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Abstract

This paper models unemployment as a binding non-negativity constraint on hours
worked in a standard optimal non-linear income tax problem with quasi-linear preferences.
We show that bunching of workers resulting from this binding constraint provides a more
convincing description of the bottom of the labor market than bunching due to violation
of the second-order condition for individual optimization. In particular, with the least
skilled working zero hours, revenue requirements affect marginal tax rates, consumption,
the bunching interval, and the marginal cost of public funds. Although a binding non-
negativity constraint destroys the closed form solution of optimal marginal tax rates,
the optimal tax problem can be characterized in a two-dimensional diagram in which
comparative statics can be performed in straightforward fashion.
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1. Introduction

With general preferences, optimal non-linear taxes are difficult to characterize. In order to
obtain more intuition for the determinants of the optimal non-linear income tax, therefore, a
substantial literature (see, e.g., Boadway, Cuff and Marchand (2000), Ebert (1992), Weymark
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(1986, 1987), and Lollivier and Rochet (1983)) has turned to quasi-linear preferences in leisure
since these preferences allow for closed-form solutions of the standard optimal non-linear income
tax problem. The resulting closed-form solutions can allow for bunching due to violation of
the second-order condition for individual optimization. In this manner, bunching of unskilled
workers in low-productivity jobs as well as positive marginal tax rates at the bottom of the
labor market can be modelled. However, this particular way of representing the trade offs
policymakers face in setting optimal tax policy for low skilled labor suffers from a number
of disadvantages. First of all, it does not incorporate unemployment, even though in reality
redistribution may discourage unskilled workers from working positive hours. Second, the
revenue requirements of the government do not affect marginal tax rates, consumption, the
bunching interval, and the shadow cost of public revenues. This does not seem a convincing
description.

In view of these drawbacks, this paper elaborates on another type of bunching. This bunch-
ing occurs if the non-negativity constraint on hours worked (and gross incomes) is binding for
some households. It necessarily occurs at the bottom of the labor market and implies that
workers with least skills are in fact unemployed. Moreover, in the presence of this type of
bunching, public revenue requirements do impact both the bunching interval and the structure
of marginal tax rates.

Also Boadway, Cuff and Marchand (2000) introduce bunching due to a binding non-negativity
constraint for hours worked in a model with quasi-linear preferences in leisure. We extend their
analysis in three ways. Most importantly, we show that the solution can be characterized
graphically by an upward sloping curve (’the government budget constraint’) and a downward
sloping curve (’labor supply’). Thus, although a binding non-negativity constraint on hours
worked no longer allows for a closed-form solution, the solution can still be characterized rather
simply while comparative statics can be conducted in a rather straightforward manner. In this
way, our analysis helps to provide intuition for the shape of the optimal non-linear income
tax, something that is difficult to come by in both optimal tax models with general prefer-
ences and the solutions with a binding non-negative constraint on hours worked in Boadway,
Cuff and Marchand (2000). Indeed, a model with quasi-linear preferences in leisure but with a
binding non-negativity constraint on hours worked strikes a balance between, on the one hand,
analytical tractability and, on the other hand, a realistic model of the bottom of the labor
market with more convincing comparative static results. As a second extension of Boadway,
Cuff and Marchand (2000), we establish that second-order condition for individual optimization
excludes some solutions. This allows us to sign marginal tax rates and impose an upper bound
on the marginal utility cost of public funds. Finally, we incorporate more general social welfare
functions by including so-called rank-order weights, which allow governments to attach higher
welfare weights to the least skilled. This enables us to explore how the welfare weights of a
non-utilitarian government impact the optimal tax structure.

The rest of this paper is structured as follows. Section 2 introduces the model and sets out
the optimal tax problem. Section 3 characterizes the closed-form solution without bunching
and provides intuition for this recursive solution in which public revenue requirements affect
neither marginal tax rates nor the marginal cost of public funds. Section 4 turns to bunching on
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account of violation of second-order incentive compatibility. It shows that this type of bunching
does not address some of the unrealistic implications of the model without bunching. Section
5, therefore, introduces bunching orginating in a binding non-negativity constraint on hours
worked. This bunching not only provides a more realistic description of the bottom of the labor
market but also allows for a rather simple, intuitive characterization of an optimal tax problem
in which the least skilled workers are unemployed. Section 6 concludes. The appendix, finally,
provides the proofs of the various lemmas and propositions contained in the main text.

2. The model

We consider an economy which is populated with agents featuring homogenous preferences
but heterogeneous skills. A worker of ability (or skill or efficiency level) n working y hours
(or providing y units of work effort) supplies ny efficiency units of homogeneous labor. With
constant unitary labor productivity, these efficiency units are transformed in the same number
of units of output. We select output as the numeraire. The before-tax wage per hour is thus
given by exogenous skill n. Hence, overall gross output produced by a worker of skill n, z(n),
amounts to z(n) = ny(n). Since workers collect only labor income, this gross output z(n)
corresponds to the gross (i.e. before-tax) labor income earned by a worker of that skill n. The
density of agents of ability n is denoted by f(n), which is differentiable. F (n) represents the
corresponding cumulative distribution function. The support of the distribution of abilities is
given by [n0, n1]. In line with the optimal income tax literature, the government is assumed not
to be able to observe skills n but to know the distribution function f(n) and observe before-tax
income of each individual z(n).

Workers share the following quasi-linear utility function over consumption x and hours
worked (or work effort) y

u(x, y) = v (x)− y,

where v(x) is increasing and strictly concave: v′ (x) > 0, v′′ (x) < 0 for all x ≥ 0. Furthermore,
v (0) = 0, limx↓0 v′ (x) = ∞ and limx−→+∞ v′ (x) = 0. The concavity of v(.) implies that agents
are risk averse and thus want to obtain insurance against the risk of a low earning capacity
n. The specific cardinalization of the utility function affects the distributional preferences of a
utilitarian government. In particular, the concavity of v(.) implies that a utilitarian government
aims to fight poverty. In other words, such a government wants to insure agents against the
risk of a low consumption level.

As in Lollivier and Rochet (1983), Weymark (1987), Ebert (1992), and Boadway, Cuff and
Marchand (2000), utility is linear in work effort y and separable in work effort and consumption
x. This has a number of important implications. First, consumption x is not affected by income
effects. A higher average tax rate thus induces households to raise work effort y rather than to
cut consumption x. Second, the single-crossing (or sorting) property is met, implying that the
incentive compatibility constraints can be replaced by (much simpler) monotonicity conditions
on x (.) and z (.) (see below). Third, the specific quasi-linear utility function allows for a closed-
form solution of the standard optimal income tax problem. Fourth, a utilitarian government
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cares only about aggregate work effort in the economy. Such a government thus aims at an equal
distribution of consumption (i.e. the alleviation of poverty) rather than an equal distribution
of work effort over the various agents.

A worker determines his work effort. Instead of working with work effort y(n) and con-
sumption x(n) as the instruments of the worker, we write the utility function in terms of gross
income (or output) z(n) ≡ ny(n) and net income (or consumption) x(n). Utility of type n is
then written as u(n) ≡ v (x(n))− z(n)/n. The utility of a type n agent is determined by type
n’s choice of gross income z:

u (n) = max
z

{
v

(
z − T̃ (z)

)
− z

n

}
, (1)

where T̃ (z) denotes the tax schedule as a function of gross income z. We can write T (n) =
T̃ (z (n)) since type n chooses gross income z (n) in equilibrium. The envelope theorem yields
the first-order incentive compatibility constraint

u′ (n) =
z (n)

n2
. (2)

The following lemma shows that the second-order condition for the agents’ optimal choice of
consumption and gross income implies that consumption and gross income are non-decreasing
in type n. The inequalities in the lemma are therefore called the second-order incentive com-
patibility constraints.

Lemma 1 The second-order condition for individual optimization is satisfied if and only if

z′ (n) ≥ 0, (3)

x′ (n) ≥ 0,

while z′ (n) = 0 if and only if x′ (n) = 0.

As a last constraint on individual optimization, labor supply and therefore before-tax income
should be non-negative:

z(n) ≥ 0. (4)

The government maximizes a weighted average of agents’ utility:

W ≡
∫ n1

n0

u(n)f(n)φ(n)dn.

We normalize the rank-order weights φ(n) such that
∫ n1

n0
f(n)φ(n) = 1, and assume φ′(n) ≤ 0.1

The government is utilitarian if the rank-order weights are constant, i.e. φ(n) = 1 for all n.

1The rank-order weights depend on ability n rather than utility u(n). This approach, which involves non-
welfarists elements, allows us to derive a closed-form solution for the standard optimal tax problem. Atkinson
(1995) defends this assumption by noting that empirical measures of inequality are based on the distribution of
gross wages n rather than utilities.
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This is the usual assumption adopted in the literature on optimal non-linear income taxation
in the presence of preferences that are quasi-linear in leisure (see Lollivier and Rochet (1983),
Weymark (1987), Ebert (1992), and Boadway, Cuff, and Marchand (2000)2). If the welfare
weights are declining (i.e. φ′(n) < 0), the government is concerned about the distribution of
not only consumption but also leisure (or work effort).

The government has to respect the following budget constraint

∫ n1

n0

f (n) T (n) dn = E, (5)

where E represents exogenously given exhaustive government expenditure, and T (n) ≡ z (n)−
x (n) denotes the tax paid by type n.

