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Abstract 

In this paper we consider a model for redistribution of risk by means of reinsurance contracts as well as financial 
assets. There is an important difference between the trade on financial markets and the trade on reinsurance 
markets. The trade of reinsurance contracts is constrained in the sense that agents can only buy reinsurance 
contracts for those risks that they insured initially. Such a constraint does not apply for financial markets. Therefore, 
the existing equilibrium models for redistribution of risk are adapted to the situation where financial markets are 
included in the model, where the trade of reinsurance is constrained and where markets are potentially incomplete. 
We use ‘General Equilibrium Theory for Incomplete financial markets’ to prove that equilibria exist on such a mixed 
financial-reinsurance market. We show that the existence of constraints on the reinsurance portfolios that can be 
traded can have an important influence on the structure of the equilibrium prices. More precisely, we show that 
limited arbitrage possibilities can exist at equilibrium. As a consequence, there does not necessarily exist a risk 
neutral probability distribution. Furthermore, we study the constrained Pareto optimality of the equilibria. 

Key words: Optimal reinsurance; Incomplete markets; Trading constraints; Arbitrage possibilities; Constrained 
Pareto optimality; Risk neutral probability distribution 

1. Introduction 

It is well known that in general insurance agents will redistribute the insured risks amongst each other 
by means of reinsurance contracts. In doing so, they try to optimize their risk position, given the prices of 
reinsurance. Vaguely stated (we will be more precise in the sequel), this means that each of the agents 
has a certain rule to decide whether he prefers a risk position to another risk position. According to this 
rule, he will choose his ‘optimal’ risk position. 

Rules which are used quite often to ‘choose’ between risk positions are based on actuarial calcula- 
tions. This means that several stochastic characteristics of a risk, such as its mean and variance, are 
calculated. Prices are then calculated using well-known actuarial pricing principles. Given the prices for 
(rejinsurance and the stochastic characteristics of the insured risks, the agent has to decide upon 
reinsurance. 

In De Waegenaere and Delbaen (1992), the authors show how, for stop loss reinsurance contracts, 
these rules can be refined using conditional expectation and conditional variance of the residual risk. 
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Expected value and variance are calculated conditional to the information that the agent has about the 
claim height process at that time. Furthermore, the optimal hedge between residual risk and reinsured 
risk is calculated. These three criteria allow for a continuous adjustment of the reinsurance portfolio. 

A criticism on these kind of rules however, is that they are only based on the stochastic characteristics 
of the insured risks, and therefore don’t keep track of the surrounding market conditions such as the 
possibilities on the financial markets. It is clear however, that financial markets are very important for 
insurers and reinsurers, because they provide a means to invest premiums. Therefore, it would be 
interesting to have a model for optimal reinsurance where these market conditions, as well as the 
stochastic characteristics of the risks, can play a role in determining redistributions of risks and prices for 
reinsurance of risks. In such a model, agents will construct a financial portfolio and a risk portfolio 
((re)insurances> according to their own preferences. Of course, these ‘optimal’ choices will depend on the 
prices of the financial assets and the (re)insurance contracts that can be traded. Now the question is 
whether prices for financial assets and (re)insurance contracts can be found such that this behaviour of 
the agents leads to an equilibrium, i.e. the net trade of contracts equals zero. 

If we formulate it like this, it becomes clear that the problem fits into the framework of General 
Equilibrium Theory, or shortly G.E. theory. Indeed, G.E. theory is especially concerned with the existence 
of equilibrium prices and equilibrium allocations of goods, under the assumption that the agents each 
use a certain rule to determine their optimal position, given the prices of the goods. The word ‘good’ 
should be interpreted in a broad sense: it could be an apple as well as a random payment conditional to 
the occurrence of a certain event, for example a payment if a house burns down. 

The idea of applying G.E. theory to (re)insurance markets has already been raised by several other 
authors. Some very interesting papers on this subject are Borch (1962) Biihlmann (1980, 1984), Gerber 
(1984), Lienhard (1986), and Pressacco (1979). In Borch (1990), one finds a very clear explanation of how 
G.E. theory can be applied to the (re)insurance markets. This leads to very nice results about the 
structure of equilibrium prices for (re)insurance and the Pareto optimal& of equilibrium allocations of 
risk. 

