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Abstract

We report on the complete computer search for a strongly regular graph with
parameters (36,15,6,6) and chromatic number six. The result is that no such
graph exists.

1 Introduction

Consider a Latin square S of order n. The Latin square graph Γ of S is defined on the
entries of S, where two entries are adjacent whenever they are in the same row, in the
same column, or carry the same symbol. It is well-known and easily verified that if
n ≥ 3, Γ is strongly regular with parameters (n2, 3(n− 1), n, 6). If the Latin square S
has an orthogonal mate S⊥, the n symbols of S⊥ give a partition of the vertex set of
Γ into n cocliques of size n, that is, a colouring of Γ with n colours. And vice versa,
if Γ can be coloured with n colours, each colour class has to be a transversal of S,
so the colour classes produce an orthogonal mate. A strongly regular graph with the
same parameters as Γ is called a pseudo Latin square graph and if such a graph has
chromatic number n, we speak of a pseudo orthogonal pair of Latin squares of order
n (for short POLS-n). Only for n = 6 and n = 2, there exist no pair of orthogonal
Latin squares. So POLS-n exist for all n ≥ 3, except maybe for n = 6. The search for
POLS-6 is the subject of this report. The result is nagative:

Theorem 1.1 There exists no pseudo Latin square graph of order six with chromatic
number six.
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An n-colouring of a pseudo Latin square graph of order n meets the lower bound of
Hoffman (see [5], [10], or [11]) for the chromatic number of a graph. Colourings of
strongly regular graphs that meet Hoffman’s bound are called Hoffman colourings and
have been studied by Haemers and Tonchev [10]. The parameter set (36,15,6,6) is the
smallest open case in their Table 1 of feasible parameter sets.

A strongly regular graph with a Hoffman colouring gives rise to an association
scheme with three classes (the classes are: adjacent; non-adjacent with the same colour;
non-adjacent with different colours). In the list of Van Dam [7] of feasible parameters
for a 3-class association scheme the considered parameter set was the smallest open
case.

2 Matrix tools

The following two lemmas from linear algebra (see [8]) are used in our computer search.

Lemma 2.1 Let M be a symmetric v × v matrix with a symmetric partition

M =

[
M1 N

N> M2

]
,

where M1 has order v1 (say). Suppose M has just two distinct eigenvalues r and s

(r > s) with multiplicities f and v − f . Let λ1 ≥ . . . ≥ λv1 be the eigenvalues of M1

and let µ1 ≥ . . . ≥ µv−v1 be the eigenvalues of M2. Then r ≥ λi ≥ s for i = 1, . . . , v1,
and

µi =


r if 1 ≤ i ≤ f − v1,

s if f + 1 ≤ i ≤ v − v1,

r + s− λf−i+1 otherwise.

Proof. The inequalities r ≥ λi ≥ s and also the first two lines of the formulas for µi
follow from eigenvalue interlacing for principal submatrices, see [8], [9], or Section 3.3
of [1]. We have (M − rI)(M − sI) = O. With the given block structure of M
this gives N>M1 + M2N

> − (r + s)N> = O. Suppose that λi 6= r, s, let V be
the corresponding eigenspace and let {v1, . . . , vm} be a basis for V . We claim that
B = {N>v1, . . . , N

>vm} is independent. Suppose not. Then N>v = 0 for some

v ∈ V , v 6= 0 which implies that M
[
v
0

]
= λi

[
v
0

]
, that is, λi is an eigenvalue of M , a

contradiction. Now N>M1 +M2N
> = (r+ s)N> gives M2(N

>vi) = (r+ s−λi)N
>vi,

thus B is an independent set of eigenvectors of M2 for the eigenvalue r + s− λi. This
almost proves the lemma. Only the numbers of µi’s that are equal to r or s are not
determined, but these follow from

∑
µi +

∑
λi = trace M1 + trace M2 = trace M =

fr + (v − f)s. 2
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Lemma 2.2 Given a partitioned matrix

M =

[
M1 N1

N2 M2

]
,

where M1 is a square non-singular matrix of size v1 (say). Suppose that rank M = v1.
Then M2 = N2M

−1
1 N1.

Proof. The Schur complement S of M1 equals M2−N2M
−1
1 N1, and satisfies rank S =

rank M − v1. 2

3 Structure

Consider a graph Γ with adjacency matrix A. Then Γ is a strongly regular graph with
paramters (36, 15, 6, 6) if and only if A2 = 6J + 9I (J denotes the all-one matrix).
Suppose Γ is such a graph. Then Γ has eigenvalues 15, 3 and −3 with multiplicities 1,
15 and 20, respectively. Moreover the maximal size if a coclique of Γ equals six, and
each point outside a maximal coclique C is adjacent to precisely three vertices of C.
See for example [1] p.10 or [9] p.597. Suppose that Γ has chromatic number six, that
is, Γ is a POLS-6. The following proposition is clear.

