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Abstract 

An M / G I / 1  ql~eueing system is in series with a unit with negative exponential service times 
and infinite waiting room capacity. We determine a closed form expression for the generating 
function of the joint queue length distribution in steady state. This result is obtained via the 
solution of a new type of functional equation in two variables. 
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1. Introduction 

This study is concerned with the analysis of two queues in series. Customers 
arrive at the first node according to a homogeneous Poisson process with rate 
and are processed by a single server. Once a customer has been served, he enters 
a second node which also has a single server. We assume that both waiting rooms 
have an infinite capacity. The sequence of service times required at the first 
(respectively second) node constitutes a renewal process with an arbitrary (re- 
spectively exponential) distribution function, with finite mean a -1 (respectively 
#-a).  Furthermore, we assume that the arrival process and the service time 
processes are all mutually independent. Following Disney and K~Snig [4, p. 379], 
this series of two queues will be denoted by the symbol M / G I / 1  ---> . / M / 1 .  

Our objective is to determine the stationary queue length processes, and more 
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precisely, the generating function (z-transform) for the stationary joint queue 
length distribution. 

The interested reader will find a detailed list of related works in the recent 
queueing network survey written by Disney and KSnig [4, pp. 379-382]. Of 
particular interest are the works of Boxma [2] and Neuts [11]. Boxma investigated 
the tandem queues M / G I / 1  ~ . / G I / 1  in the case where the service times of an 
arbitrary customer at both queues are identical. [2] contains explicit expressions 
for distributions of sojourn time, actual and virtual waiting time in the second 
queue (i.e. no transform is needed). Neuts determined the stability condition as 
well as the generating function of the stationary queue length distribution 
imbedded at output times for the tandem queueing model M / G I / 1  ~ . / M / 1 / L  
where L, L < m, indicates the capacity of the waiting room at the second node. 

Let F(x, y) be the generating function for the joint stationary queue length 
distribution in the M / G I / 1  ~ . / M / 1  queueing system. We show in this paper 
that F(x, y) can be completely determined via the solution of a functional 
equation of the following type: 

K(x, y)g'(x, y )=A(y) fb(x ,  y )+ B(x, y)ga(y), (1.1) 

which must hold, in particular, for all couples (x, y) with [x I ~< 1, I Y [ = 1. The 
functions with roman letters are known. In particular, they are analytic for 
[xl < 1 for every fixed y with [ y [ >/1, and analytic for I Y I > 1 for every fixed 

x with Ix ] ~< 1. The function g'(x, y)  is unknown, but we know that it must be 
analytic for Ix I < 1 for every fixed y with [ Y I ~< 1, and similarly with x and y 
interchanged. The function ~(x,  y)  is also unknown, and it must be analytic for 
I x I < 1 for every fixed y with I Y l >I 1, and analytic for I Y I > 1 for every fixed 

x with Ix I ~< 1. Similarly I2(y) is unknown, and it must be analytic for I Y [ < 1. 
Two-dimensional functional equations frequently arise in the study of random 

walks with two-dimensional state space. A large class of these equations can be 
solved by reduction to boundary value problems (e.g., Riemann-Hilbert problem). 
This was first shown by Fayolle and Iasnogorodski [6] and important generaliza- 
tions have been made by Cohen and Boxma [3]. 

In this context, equation (1.1) defines a new type of two-dimensional func- 
tional equation, mainly because of the presence of two bivariate unknown 
functions. Its solution is the purpose of the present paper. 

The paper is organized as follows. In section 2 we establish the equilibrium 
equations of the system from which equation (1.1) directly follows. Section 3 is 
devoted to the study of the equation K(x, y) = 0, cf. (1.1), which turns out to be 
a key point of the analysis. This will lead, in section 4, to the factorization and to 
the solution of (1.1). More precisely, we shall show that (for a 4=/,) the real part 
of I2(y) can be obtained as the unique solution of a Fredholm integral equation of 
the second kind. This result will enable us to derive, in section 5, the generating 
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function F(x,  y). Section 6 addresses the computation of the average number of 
customers at node 2, in steady state. 

2. The functional equation 

Let us now introduce some notation. For t > 0, let 
�9 X~(t) be the number of customers present at node i (i = 1, 2) at time t, 

including the one being served, if any; 
�9 R( t )  be the residual service time of the customer being served at node I at 

time t if Xl(t  ) > 0; otherwise R( t )  = 0; 
�9 B(.) be the service time distribution at node 1. We assume that B(.) is not a 

lattice distribution and that B(0 + ) =  0. It is also assumed that the second 
order moment of the service times is finite. 

