and Spence [7] there are 4 graphs with this spectrum. They have relevant
p-ranks as shown in Figure 2. Note that H(3;3) is uniquely determined by its spectrum

and the minimality of the 2-rank of A+ I. In general we have:

12



Theorem 10 Let for some odd q, � be a graph with the same spectrum as H(3; q) and

let A be its adjacency matix. If r2(A+I) = 1+3(q�1)2, then � is isomorphic to H(3; q).

Proof: It follows from the spectrum of � that r2(A) = 3(q�1)+(q�1)3, so modulo 2 �

has minimal polynomial x2+x. So A2 � A (mod 2) and two vertices at distance 2 have

at least 2 common neighbours, implying that each vertex has at most 3(q � 1)2 vertices

at distance 2. It is proved in Haemers [6] that each vertex has at least this many vertices

at distance 2 and that if equality holds for each vertex, the graph is distance-regular.
Since H(3; q) is the unique distance-regular graph with this spectrum, the result follows.

2

4 Some other distance-regular graphs

4.1 Johnson graphs

The Johnson graph J(n; k) is the graph with vertex set the k-subsets of a set with n

elements, two vertices being adjacent if they have an intersection of size k � 1. The

Johnson graph J(n; k) has
�
n
k

�
vertices, diameter d = minfk; n � kg and is distance-

regular with intersection numbers ai = (n� 2i)i, bi = (k � i)(n� k � i), ci = i2. It has
eigenvalues �i =k(n�k)� i(n+1� i) =k(n�k)� (n+1

2
)2+(i� n+1

2
)2 with multiplicities

fi =
�
n
i

�
�
�

n
i�1

�
(0 � i � d).

Let p be a prime and let A be the adjacency matrix of a distance-regular graph with
the same parameters as J(n; k), then A modulo p has minimal polynomial

(x+ k)2 if p = 2 and n even,

x(x+ 1) if p = 2 and n odd,Qd
i=0(x� �i) (mod p) if p is odd and p > d,Qp�1
i=0 (x� k(n� k) + (n+1

2
)2 � i2) if p is odd and p � d.

So we have

rp((A� cI)2) =
X

�i 6�c (mod p)

fi

for all prime numbers p and integral c, and even

rp(A� cI) =
X

�i 6�c (mod p)

fi

for all prime numbers p and integers c, except possibly for

r2(A+ kI) if n is even,

rp(A� (k(n� k)� (n+1
2
)2 + c)I) with p odd and c is a non-zero square (mod p):

Concerning these cases we could determine only a few more p-ranks. From now on

we will denote the adjacency matrix of J(n; k) by J(n; k) as well. If n is even then
r2(J(n; k)+ kI) =r2(J(n� 1; k)+ kI) since the sum modulo 2 of all rows of J(n; k)+ kI

13



corresponding to the k-subsets that contain some �xed k � 1-set is equal to the zero

vector. From this we get the following values for the 2-ranks of J(n; k) which were also

found by R. Riebeek (personal communication):

r2(J(n; k) + kI) =
�
n�2
k�2

�
if n is even,�

n�1
k�1

�
if n is odd,

r2(J(n; k) + (k + 1)I) =
�
n
k

�
if n is even,�

n�1
k

�
if n is odd.

Some other results follow from the work of Wilson (see [9]) who, for given integers t; k

and n, determined the p-ranks of the
�
n
t

�
by

�
n
k

�
matrix Nt;k(n) (or simply Nt;k) of 0's

and 1's, the rows of which are indexed by the t-subsets T of an n-set X, whose columns

are indexed by the k-subsets K of the same set X, and where the entry Nt;k(T;K) in

row T and column K is 1 if T � K and is 0 otherwise. He proved the following theorem:

Theorem 11 (Wilson) (cf. [9]) For t � minfk; n � kg, the rank of Nt;k modulo a
prime p is X 

n

i

!
�

 
n

i� 1

!

where the sum is extended over those indices i such that p does not divide the binomial
coe�cient  

k � i

t� i

!
:

2

Now by de�nition J(n; k) + kI = NT
k�1;kNk�1;k. By Wilson's theorem

rp(Nk�1;k) =
k�1X
i=0

i6�k (mod p)

 
n

i

!
�

 
n

i� 1

!
;

so for instance rp(Nk�1;k) =
�

n
k�1

�
if p > k, rp(Np�1;p) =

�
n

p�1

�
� 1 and r3(N3;4) =�

n
3

�
� (n � 1) from which, after considering the kernel of Nk�1;k, the following results

follow:

rp(J(n; k) + kI) =
�

n
k�1

�
if p > k,

rp(J(n; p) + pI) =
�

n
p�1

�
� 2 if p divides

�
n

p�1

�
;�

n
p�1

�
� 1 if p does not divide

�
n

p�1

�
;
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r3(J(n; 4) + 4I) =
�
n
3