In optimizing social welfare, the government faces four constraints: the first-order and
second-order incentive compatibility constraints (2) and (3), the non-negativity constraint on
gross incomes (4), and the government budget constraint (5). Instead of x (n) , we employ u (n)
as a control variable in order to facilitate the inclusion of first-order incentive compatibility
(2) into our optimization problem. To incorporate the second-order incentive compatibility
constraints, we introduce a non-negative variable ω (n) ≡ z′(n) determining how fast z (n) rises
with ability n. We thus arrive at the following optimization problem

max
u(.),z(.),
ω(.)≥0

∫ n1

n0





u(n)φ(n)f(n)− λu(n)
[
u′(n)− z(n)

n2

]

−λz (n) [z′ (n)− ω (n)]
+λEf(n) [T (n)− E]− δ (n) [0− z (n)]





dn, (6)

where T (n) ≡ z (n) − x (n) = z (n) − v−1
(
u (n) + z(n)

n

)
. λu (n) and λz (n) represent the

Lagrange multipliers of the first-order and second-order incentive compatibility constraints,
λE stands for the multiplier of the government budget constraint, and δ (n) is the Lagrange
multiplier of the non-negativity constraint on before-tax income.

The shadow values λz (n) and δ (n) are associated with the two types of bunching considered
here. λz (n) < 0 (implying ω (n) ≡ z′(n) = 0) corresponds to the case in which z(n) and x(n)
are constant over a range of skills. We call this bunching due to violation of monotonicity. Also
the case δ (n) > 0 implies that gross and net incomes are constant over a range of skills. In
contrast to bunching on account of violation of monotonicity, however, gross incomes z(n) are
necessarily zero over this range so that utility is constant over the bunching interval (see (2)
with z(n) = 0). This is called z = 0 bunching.

2The latter paper considers also a maxi-min objective function where the government cares only about the
least able persons (i.e. agents with skill n0). This is the special case of our formulation in which φ(n) = 0 for
n > n0.
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3. The case without bunching

As a benchmark, this section characterizes the case without bunching and provides intuition
for the recursive, closed-form solution.

Throughout the paper, we use the function G (.) defined as follows

G(n) =

∫ n

n0

φ(t)

t
f(t)dt.

Without any bunching, the optimal solution is characterized as follows.3

Lemma 2 If z (n0) > 0 and λz (n) = 0 for all n ∈ [n0, n1], the solution to maximization
problem (6) satisfies

λE = G(n1), (7)

τ(n) =

G(n)
G(n1)

− F (n)

nf(n)
≥ 0 for all n ∈ [n0, n1], (8)

v′ (x (n)) =
1

n(1− τ(n))
, (9)

u (n) =
1

n

(
K − E +

∫ n

n0

v (x (t)) dt

)
, (10)

z (n) = n (v (x (n))− u (n)) = nv(x(n))−
∫ n

n0

v (x (t)) dt + E −K, (11)

W = u(n0)n0G(n1) +

∫ n1

n0

[G(n1)−G(n)]v(x(n))dn, (12)

where

K ≡
∫ n1

n0

{[tf(t)− (1− F (t))]v (x (t))− x (t) f (t)} dt,

and the marginal tax rate for type n is defined as

τ (n) ≡ dT̃ (z)

dz

∣∣∣∣∣
z=z(n)

.

The marginal utility cost of government revenue λE depends only on the distribution of skills
and the social welfare weights φ(n). The spending requirement E does not affect it. The reason
is that utility is linear in work effort so that marginal utility costs do not rise if a higher level
of government spending induces agents to work harder. More precisely, a uniform tax on all
agents acts like a lump-sum tax, which yields only income effects and no substitution effects.

3This solution is found by assuming that the second-order condition x′(n) ≥ 0 and the non-negativity
constraint z(n) ≥ 0 are met. If the solution implied by (9) violates (one of) these constraints, the solutions
provided in the next sections become relevant.
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With quasi-linear preferences, only labor supply responds to income effects. Hence, raising
one additional euro of tax from each agent induces all agents to raise their gross incomes by
a euro, while net incomes are unaffected. Since preferences are linear in leisure, the private
utility costs of one additional unit of gross income do not depend on the level of leisure, but
are inversely proportional to the skill level, 1/n. Indeed, extracting a euro from a higher skilled
agent imposes a lower effort cost than extracting the same euro from a lower skilled agent.
The aggregate welfare effect on the social objective function, λE, corresponds to the weighted
population average of these private welfare costs, i.e. λE =

∫ n1

n0

φ(n)
n

f(n)dn = G (n1).

With λE depending only on the distribution of skills and the social welfare weights φ(n),
also the marginal tax rates can be written in terms of these elements only. Rewriting equation
(8) while using λE = G (n1) , we obtain the following expression for the marginal tax rate:

λEτ(n)nf(n) = λE(1− F (n))− (G(n1)−G(n)). (13)

The marginal tax rate at each skill is determined by trading off the efficiency gains of a lower
marginal tax rate and the distributional costs of a more dispersed income distribution. More
specifically, consider an increase of one unit of work effort by type n (i.e. dy (n) = 1), while
keeping type n’s utility constant. With taxation driving a wedge between the social and private
marginal value of work, more work effort generates additional government revenues τ (n) n.
Multiplying this with the utility value of government funds, λE, and the number of type n
agents, f (n), we arrive at the efficiency gain at the left-hand side of (13).

The right-hand side of this equation measures the distributional costs of higher work effort
of type n. In particular, with agents of skill n earning higher gross incomes (at the same
utility level), higher ability agents find it more attractive to mimic type n. To prevent these
substitution effects, the government has to raise utility of all workers who are more skilled than
type n by reducing gross incomes with one unit.4 The right-hand side of (13) stands for the
costs in terms of the required additional government revenue λE(1 − F (n)) minus the utility
benefits of the agents involved (G(n1)−G(n)).

Expression (8) implies that marginal tax rates at the top and the bottom are zero (i.e.
τ(n0) = τ(n1) = 0), while these rates are positive at interior skills (i.e. τ(n) > 0 for n0 <
n < n1).

5 Two factors determine marginal tax rates in the interior. The first factor, the
distributional benefits of a higher marginal tax rate (represented by the term [G(n)/G(n1) −
F (n)]) raises the marginal tax rate. This term is maximal at the unique ’critical’ skill level nc

at which the welfare weight φ(nc)/nc equals the population average of these welfare weights

4The following two steps show that z (.) has to fall by one unit for all types above n in order to keep the
incentive compatibility constraints satisfied. First, note that dy (n) = 1 implies dz (n) = n. Hence, in view of
u′ (n) = z(n)

n2 , u (n) has to increase with an additional 1
n for the type slightly above n (i.e. du′ (n) = dz(n)

n2 = 1
n

with some abuse of notation). This is achieved by reducing z by one unit for the type slightly above n. Second,
as regards the incentive compatibility constraints for all other types above n, a uniform decrease in gross incomes
z(n) with one unit for all t > n leaves all these constraints v(x(t)) − z(t)/t ≥ v(x(t′)) − z(t′)/t (for t′, t > n)
unaffected. Hence, such a uniform decrease in z does not result in any substitution effects for types t > n.

5This is because the weight φ(n)
n is a declining function of n so that the average of these weights over the

interval [n0, n], G(n)/F (n), exceeds the average of these weights over the interval [n0, n1], G(n1). G(n)/F (n) >
G(n1) implies that the numerator of (8) is positive.
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λE =
∫ n1

n0

φ(n)
n

f(n)dn. The government wants to redistribute resources to all agents below this
critical skill level. The second factor determining the marginal tax rate is the productive
capacity of agents at type n, nf(n), in the denominator of (8). The higher this productive
capacity, the larger are the efficiency costs associated with a high marginal tax rate and therefore
the lower the marginal tax rate should be.6

Consumption of each skill depends only on the marginal wage rate n(1− τ(n)) (see (9)) and
not on government spending requirements E, as consumption depends only on substitution
effects and all income effects go into work effort. Expression (11) implies that additional
public spending requirements are optimally financed by uniformly increasing gross incomes of
all agents, i.e. dz(n)/dE = 1. The system is thus recursive. Consumption, marginal tax rates,
and the marginal costs of public funds are determined independently from public spending,
which affects work effort z(n) required to meet resource and incentive constraints.

The rank-order weights do impact marginal tax rates, consumption levels and gross incomes.
To derive the effects of changes in these weights, we consider the following family of rank-order
weights indexed by α ∈ R+.

Definition 1 A rise in α is said to make the government more redistributive if

d ln φα (n)

dα
is decreasing in n (14)

while the normalization of the rank-order weights (i.e.
∫ n1

n0
φα (n) f (n) dn = 1) is maintained

d
(∫ n1

n0
φα (n) f (n) dn

)

dα
= 0

As α goes up, the social planner increases the weight attached to low skilled agents relative
to higher skilled agents, i.e.

d(φα (n) /φα (n̄))

dα
= (φα (n) /φα (n̄))

{
d ln φα (n)

dα
− d ln φα (n̄)

dα

}
> 0 if n < n̄.

The following two families of rank-order weights satisfy this definition. First, φα (n) =

{
1 + α

F (n̄)
if n ∈ [n0, n̄〉

1− α
1−F (n̄)

if n ∈ [n̄, n1]

for some value of n̄ ∈ 〈n0, n1〉 and where α ∈ [0, 1− F (n̄)]. In this case, a higher weight α
raises the weight attached to agents below skill n̄ at the expense of agents above n̄. Second,
define n (α) = n1 − α (n1 − n0) for α ∈ [0, 1]. Then we consider the following family of ranko-

rder weights φα (n) =

{
1−ε

F (n(α))
if n ∈ [n0, n (α)〉

ε
1−F (n(α))

if n ∈ [n (α) , n1]
for ε > 0 close to 0. A rise in α reduces

the number of skills n (α) to which the government attaches a high rankorder weight, thereby
increasing the level of that weight.

The following lemma characterizes the effects of a more redistributive government.

6For particular skill distributions, Diamond (1998) analytically investigates the shapes of the marginal tax
rates for preferences that are quasi-linear in consumption. Boadway, Cuff and Marchand (2002) conduct a
similar analysis for the quasi-linear preferences explored in our paper.
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Lemma 3 An increase in α reduces consumption x (n) and increases the marginal tax rate
τ (n) for all types n ∈ [n0, n1]. Moreover there exists ñ ∈ 〈n0, n1〉 such that utility u (n) in-
creases for all n ∈ [n0, ñ〉 while it decreases for all n ∈ 〈ñ, n1].

