
372 European Journal of Operational Research 62 (1992) 372-379 
North-Holland 

Theory and Methodology 

Sampling for quality inspection and 
correction: AOQL performance criteria 

J.P.C. Kleijnen, J. Kriens, M.C.H.M. Lafleur and J.H.F. Pardoel 

School of Business and Economics, Tilburg University, Tilburg, Netherlands 

Received May 1990; revised February 1991 

Abstract: By definition, an Average Outgoing Quality Limit (AOQL) sampling plan leads to inspection of 
the whole population if the sample shows a number of defective items k exceeding an acceptance 
number k 0. The literature shows how this constant k 0 and other related parameters can be chosen such 
that the expected value of/5,  the fraction of defectives after inspection and possible correction, does not 
exceed a prespecified constant /sm" This paper studies several other criteria that are ignored in the 
literature. It is based on an extensive Monte Carlo simulation. Its main conclusion is that AOQL 
sampling is useful in practice, including applications in auditing. Yet the probability that the average 
yearly outgoing fraction ~ exceeds the given constant/5,~ can be sizable, if the original before-sampling 
fraction p exceeds /sm-'mildly'. The paper further investigates the effects of splitting the yearly 
population into subpopulations and the effects of underestimating the original fraction. 
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1. Introduction: AOQL 

A OQL sampling plans were originally de- 
signed for quality control in industry. Nowadays 
they are also applied in auditing, which inspired 
this paper. This contribution evaluates these sam- 
pling schemes, using several criteria neglected in 
the literature, especially the probability of quality 
violations in the short run, say a year. 

A OQL sampling plans were introduced by 
Dodge and Romig around 1930; see Dodge and 
Romig (1959). These plans are discussed in the 
monographs by Hald (1981, pp. 116-124) and 
Schilling (1982, pp. 372-399). Their  practical ap- 
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plication to auditing is studied by Kriens and 
Veenstra (1985). Nowadays, further interest in 
quality control is stimulated by the Japanese 
management philosophy; see Cross (1984) and 
Wurnik (1984). (Some of these references are the 
result of an extensive computerized literature 
search.) 

The goal of A O Q L sampling is to guarantee a 
minimum quality after inspection; this quality is 
expressed as a maximum /5m for the expected 
value of the fraction of defectives in the popula- 
tion. For application in auditing Kriens and 
Veenstra (1985) split the yearly population into a 
number of subpopulations. The 'original' quality 
of the yearly population - before sampling and 
correction - is quantified by p, the fraction of 
'defective items' in the yearly population; also see 
the symbol list in Table 1. The yearly population 
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Table 1 
Symbol list (in alphabetical order; random variables are un- 
derscored) 

J 

k = 

k 0 = 
K = 
n = 

N Y =  
p = 

/5 = 
/5 = 

s s  

/SIH 

q = 

~j = 
R 2 

S = 
t = 
X_ 

Number of simulated years in simulation 
Number of defective items in sample 
Acceptance number 
Number of defective items in subpopulation 
Sample size 
Subpopulation size in subperiod s (s = 1 . . . . .  S) 
Estimated number of items per year 
Original (before sampling) fraction of defectivenes in 
yearly population 
Estimate of p 
Fraction of defectives after inspection and possible 
correction 
Outgoing fraction of defectives in period s (s = 1 . . . . .  S) 
Yearly outgoing fraction of defectives: 

Prespecified constant (not to be exceeded by the ex- 
pected value of /5)  
Probability of quality violation: P[_~ >/5,.] 
Estimate of q after j replications 
Measure of fit 
Number of subpopulations per year 
time 
binomial variable with parameters J and q. 

is not known until the end of the year; hence it 
must be estimated. The estimated Number of 
items (correct plus defect) per Year is NY; for 
example, a company is expected to produce NY 
cars per year; in auditing, accounts are sampled 
and NY is measured in dollars per year. Conse- 
quently, after inspection and correction, the qual- 
ity limit means that the expected value of the 
remaining fraction of defectives/3 remains under 
a maximum value/5,n, the so-called Average Out- 
going Quality Limit. 

The sampling scheme has the following steps 
(also see Table 2 later on). 

(i) At the beginning of the year the accoun- 
tants estimate the yearly population size NY. 
They also decide on the number of subpopula- 
tions S; for example, S = 52 corresponds to weeks. 
At the end of period s the size of the subpopula- 
tion turns out to be N~ (s = 1 . . . . .  S). The choice 
of S depends on the organization. 