It is our aim in this paper to study a general equilibrium model where the trade on reinsurance 
markets is combined with the trade on financial markets. So we consider a mixed financial-reinsurance 
market with two types of agents, (re)insurers and financial agents. This market is considered to be 
potentially incomplete (see for instance Magi11 and Shafer (1991) for a definition of complete and 
incomplete markets). This means that we allow for the possibility that the trade of reinsurance is 
constrained to a finite number of standard contracts such as proportional, excess of loss or stop loss 

contracts. The complete markets case (as in Biihlmann (1980)) where there is a reinsurance contract for 
every possible risk, and therefore even for risks which are not in any of the agents’ portfolios, is a special 
case of our model. Furthermore, as opposed to the existing equilibrium models for reinsurance, we don’t 
allow (re)insurers to reinsure risk they didn’t insure in the first place. So, in our model, we take into 
account that, as opposed to financial assets, reinsurance contracts for a risk can only be bought by those 
(re)insurers who insured the risk initially. This yields a model where the trade of reinsurance is 
constrained by asymmetric constraints. The constraints on portfolio holdings are asymmetric because 
they depend upon the initial risk portfolio of the agent. The reasons we are interested in this case are the 
following: 
- We believe that the interaction between financial markets and (re)insurance markets is very impor- 

tant. One obvious reason is that, in the absence of financial markets, (re)insurance agents would not 
be able to invest their premium incomes. 

- Since (re)insurance contracts are often standardized to be proportional, excess of loss, stop loss, or 
combinations of these, it seemsreasonable to assume that (re)insurance markets might be incomplete, 
i.e. not every possible combination of risks can be insured. In this case, as in Gerber (1984), the 
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reinsurance contracts that can be traded belong to the class of linear combinations of a fixed number 
of standard contracts. 

- Recent developments in the theory of incomplete markets have made clear that if the trade on a 
certain market is constrained, equilibrium prices need not necessarily be discounted expected values 
with respect to a risk neutral probability distribution (see for instance De Waegenaere (1993)). An 
important consequence is that equilibrium prices of reinsurance are not necessarily C.A.P.M. prices. 
So the results in Miiller’s paper (Miiller, 1986) are no longer true in the case of constrained trade. 
Therefore, it becomes clear that the presence of trading constraints can have drastic effects on the 
structure of the equilibrium prices. 
The model we are going to describe in this paper can be seen as an extension to an incomplete 

markets framework with trading constraints of models previously presented by Biihlmann (1980, 1984) 
and Gerber (1984). In Biihlmann (1980, 19841, the author used G.E. theory to determine an optimal 
redistribution of risks and corresponding prices for reinsurance. Since this idea is fundamental to our 
model, we will briefly explain it in the next section. 

2. Biihlmann’s economic premium principles 

Insurance clearly takes place in a world of uncertainty. Indeed, premiums are deterministic, but the 
payoff of claim heights is stochastic. In a two period setting, this uncertainty could be described by the 
fact that there are a certain number of different states of the world that can occur at a later date, called 
date one in the sequel. We will denote s for a state of the world and R for the set of all possible states of 
the world. A risk is therefore described by a stochastic variable X: fl+ [w. 

Each agent i E {l, 2,. . . , I} has a preference relation k i on risks. So X % ‘Y means that agent i 
prefers risk X to risk Y, or that he is indifferent between the two risks. Following G.E. theory, a 
criterion to decide upon reinsurance would be such that, given the prices for reinsurance, each agent 
would reinsure in order to obtain the risk position that maximizes his utility, according to his own 
preference relation. A question which arises then naturally is whether prices for reinsurance can be 
found such that these optimization processes lead to market clearing in risks. Such prices are called 
equilibrium prices. The pricing principle leading to these prices is called an economic premium principle 
(as opposed to an actuarial premium principle). 

Biihlmann (1980, 1984) used G.E. theory, more specifically the Walrasian equilibrium concept of a 
pure exchange economy, to obtain an economic premium principle. More precisely, he proves that 
equilibrium prices for reinsurance exist for arbitrary risk averse uon Neumann-Morgenstern utility 
functions. ’ The original risk (before reinsurance) of an agent i is denoted by a stochastic variable 
X’ : 0 --) [w. So X’(s) denotes the claim height to be paid by the agent if state s occurs at date one. 
Redistribution of risks goes by means of the trading of reinsurance contracts Z: 0 -+ [w. By reinsuring Z: 
0 + [w, agent i can transform his original risk X’ into a new risk Y (after reinsurance) given by 

Y=X’-z. 