A more redistributive government raises marginal tax rates in order to redistribute more
resources from the high skilled to the low skilled. The substitution effects associated with the
higher marginal tax rates reduce consumption for all workers. Nevertheless, the least skilled
benefit from more redistribution. In particular, for these workers, lower working hours more
than compensate for lower consumption levels.

4. Bunching due to violation of monotonicity constraint

This section shows that the closed-form solution survives violation of second-order incentive
compatibility. It generalizes the results in Ebert (1992) and Boadway, Cuff, and Marchand
(2000) to a non-utilitarian government. This section also demonstrates that bunching on ac-
count of violation of second-order incentive compatibility neither offers a good description of
inactivity at the bottom of the labor market nor provides convincing comparative static results.

As shown by Guesnerie and Laffont (1984) and Ebert (1992), the violation of the monotonic-
ity condition on consumption x (n) makes bunching optimal, that is, z(n) and x(n) are constant
over a range of skills. Whereas Ebert (1992) and Fudenberg and Tirole (1991) include ω (n) ≥ 0
as an additional restriction with a Lagrange multiplier in the objective function, this is strictly
speaking not necessary. The optimality conditions of Pontryagin (see, for instance, Kamien
and Schwartz (1981)) imply that ω (n) is chosen for each n to solve

max
ω

λz (n) ω

From this it follows immediately that λz (n) < 0 implies ω (n) = 0. Further, ω (n) > 0 (and
finite) can only happen if λz (n) = 0. Finally, if the problem is well defined then the case
λz (n) > 0 can be excluded as it would imply ω (n) = +∞.

With z′(n) ≡ ω (n) = 0, lemma 1 implies that x′ (n) = 0. A so-called ”ironing out”
procedure yields the range of skills over which (gross and net) incomes are constant. The
violation of monotonicity is due to rapidly rising marginal tax rates. Indeed, rising marginal
tax rates are a necessary condition for this type of bunching to occur. Since the marginal tax
rate is necessarily declining at the top, this bunching is not possible at the highest skill levels
(see Ebert (1992)).

In contrast to z = 0 bunching, this type of bunching can happen not only at the bottom
but also in the interior of the skill distribution. Since our analysis focuses on the bottom of the
labor market, we do not consider bunching due to violation of monotonicity in the interior of
the skill distribution.7 The following proposition generalizes the results in Boadway, Cuff, and
Marchand (2000) to a non-utilitarian government.

7Generalizing the equations below for bunching at the bottom to the case of bunching in the interior is
straightforward (see, e.g., Ebert (1992) or Fudenberg and Tirole (1991)).
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Proposition 1 The consumption path implied by equation (9) is non-monotone at the bottom
(i.e. x′ (n0) < 0) if and only if8

2n0/φ(n0) < 1/[

∫ n1

n0

f(t)φ (t)

t
dt] = 1/G(n1).

In this case, types n ∈ [n0, nb] feature the same consumption level xb and production level zb

with

xb = x (nb) ,

zb = z (nb) ,

where nb is determined by the following equation

f (nb)

[
F̄ (nb)

F (nb)
− G (nb) nb

F (nb)

]
= G (n1) F (nb)−G (nb) , (15)

with F̄ (nb) ≡
∫ nb

n0
φ(n)f(n)dn. We find that

τ(nb) > 0

and consumption for types n ∈ [nb, n1] is determined by

v′ (x (n)) =
f (n)

G(n1)−G(n)
λE

+ f (n) n− [1− F (n)]
, (16)

where
λE = G (n1) .

Production of types n ∈ [nb, n1] is determined by

z (n) = nv(x(n))− nbv (x (xb))−
∫ n

nb

v (x (t)) dt + E −K,

where

K ≡
∫ nb

n0

{[tf (t)− [1− F (t)]] v (xb)− f (t) xb} dt +

∫ n1

nb

{[tf (t)− [1− F (t)]] v (x (t))− f(t)x (t)} dt.

8To find the effects of a more redistributive government, we write this condition as
∫ n1

n0

f(t)
t

φα(t)
φα(n0)

dt < 1
2n0

,

where φα (n) is defined in definition 1. Since an increase in α reduces φα(t)
φα(n0)

for t > n0, a more redistributive
government makes it more likely that this condition is satisfied. Intuitively, as the government becomes more
redistributive, it tries to raise the utility levels of the low types (compared to high types) to such an extent that
it is more likely to violate the second-order incentive constraints.
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This type of bunching does not affect the marginal utility cost of government revenue λE

as given by (7): a higher level of government spending is still optimally financed through
a uniform increase in z(n) by all agents. The marginal utility cost of government spending
therefore continues to correspond to the average utility costs of the associated increase in work
effort over the entire population. With the same marginal utility cost of public funds λE,
the marginal tax rates (8) and the consumption path (9) in the non-bunched intervals are
not affected by bunching. Accordingly, with bunching occurring at the bottom of the income
distribution, the marginal tax rate faced by the lowest skilled agent who is not bunched, nb > n0,
is positive (i.e. τ(nb) > 0). This is in contrast to the case without bunching, where the lowest
worker n0 faces a zero marginal tax rate. Intuitively, a positive marginal tax rate for the lowest
non-bunched worker generates positive distributional effects only if it redistributes resources
towards bunched workers n < nb, who feature the lowest consumption levels.

4.1. comparative statics

Bunching due to violation of monotonicity yields strictly positive marginal tax rates at the
bottom of the labor market and features the following comparative statics properties.

Lemma 4 In case of bunching due to violation of monotonicity, an increase in the public
spending requirement E yields the following effects:

dλE

dE
= 0,

dnb

dE
= 0,

dx (.)

dE
= 0,

dz (.)

dE
= 1.

Higher public spending leaves marginal tax rates, and hence consumption levels, unaffected.
Since the bunching interval [n0, nb] is completely determined by the skill distribution and the
function φ (.) (see equation (15)), the level of public spending does not impact the size of
the bunching interval, either. These comparative static results do not seem to be particularly
realistic. We therefore turn to a model in which the non-negativity constraint in hours worked
is binding.

5. Bunching with zero work effort

Redistributive tax and transfer systems may discourage those with little skills from working.
Indeed, unemployment rates are highest at the bottom of the labor market. Unemployment
can be modelled in the context of an optimal tax model as the low skilled optimally choosing
to work zero hours. With the non-negativity constraint on hours worked being binding, gross
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and net incomes are constant over a range of skills. More precisely, gross incomes z(n) are zero
over this range. This, together with (2), implies that also utility is constant over the bunching
interval. Moreover, second-order incentive compatibility z′(n) ≥ 0 implies that this bunching
can occur only at the bottom of the income distribution. Accordingly, a skill level nz exists so
that z(n) = 0 for n ∈ [n0, nz].

Since z′ (n) ≥ 0 (see lemma 1), z (n0) ≥ 0 implies that the non-negativity constraint on
gross incomes is satisfied also for all other skills n > n0. We can thus formulate the government’s
maximization problem (6) as

max
nz ,xz ,u(.),
z(.),ω(.)≥0,

z(nz)≥0

∫ n1

nz

{
u(n)φ(n)f(n)− λu(n)

[
u′(n)− z(n)

n2

]

−λz (n) [z′ (n)− ω (n)] + λE [f(n)T (n)]

}
dn (17)

+F̄ (nz) v (xz) + λEE.

Proposition 2 If the solution in lemma 2 implies z (n0) < 0, then the solution to problem (17)
can be characterized as follows. First, a non-empty interval [n0, nz] exists such that

z (n) = 0,

x (n) = xz = x (nz)

for all n ∈ [n0, nz], where x (n) for n ≥ nz is determined by equation (16). Furthermore, λE

and nz are determined by the following two equations9

λE =

F̄ (nz)
nz

+ G(n1)−G(nz)
F (nz)

nzv′(x(nz ,λE))
+ 1− F (nz)

, (18)

(1− F (nz)) nzv (x (nz, λE)) + E + F (nz) x (nz, λE)

=

∫ n1

nz

{[nf (n)− [1− F (n)]] v (x (n, λE))− f (n) x (n, λE)} dn. (19)

If x (n) as determined by equation (16) is monotonically increasing in n, then equation (19) is
upward sloping, equation (18) is downward sloping and

λE ≤ G (n1) ,

τ (nz) > 0.

For skills n ≥ nz, consumption levels and marginal tax rates continue to be determined
by equations (9) and (13). Unlike bunching due to the violation of monotonicity, z = 0
bunching does impact the marginal utility cost of government revenue λE. In particular, if

9The first equation has the advantage that it is easy to interpret (see below), but the right-hand side
still contains λE in the v′ (x (nz, λE)) term. The appendix shows that this equation can be rewritten as

λE =
F̄ (nz)+(nz−F (nz)

f(nz) )(G(n1)−G(nz))

nz−F (nz)
1−F (nz)

f(nz)

so that λE is written as an explicit function of nz.

12



λE

nz

E↑

LS
GBC

G(n1)

Figure 1: Equilibrium in nz, λE space: Labor Supply (LS) and Govern-
ment Budget Constraint (GBC).

government spending is reduced, this decreases work effort only outside the bunching interval
(for skills n > nz). Within the bunching interval, consumption is raised so that utility of the
bunched agents increases with the same amount as the marginal worker nz (see the first term
in the numerator at the right-hand side of (18)). Lower government spending thus results in
both reduced work effort and higher private consumption. For the constrained households,
consumption is valued relatively less (the non-negativity constraint on work effort acts like an
implicit subsidy on consumption, i.e. v′(x(n0)) < 1/n0). This explains why the marginal cost
of public funds is lower with z = 0 bunching than without it (i.e. λE ≤ G(n1)).