(ii) From each realized subpopulation, a sam- 
ple of size n is taken (n depends on several 
parameters). 

(iii) Per sample the number of defective items 
k is determined by inspection. Obviously k is 

random, and the integer values k satisfy: 0 < k < 
H. 

(iv) If and only if k exceeds a critical constant 
k 0 (which varies with n), the whole subpopulation 
is inspected and, by assumption, all defective 
items in the subpopulat ion are corrected per- 
fectly. (In auditing, defectives are errors that are 
often removed by corrective actions; Hald, 1981, 
pp. 311-312, discusses imperfect inspection and 
correction of items.) If, however, k < k 0, then 
only the defective items found in the sample  are 
corrected. So after this sampling, the quality of 
the subpopulation is improved, unless no defec- 
tives at all were found (k = 0). 

Denote the outgoing fraction of defectives in 
period s by /5,. Then the outgoing fraction of 
defectives in t-he yearly population is 

2 = E P ,  _ IV , /EN_~  . (1.1) 
s = l  s = l  

Note that ~ reduces to /3 if there are no 
subpopulation~. The auditor ~vishes the average 
outgoing fraction ~ not to exceed the limit of 
defectiveness,/)m" go, given a correct selection of 
the sampling plan's parameters n and k 0, the 
yearly outgoing fraction ~ should satisfy the con- 
dition E[~]  </5 m. Obviously, if the original (be- 
fore saml~ling) fraction was very good already 
(say, p = 0), then E[~]  </3 m. If this quality was 
very bad (p  >>/Sm), ~ e n  the sampling plan im- 
plies that sampling is (nearly) always followed by 
inspection and correction of the whole subpopu- 
lation, so E(~)<</5 m. This gives Figure 1 where 

Table 2 
Sample size n and acceptance number k0, given before-sam- 
pling fraction p, subpopalation size N,, and defectiveness 
limit /5,,,; here /5m = 1% 

Subpopulation 
size N~ 
N~ 

Before-sampling fraction p 

0-0.02 •. • 0.21-0.40 .. • 0.81-1.00 

n k o n k 0 n k .  

1-25 
26-50 

80i-1000 
1001-2000 

2000i-50000 
50001-100000 

All 0 All 0 All 0 
22 0 22 0 22 0 

35 0 80 1 120 2 
36 0 80 1 18(I 3 

85 1 255 4 990 15 
85 1 255 4 1520 22 
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p* is the 'least favorable' value of p; this figure 
assumes that there are no subpopulations. 

Next, we consider the sampling plan's parame- 
ters. Because sampling is without replacement, k 
follows the hypergeometric distribution with pa- 
rameters n, p and N s. The literature proves that 
the critical constant k 0 and the sample size n can 
be computed such that the condition E[/3]-~Pm 
holds; moreover the expected costs can be mini- 
mized if p is known; we shall return to this issue. 
Unfortunately, the original tables in Dodge and 
Romig (1959) contain some inaccuracies; see Hald 
(1981, p. 124) and Van Batenburg, Kriens and 
Veenstra (1988). Therefore we use our own ta- 
bles. Table 2 gives an example of a part of such a 
table. Tables for very small/3m-values are given in 
Cross (1988), while Wurnik (1984) gives nomo- 
grams for k 0 = 0. 

In practice the before-sampling fraction p is 
unknown. In some applications the right most 
column is used; in other applications the left 
most column is taken. Dodge recommended use 
of the right most column for at least two reasons: 
(i) the sample sizes are larger for most Ns and 
hence, more reliable estimates of p are gener- 
ated faster, and (ii) these sampling plans are 
generally more discriminating; also see Schilling 
(1982, p. 375). Our study, however, originates 
from questions raised by Dutch auditors. They 
always try to create situations with values of p as 
small as possible. Only if the auditors expect p to 
have a small value, will they apply statistical 
sampling procedures; therefore, if the AOQL 
procedure is used, they take the left most columns 
of tables like Table 2. 