In Biihlmann (1980, 1984) the price of reinsuring Z: R + [w is considered to be a linear functional of the 
form 

1 See for instance Debreu (1972). 
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Here P is a given probability measure on 0, and C$ is called the price density. Let wi: 0 + R denote the 
initial wealth of agent i. Then before reinsurance, the date one wealth of an agent would be the 
stochastic variable w’-Xi: R + R. If the agent buys reinsurance 2 : R + R, then his date one wealth 
would be the stochastic variable 

Each agent has a von Neumann-Morgenstern utility on date one wealth variables, i.e. there exist utility 
functions u’: R! -+ R, such that for variables V, W: 0 + R, one has 

l’&V=E,[u’(V)] zE#(W)]. 

Now the idea of G.E. theory is that each agent will choose reinsurance Z in order to maximize the utility 
of his date one wealth. An equilibrium price density 6 is a price density such that there exist risks (Y’, 

Y;’ , . . . , PI) satisfying 

Y’= ~~ma;(EP[Ui(w’-Y-~~[Xi-Y])]) for all i~{1,2,...,1}, (la) 

i$lfL= f:Xi a.s. 
i=l 

(lb) 

Eq. (la) expresses that each agent chooses reinsurance Z = Xi - Y;’ in order to obtain a date one wealth 
which maximizes his utility. Eq. (lb) expresses that these optimal choices must lead to market clearing. 
The proof of existence of a solution of (l), i.e. of the existence of an equilibrium price density, is 
established in Biihlmann (1984) for arbitrary risk-averse utility functions u: i E (1, 2,. . . , I). Furthermore 
in this same paper, a link is made between the equilibrium price density 4 and an exponential premium 
calculation principle. 

Some remarks can be made about condition (la): 

- Markets are complete. Indeed, all possible reinsurance contracts, i.e. all possible random variables Z: 
R -+ R, can be traded. In general however, we see that reinsurance contracts are often standardized to 
be either proportional, excess of loss, stop loss, or combinations of these. 

- There is no constraint on the reinsurance contracts that can be bought by an agent. So, regardless of 
his initial risk portfolio, the agent can buy reinsurance contracts. In particular, agents are allowed to 
buy reinsurance contracts for risks they didn’t insure in the first place. 

- Prices are considered to be expected values with respect to some price density. 
- There is essentially only one time period, i.e. prices are paid when risks occur. This implies that one 

can’t take into account that between payment of premiums and occurrence of claims, premiums can be 
invested, for instance at a fixed interest rate. 

For the first remark, an extension of Biihlmann’s model can be found in Gerber (1984). In this paper, 
the author considers redistribution of risk through a finite number of fixed reinsurance contracts Y,, 

Y2,..., Y,. So agents can ‘only’ reinsure linear combinations of these contracts, i.e. reinsurance of the 
form 

z= &, with CjER, jE{1,2 )..., n). 
j=l 
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This implies that the reinsurance market can be incomplete in this case. Furthermore, Biihlmann’s model 
for a finite state space R = 11, 2,. . . , S} is a special case of Gerber’s model. Indeed, let there be S 
contracts, one for each possible state s E (1, 2,. . . , S) at date one, such that 

y,(s) = 1, 

Ys(t) =o Vt#s, 

then it is clear that one gets Biihlmann’s model. 
The other remarks hold for both models (the fact that equilibrium prices in Gerber (1984) in the case 

of a finite state space are discounted expected values with respect to a risk-neutral probability 
distribution cannot be seen directly from the model, but it is a well-known result in G.E. theory for 
incomplete markets). Therefore, the aim in this paper is to extend these models to a general equilibrium 
model for the reinsurance market where 
- (re)insurance markets are treated as being (potentially) incomplete markets, 
_ the trade on (re)insurance markets is constrained by institutional rules such as the fact that 

reinsurance contracts for a certain risk can only be bought by those agents who insured (part of) the 
risk initially, 

_ prices are not necessarily expected values with respect to some price density, 
- financial markets are included in the model, 
- there are two time periods, at date zero prices for (re)insurance and financial assets are paid, at date 

one risks occur and assets pay off. 
We will proceed in the following way: in Section 3, we will motivate why a general equilibrium model 

for a mixed financial-reinsurance market should be different from a general equilibrium model for a 
purely financial market. We will come to the conclusion that the right framework for these mixed 
markets is the one for incomplete markets with trading constraints. In Section 4, we treat the mixed 
financial-reinsurance market in detail. So we consider a market where reinsurance contracts as well as 
financial assets can be traded. We prove that equilibria exist, and we study the structure of the 
equilibrium prices. In Section 5, we show that the introduction of trading constraints can have drastic 
effects on the structure of the equilibrium prices. An example will make clear that the no-arbitrage 
principle can be violated in equilibrium. Therefore there does not necessarily exist a risk-neutral 
probability distribution. In Section 6, we show that the equilibrium allocations of risk are in some sense 
constrained Pareto optimal. 