The marginal tax rate facing the least skilled worker nz is positive (i.e. τ(nz) > 0). The
reason is that a positive tax rate for the lowest skilled worker yields positive distributional
effects because it redistributes resources from the productive workers (i.e. the skills n > nz)
towards the non-productive workers, who feature the lowest consumption levels. With z = 0
bunching, marginal tax rates remain positive in the interior. However, λE ≤ G(n1) and (13)
imply that marginal tax rates at n > nz are smaller than without z = 0 bunching. Intuitively,
the benefits of redistribution are smaller if low-skilled agents can use additional resources only
to increase consumption (which yields less marginal utility than lower work effort does).

Figure 1 shows the equations (18) and (19) in (nz, λE) space. To obtain more intuition
about equation (18), we write it as follows

v′ (xz)

∫ nz

n0

φ (n) f (n) dn = λEF (nz) + (20)

nzv
′ (xz) [λE (1− F (nz))− (G (n1)−G (nz))] .

Suppose the government considers a small increase in consumption for all unemployed workers
dxz > 0,10 then the left-hand side of this equation represents the increase in social welfare

10The government raises consumption (i.e. dxz > 0 for given λE) through an increase in nz. Note that the
partial effect of nz (taking xz as given) on equation (20) is zero so that nz affects the costs and benefits of
redistribution only indirectly through its effect on x(nz).
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corresponding to the higher consumption levels of the bunched least skilled workers who do not
supply any labor. The right-hand side measures the costs of the higher consumption level of
these workers. First, the higher consumption level of the F (nz) workers needs to be financed at
the marginal cost of public funds λE. In addition, in order to maintain incentive compatibility,
the gross incomes z of the types above nz have to be reduced by v′ (xz) nzdxz.

11 This has to
multiplied by the welfare costs of raising gross incomes with one unit for all types above nz. As
argued in explaining equation (13), these costs are given by the term in square brackets on the
right-hand side of (20).

We interpret equation (18) (or equivalently equation (20)) as labor supply because it equates
the marginal benefits and marginal costs of reducing labour supply (in persons), i.e. increasing
nz. This labor-supply curve is downward sloping in (nz, λE) space. As nz goes up (for given
λE), second-order incentive compatibility (i.e. x′(n) > 0) implies that consumption x (nz)
increases for all inactive agents [n0, nz] . As a result of decreasing marginal utility (v′′ (x) < 0),
the marginal utility benefit of more consumption for these workers v′(x(nz)) declines. To ensure
that these lower marginal benefits continue to equal the marginal costs of more consumption
of these agents in (20), λE must fall. z = 0 bunching is essential in explaining why the benefits
of redistribution, as measured by the left-hand side of (20) fall with nz; since z (n) cannot be
reduced for types [n0, nz] , the government can redistribute toward these types only by raising
their consumption. This redistribution features decreasing returns because of the concavity of
v (x) . Indeed, this concavity implies that the benefits of redistribution, as measured by λE in
(18), decline with nz.

Equation (19) is derived from the government budget constraint (5), which can be written
as

−F (nz) x (nz) +

∫ n1

nz

T (n) f (n) dn = E.

This curve is upward sloping in (nz, λE) space. The reason is as follows. As the bunching interval
widens and nz goes up, second-order incentive compatibility implies that x (nz) increases as well
(for given λE). The higher consumption levels for the least skilled, non-working types have to be
financed by the types above nz. These latter, working types thus must face higher marginal tax
rates and enjoy lower consumption levels. This requires an increase in λE (see (16)). Indeed,
the cost of redistribution, as measured by λE implicit in equation (19), rise the number of
agents who are unemployed (i.e. nz).

5.1. comparative statics

This subsection performs comparative statics with respect to government expenditure E and
the rank-order weights φ (.). This illustrates that comparative static exercises remain rather

11To see this, note that for the type t just above nz, the incentive compatibility constraint can be written
as v (x (t))− z(t)

t = v (xz). At constant net income x (t) constant, this equation still holds if dz
dxz

= −nzv
′ (xz)

for the type t just above nz. As regards the incentive compatibility constraints for all other types above nz, a
uniform decrease in gross incomes z(n) with one unit for all t > nz leaves all these constraints v(x(t))−z(t)/t ≥
v(x(t′)) − z(t′)/t (for t′, t > nz) unaffected. Hence, such a uniform decrease in z does not result in any
substitution effects for types t > nz.
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straightforward in a model of non-linear income taxation with unemployment. First, consider
an increase in E. This shifts the government budget constraint (GBC) curve upwards while
leaving the labour supply (LS) curve unchanged (see Figure 1). Hence, this figure reveals that
the bunching interval narrows (i.e. nz falls) while the marginal welfare cost of public funds λE

rises. More precisely, we derive the following.

Lemma 5 In case of z = 0 bunching, an increase in E yields the following effects

dnz

dE
< 0,

dλE

dE
> 0,

dxz

dE
< 0,

dT (n)

dE
> 0

for n close enough to nz. We also find that

dτ (n)

dE
> 0,

dx (n)

dE
< 0,

du (n)

dE
< 0.

for all n > nz

The negative income effect associated with the higher tax level that is required to fund
the additional public spending raises labor supply, thereby reducing the number of agents who
are non productive. Thus, unlike the case with bunching due to violation of monotonicity,
more public spending reduces the size of the bunching interval. Moreover, in contrast to
the case without z = 0 bunching, a higher level of government spending raises the marginal
cost of public funds. Intuitively, with unemployed workers, the required resources to finance
additional spending not only come from additional work effort of employed agents but also from
lower consumption levels of the unemployed. The utility costs of reducing private consumption
become higher if consumption of the unemployed is crowded out further as a result of more
public spending. To contain these higher costs of lower consumption levels of the unemployed
(as a result of lower tax credit −T (nz) = xz for these skills), the government makes the tax
system more redistributive at higher levels of public spending so that more of the required
resources come from more work effort of skilled agents. In the face of the higher marginal
tax burden associated with a more redistributive tax system, also employed workers n > nz

reduce their consumption.12 Hence, whereas the unemployed cut their consumption on account

12The comparative static results illustrate that the case with z = 0 bunching resembles the so-called rich
economy if skills are observable to the government (see Boone and Bovenberg (2001)). In both cases, higher
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of a higher average tax burden, the employed reduce their consumption because of a higher
marginal tax burden.

Turning to the effects of a change in the rank-order weights as introduced in definition
1, we recall (see Lemma 3) that without bunching a more redistributive government reduces
everyone’s consumption level. Moreover, to raise utility at the lower end of the skill distribution,
the least skilled agents work less. If these agents are unemployed, however, the government
cannot raise their utility by having them work less.

Lemma 6 If the government becomes more redistributive, consumption behaves as follows

dx (n)

dα
> 0 for n ∈ [n0, ñ〉,

dx (n)

dα
< 0 for each n ∈ 〈ñ, n1〉,

for some ñ ∈ 〈n0, n1〉. Next, there exists n∗ ∈ 〈ñ, n1〉 such that

du (n)

dα
> 0 for n ∈ [n0, n

∗〉,
du (n)

dα
< 0 for each n ∈ 〈n∗, n1],

Finally, if nz ≥ n̂, where n̂ is defined as

d [Gα (n1)−Gα (n̂)]

dα
= 0,

then a more redistributive government raises nz, i.e.

dnz

dα
> 0

In contrast to the case without z = 0 bunching (see lemma 3), with z = 0 bunching we
obtain the intuitive result that a higher α produces more redistribution in terms of consumption.
As α increases, inactive workers enjoy more consumption because the government cannot raise
their utility by reducing their work effort. The types n ∈ 〈ñ, n1〉 pay for the higher welfare level
of the least skilled and thus face higher marginal tax rates, which reduce their consumption
levels.

To find the effect of α on unemployment (and thus nz), consider the effect of α on the LS and
GBC curves in figure 1. nz ≥ n̂ is a sufficient condition for a more redistributive government
(at a given level of λE) reducing consumption x (n) (and raises marginal tax rates) for every
type, including nz. This implies that the GBC curve moves downwards and the labor supply

public spending yields not only higher work effort but also lower consumption for the non-productive individuals.
Moreover, it reduces the number of these non-productive workers. Indeed, in both cases, all agents are searching
for work (i.e. nw = n0). Furthermore, there is a skill level below which agents are not productive in their jobs
and collect search subsidies −T (n)− b > 0.
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curve rotates upward.13 In particular, the budget surplus resulting from lower consumption
and higher tax revenues (at fixed nz) allows for a decline in λE so that the GBC curve shifts
downwards and to the right. As regards the LS curve (20), a more redistributive government
reduces xz = x (nz) for given nz and λE. This raises marginal utility v′ (xz) . Together with a
higher weight attached to the least skill workers, this increases the marginal benefit of higher
consumption for the least skilled, non-working types xz = x (nz). To re-establish equality
between the benefits and costs of additional consumption for the non-working types in (20),
the shadow value λE must increase so that a more redistributive government shifts the labor
supply curve upward.

The shifts of the LS and GBC curves imply that a more redistributive government raises
unemployment. Intuitively, a more redistributive government wants to increase utility of the
least skilled. Since these agents are not working, this can be done only through raising con-
sumption xz of the marginal worker nz. Under condition nz ≥ n̂, however, consumption of the
marginal worker would decline at fixed λE and nz while lower consumption levels produce a
fiscal surplus. Both to help the poor and to establish government balance, consumption of the
least skilled is raised by (given that x′(n) > 0) widening the bunching interval.14

Our results contrast to Stähler (2002), who finds that higher government expenditure raises
unemployment. The reason for our different results is that we allow for income effects in labor
supply and endogenously determine the minimum standard of living. In particular, Stähler
adopts a utility function that is linear in consumption. This implies that a utilitarian govern-
ment does not exhibit a redistributional motive. To introduce a rationale for redistribution,
Stähler introduces an exogenously given minimum standard of living M , below which the util-
ity level of individuals is not allowed to fall. To encourage high-ability agents to work positive
hours, the government must give them positive rents. As E increases, the government can no
longer afford these rents for high ability types. Employment thus falls to reduce these rents.
In our approach, in contrast, the minimum consumption level of unemployed agents is endoge-
nously determined (our utility function is concave in consumption giving a direct rationale for
redistribution). Hence, scarcer public funds result not only in a higher tax burden on higher
skilled agents but also in a lower consumption level for unemployed agents (which indeed it
does as dxz/dE < 0). The lower minimum standard of living mitigates the effects of a higher
level of government spending on incentives to work. In fact, with our utility function, the ad-
verse income effects of the higher tax burden cause agents to reduce their work effort, thereby
raising voluntary unemployment. In Stähler’s framework with a utility function that is linear
in consumption, in contrast, income effects on labor supply are absent.

