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Abstract: In this paper we present a technique that can be used by the insurer, who reinsured part of his risk by means of a 

proportional stop-loss contract, to evaluate his residual risk position. Part of this technique consists of the calculation of the 

optimal reinsurance strategy. We also show how this same technique can be used by the reinsurer to evaluate his risk position. 
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1. Introduction 

An insurer who wants to reduce his risk can do this by underwriting a reinsurance policy. He hereby 
has the choice between several different sorts of contracts. We suppose that the insurer wants to reduce 
his risk by contracting a proportional stop-loss reinsurance. This is a contract between the insurer and the 
reinsurer, where the reinsurer promises to cover a certain fraction j (the reinsurance fraction) of that 
part of the losses that exceeds a certain bound X (the stop-loss bound) during a given time period [0, T]. 
In return, the insurer promises to hand over a certain fraction p of his received premiums to the 
reinsurer. Clearly, the insurer will have to choose the fraction j and the stop-loss bound X, taking into 
account the residual risk and the fraction p that logically follow on this choice. Therefore he needs 
criteria to evaluate his residual risk, given a certain choice of j and X. In this article we give three such 
criteria, namely 

- the conditional expectation R, of the residual loss (this is the total loss over the reinsured period 
reduced with the part that is covered by the reinsurer) at a certain time t, 0 I t I T, and conditional to 
the information that the insurer knows about the risk process at time t. 

- the conditional variance V, of the residual loss at a certain time t, 0 I t 5 T, and conditional to the 
information that the insurer knows about the risk process at time t. 

- the optimal reinsurance strategy (j,& ~ 5 ~ T. This is a continuous time stochastic process where for each 
time f, 0 s t I T, the reinsurance fraction j, is chosen in such a way that V[ RT] becomes minimal. 

These three criteria permit the insurer to evaluate the residual risk at a certain time t for all his 
proportional stop loss reinsurance contracts at that time, whatever the remaining term of the contract 
may be. 

When we replace the residual loss for the insurer with the part of the loss that is cocered by the 
reinsurer these same three criteria can be used by the reinsurer to evaluate his risk position at a certain 
time t. 

Furthermore, we consider the situation where the insurer wants to reduce his risk by contracting a 
proportional stop loss reinsurance on the claim height process in combination with a proportional stop 
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loss reinsurance on the claim number process. We will show how an optimal reinsurance strategy can be 
constructed in this case. 

2. The model 

Let (N, : t E R’} be the random process that counts the claims of an insurance portfolio and let 

(X n : n E N) be a sequence of i.i.d. random variables representing the sizes of the succesive claims. In 
what follows, we will denote Px, for the distribution of Xi and fX, for the density function of this 
distribution. We suppose that the claim number process is a homogeneous Poisson process with 
parameter A, i.e., 

WY __A, 

P(N,=n)=? e 

Furthermore, (S, : t E IX!‘) is the risk process with Vr E [w+, 

S,= 5 Xi 
i=l 

and F[ = a{S, : 0 5 s 2 t} i.e., S, is the sigma-algebra containing the history of the process (S, : s E R+} 
up to time t. 

All these processes are defined on some probability space (0, 9, P). We now define the Markov 
semi-group (P, ), E R+ by 

6 = 4, -s,, = 4,. 

It is easy to see that this is a stationary convolution semi-group and that the process (S, : t E R+} is a 
realisation of this semi-group. Therefore it follows that the process {S, : f E R+} is a right Markov process 
[see Getoor (197541. 

Since this will cause no problems of interpretation, we will also denote (PtjIEIW+ for the family of 
linear operators linked with this Markov semi-group, i.e., 

p,f( X) = /f( x +Y)P,r(dy) for all f~L(0, .Y, PS,). 

For more information, see Dellacherie and Meyer (1987). 

3. The scheme to evaluate residual risk 

We will now introduce a scheme that can be used by the insurer to evaluate his residual risk at a 
certain time t for all the proportional stop-loss reinsurance contracts that he has running at that time. 
This scheme consists of three steps which we will now deal with in detail. 