3. Insurance markets versus financial markets 

From the mathematical point of view, there is no difference between a (re)insurance contract and any 
other financial asset such as for instance equity of a firm. Indeed, both have a deterministic price, and a 
stochastic payoff at a later date. So they both are fully described by 
- a random variable A: R + R, where R is the state space. For each state s E R, A(s) denotes the 

payoff of the asset or (re)insurance contract at date one if the world is in state s. 
- A price 9 E R to be paid at date zero. 

The difference lies in the way they are traded. Suppose for example that a certain agent (called agent 
1) insures a certain house against fire. Then every insurance agent is allowed to write a reinsurance 
contract on that house, but agent 1 is the only agent who is allowed to buy such a contract. For financial 
assets, every agent is allowed to buy every asset written by the other agents. This example indicates that 
there is a basic difference between the trade of (re)insurance contracts on the one hand and financial 
assets on the other hand. It makes clear that the trade on (rehnsurance markets is constrained by very 
specific rules which do not apply for arbitrary financial markets. 
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4. The mixed financial-reinsurance market 

In this section, we will give an appropriate general equilibrium model for mixed financial-reinsurance 
markets. It is a model for incomplete markets with trading constraints. We will prove that equilibrium 
prices and allocations of risk exist. We show that the structure of the equilibrium prices for the 
reinsurance contracts is different from the structure of the equilibrium prices in Biihlmann’s (1980, 1984) 
models and Gerber’s (1984) model. 

We consider a market where I( 2 2) agents are present. Some of the agents are (re)insurers, indexed 
by i EY# fl, the others are financial agents, indexed by i E .E By convention, any agent who is both 
financial agent and (rehnsurer, will be denoted as a (rejinsurer i ~3. Therefore we can assume that 

3nn9=@. 
Before any reinsurance took place, each of the (relinsurers i EY has a portfolio of risks Xi: a-+ W,, 

j=l,2 >...> where R denotes the state space and is considered to be finite. In the sequel, we will denote 
fi={l, 2,..., S}. It is clear that, in deciding how these risks should be redistributed, financial markets 
can play a very important role. Indeed, they provide a means to invest premiums. Therefore, we consider 
consider a model where redistribution of risks is combined with the possibility of asset trading. 

We denote K for the number of assets that can be traded, and J for the number of risks to be 
redistributed. The case of redistribution of risk without asset trading, i.e. K = 0 (as in Biihlmann (1980, 
1984) and Gerber (1984)) is a special case of our model. 

Since the state space R consists of S states, any stochastic variable (and therefore the payoff of any 
(re)insurance contract or financial asset) is fully defined by a vector A = (A,, A,, . . . , A,)’ E Rs, where 
for each s E R, A,Y denotes the value of the stochastic variable in state s. 

Notations 
_ Let R denote the S x J matrix of risks to be redistributed. So, for each s E 11, 2,. . . , SJ and for each 

jE{l, 2,. . . , _I}, R,, E [w, denotes the claim height to be paid for risk j in state s. We denote y, for 
the price of reinsuring risk j. As in Gerber (1984), the price of reinsuring a fraction p E [O, 11 of risk j 
equals p yj. We denote y for the vector y = (y,, y2,. . . , yJ>. 

- For each insurer i EY and each risk j E (1, 2,. . . , J}, we denote ci E [0, 11 for the fraction of that risk 
carried by that insurer (before redistribution takes place). We allow for the possibility that before 
reinsurance, some of the risks Rj are covered by several agents on a proportional basis, if not, cj 
would be equal to zero or one for all agents i E 11, 2,. . . , I} and all contracts j E 11, 2,. . . , Jj. 
Furthermore, 

cc;=1 for all jE{1,2 ,..., J}. 
is9 

_ Let C denote the S x K matrix of financial assets. So, for each s E (1, 2,. . . , S) and for each k E 11, 

2 >...> K}, asset k promises the delivery of C,, units of account in state s. We denote qk for the price 
of asset k. We denote q for the vector q = (ql, q2,. . . , qK). 