Even-if p is estimated wrongly, the quality 
constraint E[/3]</3,n is satisfied; the expected 
costs, however, may increase. Moreover, practi- 
tioners usually conjecture that the probability of 
excessive defectiveness is negligible. Figure 1 
shows that if the original fractions p were always 
least favorable (p =p*)  and /~ were distributed 
symmetrically, then the probffbility of a quality 
violation would be 50%: P(/3 >/5 m) = 0.50. Prac- 
titioners presume that actually the probability for 
the average fraction is nearly zero: P(~ >/~m) = 
0.00. This conjecture is the main focus of our 
simulation. (Hald, 1981, p. 310, gives analytical 
approximations for this probability.) 

It hardly takes more computer simulation time 
to estimate how bad the value ,5 is if  the con- 
straint ~ <~/~m is violated. Therefore we also esti- 
mate the following conditional expectation: 

The next sections will show that this paper has 
the following contributions: 

(i) It quantifies the effects of splitting the 
estimated yearly population (NY) into S subpopu- 
lations. A higher S leads to a lower expected 
constraint violation E(~ -/Sin [ ~ >/3 m) (as Figure 
4 will show). 

(ii) It quantifies not only 
outgoing fraction ~ (Figure 2) 
bility of a constra]nt violation 
3). That probability may be as 
is certainly not negligible! 

(iii) It estimates the effects 
the before-sampling fraction 

the average yearly 
but also the proba- 
P(~ >/~m) (Figure 

high as 40%, which 

of underestimating 
p if practitioners 

t 
Pm[ Oua1£ty l£m£t 

~ ~ P 

p~ 

Figure 1. Expected fraction of defectives a~er sampling E(~)versus fraction before sampling p (different scales on different axes) 
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Figure 2. Average yearly outgoing quality ~ versus fraction of defectives before sampling (yearly population NY = 1000000; 
subperiods S = 52) 

use only the left most columns of tables like 
Table 2. This practice results in higher costs 
(Figure 5) while the probability of a constraint 
violation may nevertheless increase (Figure 3). 

(iv) It gives more insight into AOQL plans. 
For example, higher variability in the before-sam- 
pling fraction p (over subpopulations) gives addi- 
tional protection (see Section 2). Estimation of p 

~(:_p • ~m ) 
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Figure 3. Estimated probability of excessive defectiveness, P ( ~  >/3m) (NY = 100000; S = 52) 
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~(_~ - IP m I P >  Pm ) X i000 
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Figure 4. Estimated value /~ of excessive defectiveness, E (~  
- P m  I_P >Pm ) in theoretical approach (NY = 1000000) 

is important; the paper suggests a simple estima- 
tion scheme based on the AOQL scheme itself 
(Section 3). 

2. Design of Monte Carlo experiment 

Table 2 illustrated that the sample size n and 
the acceptance number k 0 are completely deter- 

mined by the subpopulation size Ns, the before- 
sampling fraction p, and the defectiveness limit 
/5,,. That subpopulation size N s depends on the 
estimated yearly population size NY and on the 
number of subperiods S. In the simulation we 
study three values for S, namely 4, 13, and 52 
which correspond to quarters, 'months', and 
weeks; these periods are traditional in accounting 
practice. The magnitude of NY in the simulation 
is based on our experience with auditing applica- 
tions: NY is 10000 or 100000 or 1000000. We 
assume that _Ns is uniformly and independently 
distributed with expected value NY/S; the range 
is such that the coefficient of variation is roughly 
6%, which is an arbitrarily selected value. Note 
that the actual yearly amount y-.s N~ deviates 
from the estimate NY, with probability one. 

We further select the following six values for 
the defectiveness limit/sin: 0.1%, 0.5%, 1%, 2%, 
5%, 10%. Selection of the before-sampling frac- 
tion p in the simulation should relate to the 
defectiveness limit /sm, which can be seen as 
follows. If p were very high, then the AOQL 
scheme would be futile: sampling would usually 
be followed by inspection of the whole subpopu- 
lation. Therefore we restrict the simulation to 
p < 6/3,,. There are no tables available for p > 
2/3 m. This, however, is no problem if only the left 
most columns of the tables are used (see Section 
1). Obviously not all subpopulations have the 