�9 fl(s) be the Laplace-Stieltjes transform of B(.), ~ ( s ) > i  0 ( ~ ( s )  denotes the 
real part of any complex number s); 

�9 f("~(.) be the nth derivative of a function f(.). 

Consider the stochastic process X ' =  {(Xl(t) ,  X2(t), R(t)), t>~ 0}. This is a 
Markov process with state space N • N • [0, + m), where N denotes the set of all 
nonnegative integers. From Borovkov's results [1, p. 7] it is readily seen that 
under the condition 

X < rain(a, g) ,  (2.1) 

the Markov process X possesses a unique stationary distribution. From now on, 
we shall assume that condition (2.1) is fulfilled. 

Define for t>O ,  r > 0 ,  (m, n ) ~  [ N -  {0)] •  

p(t ;  m, n, r):= Prob(Xl( t  ) = m, X2(t ) = n, R ( t )  <'r); (2.2) 

p(t;  n ) : = P r o b ( X l ( t ) = O ,  X 2 ( t ) = n ) ;  (2.3) 

q( t; m, n ) "= lira O "t, z_~O-~zp( �9 m, n, z).  (2.4) 

For fixed m>~ 1, n >~0, t > 0 ,  we assume that the partial derivative 
Op(t; m, n, ,r)/a,r exists and is continuous for ~- > 0, and that the limit (2.4) is 
finite. For t---, + oe, the limiting probabilities (2.2)-(2.4) will be denoted by 
p(m,  n, ~), p(n)  and q(m, n), respectively. Note that the existence of these 
limits is ensured by condition (2.1). 
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We also introduce the following Laplace-Stieltjes transforms and generating 
functions: 

.,~(X, y ,o )  := E E x m y n j o  e-~ 1, n, r) dr; (2.5) 
m>~O n>~0 

�9 (x, y ) : =  E Y'~ q(m + 1, n)xmyn; (2.6) 
m>~O n~O 

12(y),= E p(n)y"; (2.7) 
n>~O 

F(x, y)== lim Y'~ E e r ~  X2(t)=n)xmy ", 
t--* +oo m>~O n>~O 

for Ixl ~1, lYl ~<1, ~(o)>_.0. 
From (2.5), (2.7), it is easily seen that the generating function F(x, y) for the 

joint stationary queue length distribution satisfies the relation 

F(x, y ) = x X ( x ,  y, 0) + I2(y),  (2.8) 

for Ixl ~<1, lyl ~<1. 
The remainder of this section is devoted to the derivation of equation (1.1). To 

this end, we first derive (proposition (2.1)) the equilibrium equations of the 
system. Then, we derive a functional equation which relates the three unknown 
functions defined in (2.5)-(2.7) (proposition 2.2), from which (1.1) directly 
follows. 

PROPOSITION 2.1 
For t ---, + oo the 
differential equations: 

form>~l ,  n>~0, r > 0 ,  

-~-~p(m, n, r )= - X p ( m -  1, n, r ) l m > l  

- t tp (m,  n + 1, r) + q(m, n) 

+(~t + / d , > o ) P ( m ,  n, r )  

- B ( r ) q ( m +  1, n -  1)1,>o; 

for n >~ 0, 

()l + ttln>~l)p(n ) = ~p(n + 1) + q(1, n - 1)ln>O, 

where 1 A denotes the indicator function of the event (A }. 

state probabilities (2.2)-(2.4) satisfy the following set of 

- X B ( r ) p ( n ) l m = l  

(2.9) 

(2.10) 
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Proof 
Let us consider a small time interval (t, t + h). Because the arrival process is 

Poisson and service times at node 2 are exponentially distributed, we obtain the 
following equations: 

for m>~l, n>~0, ~->0, 

p( t  + h; m, n, ~) 

= Xhp( t; m -  1, n, "r -t- h)lm> 1 + Xhp( t; t /)B( 'r) lm= 1 

+ lzhp( t; m, n + l, r + h ) + ( 1 -  Xh - i~hln>o) 

•  m, n, ~ + h ) - p ( t ;  m, n, h) 

+1 ,>  0 B ( 1 " + h - z )  d ~ p ( t ; m + l , n - l , z  + o ( h ) ;  (2.11) 

for n >~ 0, 

p ( t + h ;  n)=t~hp(t; n+ l ) + ( 1 - X h - g h l ~ a )  

( g ) • p ( t ; n ) + l n >  o dzp( t ;1 ,  n - l , z  ) + o ( h ) .  (2.12) 