- We denote A = (C I R) for the S x (K + J) matrix where the first K columns are financial assets, and 

the last J columns are risks. 
- A portfolio consists of a column vector z = (z,, .Q, . . , , zK)’ E RK of numbers of assets, and a column 

vector U = (ai, uz,, . . , uJ)’ E P of numbers of reinsurance contracts. We will denote (q, y> = 

(q,, q2,. . .,qK, yl, y2 ,..., yJ>, (z,u)=(z,, z2 ,..., zK,u1,u2 ,... ,u,), and (:)=(z,, z2 ,... ,zK, ul, 
L’ u >‘. 2,“‘> .I 

Definition 4.1. A risk position is a vector x E IRS+‘, where 
l x0 is the wealth at date zero, 
l for each s E {l, 2,. . . , S), x, is the wealth at date one if the world is in state s. 
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For each vector x = (x0, x,, . . . , xS)’ E [w’+‘, we denote x1 for the date one components, i.e. x, = (x,, 

x2,. . ., XJ. 
The initial risk position of agent i E {l, 2,. . , Z} (before trading of reinsurance and assets) will be 

denoted w i. 
Through the trade of reinsurance contracts and financial assets, the agents can obtain new risk 

positions. The problem now is to search for a redistribution of risks and a trade of assets such that each 
agent iE{l, 2,..., I} obtains a risk position that maximizes his utility (according to his personal 

preference relation > i on risk positions). 
The trade of (rehnsurance is restricted by a very important condition, namely the fact that reinsurance 

contracts for a risk can only be bought by those agents who insured the risk initially. Furthermore, risks 
are redistributed amongst insurance agents only. Financial agents are not allowed to trade reinsurance 
contracts. Therefore, we define in the following definition the set of portfolios Z’ c RKfJ that can be 
traded by agent i, for all i E 11, 2,. . . , I}. 

Definition 4.2. We define the trade set of an insurance agent i EY as follows: 

Z’=lPX fi -m,$]. 
j=l 1 

We define the trade set of an financial agent i E 9 as follows: 

2’ = RK x {OjJ. 

The interpretation is as follows: 
z E lRK implies that agent i is allowed to sell and buy assets without restrictions. 
For insurers, tij I cj for j E (1, 2,.. ., J) implies that agent i is allowed to reinsure part of (and 
maximum all of) the risk that he initially insured. For financial agents, uj = 0 implies that they are not 
allowed to trade reinsurance. 
As stated before, agents will trade in order to maximize their utility over the set of risk positions that 

they can obtain by means of an allowed trade of assets and reinsurance. With the previous notations, we 
see that this set equals 

xo=w;-qz-yv 

B’(q, y, A, Zi) = XEX’ 13(t, v) EZi: 
K .I 

x,=w,‘+ c Cskzk+ ~Rsjuj, s~{1,2 ,..., S} 
k=l j=l 

= XEXi 13(2, v) EZ’: x=w’+ 
i 

( -‘y’)(f))7 
where Xi denotes the set of risk positions from which agent i wants to choose an optimal one. 

This finally allows us to define equilibrium prices and allocations for mixed financial-reinsurance 
markets: 

Definition 4.3. A system of reinsurance prices (rr, y2,. . . , yJ> E k’ and asset prices (sr, q2,. . . , qK) E RK 
is an equilibrium price system if and only if there exist risk positions 5’ E Xi, i E 11, 2,. . . , I}, and 
portfolios (Z’, L”) E Z’, i E (1, 2,. . . , I}, satisfying the following conditions: 

(2a) 
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Xi *‘y for all y EB’(q, y, A, Zi), 

izi=O, ii;i=O. 
i=l i=l 

The corresponding allocation (Xi: i E 11, 2,. . . , Z}} will be called an equilibrium allocation. 

(2b) 

(2c) 

Assumptions k 
A,. The preference relations of the agents are continuous, strictly monotone and convex (see for 
instance Debreu (1972) or Hildenbrand and Kit-man (1988)). 

A*. There is no redundancy in the financial assets C,, k E {l, 2,. . . , K), i.e. rank(C) = K. 

A.3. (C> n (R) = (01. 

A‘$. For all j~{l, 2 ,..., J}, Rj E E?:\(O). 

&. For all i E {l, 2,. . . , Z}, Xi is bounded from below, closed and convex, and wi E int(X’). 