13Since v′ (x (n1)) = 1
n1

, equation (20) implies that α does not affect the labor-supply curve at nz = n1.
Hence, the LS curve rotates round the point (nz, λE) = (n1,

1
n1

).
14If nz < n̂, we cannot exclude that a higher α increases x (nz) for given nz and λE to such an extent that

nz has to fall to satisfy the government budget constraint.
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6. Conclusion

Our paper has contributed to the literature on bunching in mechanism design problems. Bunch-
ing is typically seen as technically rather difficult and lacking realism. Our paper suggests, in
contrast, that bunching is relatively straightforward to deal with. Indeed, this type of bunch-
ing can be characterized in a two-dimensional diagram in which comparative statics can be
performed rather easily. Moreover, bunching is realistic in some settings. More specifically,
in optimal tax problems, bunching due to violation of the non-negativity constraint on hours
worked is relevant because it provides a more realistic description of the bottom of the la-
bor market than bunching on account of violation of second-order incentive compatibility. In
particular, the least skilled are unemployed as their productivity level is not high enough to
offset welfare benefits and search costs. Another advantage of this description of the labor
market (compared to bunching as a result of second-order incentive compatibility considera-
tions) is that public revenue requirements affect marginal tax rates, private consumption and
the marginal cost of public funds. Moreover, a more redistributive government raises reduces
the consumption levels of the poorest agents. This in contrast to a model without bunching.
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8. Appendix

Proof of lemma 1

We write

u(x(n), z(n), n) = v (x(n))− z(n)

n
,

u(x(m), z(m), n) = v (x(m))− z(m)

n
,

and note that incentive compatibility implies

u(x(n), z(n), n)− u(x(m), z(m), n) ≥ 0

for each n ∈ [n0, n1] and each m ∈ [n0, n1].

We look at the difference u(x(n), z(n), n) − u(x(m), z(m), n) in two different ways. First,
we fix n and let m vary and define

g(m) = {u(x(n), z(n), n)− u(x(m), z(m), n)} .

The consumption and gross income schedules x(.) and z(.) (and thereby the tax schedule
T (z(n))) satisfy incentive compatibility, if an agent of type n finds it optimal to report m = n.
That is, the function g(.) has a minimum at m = n. The first order condition for this minimum
(g′(m)|m=n = 0) can be written as

[u′xx
′(m) + u′zz

′(m)]m=n = 0, (21)

where u′x = v′ (x (m)) > 0 and u′z = − 1
n

< 0. This equation implies that z′ (n) = 0 if and only
if x′ (n) = 0.

Now fix m and let n vary and define the function g̃(.) as

g̃(n) = {u(x(n), z(n), n)− u(x(m), z(m), n)} .

This function achieves a minimum at n = m. The first-order condition for this ( g̃′(n)|n=m = 0)
can be written as follows (using equation (21))

[u′n − u′n(x(m), z(m), n)]n=m = 0,
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or equivalently
z(n)

n2
− z(m)

n2
= 0

at n = m. The second-order condition for the minimization of g̃(.) evaluated at n = m amounts
to

1

n2
z′(n) ≥ 0.

It follows from this condition that z′(n) ≥ 0. Using equation (21), we find that also x′(n) ≥ 0.

In order to prove that the conditions in the lemma also guarantee that the second-order
condition holds globally, we use a proof by contradiction.15 So suppose this is not the case. In
particular, assume that there exist two types n and n′ such that

u(x(n′), z(n′), n) > u(x(n), z(n), n).

This can be written as ∫ n′

n

∂u(x(t), z(t), n)

∂t
dt > 0,

or equivalently ∫ n′

n

[
v′(x(t))x′(t)− 1

n
z′(t)

]
dt > 0.

Assume that n′ > n,16 then 1
t

< 1
n

for each t > n implies that

∫ n′

n

[
v′(x(t))x′(t)− 1

t
z′(t)

]
dt >

∫ n′

n

[
v′(x(t))x′(t)− 1

n
z′(t)

]
dt.

Using equation (21), we find

0 >

∫ n′

n

[
v′(x(t))x′(t)− 1

n
z′(t)

]
dt.

However, this contradicts the inequality with which we started this proof. Hence, there cannot
be two types n and n′ such that u(x(n′), z(n′), n) > u(x(n), z(n), n). Q.E.D.

Proof of lemma 2

The first-order conditions (Euler equations) for optimizing (6) with respect to ω (.) , u (.)
and z (.) amount to (if z(n0) > 0)

ω (n) = arg max
ω≥0

λz (n) ω, (22)

λ′u (n) = f (n)

(
λE

v′ (x (n))
− φ (n)

)
, (23)

λ′z (n) = −λu (n)

n2
+ λEf (n)

(
1

nv′ (x (n))
− 1

)
, (24)

15This proof follows closely the argument by Guesnerie and Laffont (1984).
16The proof for the case where n′ < n is similar to the one given here.
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together with the transversality conditions

λu (n0) = λu (n1) = 0,

λz (n0) = λz (n1) = 0,

and the government budget constraint (5).

Since by assumption λz (n) = 0 and thus λ′z (n) = 0 for all n, (24) can be written as

1

v′ (x (n))
= n +

1

n

λu (n)

λEf (n)
. (25)

The first-order condition for maximizing individual utility with respect to z (n) in equation (1)
amounts to

v′
(
z (n)− T̃ (z (n))

)(
1− T̃ ′ (z (n))

)
− 1

n
= 0,

or equivalently,

v′ (x (n)) =
1

n(1− τ(n))
.

Using this in equation (25) to eliminate v′ (x (n)) , we find

τ(n) =
−λu (n)

λEn2f (n)
. (26)

Substituting equation (25) into (23) to eliminate v′ (x (n)), we arrive at

λ′u (n) =
1

n
λu (n) + λEf (n) n− f (n) φ (n) . (27)

This is a linear differential equation that can be solved analytically (using the method of the
varying constant):

λu (n) = n

[
c0 + λE

∫ n

n0

f (t) dt−
∫ n

n0

f (t) φ (t)

t
dt

]
(28)

for some constant c0. The transversality condition λu (n0) = 0 yields c0 = 0 so that

λu (n) = n [λEF (n)−G (n)] . (29)

The transversality condition λu (n1) = 0 implies

λE = G (n1) .

Substitution of this and (29) into equation (26) to eliminate λu (n) and λE yields

τ (n) =

G(n)
G(n1)

− F (n)

nf (n)
.
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The definition of u (n) allows us to write

z (n) = n (v (x (n))− u (n)) . (30)

To determine what u (n) looks like, we substitute this expression for z (n) into the incentive

compatibility constraint u′ (n) = z(n)
n2 to arrive at the following differential equation:

u′ (n) = − 1

n
u (n) +

1

n
v (x (n)) .

This linear differential equation can be solved analytically (with method of varying constant):

u (n) =
1

n

(
K − E +

∫ n

n0

v (x (t)) dt

)
(31)

for some constant K. To determine K, we substitute (31) into (30) and the result into the
government budget constraint (5) to eliminate z(t). This yields

K =

∫ n1

n0

{[tv (x (t))− x (t)] f (t)− [1− F (t)] v (x (t))} dt.

Finally, the expression for W in the lemma can be derived by writing individual utility

(from equation (31)) as u (n) = 1
n

(
n0u (n0) +

∫ n

n0
v (x (t)) dt

)
, substitute this expression into

welfare W =
∫ n1

n0
f (n) φ (n) u(n)dn to eliminate u(n), and employ partial integration. Q.E.D.

Proof of Lemma 3

Note first that v′ (x (n)) can be written as (using (8) to eliminate τ from (9))

v′ (x (n)) =
f (n)

F (n) + nf (n)− Gα(n)
Gα(n1)

,

where

Gα (n) =

∫ n

n0

φα (t)

t
f (t) dt.

The effect of α on x (n) is found by differentiating Gα(n)
Gα(n1)

with respect to α.

sign


d

(
Gα(n)
Gα(n1)

)

dα


 = sign

(∫ n

n0

d(ln φα(t))
dα

φα(t)f(t)
t

dt
∫ n

n0

φα(t)f(t)
t

dt
−

∫ n1

n0

d(ln φα(t))
dα

φα(t)f(t)
t

dt
∫ n1

n0

φα(t)f(t)
t

dt

)
,

which is positive since d(ln φα(t))
dα

is decreasing in t by definition 1.
d
�

Gα(n)
Gα(n1)

�

dα
> 0 implies that

dx(n)
dα

< 0 and (from (8)) dτ(n)
dα

> 0 for all n.

To find the effect of α on u (n), we differentiate equation (31) with respect to α.

du (n)

dα
=

1

n

(
dK

dα
+

∫ n

n0

v′ (x (t))
dx (t)

dα
dt

)
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with dx(t)
dα

< 0.

The following argument shows that dK
dα

> 0. Suppose not, i.e. dK
dα

< 0. Then du(n)
dα

< 0
for all n. Hence, the allocation of x (n) and z (n) before α increased yields higher welfare than
the new allocation after α went up. This contradicts the optimality of this (new) allocation

because the old allocation is still feasible. This implies that dK
dα

> 0 and du(n)
dα

> 0 for some n.