Proposition 3.1 Without loss of generality A admits the following block structure:

A =



0 A1,2 A1,3 A1,4 A1,5 A1,6

A2,1 0 A2,3 A2,4 A2,5 A2,6

A3,1 A3,2 0 A3,4 A3,5 A3,6

A4,1 A4,2 A4,3 0 A4,5 A4,6

A5,1 A5,2 A5,3 A5,4 0 A5,6

A6,1 A6,2 A6,3 A6,4 A6,5 0


,

where Ai,j = A>j,i and Ai,j (i 6= j) is a 6 × 6 matrix with 3 ones and 3 zeros in each
row and column.

Consider the following two operations on Γ. Block complementation is the replacement
of each off-diagonal block Ai,j by its complement J−Ai,j . Block switching with respect
to a colour class k is the replacement of the blocks Ai,k and Ak,i (i = 1, . . . , 6, i 6= k)
by their complements. Thus block switching is just Seidel switching with respect to
a colour class (see [5] or [4]). It is straightforward that block complementation and
block switching leave the equation A2 = 6J + 9I valid and therefore Γ remains a
POLS-6 under these operations. There are 32 possible ways to apply one or more
block switchings. Together with block complementation one can obtain 64 POLS-6’s
from a given one. Of course, some of these may be isomorphic.
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Proposition 3.2 Up to the ordering of rows and colums there are just seven candi-
dates C1, . . . , C7 for the block matrices Ai,j, being:

C1 =


1 1 1 0 0 0
1 1 1 0 0 0
1 1 1 0 0 0
0 0 0 1 1 1
0 0 0 1 1 1
0 0 0 1 1 1

, C2 =


1 1 1 0 0 0
1 1 1 0 0 0
1 1 0 1 0 0
0 0 1 0 1 1
0 0 0 1 1 1
0 0 0 1 1 1

, C3 =


1 1 1 0 0 0
1 1 1 0 0 0
1 0 0 1 1 0
0 1 0 1 0 1
0 0 1 0 1 1
0 0 0 1 1 1

,

C5 =


1 1 1 0 0 0
1 1 0 1 0 0
1 0 1 0 1 0
0 1 0 1 0 1
0 0 1 0 1 1
0 0 0 1 1 1

, C6 =


1 1 1 0 0 0
1 1 0 1 0 0
1 0 1 0 1 0
0 1 0 0 1 1
0 0 1 1 0 1
0 0 0 1 1 1

, C7 =


1 1 1 0 0 0
1 1 0 1 0 0
1 0 0 0 1 1
0 1 0 0 1 1
0 0 1 1 1 0
0 0 1 1 0 1

,

and C4 = C>3 .

Proof. First note that C1, C2, C5, C6 and C7 are equal to their transpose. In [2]
all connected cubic graphs on 12 vertices are generated. Among them there are five
bipartite ones. These correspond to candidate blockmatrices C2 to C7, where C3 and
C4 belong to the same graph. The only disconnected bipartite cubic graph is the
disjoint union of two K3,3’s, which corresponds to C1.

It is also a straightforward task to generate the seven matrices (even without a
computer). 2

Proposition 3.3 Candidate C1 cannot occur.

Proof. Suppose A has a submatrix A1 =
[

0
C1

C1
0

]
. Apply Lemma 2.1 withM = A− 1

2J

and M1 = A1 −
1
2J. Then r = −s = 3, f = 15, λ1 = . . . = λ10 = 0, λ11 = λ12 = −3

and hence µ1 = . . . = µ5 = 3, µ6 = . . . = µ15 = 0 and µ16 = . . . = µ24 = −3.
Therefore A2 = M2 + 1

2J is the adjacency matrix of a regular graph of degree 9 with
just four distinct eigenvalues. Such a graph is walk regular (see Van Dam [6]) which
implies that Ak2 has a constant diagonal for every positive integer k. The entry (A3

2)1,1

counts the number of closed walks of length three at point 1, so should be an even inte-
ger, but we find (A3

2)1,1 = 1
24trace A3

2 = 1
24(93+µ3

1 + . . .+µ3
23) = 27, a contradiction. 2

Also the next result follows from Lemma 2.1 applied to A − 1
2J, but now with a

different partition.

Proposition 3.4 Let Γ1 be a subgraph of Γ induced by three colour classes and let
Γ2 be the subgraph induced by the remaining three colour classes. Let λ1 ≥ . . . ≥ λ18
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and µ1 ≥ . . . ≥ µ18 be the eigenvalues Γ1 and Γ2, respectively. Then λ1 = µ1 = 6,
λ17 = µ17 = λ18 = µ18 = −3 and 3 ≥ λi = −µ18−i ≥ −3 for i = 2, . . . , 16.

Proposition 3.5 With the notation of the previous proposition, if Γ′1 is obtained from
Γ1 by block switching, then Γ′1 has the same spectrum as Γ1. If Γ′′1 is obtained from Γ1

by block complementation, then Γ′′1 has the same spectrum as Γ2.

Proof. Let H = 2A1−J, where A1 is the adjacency matrix of Γ1. InH , block switching
corresponds to multiplications of some rows and the corresponding columns with −1,
an operations which leaves the spectrum invariant. Moreover, from the structure of A
it follows that HJ = 6J before and after switching. This implies that H and J have a
common set of eigenvectors and hence the spectrum of 1

2(H+J) = A1 is also invariant
under block switching.