Remarks. (i) It is clear that assumption A, can be made without loss of generality. Indeed, since there 

are no constraints on the trade of financial assets, the problem can always be written such that A, is 
satisfied. 
(ii) Assumption A, says that there is no financial portfolio that exactly duplicates a reinsurance 

portfolio. This is very reasonable because the set of states s which influence the payoff of reinsurance 

(fire, accidents,. . . > is different from the set of states that influence the payoff of financial assets (politics, 

economics, . . . 1. 

The aim now is to prove that, under these assumptions, equilibria exist, i.e. problem (2) has a solution. 
In the sequel, we will denote AS(Z) for the asymptotic cone of a set Z c RKtJ, and Ker(A) for the 

null space of the matrix A, so for each i E 11, 2,. . . , I}, we have 

AQZ’) = (( $ 
I 

EZ’lforall tE[W+: t E EZi , (1 1 
and 

Lemma 4.1. By Definition 4.2, we have for all i E (1, 2,. . . , I): 

(1) Z’ is a closed and convex subset of [WKfJ, 
(2) 0 E z’. 
Furthermore, 
(3) 0 E int(C!, r$). 
Zf assumptions A,, A*,, A-, are satisfied, we have 
(4) Ker( A) n AS(Z’) = {O} for all i E (1, 2, . . . , Zl. 

Proof. (1) is clear. 
(2) and (3) follow from the fact that for all j E {l, 2,. . . , J), we have 

c cj=l, 
it9 

cj E [O,l] for all i EY. 
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We will now show that (4) is satisfied. For each insurer i EY we have 

AS( Zi) = IRK x RJ . 

Now suppose that (z)’ E KeGI) nAS(Z’). By assumption A,, this implies that Cz = 0 and Ru = 0. From 

assumption A, it then follows that z = 0. Now since zjj 5 0 for all j E (1, 2,. . . , J} it follows from A, that 
Rsjvj = 0 for all states s E {l, 2,. . . , S} and for all contracts j E (1, 2,. . . , J}. Now A, implies that for each 

contract j E (1, 2,. . . , J), there is at least one state s E (1, 2,. . . , S} such that Rsj > 0. Therefore, it 

follows that u = 0. 
For financial agents i E 9, the idea is analogous. 

Theorem 4.1. Under assumptions A*, the mixed financial-reinsurance market can reach equilibrium prices 
and equilibrium allocations. 

Proof. Trivial consequence of Lemma 4.1 and Theorem 2.4.1 in De Waegenaere (1993). 

5. Properties of equilibrium prices 

In Section 4 we proved that, under certain (rather weak) conditions on the structure of the contracts, 
equilibria exist. A very interesting question is whether a relation can be found between the equilibrium 
prices and C.A.P.M. pricing, as in the case of Miiller’s paper (Miiller (1986)). 

It is well known that for incomplete markets without trading constraints (Z’ = RL, for all i E {l, 

2 ,..., I}, where L denotes the number of contracts), equilibrium prices are arbitrage free. This means 
that it is impossible that for a matrix of asset returns A E [wsxL, there exist equilibrium asset prices (ql, 

q2,..., qJ E RL, such that there exists a portfolio z E lRL satisfying 

-4 ( 1 A 
z> 0, 

i.e. by buying this portfolio, the agent can only gain, because the price of the portfolio is negative 
(qz I O), and the payoff of the portfolio is positive in each state ((AZ), 2 0, s E (1, 2,. . . , S}), with at least 
one strict inequality. 

If prices are arbitrage free, we know that there exists a risk-neutral probability distribution such that 
equilibrium asset prices are the (discounted) expected value of the asset payoff with respect to this 
probability distribution. Therefore, in unconstrained markets, equilibrium prices are C.A.P.M. prices. In 
the next example however, we show that the mixed financial-reinsurance markets we studied in Section 
4 may allow for limited arbitrage possibilities at equilibrium. As a consequence, there does not 
necessarily exist a risk-neutral probability distribution! 

Example. We consider an economy with two insurance agents, three assets (a riskless bond and two 
reinsurance contracts, so J = 2 and K = l), and four possible states at date one. The matrix of returns 
A=(CIR)eIW 4x(1+2) is given by 

We consider the case of proportional redistribution of insured risks. Before redistribution, there are two 
risks (column 2 and 3) which are each insured for 50% by each of the agents. So they can each buy 
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reinsurance for a maximum of 50% of the risk. There is no constraint on the trade of the riskless bond. 
Therefore, the trade sets of the agents are given by 

Z’=R x] - 00,i12, i = 1,2. 