Subtracting p(t; m, n, ~) (respectively p(t; n)) from both sides of (2.11) (re- 
spectively (2.12)), then dividing by h and letting h ~ 0 and t ~ + m, we obtain 
(2.9) (respectively (2.10)). �9 

PROPOSITION 2.2 

The unknown functions N(x, y, o), g'(x, y), O(y), cf. (2.5)-(2.7), are related 
through the following functional equation: 

for Ixl ~<1, lYl ~<1, ~(o)>~0,  

( X ( 1 - x ) + l ~ ( 1 - y - a ) - o ) ~ - ( x ,  y, o) 

=l~x-l(1--y-1)dp(x, o ) - - (1 - -yx - l f l (o ) )~ / ( x ,  Y) 

-[- (~k(1 - -  X - a )  --  ~ X - 1 ( 1  --y-a))fl(O)$2(y), (2.13) 

where 

~(x,  o ) :=  xN(x, 0, o ) +  fl(o)~2(O). (2.14) 

Proof 
Introduce the transforms (2.5)-(2.7) into equations (2.9), (2.10), by noting that 

f0 i0 o e-~ n, "r) d~'= e - ~ ' d , p ( m ,  n, ,r). �9 
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We are now in position to derive the functional equation announced in section 
1 (cf. (1.1)). With condition (2.1) the function X(x, y, o) is bounded for I x I ~< 1, 
l Yl ~< 1, ~ ( o )  >/O. Consequently, for 

a = X ( 1 -  x) + / * ( 1 - y - 1 ) ,  

with Ix [ ~< 1, [ y [ ~< 1 and ~ ( o )  >/0, the right-hand side (r.h.s.) of equation 
(2.13) must vanish. This yields the following two-dimensional functional equa- 
tion: 

K(x, y ) g ' ( x ,  y)=A(y)Cb(x, y)+ B(x, y)g2(y) ,  (2.15) 

for Ixl ~<1, ly l  ~<1, ~ ( X ( 1 - x ) + / , ( 1  - y - a ) ) > 0 ,  with 

�9 (x, y ) : =  ~ (x ,  ) ~ ( 1 - x )  + / ~ ( 1 - y - a ) ) ;  (2.16) 

K(x, y ) '=x-yB(X(1-x)+t t (1-y-a)) ;  (2.17) 

A(y) := lX(1- y-a); (2.18) 

B(x, y ) :=-(~ . (1-x)+~(1-y-a) ) f l (X(1-x)+~(1-y-1) ) .  (2.19) 

The three unknown functions involved in equation (2.15) have the following 
properties (cf. (2.5)-(2.7), (2.14), (2.16)): 
�9 for every fixed y with I Y[ ~< 1, g'(x, y)  is analytic for Ix [ < 1, continuous 

for Ix I ~< 1, and similarly for x and y interchanged; 
�9 for every fixed y with lY[>/1,  ~(x,  y) is analytic in x for I xl  <1,  

continuous for I x [ ~< 1; 
�9 for every fixed x with I xl ~<1, ~(x,  y)  is analytic in y for lYl >1 ,  

continuous for [Yl >~ 1; 
�9 I2(y) is analytic for l Y[ < 1, continuous for [Y[ ~ 1. 

Now consider how the generating function F(x, y) may be determined from 
g'(x, y). Let us assume that g'(x, y)  is known for i x ] ~< 1 and Gym ~< 1. Take 
o = 0 in (2.13), and for fixed x with ]x I ~< 1, choose y such that X(1 - x) +/ , (1  
_ y - l )  __ 0, i.e. 

/* 
Y=V(X)"= X(l_ x) + l a 

Since [v(x) i ~< 1 for i x ] ~< 1 and since X(x, y, 0) is bounded for Ix ] ~< 1 and 
]yi~< 1, cf. (2.5), it follows that the r.h.s, of (2.13) must vanish whenever 

(x, y)  = (x, v(x)) with I x ] ~< 1. This condition gives the following relation: 

(~ x)g'(x,v(x)),  for [1, < 1 .  (2.20) ~(x ,  0) = v(x)  - ;  
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Replacing q~(x, 0) by (2.20) into (2.13) and using (2.8), we get for I x l ~  1, 
l y l~< l ,  

F(x, y ) =  

1 1 

X ( 1 - x ) + ~ ( 1  - 1 )  

(2.21) 

The above formula shows that the computation of the generating function 
F(x, y) is equivalent to the computation of the function g'(x, y) for I x l  ~ 1, 
l y l  ~< 1. The remainder of this study is devoted to the determination of q~(x, y)  

for I x l  ~< 1, I y I ~< 1. We first consider in the next section the equation K(x, y) 
= 0, cf. (2.17), which will play a fundamental role in the determination of 
g'(x, y). K(x, y) will be called the kernel of equation (2.15). 