�
� 2(n � 1) + 1 if n � 0 (mod 3);�

n
3

�
� (n� 1) if n � 1 (mod 3);�

n
3

�
� 2(n � 1) if n � 2 (mod 3):

4.2 GQ minus a spread

Let GQ(s; t) be a generalized quadrangle with point set P and line set L. A spread

is a collection of lines partitioning the point set. Let S be a spread of GQ(s; t), then

(cf. [2] section 12.5 or [1]) the collinearity graph � of (P;L n S) is distance-regular of
diameter 3, with v = (s + 1)(st + 1) vertices, spectrum st1;�1st=m2 ; sst(st+1)=(s+t)=m1 ;

�ts
2(st+1)=(s+t)=m3 and intersection array fst; s(t�1); 1; 1; t�1; stg, an antipodal (s+1)-

cover of the complete graphKst+1. More generally, given a strongly regular graph � with
parameters (v; k; �; �) = ((s+1)(st+1); s(t+1); s�1; t+1) such that there is a partition

S of its point set into (s+1)-cliques, the partial graph � obtained by deleting the edges
contained in the members of S is distance-regular of diameter 3 with intersection array
as given above. Conversely, any graph � with these parameters arises in this way.

Let G be a graph with the same spectrum as � and let A be its adjacency matrix,
then the only p-ranks that are not necessarily determined by the spectrum are

rp(A+ I) for pj(s+ 1) or pj(t� 1)
rp(A+ tI) for pj(s+ t)

If furthermore G is distance-regular we can say more.

Theorem 12 Let � be a distance-regular graph with adjacency matrix A, intersection
array fst; s(t�1);1; 1; t�1stg and spectrum st1; sm1;�1m2 ;�tm3. Let S be the partition of

the point set into the st+1 antipodal (s+1)-tuples and let � be the strongly regular graph
with adjacency matrix B, parameters (v; k; �; �) = ((s+ 1)(st+ 1); s(t+ 1); s� 1; t+ 1)
and spectrum s(t + 1)1; (s � 1)m1+m2 ;�(t + 1)m3 obtained from � by adding the edges
between antipodal pairs of vertices.

If p divides t� 1, but not s+ 1 or s+ t, then

rp(A+ I) = 1 +m1:

If p divides s+ 1, but not t� 1 or s+ t, then

rp(A+ I) = 1 +m2 +m3:

If p divides s+ t, but not s+ 1 or t� 1, then

rp(A+ tI) = rp(B + (t+ 1)I) + st� �;

where � = 1 if p divides t and � = 0 otherwise.
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Proof: Let p be a prime dividing t � 1, then since � is distance-regular we have that

(x+1)(x� s) is the minimal polynomial of A over IFp, so if p does not divide s+1, then

rp(A+ I) = 1 +m1 and rp(A� sI) = m2 +m3.

Let p be a prime dividing s + 1, but not t� 1 or s + t. Denote the st+ 1 antipodal

(s + 1)-tuples of � as well as their characteristic vectors by l1; l2; : : : ; lst+1 and let S

(=Js+1 
 Ist+1) be the matrix for which Sij = 1 if i = j or if i and j are antipodal in �

and Sij = 0 otherwise, then B + I = A+ S and

hA+ Iip � hl1; : : : ; lst+1ip = hB + 2Iip � hl1; : : : ; lst+1ip:

Claim 1:

li 2 hA+ Iip for i = 1; 2; : : : ; st+ 1

Summing all rows of A + I gives (st + 1)1 � (1 � t)1 (mod p), so the all-one vector

is in hA + Iip. Since � is strongly regular with the given spectrum, we have (B +
2I)(B + (t + 1)I) � (t + 1)J (mod p). Furthermore we have that S(B + 2I) � J

(mod p) and S2 � O (mod p), so (A+ tI)(A+ I) =(B + (t+ 1)I � S)(B + 2I � S) =

(B+(t+1)I)(B+2I)�S(2B+(t+3)I)+S2 �(t+1)J �2J � (t�1)S = (t�1)(J�S)
(mod p), so 1� li and hence li is in hA+ Iip.

Claim 2:
hB + 2Iip \ hl1; : : : ; lst+1ip = h1ip

Note that hl1; : : : ; lst+1ip =h1; l1 � l2; : : : ; l1 � lst+1ip since 1+
Pst+1

i=1 (l1 � li) =1�
P
li +

(st + 1)l1 � (1 � t)l1 (mod p). Now li(B + 2I) = 1, so li � lj 2 kerp(B + 2I) for all
i; j = 1; 2; : : : ; st+ 1. Since B (over IFp) has minimal polynomial (x+ t+ 1)2(x+ 2) we

have kerp(B + 2I) \ hB + 2Iip = f0g and the claim follows.