Step 1. It is clear that some essential information about ‘the residual risk of the insurer lies in the 
conditional expectation of the residual loss of the insurer, conditional to the information that he knows 
about the risk process at that time. The residual loss of the insurer is given by 

L =s,-j&-x)+. 
Hence the conditional expectation R, is given by 

R,=E[S,-j(S,-X)+19,] 

=H(t, S,), 
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where 

H(t, x) =PT-$I(x), h(x) =x-j(x-X)‘. 

Step 2. Still, this conditional expectation does not give the insurer sufficient information to get a 
thorough view of his residual risk. Consider for example the case where at a certain time t < T the risk 
process exceeds the stop-loss bound X, and j = 1. In this case, the conditional expectation of the 
residual loss will be maximal CR, =X). Yet, one can hardly claim that there is a great risk, since the 
insurer knows for sure that his residual loss will be X at time T. Therefore we introduce a second 
criterion to evaluate the residual risk of the insurer, namely the conditional variance V, of the residual 
loss of the ipsurer. V, is given by 

V,= V[S,-j(S,-X)+Iy;] 

=E[L219,] -Rf 

= K(t, S,) -R,“, 

where 

K(t, x> =P,_,k(x), k(x) = (x-j(x-X)+)2. 

Step 3. The third criterion to evaluate the residual risk of the insurer consists of the calculation of the 
optimal reinsctrunce strategy. This optimal reinsurance strategy consists of a continuous time stochastic 
process (j, : 0 IS I T) which is constructed in such a way that the variance V[ R,] of the conditional 
expectation of the residual loss at time T becomes minimal if the insurer, at each time t I T, chooses the 
insurance fraction to be equal to j,. This implies that, in order to be able to minimize V[R,], the 
reinsurance portfolio should be continuously modified. It is clear that this is not possible in reality. Still 
the calculation of this optimal reinsurance strategy can be very worthwile, since it provides the insurer 
with some essential information about the optimality of his own risk position. To derive this optimal 
reinsurance strategy, we use a technique which was developed by Bouleau and Lamberton (1989) to 
calculate the optimal hedge position between two financial instruments. In fact, we calculate the optimal 
hedge position between two different risks, namely the original risk and the reinsured risk. 

We will therefore first sketch the result of Bouleau and Lamberton. For more details and for the 
proofs, see Bouleau and Lamberton (1989). 

Consider a portfolio with stock price {S, : t E R’), and a contingent claim portfolio (A4, : t E [W+} with 
expiration date T. The aim is to hedge the risk of the contingent claim portfolio by means of a 
self-financing hedge portfolio in {S, : t E R’}. This hedge position has to be optimal in the sense that the 
variance of the residu at time T has to become minimal. If one writes j, for the hedge position at time s, 
and R, for the residu at time t, we have 

R,=~,-~,,-jio Js ds,. 

Consider a right Markov process (X, : t E Iw+} with state space (E, ,271, canonical filtration (9,) and 
transition semi-group (P,>. 

Definition (by Bouleau and Lamberton). Let f be a universally measurable function on E. 

(i) We shall say that f belongs to g;,(A) if there exists a universally measurable function g satisfying 

/ ‘lgl(X,) ds< += bit 2 0, PI-a.s., Vx E E, 
0 

such that 

Cf=f(XJ -0X0) -@XJ ds 

is a right cb’ntinuous local martingale under every P”, Vx E E. 
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(ii) We shall say that f~.9~(A) if fog, and if Cf is locally square integrable under every P”, 
‘~xEE. 

The function g in 6) is called the extended infinitesimal generator of f, and is denoted ,4f. The Cm-e 
du Champ operator is now defined by 

r(f, g) =Afg -f&? -gAf. 

Remark that it is not necessary for f~9,(_4) to be bounded! This is very important for our results since 
we will have to cope with unbounded functions. 

Theorem (by Bouleau and Lamberton). If 

(i) (X,) permits a CarrC du Champ operator. 
(ii) For all x E E, the stock price S, is a (gr(, P%nartingale of the form S, = G(t, X,> for some 

G E_&(.&. 
(iii) For all x E E, rhe contingent claim M, is a (FtB,, P”)-martingale of the form h4, = E”[H(S,)I .F,I = 

F(t, X,), where f = H(G(T, * )I satisfies PTf ‘(x1 < m for all x E E. 