However, it is not possible that du(n)
dα

> 0 for all n because this would contradict the optimality
of the allocation before α was increased.

Since
∫ n

n0
v′ (x (t)) dx(t)

dα
dt is decreasing in n, the previous paragraph implies that there exists

ñ ∈ 〈n0, n1〉 such that all agents with n < ñ enjoy a rise in utility while types n > ñ suffer a
reduction in utility on account of a higher α. Q.E.D.

Proof of Proposition 1

Combining equations (25) and (29), we find

v′ (x (n)) =
f (n)

G(n1)−G(n)
λE

+ f (n) n− [1− F (n)]
(32)

where λE = G (n1). This solution yields a path for consumption x which is not monotone at
the bottom if and only it implies x′ (n0) < 0 or equivalently

d

[
n−

G(n)
G(n1)

−F (n)

f(n)

]

dn

∣∣∣∣∣∣∣∣
n=n0

< 0.

This inequality can be written as

2n0

φ(n0)
<

1∫ n1

n0

f(t)φ(t)
t

dt
.

What does the optimal solution look like if x′ (n0) < 0? The main departure from the proof of
lemma 2 is that λz (n) < 0 for n close to n0 so that the optimal ω (n) determined by equation
(22) equals ω (n) = z′ (n) = 0 for these types. Lemma 1 then implies that also x′ (n) = 0 for
these types. Accordingly, types [n0, nb] are bunched together.

Equations (22), (23), (24) and the transversality conditions still apply. Moreover, the analy-
sis in the proof of lemma 2 is correct for non-bunched types n ≥ nb. To determine the size of
the bunching interval and the marginal cost of public funds, we derive two equations in nb

and λE. The first equation is found by integrating (23) and using the transversality conditions
λu (n0) = λu (n1) = 0 to arrive at

0 = −1 + λE

∫ n1

n0

f (n)

v′ (x (n))
dn.

Since x (n) = xb for all n ∈ [n0, nb], we can rewrite this as

λE =
1

F (nb)
1

v′(xb)
+

∫ n1

nb

f(n)
v′(x(n))

dn
. (33)
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Using the three steps labelled A, B and C below, we write this as

λE =
F̄ (nb) +

(
nb − F (nb)

f(nb)

)
(G (n1)−G (nb))

nb − F (nb)
1−F (nb)

f(nb)

(34)

Step A. Eliminating v′ (x (n)) from
∫ n1

nb

f(n)
v′(x(n))

dn by using equation (32) for n ≥ nb and

employing partial integration, we find
∫ n1

nb

f(n)
v′(x(n))

dn = −nb
G(n1)

λE
+ 1

λE

[
nbG (nb) +

[
1− F̄ (nb)

]]−
nbF (nb) + nb.

Step B. Combining this with the observation that v′ (xb) = v′ (x (nb)) and using (32) for
n = nb, we establish

F (nb)
1

v′ (xb)
+

∫ n1

nb

f (n)

v′ (x (n))
dn =

1

λE

[
(G (n1)−G (nb))

(
F (nb)

f (nb)
− nb

)
+

[
1− F̄ (nb)

]]

+nb − F (nb)
1− F (nb)

f (nb)
.

Step C. Substituting this into the denominator of equation (33) and solving for λE, we arrive
at (34).

The second relationship between λE and nb follows from the transversality condition λz (n0) =
0 and the definition of nb as the end of the bunching interval: λz (n) = 0 for all n ≥ nb (while
λz (n) < 0 for n ∈ 〈n0, nb〉). λz (n0) = λz (nb) = 0 implies

∫ nb

n0
λ′z (n) dn = 0, or equivalently

(using equation (24))

−
∫ nb

n0

λu (n)

n2
dn + λE

∫ nb

n0

f (n)

(
1

nv′ (x(n))
− 1

)
dn = 0.

We solve λu (n) for n < nb by integrating (23) and employing the transversality condition
λu (n0) = 0 :

λu (n) = −F̄ (n) +
λE

v′ (xb)
F (n) .

Substituting this expression and xb = x (nb) = x(n) for n < nb into the previous equation to
eliminate λu (n) and x(n) and using integration by parts, we find

{
− 1

nb
F̄ (nb) + G (nb)− λE

v′(xb)

[
−F (nb)

nb
+

∫ nb

n0

f(n)
n

dn
]
+

+ λE

v′(xb)

∫ nb

n0

f(n)
n

dn− λEF (nb)

}
= 0.

Using (32) for n = nb to eliminate v′(xb) and solving for λE, we arrive at the second relation
between λE and nb

λE =
G (n1)−G (nb) + G(nb)f(nb)nb

F (nb)
− f(nb)

F (nb)
F̄ (nb)

1− F (nb)
. (35)
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Equating the two expressions ((34) and (35)) for λE, we find (15) determining nb in the
lemma. Substituting equation (15) into either (34) or (35), we arrive at λE = G (n1). We find
the equation determining z (n) in the same way as in the proof of lemma 2, taking into account
that x (n) = xb for n ∈ [n0, nb]. Q.E.D.

Proof of Lemma 4
dλE

dE
= 0 follows immediately from the result that λE = G (n1). Since E does not impact

λE, consumption x (.) (which is determined by (16)) is not affected by E. (15) shows that nb

is determined completely by the distribution of skills and the rank order weights φ (.) and is
thus not affected by E so that dnb

dE
= 0. Finally, the equation for z (.) in proposition 1 (taking

the previous results into account) implies that dz(n)
dE

= 1 for all n ∈ [n0, n1]. Q.E.D.

Proof of Proposition 2

The main departure from the proof of lemma 2 is that the transversality condition for
z (n0) is now changed to λz (n0) < 0. The reason is that (by assumption) the restriction
z (n0) ≥ 0 is binding. In other words, one would like to reduce z (n0) in order to raise welfare
(which is exactly what λz (n0) < 0 implies) but is prevented from doing so by the restriction
z (n0) ≥ 0. Together with equation (24), λz (n0) < 0 implies that there exists nz > n0 such that
λz (n) < 0 for all n ∈ [n0, nz〉. Hence, the optimal ω (n) determined by equation (22) equals
ω (n) = z′ (n) = 0 for n ∈ [n0, nz〉. Lemma 1 then implies that also x′ (n) = 0 for these types
so that types n ∈ [n0, nz] are bunched together with z (n) = 0.

The other conditions for optimality are similar to the ones in the proof of lemma 2. In
particular, equations (22), (23) and (24) together with the transversality conditions λz (n1) =
λu (n0) = λu (n1) = 0 continue to apply. Indeed, the analysis in the proof of lemma 2 is correct
for types n ≥ nz. The main difference with the proof of lemma 2 is that we derive two equations
in nz and λE to determine the size of the bunching interval and the marginal cost of public
funds.

The first relationship is found by solving equation (27) starting from the endpoint n1 and
using λu (n1) = 0

λu+ (n) = −n [λE (1− F (n))− (G (n1)−G (n))] (36)

for all n ∈ [nz, n1]. The + in λu+ indicates that it is the solution for λu from above nz. Solving
equation (23) starting from n0 using λu (n0) = 0 and taking into account that x (n) = xz for
n ≤ nz, we find

λu− (n) =

[
F (n)

λE

v′ (xz)
− F̄ (n)

]
(37)

for all n ∈ [n0, nz]. Setting λu+ (nz) = λu− (nz) , we obtain

F (nz)
λE

v′ (x (nz))
− F̄ (nz) = −nzλE (1− F (nz)) + nz (G (n1)−G (nz)) , (38)

which can be rewritten as equation (18) in the proposition.

As in the proof of proposition 1, consumption x (n) for n ≥ nz is determined by equation
(32). By thus solving the path for x (.) from above, we observe that xz = x (nz) because
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ω (n) = 0 for n ≤ nz implies that consumption does not fall further. Substituting (32) for
n = nz to eliminate v′(xz) from (38) and solving for λE, we arrive at the first relation between
nz and λE

17

λE =
F̄ (nz) +

(
nz − F (nz)

f(nz)

)
(G (n1)−G (nz))

nz − F (nz)
1−F (nz)

f(nz)

. (39)

The second relation between nz and λE follows from the government budget constraint and

the condition z (nz) = 0. In particular, substituting u (n) = 1
n

(
Kz − E +

∫ n

nz
v (x (t)) dt

)
(from

(31)) into (30) to eliminate u(n), we obtain

z (n) = nv (x (n))−Kz + E −
∫ n

nz

v (x (t)) dt. (40)

To solve for Kz, we employ (5), which can here be written as (using T (n) = −x(nz) for n ≤ nz

and T (n) = z(n)− x(n) for n ≥ nz)

−F (nz) x (nz) +

∫ n1

nz

f (n)

[
nv (x (n))−Kz + E −

∫ n

nz

v (x (t)) dt− x (n)

]
dn = E.

By integrating by parts, we rewrite this equation as

(1− F (nz)) (Kz − E) = −E − F (nz) x (nz) +

∫ n1

nz

{
f (n) [nv (x (n))− x (n)]
− (1− F (n)) v (x (n))

}
dn.

Substituting this expression for (Kz − E) into equation (40) and using z (nz) = 0, we arrive at
the second relation between nz and λE, namely equation (19) in the proposition.

The next two lemmas derive some properties of the two equations (18) (or equivalently (39))
and (19).

Lemma 7 Equation (18) in (nz, λE) space has the following properties:

♦ it goes through the points (n0, G (n1)) and
(
n1,

1
n1

)
,

♦ it is downward sloping for all nz ∈ [n0, n1] if x (n) as determined by equation (16) is increasing
in n,
♦ a point (nz, λE) with λE > G (n1) cannot be part of a solution to the optimization problem
(17) because it violates monotonicity for n ≥ nz.