The initial risk position of agent 1 is equal to 

(+!I, w:, w:, w:, wl) = (5.5,5,4.5,4,4). 

The initial risk position of agent 2 is equal to 

(wo’, w:, w;, w:, wj) = (11.5, 12, 12.5,13, 13). 

The utility functions of the agents are of the form: 

So the problem we have to solve is whether there exist prices 9 for the bond, and 

reinsurance contracts such that there exist risk positions X’ EBi(q, y, A, Z’) satisfying 

x’ E argmax u’(x), 
x=W(q, y, A, 2’) 

xl +x2=w’+& > 

where 

yl, y2 for the 

(3a) 

(3b) 

X” = - qz - Yl"1 - Y2c’2 
\ 

B’(q, Y, A, q = x E rw: 13( 2, c) E z’: 
x,=wf+ , 

s 

Since rank(A) = 3, we know that for each (q, y,, y2), there exists a vector 7~~ = (rI, r2, 73, ~4) E R4, 
such that (4, yl, y2) = T,A. Therefore problem (3) is equivalent to the following problem: do there exist 

state prices rS E R, s = 1, 2, 3, 4, such that there exist X’ ESB’(~, A, Z’) satisfying 

X’ E argmax ui( x) 
XE~“(P, A, 2’) 

and 

,f-‘+~2=wl+w2 3 

where rO = 1, T = (TV, T,) E R5 and for i = 1, 2, 

( 7Tx = 7rw’ 

LB’(T,A,Z’)= XEIW:I 1 x2 -x, SW;-wl,+ 

x2 
_x SW’ 

3 2 - w; + 

L x3 
_x4=w;-w; 

1 
2 
1 . 
-2 I 

Using the technique of Lagrange multipliers (see for instance Luenberger (197311, we see quite easily 
that for a = 8, b = 4, c = 8, d = 2, r = (1, 2, - 1, 1, 1) is an equilibrium price system with corresponding 

equilibrium allocations x -l = (16, 1, 1, 1, 1) and X2 = (1, 16, 16, 16, 16). 
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Furthermore, it is clear that (t) = (- i, f, i>Y E Z’ n Z2> is an arbitrage possibility. Indeed, 9 = 3, 

yi = 1, y2 = 1 and 

’ 1 

(-‘y’i(;)= i >o. 

0 
,O, 

So in this example, we clearly have an equilibrium price system which violates the no arbitrage 
principle and therefore, there does not exist a risk-neutral probability. So equilibrium reinsurance prices 
are not necessarily C.A.P.M. prices. 

In the next theorem, we show that for the equilibrium prices of the financial assets in the mixed 
financial-reinsurance market, there still exists a risk-neutral probability such that equilibrium prices are 
discounted expected values with respect to this probability distribution. The equilibrium prices for 
reinsurance contracts however, are bounded above by the discounted expected value of their payoff with 
respect to the same probability distribution. First we need a lemma. 

Lemma 5.1. A system of inequalities 

i 

fk(z) 20 kE {1,2,...,K} 

g,(z) 20 I= (1,2 )..., L}, 

has a solution z that satisfies fk( z) # 0 for some k E { 1, 2, . . . , K}, if and only if there does not exist (T, 

A) E rw:, x lR$ such that 

Proof. Is a slight modification of a proof by Fan (1956). 

Theorem 5.1. For all equilibrium prices (q, y) E RK+“, there exists a vector T E IX:+ such that: 

qk=(rC)k VkE(1,2 ,..., K}, 

yjS(TR)j VjE{1,2 ,..., J}. 

Proof. Clearly for each insurer i EY we have 

AS( Zi) = IRK x rW<, 

and for each financial agent i E F, we have 

AS( Z’) = RK x IO}“. 

Now we know that (see for instance De Waegenaere (1993)) the set of equilibrium prices is a subset of 
the set 
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Now we define two systems of inequalities 

i 

fs(z,u) = (A(;))$0 Vs={1,2 ,..., S} 

gj(z, u) = -uj:j20 Vje{1,2 ,..., J} 

and 

(Sl) 

I 

fO(Z> u> = -(4, Y)( ;) 20 

(f,(z,,:)=(#)~20 Vse{1,2 )...) S} (S,) 

\ 
gj(z,U) =uj=O Vje{1,2 ,..., .I}. 