Then the process (j, : 0 I s I T} of optimal hedging is gioen, under every P”, by 

r( F, G) 
jt= G) 

(t, X,_), OsrsT- 

where r is the CarrC du Champ operator of the process {(t, X,) : t E R+). 

We will now transform this result into a technique to calculate an insurance strategy ( js),,5s5T that 
minimizes the variance of the residual loss of the insurer. The conditional expectation at time t of the 
part of the loss covered by the reinsurer at time T is given by 

where 

c,=E[(S,-X)+Ie]. 

The conditional expectation at time t of the part of the loss covered by the insurer at time T is given by 

s,=E[S,lF,]. 

So the conditional expectation of the residual loss of the insurer is given by 

It is our aim to find the strategy ( j,)o 5 s 5 r that minimizes V[R,l. Since CR,), Eiw+ is a martingale and 
E[ R,] = 0 this is equivalent to minimizing E[ Rtl. 

Theorem. 

V[ RT] is minimal e j, = 
r(F, G) 
T(G G) (s, S,_), vs E [w+, 

9 

where r is the Carre du Champ operator of the process {(t, S,) : t E R+c) and 

G(t, x) =/(x+Y-X)+f’s&W 

F(t, x) =x+ E[S,_,]. 
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proof. It is clear that we only have to verify wether the three sufficient conditions in the theorem by 
Bouleau and Lamberton are satisfied. 

(i) The first condition. We denote A for the infinitesimal generator of the Markov semi-group (P,), E n+ 
defined by P, = Ps, and 0(A) for its domain. 

The semi-group <P,>t E w + is strongly continuous on %‘&rW) and 

i 
p’f-fexists 0(A) = fE C,(R) : lim ~ 

I’= t I 

= C,(R). 

Furthermore, Vf E C,,(R) 

@(xl = qut x+y) -fW)Px,(dY)* 

We denote <p,>l En for the semi-group of the stochastic process Y, = (t, S,), d for its infinitesimal 
generator, and 0(d) for the domain of this generator. The semi-group (p,), ER+ is strongly continuous 
on the Banach space g&[w+X [w) and 

0(.&q= 
( 

af fE~~(IW+X[W):,E~~(IW+XW) . 
1 

Furthermore, 

af 
.w+f(t, x) =Af(t, *)(x) + $(” x) VfE0(.@. 

Since 0(d) is an algebra, we can conclude that the process ((t, S,): t E Iw+} permits a Cur& du Chump 
operator r [see Dellacherie and Meyer (1987)l. 
(ii) The second condition. Consider the stochastic process CC,), En+ defined by 

C,=E[(S,-X)+19,] VtER+. 

It is clear that C, = GO, S,) is a martingale with 

G(t, x) = /( x +Y -X)+p,r_,(dy) 

= p,-,g(x) 

with 

g(x) =(x-X)‘. 

Furthermore, 

P,g’( x) < m. 

So we see that G Ebb. 
(iii) The third condition. Consider the stochastic process <s,>,,,+ defined by 

~,=E[S,l9;] VtER’. 

It is clear that St = F(t, S,) is a martingale with 

F(r, x) = /( x +Y)PSr_,(dY) 

= PT-rf(X) 
with 

f(x) =x. 
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Furthermore, 

Prf2( x) < =J. 

So we can conclude that F EL~~(_s~). 
Since all conditions are fulfilled, it now follows from the results proven in Bouleau and Lamberton 

(1989) that 

E[ Rt] is minimal aj, = 
r(F, G) 
r(G ,,Y) ts* ‘,-) ‘sEIW+ 

I 

where 

T(K, H)(t, x) =JqKH)(t, 1) -K(r, x)dH(t, x) -H(t, x)dK(t, x) 

for all K, HE.c~,(~). 

4. Numerical calculations 

In the previous section we derived formulas for the three criteria to evaluate the risk position of the 
insurer who wants to reduce his risk by underwriting some proportional stop loss reinsurance contracts. 
In this section it is our aim to show that these formulas can also be calculated numerically. 

We will perform the calculations in the case where the process (Xi : i E N) is i.i.d. exponentially 
distributed with E[ Xi] = p > 0. 