18

Proof. ♦ Substitution of nz = n0 in (18) yields

λE =
0 + (n0 − 0) (G (n1)− 0)

n0 − 0
= G (n1) .

17Note the similarity with equation (34) above, which also follows from the condition that λu (n) is continuous
at the end of the bunching interval.

18See below for a sketch of the analysis if there is both z = 0 bunching and bunching due to violation of
monotonicity.
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Similarly, we obtain for nz = n1

λE =
1 +

(
n1 − 1

f(n1)

)
0

n1 − 0
=

1

n1

.

Since G (n1) > 1
n1

, this curve must be downward sloping over parts of the range [n0, n1].
♦ Note that (from (36)) λu+ (n0) = n0 (G (n1)− λE) . Hence, λu+ (.) can be written as (from
(23))

λu+ (n, λE) = n0 (G (n1)− λE) +

∫ n

n0

f (t)

(
λE

v′ (x (t))
− φ (t)

)
dt, (41)

where x(t) is determined by (32).

We can write λu− (.) as (from (23))

λu− (n, nz, λE) =

∫ n

n0

f (t)

(
λE

v′ (x (nz))
− φ (t)

)
dt. (42)

A point (nz, λE) on curve (18) satisfies

λu+ (nz, λE) = λu− (nz, nz, λE) ,

which can be written as

n0 (G (n1)− λE) =

∫ nz

n0

f (t)

(
λE

v′ (x (nz))
− λE

v′ (x (t))

)
dt.

Differentiating this expression with respect to λE and nz, we find


−n0

G (n1)

λE

+

∫ nz

n0

f (t) λE

{−v′′ (n (nz))

(v′ (x (nz)))
2

dx (nz)

dλE

− −v′′ (n (t))

(v′ (x (t)))2

dx (t)

dλE

}

︸ ︷︷ ︸
(∗)

dt


 dλE =

∫ nz

n0

f (t) λE
−v′′ (n (nz))

(v′ (x (nz)))
2

dx (nz)

dnz

dtdnz.

Differentiating equation (16) with respect to λE, we derive

v′′ (x (t))
dx (t)

dλE

=
1

f (t)
(v′ (x (t)))

2 G (n1)−G (t)

λ2
E

.

Substituting this into the part labelled (∗) in the equation above, we obtain

(∗) =
1

f (nz)

G (n1)−G (nz)

λ2
E

− 1

f (t)

G (n1)−G (t)

λ2
E

.
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By integrating by parts, we can write dλE

dnz
as

dλE

dnz

= −
F (nz) λE

−v′′(n(nz))

(v′(x(nz)))2
x′ (nz)

nz − F (nz)
1−F (nz)

f(nz)

= −
F̄ (nz) +

(
nz − F (nz)

f(nz)

)
(G (n1)−G (nz))

(
nz − F (nz)

1−F (nz)
f(nz)

)2 F (nz)
−v′′ (n (nz))

(v′ (x (nz)))
2x′ (nz) .

where we have used the expression for λE in equation (39). To prove that dλE

dnz
< 0 if x′ (n) > 0

for all n, we need the following inequality to hold for all nz

F̄ (nz) +

(
nz − F (nz)

f (nz)

)
(G (n1)−G (nz)) ≥ 0

Note that for nz = n0 and for nz = n1 this inequality holds strictly. Furthermore, it is clear
from equation (18) that λE > 0 for all nz ∈ [n0, n1]. Using λE > 0 and (39), we note that

F̄ (nz) +

(
nz − F (nz)

f (nz)

)
(G (n1)−G (nz)) < 0

if and only if

nz − F (nz)

f (nz)
(1− F (nz)) < 0.

Assume (by contradiction) that such a point nz exists where the last inequality holds. Since

n0 − F (n0)
f(n0)

(1− F (n0)) > 0 there must exist a point n′ where n′ − F (n′)
f(n′) (1− F (n′)) = 0. Then

for nz just above n′ we find that nz − F (nz)
f(nz)

(1− F (nz)) < 0 and hence it must be the case that

F̄ (nz)+
(
nz − F (nz)

f(nz)

)
(G (n1)−G (nz)) < 0 for nz just above n′. Substituting n′−F (n′)

f(n′) (1− F (n′)) =

0 into this inequality yields

F̄ (n′) +

(
n′ − n′

1− F (n′)

)
(G (n1)−G (n′))

= F (n′)

[∫ n′

n0
φ (t) f (t) dt

F (n′)
−

∫ n1

n′
n′
t
φ (t) f (t) dt

1− F (n′)

]
> 0

because φ (n) is decreasing in n and n′
t

< 1 for t ∈ 〈n′, n1]. Hence, by continuity, for nz

just above n′ we find that F̄ (nz) +
(
nz − F (nz)

f(nz)

)
(G (n1)−G (nz)) > 0. This together with

nz− F (nz)
f(nz)

(1− F (nz)) < 0 for nz just above n′ leads to λE < 0. This contradicts λE > 0 for all

nz ∈ [n0, n1]. This implies that there is no nz ∈ [n0, n1] such that nz − F (nz)
f(nz)

(1− F (nz)) < 0.
Therefore we find that

nz − F (nz)

f (nz)
(1− F (nz)) ≥ 0 (43)

F̄ (nz) +

(
nz − F (nz)

f (nz)

)
(G (n1)−G (nz)) ≥ 0 (44)
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for all nz ∈ [n0, n1].
♦ Consider a point (nz, λE) on the curve with λE > G (n1). Then continuity of (39) implies
that another point (n′z, λ

′
E) on the curve exists such that n′z > nz and λ′E > G(n1), which

implies (from (36)) that λu+ (n0, λ
′
E) < 0. Since λu− (n0, nz, λE) = 0, λu+ crosses λu− from

below at n = n′z, i.e.

lim
n↑n′z

∂λu+ (n, λ′E)

∂n
> lim

n↑n′z

∂λu− (n, n′z, λ
′
E)

∂n
,

or equivalently (from (41) and (42))

lim
n↑n′z

x (n) > x (n′z) ,

where x (n′z) is evaluated at λ′E. Since λ′E can be chosen close to λE and x (n) (as determined
by equation (16)) is continuous in λE, we must have

x′ (n′z) < 0

evaluated at λE. Therefore, a point (nz, λE) with λE > G (n1) implies that monotonicity of
x (.) is violated for n ≥ nz and thus cannot be part of a solution to (17).

Lemma 8 Equation (19) is upward sloping in (nz, λE) space if x′ (n) ≥ 0.

Proof. Define

ψ (nz, λE) ≡
∫ n1

nz

{
f (n) [nv (x (n, λE))− x (n, λE)]
− [1− F (n)] v (x (n, λE))

}
dn (45)

− [(1− F (nz)) nzv (x (nz, λE)) + E + F (nz) x (nz, λE)] .

(19) can be written as ψ (nz, λE) = 0. It is routine to verify

ψnz (nz, λE) = −x′ (nz, λE)
nzf (nz) + F (nz)

[
G(n1)−G(nz)

λE
− (1− F (nz))

]

G(n1)−G(nz)
λE

+ nzf (nz)− (1− F (nz))
≤ 0,

because x′ (nz, λE) ≥ 0 by assumption, and

ψλE
(nz, λE) =

[ ∫ n1

nz
{[tv′ (x (t, λE))− 1] f (t)− [1− F (t)] v′ (x (t, λE))} dx(t,λE)

dλE
dt

− ((1− F (nz)) nzv
′ (x (nz, λE)) + F (nz))

dx(nz ,λE)
dλE

]

=

[ ∫ n1

nz
{v′ (x (t, λE)) (tf (t)− [1− F (t)])− f (t)} dx(t,λE)

dλE
dt

+ ((1− F (nz)) nzv
′ (x (nz, λE)) + F (nz))

(
−dx(nz ,λE)

dλE

)
]

=




∫ n1

nz
f (t)

G(n1)−G(t)
λE

G(n1)−G(t)
λE

+f(t)t−[1−F (t)]

[
−dx(t,λE)

dλE

]
dt

+ ((1− F (nz)) nzv
′ (x (nz)) + F (nz))

[
−dx(nz ,λE)

dλE

]


 > 0.
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Hence,
dλE

dnz

= −ψnz (nz, λE)

ψλE
(nz, λE)

≥ 0.

We thus have two curves in (nz, λE) space. We can identify four possible cases:

1. The curve (19) lies everywhere below the curve (18) in (nz, λE) space,

2. the curve (19) lies everywhere above the curve (18) in (nz, λE) space,

3. the curve (19) crosses the curve (18) at a point where (19) is upward sloping and (18)
downward sloping and λE ≤ G (n1).

4. the curve (19) crosses the curve (18) at a point (nz, λE) where x′ (nz) < 0.

In case 1, E is so low (probably negative) that no one needs to work in this economy.

In case 2, the solution in lemma 2 implies z (n0) > 0. This can be seen as follows. If instead
of deriving equation (19) with z (nz) = 0, we derive an equation with z (nz) = z̄ > 0, the curve
(19) shifts downwards and hence we find a point of intersection between (19) and (18) where
z (n0) = z̄ > 0.

In case 3, the intersection point determines the equilibrium values of nz and λE.

In case 4, the point (nz, λE) is not an equilibrium point. x′ (nz) < 0 implies that λz (nz) < 0
and hence types slightly above nz should be bunched together with type nz with the same
consumption and production (ω (n) = 0 for these types). Since z (nz) = 0, the z = 0 bunching
interval then extends to types n > nz beyond nz. In this case, the procedure to find an
equilibrium is as follows. Extend the bunching interval to the smallest value ñz > nz such
that x′ (ñz) ≥ 0. If this point (ñz, λE) satisfies the government budget constraint (19), it
is the solution to the maximization problem. If it does not satisfy the government budget
constraint, there are two possibilities. First, the solution (ñz, λE) may be too expensive to be
an equilibrium. Then the solution will feature z (n) = z̄ > 0 for n ∈ [n0, nz] so that z = 0
bunching does not occur. Second, the solution (ñz, λE) may leave government money on the
table. In that case, the bunching interval should be extended beyond ñz.