Now

rp(A+ I) = dim(hA+ Iip � hl1; : : : ; lst+1ip) = dim(hB + 2Iip � hl1; : : : ; lst+1ip) =
rp(B + 2I) + st = 1 +m2 +m3:

Let p be a prime dividing s+ t but not s+ 1 or t� 1, then again

hA+ tIip � hl1; : : : ; lst+1ip = hB + (t+ 1)Iip � hl1; : : : ; lst+1ip (6)

Since li(A + tI) = 1 + (t � 1)li the left hand side of (6) has dimension rp(A + tI) or

rp(A+ tI) + 1 depending on whether 1 2 hA+ tIip or not. Summing the rows of A+ tI

yields (s + 1)t1, so 1 2 hA+ tIip if p6 jt. If on the other hand pjt, then hA+ tIip � 1?,
but 11T = (s+ 1)(st+ 1) 6= 0, so 1 62 hA+ tIip.

For each li we have that li(B + (t + 1)I) = 1, so li � lj 2 kerp(B + (t + 1)I) for any

two (s+ 1)-tuples of S. Let � :=
Pst+1

i=1 �ili be a vector from hl1; : : : lst+1ip and suppose

that � 2 hB + (t+ 1)Iip. Then, since li � lj 2 kerp(B + (t+ 1)I) and B is symmetric,

we must have that li�
T is constant for all li. Now li�

T = �i(s+1) and p does not divide

s+ 1, so � 2 h1ip. Since 1 2 hB + (t+ 1)Iip the dimension of the right hand side of (6)
is equal to rp(B + (t+ 1)I) + st. 2
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jAut(�)j r2(A) r3(A+ I)

1 4 12 0 14 �
2 36 12 0 14 �
3 2 14 0 14 �
4 12 14 0 14 �
5 12 14 0 12 �
6 16 14 0 14 �
7 4 12 0 14 �
8 12 12 0 14 �
9 16 10 0 14 �
10 24 12 0 14 �
11 1296 8 0 14 � �3 of H(3; 3)

12 1296 14 0 10 � GQ(2; 4) minus 'plane-ovoid'-spread

13 324 14 0 12 � GQ(2; 4) minus 'tripod'-spread

Figure 3: The relevant p-ranks of all graphs cospectral with GQ(2; 4) minus a spread

So the only p-rank(s) that can depend on the particular spread that is deleted is

rp(A+ tI) for p dividing s+ t as well as t� 1:

Example

Up to isomorphism there are two distance-regular graphs on 27 vertices with intersection

array f8; 6; 1; 1; 3; 8g (cf. [1]). Both are the collinearity graph of the unique GQ(2; 4)

minus a spread. This GQ possesses exactly two non-isomorphic spreads (see [4]). In

the dual GQ(4; 2) one spread corresponds to a 'plane-ovoid' and the other to a 'tripod'.

The considered graphs have spectrum 81; 212;�18;�46, so if A is the adjacency matrix

of a graph � with this spectrum, r2(A) and r3(A+ I) are in general not determined by

this spectrum. If � is GQ(2; 4) minus a spread, then r2(A) = r2(B + I) + st � 1 = 14,

where B is the adjacency matrix of GQ(2; 4) for which r2(B + I) = 7. In [7] all graphs

with spectrum 81; 212;�18;�46 are determined. There are 13 of these. Their ranks are

denoted in Figure 3.

4.3 Square 2-designs

Any connected bipartite graph � is the incidence graph of a design (X;B). It can be

found in [2] (section 1.6) that � is a (bipartite) distance-regular graph of diameter 3

if and only if (X;B) is a square 2-design. If the square 2-design has parameters 2-

(w; k; �), then � has 2w vertices, intersection array fk; k�1; k��; 1; �; kg and spectrum

�k1;�pk � �
w�1

. It is proved in [6] that any graph with this spectrum is distance-

regular and hence the incidence graph of a square 2-design.

Let � be a graph with spectrum �k1;�pk � �
w�1

. Let A be its adjacency matrix and

N the incidence matrix of the corresponding square 2-design with parameters 2-(w; k; �)
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(so k(k � 1) = �(w � 1)), then the following p-ranks are still open:

rp(A+ kI) for pjk2 � k + � = �w

r2(A+ (k � �)I)

rp(A) for odd p for which p2j(k � �)

Notice that

A =

 
O N

NT O

!
:

Suppose that pjk2�k+� and p6 jk then rp(A+kI) =rpdiag(Iw; NTN�k2I) = w+rp(�J+

(k2 � k + �)I) =w + rp(�J). Similarly, if k � � is odd then r2(A+ I) = w + r2(�J). If

2k(k � �) then r2(N) = w+1

2
and hence r2(A) = w + 1 if � is odd and r2(N) = w�1

2
and

hence r2(A) = w � 1 if � is odd. The p-ranks that remain are:

rp(A) = 2rp(N) for p2j(k � �):

The p-ranks rp(N) with p2j(k � �) are precisely those that are not determined by the

parameters of the design, see [8].