Step 1. To know the conditional expectation of the residual loss of the insurer at a certain time t, we 
have to calculate H(t, x), where x is the value of S, (which is well known at that time). Clearly, 

H(r, x) =/(x+, -i(x+Y -x)+)f&_@Y) 

=x + E[%--,I -i/f_x(y --X+x)f’ST_,tdy) 

=XfE[S,_,]-j(E[Sr_,]-X+x)+jkx-x(Y-X+x)Z’sr_.(dY) xlxy 

=x+ E[S,_,] -j(E[Sr_,] -X+x) x2x. 

The problem now is to calcutate 

/ ox-x(y +x-W’sT_r(W, 

where in general the density function of the stochastic variable ST_, is not known analytically. The 
solution to this problem was given by Panjer (1981). 

With the notation 

JJ,=P(&-_,=n), 

gT-r(X) = c Pnf;Y4r 
nil 

it is clear that 

ix-x(y+x-X)P,r_,(dy) =p,,(x-X) +~x-x(y+x-X)g,-,(Y) dye 
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Panjer proved that the function g,_, is the solution of the following integral equation: 

g(0) =h(T-t) e-‘(r-‘)fX,(O), 

g(y) =A(T-t) e- *‘r-“fx,(y) +h(Ff)joYy&(y-x)g(x) dx Vy>O. 

We solved this equation in a finite amount of discretization points ih, i = 0, 1, 2,. . . , n, by using a 
quadrature rule. This provided us with approximations 

g,-g,_,(ih), i=O, 1,2 ,..., n. 

Subsequently, we used these approximations to calculate an approximation to the integral 

/ ox-^(~ +x-X)g,-r(y) dy 

again by using a quadrature rule. 
For a detailed exposition of the numerical methods used, see Baker (1977). 

Step 2. TO know the conditional variance of the residual loss of the insurer at a certain time t, we have 
to calculate ~(t, x), where x is the value of S,. It is clear that the calculations are basically the same as 

those for H(t, x). 
Step 3. TO know the optimal reinsurance strategy for the insurer at a certain time f, we have to 
calculate 

r( F, G) 
i, = Z-.(G, G) (‘, x) 

where x is the value of S,_. Clearly, 

F(r, x) =x + E[S,_,], 

G(t, x) =x-X+E[S,_,]-~X-X(x+y-X)P,r_,(dy), x5X, 

=x-X+ E[S,_,], x2x. 

Since (F(r, S,): t E I&!+} and (G(t, S,): t E Rf) are martingales, we have 

.w’F=O, s’G=O. 

Consequently, 

r( F, G)( r, x) =d(FG)( r, x) 

= F(r, X) + A/( FG( r, x +Y) -f’G(b x)&(dy) 

=F(r, x)z(r, X) +F(t, x)h/(G(t, x+y) -G(t, x))Px,(dy) 

-A&(& x) ++G(t, x+y)&,(dy) 

=F(r, .+dG(r, X) ++(G(r, X+Y) -G(t, x))G,(dy) 

=A / y(G(r, X+Y) -G(r, x))PxJdy) 

=Zi(x) +Z,(x) -ApG(r, x) if x<X 

=Z,(X) -ApG(r, x) if x2X, 
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where 

Z,(x) =A/X-XyG(~, x+Y)~~,(Y) dy 
0 

(can be calculated numerically), 

I*(x) = q_-_-__,yc X+Y -X+ W,-,l)fx,Cy) dy 

=* e-‘X-“‘/F(( - ) x x *+2/4X-4 +~F*+(x-X+E[&_J)(X-x+4), 

13(x) =~~=Y(x+Y -X+ WT-,])fxjy) dy 

=2h/.L*+Ap(X-X+E[S,_,]). 