Finally, we need to prove that τ (nz) > 0. (26) implies that τ (nz) > 0 if and only if
λu (nz) < 0. Hence, the proof boils down to showing that λu+ (nz, λE) < 0 if λu+ (nz, λE) =
λu− (nz, nz, λE) . Suppose (by contradiction) that λu+ (nz, λE) > 0. Then λu+ (n, λE) is decreas-

ing in n at nz because λu+ (n1, λE) = 0 and the expression λ′u+(n) =
(

λE

v′(x(n))
− φ (n)

)
changes

sign only once (from negative to positive) as a function of n (since x′ (n) ≥ 0 and φ′ (n) ≤ 0).
Hence,

λE

v′ (x (nz))
− φ (nz) < 0 (46)

Next observe that λu− (n0, nz, λE) = 0 together with λu− (nz, nz, λE) > 0 implies that λE

v′(x(nz))
−

φ (n) > 0 for some n ≤ nz. φ′ (n) ≤ 0 implies in fact that λE

v′(x(nz))
−φ (nz) > 0, which contradicts

inequality (46). Hence, λu+ (nz, λE) = λu− (nz, nz, λE) < 0 and thus τ (nz) > 0. Q.E.D.

Proof of lemma 5
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As established in the proof of proposition 2, we must have that x′ (nz) > 0 so that nz and λE

are determined by the intersection of the downward sloping curve (18) and the upward sloping
curve (19). Clearly, equation (18) is not affected by a change in E. The proof of lemma 8
implies that (19) shifts upward (and to the left) as E increases. Hence, nz falls and λE rises
with E.

Since λE reduces x (nz) and we have x′ (nz) ≥ 0 and dnz/dE < 0, we find that xz = x (nz)
falls with E. Furthermore, (16) implies that the rise in λE raises the marginal tax rate and
reduces consumption for all types n > nz. Writing utility for type n > nz as

u (n) =
nz

n
v (xz) +

1

n

∫ n

nz

v (x (t)) dt,

we find that utility declines with E for all n > nz. Finally, the tax paid by type n can be
written as

T (n) = T (n0) +

∫ n

n0

T ′ (t) dt

= −xz +

∫ n

nz

T ′ (t) dt,

since z (n) = 0 for all n ∈ [n0, nz]. Hence, dxz

dE
< 0 implies that a value n∗ > nz exists such that

dT (n)

dE
> 0

for all n ∈ [nz, n
∗〉. Q.E.D.

Proof of Lemma 6

First, we prove the effect of α on nz by analyzing the effect of α on the LS and GBC curves.
To find the effects of α on the GBC curve, write this curve as

ψ (nz, λE, α) = 0,

where the function ψ (nz, λE) is defined in equation (45). In this equation, both λE and α work
through their effects on x (n) only.

To consider the impact of α on x(n) for n ≥ nz, we differentiate (16) with respect to α and
note that the sign of this effect depends on the sign of

h(n) ≡ d (Gα (n1)−Gα (n))

dα
=

∫ n1

n

d ln φα (t)

dα

1

t
φα (t) f (t) dt.

The properties of h(n) are as follows (see Figure 2). The normalization
∫ n1

n0

d ln φα(t)
dα

φα (t) f (t) dt =

0 implies that h(n0) > 0 since d ln φα(t)
dα

is declining in skill t so that in h(n0) the larger values of
d ln φα(t)

dα
are weighted more heavily.

∫ n1

n0

d ln φα(t)
dα

φα (t) f (t) dt = 0 and d ln φα(t)
dα

is declining in skill

t implies also that there exists a skill level n̄ such that d ln φα(n)
dα

≥ 0 for n ≤ n̄ and d ln φα(n)
dα

< 0
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Figure 2: The function h(n).

for n > n̄. Since sign[h′(n)] = −sign[d ln φα(n)
dα

], this implies that h(n) is first decreasing until
skill n̄ and then increases for n > n̄. Since h(n1) = 0, we know that h(n̄) < 0. Hence, h(n0) > 0
implies that there exists a skill level n̂ between n0 and n̄ where h(n̂) = 0. For all n > n̂, we
have that h(n) ≤ 0. Hence, the condition nz > n̂ implies that h(n) is negative so that x(n)
declines with α for n ≥ nz.

Since an increase in not only λE but also α thus reduces x (n) for n ≥ nz ≥ n̂, both variables
exert the same effect on ψ (.) for given nz ≥ n̂. Hence, for given nz ≥ n̂, an increase in α must
be accompanied by a fall in λE to establish budget balance (ψ = 0) again. In other words, an
increase in α shifts the GBC curve downward in figure 1.

Consider now the labour supply LS curve in the form of equation (39). We find that

dλE

dα
=

dF̄ (nz)
dα

+
(
nz − F (nz)

f(nz)

)
d(Gα(n1)−Gα(nz))

dα

nz − F (nz)
1−F (nz)

f(nz)

We have established above that h(nz) = d(Gα(n1)−Gα(nz))
dα

< 0 since nz > n̂. Hence, a sufficient

condition for dλE

dα
> 0 is

dF̄ (nz)

dα
+ nz

d (Gα (n1)−Gα (nz))

dα
=

∫ nz

n0

d ln φα (n)

dα
φα (n) f (n) dn +

∫ n1

nz

d ln φα (n)

dα

nz

n
φα (n) f (n) dn ≥ 0

We denote this expression as a function of nz by γ (nz) and prove that γ (nz) ≥ 0 for all

nz ∈ [n0, n1]. First note that γ′ (nz) =
∫ n1

nz

d ln φα(n)
dα

1
n
φα (n) f (n) dn = h(nz). The function

γ(.) is thus increasing on the interval [n0, n̂〉 and decreasing for n ∈ 〈n̂, n1]. Since γ (n0) =

n0h(n0) > 0 (since h(n0) > 0, see above) and γ (n1) = 0 (since
∫ n1

n0

d ln φα(t)
dα

φα (t) f (t) dt = 0
from the definition of α),we must have that γ (nz) ≥ 0 for all nz ∈ [n0, n1].
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Hence, for nz ≥ n̂, an increase in α shifts the GBC downward in figure 1 and the LS curve
upward.

Now we turn to effect of α on x (n). Equation (32) implies that

dx (n)

dα
Q 0 if and only if

d
[

G(n1)−G(n)
λE

]

dα
Q 0

for n ∈ [nz, n1]so that

sign

(
dx (n)

dα

)
= sign

(
d[G(n1)−G(n)]

dα

G (n1)−G (n)
−

dλE

dα

λE

)

= sign

(
h (n)

G (n1)−G (n)
−

dλE

dα

λE

)
. (47)

We will first prove that h(n)
G(n1)−G(n)

is decreasing in n.
d
h

h(n)
G(n1)−G(n)

i

dn
< 0 if and only if

h′ (n) (G (n1)−G (n)) + G′ (n) h (n) < 0,

or equivalently ∫ n1

n
d ln φα(t)

dα
φα(t)f(t)

t
dt∫ n1

n
φα(t)f(t)

t
dt

− d ln φα (n)

dα
< 0.

This last inequality holds because d ln φα(t)
dα

is decreasing in t by definition 1 and the first expres-

sion is a weighted average of terms d ln φα(t)
dα

for t ≥ n which is smaller than the second term
d ln φα(n)

dα
.

Returning to equation (47) and noting that
dλE
dα

λE
does not vary with n while h(n)

G(n1)−G(n)
is

decreasing in n, we have the following three possibilities:

(i) dx(n)
dα

> 0 for each n ∈ [n0, n1〉,
(ii) dx(n)

dα
< 0 for each n ∈ [n0, n1〉 and

(iii) there exists ñ ∈ 〈n0, n1〉 such that

dx (n)

dα
> 0 for each n ∈ [n0, ñ〉

dx (n)

dα
< 0 for each n ∈ 〈ñ, n1〉.

Note that v′ (x (n1)) = 1
n1

and hence x (n1) is not affected by α. Also note that x (n) = x (nz)
for all n ∈ [n0, nz].

We show that cases (i) and (ii) contradict the optimality of the consumption schedule x (n)
by writing welfare in terms of consumption only, as in equation (12). We write welfare as

Wα =

∫ n1

n0

u (n) φα (n) f (n) dn,
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where

u (n) = v (x (nz)) for all n ∈ [n0, nz]

u (n) =
1

n

[
nzv (x (nz)) +

∫ n

nz

v (x (t)) dt

]
for all n ∈ [nz, n1] . (48)

Substituting these expressions for u(n) into the expression for Wα and using integration by
parts, we find

Wα =
[
F̄ (nz) + nz (G (n1)−G (nz))

]
v (x (nz)) +

∫ n1

nz

v (x (n)) (G (n1)−G (n)) dn.

Now consider two values of α denoted by α′ < α′′. Then case (i) can be ruled out because
xα′′ (n) would lead to higher welfare Wα′ contradicting the optimality of xα′ (n) (as changing α
impacts only the objective function of the government and does not affect the feasibility and
incentive compatibility constraints of a menu (x (n) , z (n)). In a similar fashion, case (ii) can
be ruled out. That leaves only case (iii), which is the one in the lemma.

Since dx(n)
dα

> 0 for each n ∈ [n0, ñ〉, equation (48) implies that utility goes up for a group
of agents n ∈ [n0, n

∗〉 where n∗ > ñ. However, it cannot be the case that utility goes up for
all agents n ∈ [n0, n1] as this would contradict the optimality of the initial allocation. Since
dx(n)

dα
< 0 for each n ∈ 〈ñ, n1〉, equation (48) implies that n∗ < n1 and du(n)

dα
< 0 for n ∈ 〈n∗, n1].

Q.E.D.
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