4.4 Taylor graphs

A distance-regular graph with intersection array fk; �; 1; 1; �; kg is called a Taylor graph.

For a Taylor graph the number of vertices at distance 2 and 3 from a point is k and 1 re-

spectively, so � is an antipodal double cover of Kk+1 and has spectrum k1;�1k; �m2

2 ; �m3

3 ,

with �2 + �3 = k � 1 � 2�, �2�3 = �k, m2 =
��3
�2��3

(k + 1), and m3 =
�2

�2��3
(k + 1).

Let A be the adjacency matrix of a graph � with this spectrum, then the following

p-ranks are not necessarily determined by the spectrum:

rp(A+ I) for pj2�
rp(A� 1

2
(k � 1 � 2�)I) for odd p with p2j(k � 1� 2�)2 + 4k:

If � is distance-regular and pj�, then (x+1)(x-k) is the minimal polynomial of A modulo

p, so if pj� but p6 jk+1, the geometric multiplicities of the eigenvalues -1 and k are equal

to their algebraic multiplicities.

Suppose that � is a Taylor graph, let x be a vertex of � and let Bx be the adjacency

matrix of �(x), the complement of the subgraph of � induced by the neighbours of x.

The graph �(x) is strongly regular with parameters (k; �; 1
2
(�k � 1 + 3�); 1

2
�) and has

eigenvalues � and �1

4
(k + 1 � 2�)� 1

4

q
(k � 1� 2�)2 + 4k. Let

B0

x :=

 
0 0

0T Bx

!
;

then

A =

 
J � I �B0

x B0

x

B0

x J � I �B0

x

!

and it follows that the p-ranks of the Taylor graphs that are not yet determined by the

spectrum, can be expressed in terms of the p-ranks of �(x):
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Theorem 13

rp(A+ I) = 2 + rp(Bx)

If p is an odd prime for which p2j(k � 1� 2�)2 + 4k and p does not divide �, then

rp(A� 1

2
(k � 1 � 2�)I) = k + �+ rp(Bx +

1

4
(k + 1 � 2�)I)

where � = 0 if pjk and � = 1 otherwise.

Note that rp(Bx) is not necessarily determined by its spectrum if p divides both 1

2
� and

1

2
(k+1). For an odd prime p with p2j(k�1�2�)2+4k the rank rp(Bx+

1

4
(k+1�2�)I))

is in general not determined by the spectrum of Bx.

Proof: The �rst identity follows straight forward from the fact that 1 62 hB0

xip. Now

suppose we are in the second case. Then

A� 1

2
(k � 1 � 2�)I �p

 
2J � 2B0

x � (k + 1� 2�)I 2B0

x

2B0

x 2J � 2B0

x � (k + 1� 2�)I

!
�p

�p

 
2J � (k + 1� 2�)I 2B0

x

2J � (k + 1� 2�)I 2J � 2B0

x � (k + 1� 2�)I

!
�p

�p

 
2J � (k + 1� 2�)I 2B0

x

O 2J � 4B0

x � (k + 1� 2�)I

!
�p

�p

 
2J � (k + 1 � 2�)I O

O 2J � 4B0

x � (k + 1 � 2�)I

!
:

Now (�(k+1�2�)j21) 2 h(21T j2J�4Bx�(k+1�2�)I)ip and 1 2 h4Bx+(k+1�2�)Iip
and the result follows. 2

Example

The Johnson graph J(6; 3) is the unique distance-regular graph on 20 vertices with

intersection array f9; 4; 1; 1;4; 9g. So J(6; 3) is a Taylor graph and has spectrum

91; 35;�19;�35. The relevant p-ranks are r2(A+ I) and r3(A). The neighbour graph of

any vertex of J(6; 3) is the Paley graph P (9) which is self-complementary. So for J(6; 3)

we have r2(A + I) = 2 + 4 = 6 and r3(A) = 9 + 0 + 4 = 13. According to Haemers

and Spence [7] there are six graphs with the same spectrum as J(6; 3) with the following

ranks:
jAut(�)j r2(A+ I) r3(A)

1 1440 6 � 13 0 J(6;3)

2 96 8 � 13 0

3 32 8 � 13 0

4 16 10 � 13 0

5 48 10 � 13 0

6 12 10 � 13 0
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