Analogously, 

T(G, G)(t, x) =J+G*>(& x> 

=A 
/ 

(G(t, x+y) - G(t, x))*pxidy) 

=14(x)+I,(x) if x<X 

= I,(x) if xrX, 

where 

r,(x) = hix-x( G( t, x +Y) - G(t, x))*fx,(y) dy 

Y x=2, ~~2.5, T.5, lambda=l, mu=l. jlO.5 
RI(~) 

3.75-- 

3.5-- 

3.25-- 

3-- 

2.?5-- 

2.5-- 

1 2 3 

Fig. 1. 
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(can be calculated numerically), 

Mx) = q‘-‘-_xY2fx#t Y) dY 

= Ae-w-xm(( x-x)2+2/_L(x-x) + 24, 

45(x) =A~-YVx#(Y) dY 

= 24.L 

These formulas can again be calculated numerically by using quadrature rules [Baker (1977)]. 

5. Numerical results 

In all our results we used the following values: 

(i) the expected value of the claim height p = 1, 
(ii) the expected value of the inter arrival time A = 1, 
(iii) the stop loss bound X= 2, 
(vi) the term of the contract T = 5. 

Jt (xl X=2, t.2.5, T.5, lambda=l, mu.1 

39 

x 
0.5 1 1.5 2 2.5 3 

Fig. 2. 
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Y X-2, tz4.5, T=5, lambda=l, mu=l, jcO.5 
Rt(r) 

2.75-- 

2.5-- 

2.25-- 

2-- 

1.75-- 

1.5-- 

1.2s-- 

l-- 

0.75-- 

0.25-- 
x 

1 2 3 

J 

1.8 

1.6 

1.4 

1.2 

1 

Fig. 3. 

X=2, t-4.5, T=5, lamMa=l, mu=1 

0.5 1 1:i 2 215 3 

Fig. 4. 
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In Figure 1 we plotted the conditional expectation and the conditional variance of the residual loss of 
the insurer at time 2.5, as a function of the total claim height x = S,_ at that moment. We assume that 
the insurance fraction was chosen to be 50%. 

In Figure 2 we plotted the third criterion to evaluate residual risk, namely the optimal reinsurunce 
strategy j, at time 2.5 and as a function of the total claim height at that moment. 

In Figures 3 and 4 we did the same for I = 4.5. 

6. The viewpoint of the reinsurer 

We now consider the case where insurer and reinsurer have underwritten a reinsurance contract with 
the following specifications: 

- when the total claim height at time T is less than or equal to a certain bound X, the total loss will be 
covered by the insurer. So there will be no intervention of the reinsurer. 

- as soon as the total claim height S, at time T exceeds the bound X but stays bellow a second bound 
Y( > X), the insurer will cover X and the reinsurer will cover the part S, -X that exceeds this bound, 
without any franchise for the insurer. 

- when the total claim height exceeds the second bound Y, the insurer will cover X, the reinsurer will 
cover the part Y - X of the loss between X and Y without any franchise, plus lOO(1 -j)% of the part 
of the loss S, - Y that exceeds the bound Y. This leaves a franchise of j(S, - Y > for the insurer to 
cover. 

We will now introduce a scheme that can be used by the reinsurer in the above situation, to evaluate 
his risk position at every time t I T, and for every contract of this type that he has running at that time. 
This scheme consists of the same three steps as those described in Section 3 for evaluating the risk 
position of the insurer, namely 

Step 1. At first we will calculate the conditional expectation at time t of the part of the loss that will 
have to be covered by the reinsurer at time T. The part of the loss to be covered by the reinsurer at time 
T is given by 

LRI= (S,-X)+-j(S,- Y)‘. 

Conditional expectations can be calculated using the techniques explained in the previous section. 
Step 2. The second step consists of calculating the conditional variance of the part of the loss to be 
covered by the reinsurer at time T. Again, this can be done by using the techniques explained in the 
previous section. 
Step 3. The third step consists of the calculation of the optimal reinsurunce strategy. This optimal 
reinsurance strategy consists of a continuous time stochastic process (j, : 0 I s 5 T} which is constructed 
in such a way that the variance V[R,l of the conditional expectation of the part of the loss to be covered 
by the reinsurer at time T becomes minimal if the reinsurer, at each time f I T, chooses the franchise 
for the insurer to be equal to j,. 

To derive the optimal reinsurance strategy (j,),, L 5 g r from the viewpoint of the reinsurer, we now 
consider the processes 

+5,-X)+ I%] = G(t, S,), 

E[&-Y)+ ISr] =Q<t, S,). 