* 100% 

1 . 2 -  
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0.0- 
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i I I I I | I 
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Figure 5 Estimated fraction of subpopulations, fully inspected (NY = 1000000; S = 52) 
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same p, even if all subpopulations have the same 
expected value E ( p ) .  Therefore  we sample p. 
Figure 1 demonstra/-ed that the performance E ( ~ )  
improves as p deviates from the least favorat~e 
value p*.  In preliminary simulation experiments 
we sampled p from a distribution with a high 
variance, and- indeed ,6 decreased (not further 
reported in this paper). Therefore  we concentrate 
the simulation on worst cases: p has a range of 
only 0.2 i~m (several distributions of p are dis- 
cussed in Case and Keats, 1982). We further 
assume that p is uniformly distributed over that 
range. We do-change the expected value E[ 17 ]: p 
varies between 0 and 6/7 m as we explained above. 
So we sample p from the uniform distribution 
between 0 and 0.2/~m, between 0.2/3 m and 
0.4/~ m . . . . .  between 5.8/3 m and 6/3 m. Figures 2 
through 5 do not extend to p = 6/7 m because the 
pattern is clear from figures for smaller values of 
p. 

In total we simulate 1620 factor combinations 
while using only the left most columns of the 
tables; this we call the 'practitioner's approach', 
which is abbreviated to 'Practice'  in Figures 2, 3, 
and 5. We simulate 540 combinations with the 
optimal [n, k 0] combinations: ' theoretical ap- 
proach', abbreviated to 'Theory'  in these figures. 

There  is an important technical issue in the 
simulation: how often (how many years) should 
each factor combination be simulated in order to 
obtain reliable estimates of performance criteria 
such as P[,~ >/Sin]? By definition, one replication 
(one simu~ted year) yields a binomial variable 
(say) _x with q =P(_x = 0) = P [ ~  >/3m]. When the 
normal approximation to the-binomial distribu- 
tion is used, it is straightforward to derive J, the 
number of simulated years needed to estimate q 
with either a relative precision of 10% or an 
absolute precision of 0.001; see Kleijnen (1987, 
pp. 46-51). We stop as soon as one of these 
requirements is satisfied. This approximation 
shows that we need at mos t  16221 replications to 
satisfy either the relative precision or the abso- 
lute precision requirement, with a one-sided 
probability of 10%; this maximum occurs when 
q =0.01. Actually we do not know q. So we 
substitute the 'current '  estimate of q after at 
least 100 replications; that is, we substitute the 
estimate 0j available after j replications with 
j = 100, 101 . . . .  , J. The average number of repli- 
cations turns out to be roughly 1000. We examine 

not only the performance criterion q = P[ ~ >/3m], 
but several more criteria. Yet, since tffe main 
criterion is q, we concentrate on q to select the 
number of replications. The next section will show 
that the simulation results show patterns not ob- 
scured by too much noise. 

It takes 40 hours of computer time on a VAX- 
780 minicomputer to simulate 1620 plus 540 fac- 
tor combinations, each combination replicated 
roughly 1000 times. We would have needed even 
more computer time, had we not introduced the 
following approximation. The number of defec- 
tives k has a hypergeometric distribution (see 
Section 1: sampling without replacement). The 
binomial distribution (sampling with replace- 
ment) gives a good approximation provided n << 
N~, which is often the case (but not always: if NY 
is small, then it may happen that n > Ns); see 
Table 2. In turn, the Poisson distribution provides 
a good approximation to the binomial distribu- 
tion if p is small; see Schilling (1982, p. 64). We 
use the latter approximation, simulating the Pois- 
son distribution through the subroutine in Naylor 
et al. (1966, p. 114). This Poisson program runs 
20 times faster than the hypergeometric program 
does on our computer. 

For completeness sake we mention that we use 
the multiplicative congruential pseudorandom 
number generator with multiplier 1313 and modu- 
lus 259 . This generator was developed and tested 
by NAG (Numerical Algorithms Group) in the 
United Kingdom. 

3. Monte Carlo results 

The Monte Carlo experiment yields an enor- 
mous amount of data. We analyze these data 
through regression analysis (using SAS), in order 
to smooth the observations and to obtain succinct 
representations. Preliminary plots looked like 
gamma functions. Therefore we fit such a non- 
linear regression model for the yearly outgoing 
fraction ~ versus the original fraction p, which 
yields Figure 2 (where 'Practice'  refers to using 
only the left most columns of the tables, and 
'Theory'  refers to the optimal (n, k 0) combina- 
tions; see Section 2). The regression model has an 
R 2 adjusted for the number of explanatory vari- 
ables that is higher than 0.95. Figure 2 looks like 
the theoretical Figure 1: there is a least favorable 
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value for p and ~ remains below ~/~m" This result 
is not surprising, but it verifies the correctness of 
our simulation program! 