Next define K = J18 − diag(J6, J6, J6) (indices indicate the size; so K is the adja-
cency matrix of the complete tripartite graph K6,6,6). The block structure of A1 and
K implies that A1 and K have three common eigenvectors, whose entries are constant
over each block. The corresponding eigenvalues being 6, −3 and −3 for A1, and 12,
−6 and −6 for K. All other eigenvectors of A1 are in the kernel of K. This implies
that K − A1, which is the adjacency matrix of Γ′′1 has eigenvalues 6, −3 (twice) and
−λi for i = 2, . . . , 16. 2

4 The search

We saw that there are just five candidates for the subgraph of Γ induced by two colour
classes; the five connected cubic bipartite graphs on 12 vertices. presented by the block
matrices C2 to C7 (where C3 and C4 give the same graph).

The next step is to determine the possible candidates for Γ1, the subgraph induced
by three colour classes, by taking three candidate blocks and combine them in all
possible ways. In doing so we used the eigenvalue inequalities of Proposition 3.4 (the
fact that λ1 = 6 and λ17 = λ18 = −3 follows from the block structure and therefore
excludes no condidate, but the inequalities do). Furthermore we ruled out isomorphic
candidates assuming that the binary numbers represented by the rows are as small as
possible. This lead to 705838 candidates for Γ1. In the subsequent step we reduced
the number of candidates to 179126 by taking just one representative among the ones
that are equivalent under block switching. The remaining candidates were tested on
a possible extension to a POLS-6 by a method described in [3] based on Lemma 2.2.
Suppose λ16 6= −3. Then M = A + 3I has rank 16, and M ′1 = A1 + 3I has rank
16 too, and therefore M ′1 has a non-singular principal submatrix M1 of size 16. Now
apply Lemma 2.2. It follows that a candidate row of N2 = N>1 is a {0, 1}-vector v
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which satisfies v>M−1
1 v = 3. It also follows that no two distinct rows vi and vj of

N2 can be equal, indeed vi = vj implies 3 = v>i M
−1
1 vi = v>i M

−1
1 vj = (M2)i,j = 0

or 1, a contradiction. In addition, we have information on the distribution of zeros
and ones in v and we know that v>M−1

1 v1 and v>M−1
1 v2 are equal to 0 or 1, when

v1 and v2 are the first two rows of N2 (and v 6= v1, v2). We computed all vectors v
with these properties. In some cases there were fewer than 20 which is not enough to
make the extension. In case of enough candidate vectors, we define a graph ∆ on the
v’s where two vectors vi and vj are adjacent whenever v>i M

−1
1 vj = 0, or 1. Inside ∆

we searched for cliques of size 20, which would give feasible sets of candidate vectors.
In fact, we also used the information we have on the distrubution of zeros and ones
in M2. In all cases there were no such cliques. This ruled out all candidates for Γ1

with λ16 6= −3. In doing so, we used the fact that if a candidate Γ1 is ruled out, then
so is its block complement. This also took care of the case λ16 = −3, λ2 6= 3, since
then the block complement has λ16 6= −3. This left us with only 316 candidates for Γ1

satisfying λ2 = −λ16 = 3. The last step is to eliminate these candidates. In doing so
we used Proposition 3.4, which gives the spectrum of Γ2. For each candidate for Γ1,
there were a few (mosly just one, being the block complement) candidates for Γ2 and
we tried to complete the matrix in a staightforward manner. This reduced the number
of candidates for Γ1 to zero, showing that no POLS-6 exits.

5 History

There are 32548 strongly regular graphs known with parameters (36, 15, 6, 6). This
includes the twelve Latin square graphs of order six. Starting from these twelve and
the 80 Steiner triple system on 15 points, Bussemaker, Mathon and Seidel [4] found,
by use of Seidel switching, 16428 strongly regular graphs with the above parameters
(they claimed to have found 16448, but see [13]). Later Spence [13] found 16120 more
of these graphs. It has been verified by computer that none of the known ones admits
a Hoffman colouring.

The search for POLS-6 as described in this report started in 1997 with the first
two authors. Frans Bussemaker, was responsible for the computer programming. The
major work was the generation of the candidates for Γ1 and the subsequent reduction
to just 316 cases. This part was finished in the beginning of 1998. Then Frans stopped
working because of a severe illness, which led to his tragic death in December 1998.
Then the third author finished the last part of the search. Surprisingly, this took only
a few minutes of computing time, while the first part took many days (making use of
the computers of colleagues in the weekend). In addition the third author performed
an independent check for the first part. The search was completed in February 1999.
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In the meantime Brendan McKay and the third author [12] have completed an
exhaustive computer search for strongly regular graphs with parameters (36, 15, 6, 6)
which shows that the 32548 indicated in [13] constitute the complete set. Thus, in
view of the fact that it has been verified that none of these graphs admits a Hoffman
colouring, we have one more independent check for our claim.
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