We write R, for the conditional expectation at time t of the part of the loss to be covered by the 
reinsurer at time T, so 

R, = G( t, S,) - G(0, So) - / 
IO. I 1 

i, dQ(s, ss). 
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It is clear that these functions G and Q satisfy the sufficient conditions of the theorem by Bouleau and 
Lamberton. So we can conclude that 

WI 
UG, Q> 

isminimal-js= r(Q, e) (s, S,_) VsER+. 

7. Numerical results 

In all our results we used the following values 

(i) the expected value of the claim height p = 1, 
(ii) the expected value of the inter claim time A = 1, 
(iii) the first stop loss bound X = 2, 
(iv) the second stop loss bound Y = 3, 
(v) the term of the contract T = 5. 

In Figure 5 we plotted the conditional expectation and the conditional variance at time 2.5 of the part 
of the loss to be covered by the reinsurer at time T, as a function of the total. claim height x = S,_ at that 
moment. We assumed that the insurance fraction j was chosen to be 50%. 

In Figure 6 we plotted the third criterion to evaluate residual risk for the reinsurer, namely the 
optimal reinsurance strategy, at time 2.5 and as a function of the total claim height at that moment. 

In figures 7 and 8 we did the same for t = 4.5. 

Y x.2, Y-3, e2.5, T=S, laintdsl, mu=l, j.O.5 

2.?5-- 

2.5-- 

2.25-- 

1 x 
I 0.5 1 1.5 2 2.5 3 3.5 4 

Fig. 5. 
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X=2. Yn3. t.2.5, T.5, lambda.1. mu-l 

0.5 i 1.5 ; 2.5 3 3.5 4 

Fig. 6. 

Y x=2, Y=3, td.5, T=5, lambda=l, mu=l, j=O.S 

1.8-- 

1.6-- 

1.4-- 

1.2-- 

l-- 

0.8-- 

0.6-- 

0.4- 

V,(z) 

0.2-- 

I I 
I I 1 x 

1 2 3 4 

Fig. 7. 
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X=2, Ys3, fs4.5, T=S, lambda=l, mu=1 

i ; ; i 
Fig. 8. 

8. Multidimensional reinsurance 

We suppose that the insurer wants to reduce his risk by contracting a proportional stop loss 
reinsurance on the claim height process with reinsurance fraction j’ and stop loss bound X in 
combination with a proportional stop loss reinsurance on the claim number process with reinsurance 
fraction j* and stop loss bound M. In this section we will construct an optimal reinsurance strategy 

Cj,‘, j.30SsST. This is a continuous time s.p. where j’ and j* are chosen in such a way that V[R,] is 
minimized. Again R, stands for the conditional expectation of the residual loss of the insurer at time t, 
and conditional to the information that the insurer has about the claim height process and the claim 
number process at that time. 

To establish this result we define some new processes, namely 

K= (4, s,>, 

K,=E[@‘r-M)+lq], 

where p = E[ Xi] and 

s,=a((Y,:OIuIt)). 

Furthermore, we define the semi-group (P,), Ew+ as follows: 

P, = %%*s,,-~N&, 

= qN,.S,,* 
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Since the process <Y,> has stationary and independent increments, we know that (P,) is a stationary 
convolution semi-group. It is also clear that <Y,> is a realization of this semi-group. So we can conclude 
that (y) is a right Markov process [see Getoor (197511. Let A be the infinitesimal generator of this 
process. 

Since this will cause no problems of interpretation, we will also denote (P,IIER+ for the family of 
linear operators linked with this Markov semi-group, i.e. 

Ptf(n, x) = / f(n +m, x+~)p~,,,,,,,,(dm, dy) for all f~L(fl, ,P, pov,,,,,). 

Furthermore, we define the s.p. 

Z, = (t, y,). 

We denote (p,), E n for the semi-group of the stochastic process Z,, d for its infinitesimal generator, and 
a(_&) for the domain of this generator. 