Then (4, r> @ Q if and only if one of the systems of inequalities S, or S, has a solution satisfying 

%E{O,l,.. .,S}: fs(z, L’) zo. (4) 

But clearly, this is equivalent to the statement that S, has a solution satisfying (4). By Lemma 5.1, this is 
equivalent to the statement that there does not exist a vector (r, A) = (~a, rrI,. . . , rs, A,, A,, . . . , A,) E 

Rtz’ x rW< with 

r&k=(r&)k VkE{1,2,...,K), 

rro~j=(r,R)j-Aj Vje{1,2 ,..., J). (5) 

So, (q, y> E Q if and only if there exists a vector rr E Rt+ satisfying 

qk=(&)k VkE{1,2 ,..., K), 

yjYil(7TR)j Vje{l,2 ,..., I}. 

Since equilibrium prices are in (2, this concludes the proof. 

So if there is a riskless bond available on the financial market, i.e. one of the columns of C equals (1, 
, . . . , l)‘, then the equilibrium prices of assets and risks satisfy 1 

&=@P[Ck] VkE(1,2,...,K}, 

rjI~~p[Rj] tlj= (1,2 ,..., .I}, (6) 

s 
where 4’ = a&l, 1,. . . , 1)’ = c rrs denotes the price of the riskless bond, and E, denotes the expected 

s=l 

value of the corresponding stochastic variable with respect to the probability measure P on the state 
space 0, given by 

P({s}) = +, se{1,2 )...) 9. 
f 1=t 

The example at the beginning of this section makes clear that it is possible that for some equilibrium 
prices y of reinsurance, there does not exist a probability distribution that gives an equality in (61, 
instead of an inequality. 
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6. Constrained Pareto optimality 

It is easy to see that the equilibrium allocations for the mixed financial-reinsurance markets defined 
in Section 4 are constrained Pareto optimal in the sense that there does not exist another redistribution 
of risk and assets satisfying the constraints defined by the sets Z’ such that every agent is better off, and 
at least one agent is strictly better of. Formally, this means that we define the set of feasible allocations 
as follows: 

g-T:= xf, zi 1 ( i 11 
f I 

xf=wi+A T 
i .I V’ 

Vi E {1,2,. . . , I) 

Vi i=l,...,I 
E LJYpixzi) I 

jTzi=O, ivi=o, ix;= iwb ’ 

i=l i=l i=l i=l 
I 

Then for equilibrium allocations ((Xi, (:I)‘): i E (1, 2,. . . , Z}} E nl!=,(Xi x Z’) there do not exist new 
allocations {(xi, (:I)): i E (1, 2,. . . , I}) such that 

IN 
f 

2, Zi i iI Vi 
, iE(1,2 ,..., I} ELF 

1 

I ViE{1,2,..., I} : d( xi) 2 zi( Xi) 

3iE{1,2,..., I}: uyxq > ui(Xi). 

The proof can be found in De Waegenaere (1993). 
Furthermore, we would like to remark that, even if we would consider the case of von Neumann- 

Morgenstem utilities, we would not get the same characterization of Pareto optimal exchanges as in the 
models of Biihlmann (1980, 1984) or Gerber (1984). Clearly, the reason for this difference is that in these 
models the only constraint that matters in finding Pareto optimal allocations is the market clearing 
constraint. In our model however, each of the agents faces his own trading constraints, defined in the 
sets Z’, i E 11, 2,. . . , I). Therefore, it is clear that one cannot expect to get the same result. 

7. Concluding remarks 

The main issue in this paper was to show that the mixed financial-reinsurance markets can reach an 
equilibrium, but that the structure of the equilibrium prices can be drastically influenced by the existence 
of trading constraints. Indeed, if the trade of reinsurance contracts is constrained by the fact that 
reinsurance for a risk can only be bought by those agents who insured the risk initially, then limited 
arbitrage possibilities may exist at equilibrium. As a consequence, these equilibrium prices cannot be 
considered as being the discounted expected value of the payoffs with respect to some probability 
measure on the state space LL Equilibrium prices therefore have a different structure than in the models 
of Biihlmann (1980, 1984) and Gerber (1984). 

Finally, I would like to remark that it is not essential that we restrict ourselves in Section 4 to the 
trade of reinsurance. The results remain valid if one includes the insurance market. It was only for 
notational convenience that we restricted to reinsurance. The restriction to two time periods is also not 
essential, and only made for notational convenience. We could as well consider assets and reinsurance 
contracts paying off at different times in the future. We would only have to redefine the state space. 
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