3. Analysis of the kernel 

Throughout this paper, U + (respectively U-)  will denote the region lying on 
the left (respectively right) of any contour U, when moving on U in the positive 
direction (i.e. counter-clockwise). 

We recall that a function f (z )  is analytic at the point z = z 0 if f (z )  can be 
expanded into a power series in the vicinity of z 0. 

We define, 

~:=--~ 0 < 8 <  +oe;  
O/ 

Ca:={ I z l=a} ,  for a > 0; 

C"= C1. 

Note that Ca + : = { ] z [ < a } a n d C a - : = { [ z [ > a } .  
We shall prove the following results. For fixed 8 and under two assumptions 

bearing on B(.) (see (3.3) and (3.4)) there exist a real number y~ (Y8 > 1) and a 
smooth contour L8 contained in the unit disk, such that: 
(R1) for all x ~ { Ix [ ~< 1) C3 L~-, the equation K(x, y) = 0 has exactly one root 

y = Y(x) in the region { l Y[ >~ Y~ ); 
(R2)' for all x ~L~,  the equation K(x, y ) =  0 has no roots in the region 

{ lYl >--ya}. 
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We begin with the following lemma: 

L E M M A  3.1 

For  fixed y with 1 ~< [y [ ~<y~, the equation K(x, y)  = 0 has exactly one root  
x = X ( y )  in { Ix [ ~< 1 }, where 

1, i f ~ < l ;  
Y~:= Q, i f ~ > l ,  

with t 8 the unique root in { I tl > 1} of the equation 

1 - tB(~(1  - t - l ) )  -- O. 

All the roots have multiplicity one, except whenever 8 = 1 and y = 1, in which 
case the equation K(x, 1) = 0 has a root  of multiplicity two at x = 1. 

Moreover, I X ( y )  I = 1 if and only if y = 1 or y =y~, in which case X(1) = 
X(ys) = 1. Finally, X(y)  is analytic in {1 ~< l Yl ~<Y~, Y 4= 1} and cont inuous  in 
{ 1 <  lyl ~<Y+}- 

Proof 
The existence of t 8 for 8 > 1 as well as the proof  of the l emma for 6 ~< 1 

(respectively ~ > 1 and l Yl -- 1) follow from Takacs'  l emma [12, pp. 47-48]. 
Let us consider the case ~ > 1 and 1 < [y[ ~Ys- Since clearly fl(/~(1 _ y - l ) )  ~< 

y -  1 for all real y with 1 ~< y ~< Ys, we have for [ x [ = 1, 1 < I Y [ ~< Ys, but  y 4= y~, 

I f l ( ) ~ ( 1 - x ) + / * ( 1 - 1 ) )  < f l ( l * ( 1 - ~ y [ ) ) ~ <  IYI"  

Consequently,  it is seen by RouchO's theorem [10, p. 131] that  for 1 < [Yl ~<Y~ 
with y ~Ys, the equation K(x, y ) =  0 has exactly one root (with multiplici ty 
one) in the region { [x [ < 1). Let us now examine the equat ion K(x, y~) = 0 for 
8 > 1. F rom the relation 

iB(l (s) i .< 
o/ 

which holds for all s >/O, we derive the following inequalities: 

(( <~Ysf l  /* 1 . . . .  < 1 ,  f o r l x [ ~ < l .  
Y8 a 
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Consequently,  for all Ix [ ~< 1 with x 4= 1, we have 

1 ( (1 ) )  r -yafl X ( 1 - x ) + ~  1 - ~  < l x - l l ,  

which therefore shows that  x = 1 is the only zero of the funct ion K(x, y~) in 
( Ix[ ~< 1}. 

Fix now Yo with 1 ~< [Yo ] <Y~, Yo r 1, and define x o := X(yo). Since [ X(yo) [ 
~< 1, it follows that  there exist two real numbers  r 1 and r 2 such that  ~ ( ) t (1  - Xo) 
+ / ~ ( 1 - y o - 1 ) ) > 0  for x ~ ( [ x - x o [  < r l }  and Y ~ { l Y - Y o [  <ra} .  In other 
words, the funct ion K(x, y) is analytic in { [ x - x o [ < r 1 } for every fixed y with 
] Y - Y0 [ < i"2, and analytic in { ] y - Yo [ < 1"2 } for every fixed x with [ x - x o [ < 
rp Moreover, it is seen f rom the uniqueness of the solut ion Xo, that  