Lemma. The semi-group (p ) , rGRC is strongly continuous w.r.t. the Banach space 19&lfX kd X I@ and 

a(d)= 
i 

fE~~(~+XNXiW):~E~~(R+x~XIW) . 
1 

Furthermore, 

.df(t, n, x) =Af(t, * , *)(n, x) + at t, n, x) af( 

= :(I, n, x) +A_/(f( t, n + 1, X+Y) -f(t, n, x))Pxldy) v.fEs(4. 

Proof. Straightforward. 

We will use the following notations: 

C,=E”[(S,-X)+ IF,] 

= G,(t, 4, S,), 

K,=E”[jQr-M)+ IF,] 

= G,(t, N,, S,), 

s,=E”[S,I9;] 

=F(t, 4, S,). 

Furthermore, we denote G for the column array with components G,, G,, I’CG, GO for the matrix with 
components T(Gi, Gj), 1 5 i, j I 2, and RG, F) [resp. T(F, G’II for the column (resp. row) array with 
components T(G,, F) [resp. T(F, GJ, 1 I i I 2. 

The conditional expectation of the residual loss of the insurer is then given by 

R,=F(t, S,) -F(t), %,> -/w I{ d(G,, K,), where i,= (ii, is’). 

Theorem. 

E[ Rc] is minimal e j, = r( F, G’) B( s, N,_, S,_) 

where B is the Moore-Penrose inverse of the matrix T(G, G’). 
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Proof. We see that 

(i) (Z 1 I I E R+ is a right Markov process and .%!z’) is an algebra. So the process (Z,), E n+ admits a Cave’ 
du Chump operator [see Dellacherie and Meyer (1987), Getoor (1975)]. 

(ii) G,(t, N,, S,) is a martingale in L*(f2, 9, P), with 

G,(t, n, x) =P,_,g,(n, x), 

g,(n, X) =(x-X)‘. 

So we can conclude that G, E L*(R, S, P) IT&A?). 
Analogously, 

G,(t, n, x) =P,_,g,(n, x), 

g,(n, x) =P(n -M)+, 

is a martingale in L*(C!, 53, P) 
(iii) 

n, =P,-,f(n, 

f(n, =x. 

is that L2(L?, P) 

It follows the proven Bouleau Lamberton that 

Rt] minimal = F, G’)B(s, N,_, S,_) 

where B is the Moore-Penrose inverse of the matrix r(G, G’). If T(G, G’) is a regular matrix, this 
becomes 

j,=l-(F, G’)T(G, G’)-‘(s, N,_, S,_) 

or 

j' = 
r(G,,G2)T(F,G,) --~(G2,Gz)~(FvG,) 

r(G,, G,)*-V,, G,)r(G,v G,) ' 

j*= 
r(G,, G,)r(F, G,) -r(G,, G,)r(J', G,) 

r(G,, G2)*-W,, G,)r(G,, G,) . 

With the following notations: 

I,(x) = jy(G,(t, x +Y) - G,(t, x))&,(d~), 

I,(x) =/M t, x +Y) - G,(t, x))*px,(dy), 

13(x) = /(G*t t, x +Y> - G,(t, x))~&-b), 

I,(n) = Gz(f, n + 1) - G,(t, n), 
and after some simple but tedious computations, we obtain 

j'= 
PIAX) --I,(x) 

4W2-~2(4 ' 

j*= 
~,(x)l,(x) -Pi*(x) 

14(n)z3(X)*-12(X)IJ(n) ' where p = EIXil. 
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X-2, P-5, t-2.5, lambda-mu-l, U-2 
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Fig. 9. 

Numerical computations can be done with the techniques explained in Section 4. For some values of 
the stop loss bound X on the claim height and the stop-loss bound M on the claim number, numerical 
instabilities can cause some problems in cakulating the above formulas for j’ and j*. We will therefore 
present an example where no such instabiijties occurred. 

9. Numerical results 

In Figure 9 we plotted the optimal reinsurance strategy (j’, j2) at time t = 2.5, as a function of the 
total claim height at that moment and the number of claims at that moment. We used the following 
values: 

6) the expected value of the claim height JL = 1, 
(ii) the expected value of the inter claim time h = 1, 
(iii) the stop loss bound on the claim height X- 2, 
(vi) the stop loss bound on the claim number N = 2, 
{v> the term of the contract T= 5. 
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