If the original fraction p satisfies p </~m, then 
obviously q = P [ ~  >/~m] = 0. If, however, p >/~m, 
then we again fi t  a function like the gamma 
function, which yields Figure 3. Again R 2 is high: 
R 2= 0.99 for the theoretical approach, and 0.74 
for the practitioner's approach. Figure 3 shows 
that there is a sizable probability of violating the 
limit on the defectiveness, if the 'practitioner's 
approach' is followed. The worst case is an esti- 
mated probability of  0.618 for p = 0.017 (this is 
one of the observations to which the curve is 
fitted). We repeat, however, that the simulation 
concerns worst cases (since the fraction p of the 
subpopulation is sampled from a uniform distri- 
bution with a small range; see Section 2). 

If/~ > Pm, then how bad is the excessive defec- 
tiveness E [ ~ - / 5  m I~ >/3m]? Figure 4 shows that 
smaller sub~eriods (higher S) give extra protec- 
tion. Our explanation follows from Table 2: if the 
subpopulation size N is halved (say, from 2000 to 
1000 units), then the sample size n decreases only 
slightly (from 36 to 35); so if the number of 
subpopulations S increases, then Ns decreases, 
but the total sample size over a whole year in- 
creases drastically. 

Next, we consider the costs of the sampling 
plans. Specification of cost functions is rather 
arbitrary, so we use the fraction of the subpopu- 
lations that is rejected and fully inspected. (For 
specific cost functions we refer to Ercan et al., 
1974, Hald, 1981, and Schneider et al., 1988.) The 
AOQL scheme implies that all N~ units (of a 
subperiod) are inspected if k > k 0. Figure 5 shows 
that the fraction of fully inspected subpopulations 
increases drastically if p >/5 m. Obviously the 
practitioner's approach is more expensive. The 
curves are hardly affected by S, the number of 
subperiods (not displayed). 

Note that the simulation shows that it is im- 
portant to have a good estimate of  p, the before- 
sampling fraction of defectives. We might use the 
estimator /3 = k / n  if k < k0, and /3 = K/_N~ if 
k > k 0 where K denotes the number of defec- 
tives in the subpopulation (of size _N~). As time t 
goes on, we obtain a series of estimators _Pt, 
which can be combined; for example, we may 
weigh fit with the sample size n t if k < k 0 and 
the subpopulation size N t if k > k 0. I f /3  t shows 

serial correlation or non-stationary behavior, we 
may apply time series techniques. A different 
approach uses prior distributions; it is discussed 
by Hald (1981, pp. 15-21, 125-138, 335, 424-425). 
Since we did not investigate our procedure for 
estimating p, we do not know if our heuristic is 
better than Hald's approach is. 

4. Conclusions 

AOQL sampling plans are indeed used in 
practice, including auditing. It might be assumed 
that if the expected yearly fraction of defectives 
after inspection and correction E(,~) meets the 
limit on defectiveness/Sin, then the -probability of 
exceeding that limit/~,, is negligible: 

However, simulation data analyzed by regres- 
sion models yielded Figure 3, which shows that 
this probability is sizable if the before-sampling 
fraction p is higher than the limit /~m but not 
extremely high (if p </~m, then obviously ,~ can- 
not exceed /~m; if p >>/~m, then sampling is usu- 
ally followed by inspection of the whole subpopu- 
lation). If p varies much over subperiods, then 
P[~>/~, , ] -decreases  (we simulated worst case 
situations: small ranges of p). Figure 4 shows that 
increasing the number of periods S decreases the 
magnitude of the expected constraint violation. 
Underestimating p is not wise: it does not give 
extra protection (in Figure 3 the 'Practice' curve 
lies above the 'Theory' curve); yet more inspec- 
tion work is done (Figure 5). So in practice one 
should obtain more information about p, One 
might get estimates of p from the sampling pro- 
cedure itself: if k < k 0, then /~ = k / n ;  else /~ = 
K/(_N s. To reduce and control p itself means That 
the inspection costs decrease (Figure 5); the ex- 
pected value of the excessive defectiveness also 
decreases (Figure 4). If p approaches the least 
favorable value p* from above, then the proba- 
bility of excessive defectiveness increases (Figure 
3) and the average quality deteriorates (Figure 2). 
The drive towards zero defects (p  = 0) gives best 
results. 
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