~----~K(x, y) -vs O. 
(x0,y0) 

Consequently,  the'implicit function theorem for complex variables applies [5, p. 
101], which proves the last s ta tement  of the lemma. �9 

For  fixed 3, define 

Le:=X(Cy,). (3.1) 

Because of the cont inui ty  of X(y) on Cy, it is seen that  L ,  is a closed curve. On 
the other hand,  by differentiating the relation K(X(y),  y)  = 0 (cf. l emma 3.1) we 
get 

X(y)  + ~ f l ( ' ( X ( 1  - x )  + ~(1 - y - l ) )  
x (X) (y )=y( l  +2ty f l (1)(2 t ( l_x)+l~( l_y_l ) ) ) ,  for y ~ C y .  (3.2) 

Using the uniqueness of the solution X(y) we see that  the denomina to r  of 
X~ cannot  vanish for y ~ Cy~, which shows that  the curve La is everywhere 
differentiable. 

Let us now introduce the technical assumptions  on 8(.)  previously announced .  
For  fixed 3, we assume that  

X(1)(y)4=O for y~Cy~ 

(except if 3 =  1 and y= 1 since in that  case X(1)(1) - -0 ) ;  (3.3) 

X(yl) ~ X(y2 ) f o r a l l ( y  1, y2) ~ Cy~X Cy~ with yl ~Y2 . (3.4) 

The assumpt ion (3.3) ensures the smoothness of the curve L~ [3, p. 7]. The  
assumpt ion (3.4) ensures that  L~ is a simply connected curve (no double  point).  
Consequently,  L~ is a smooth  contour  if (3.3) and (3.4) hold (except at the poin t  
y = 1 if 3 = 1, where L 1 has a corner  point).  
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REMARK 3.1 
It is easily checked that (3.3) and (3.4) both hold if fl(s):= a/(s  + a) (i.e. the 

service times in queue 1 are exponentially distributed). 

The following lemma contains the key result for the proof of claims (R1) and 
(R2). 

LEMMA 3.2 
Let G(x, y) be a complex-valued function defined in /)1 X/)2, where/ ) i  is a 

connected set of the complex plane, i = 1, 2. We assume that G(x, y) is analytic 
in each of its variables. Let U be a Jordan contour [10, p. 2] contained in / )2  such 
that G (x, y) ~ 0 for all x ~ / )a  and y ~ U. 

Then, for all (xl, x2) ~/)1 X/)1 with Xl :~ x2, the equations G(xl, y) = 0 and 
G(x 2, y) = 0 have exactly the same number of solutions in U § (respectively in 
u-n~)2). 

Proof 
Consider the function 

I (x)  := 1 f - ~ z  G(x' 
z )  

dz. 
2~ri Jv  G(x, z) 

This is a continuous function in D 1 from the above assumptions, which also 
reads 

I ( x ) =  1-~-A arg{G(x, y)},  f o r a n y x ~ D  1, (3.5) 2~r v 

where A v arg(G(x,  y)} denotes the total variation of the argument of G(x, y) 
when y describes the contour U, for fixed x in D 1. 

Let us now assume that G(xo, y) has exactly n zeros in U + (respectively 
U-c~/)2)  for fixed x0 ~ D1. Then, the argument principle [10, p. 130] together 
with (3.5) give us that 

I (xo)=n,  (3.6) 

since G(x, y) is analytic in D 2 for every fixed x in D> 
The proof is now concluded by observing that the (continuous) function I(x) 

is an integer valued function in D 1, cf. (3.5), which implies from (3.6) that 

I ( x ) = n ,  for any x ~D1,  

or, equivalently, that G(x, y) has exactly n zeros in U + (respectively in U-  c3/)2) 
V x ~ D  1. �9 
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Lemma 3.2 now enables us to justify claim (R1). 

PROPOSITION 3.1 
For all x ~ ( I x [ ~< 1) N L~-, the equation K(x, y)  = 0 has exactly one root 

y =  Y(x) in { lYl >~Ys)- Moreover, Y(x) is analytic in { Ix I < 1 }  AL~- and 
continuous in ( I x I ~< 1 } n L~-. 

Proof 
For I x l  = 1, x r 1, it is seen by using Rouchd's theorem that K(x, y) has 

exactly one zero in ( [ Y [ >t Y~ }- Moreover, for I x I ~< 1 with x ~ L~ and I Y I = Y~, 
we know from lemma 3.1 that K(x, y) ~ 0. The first part of the proposition then 
follows from lemma 3.2 with G(x, y) := K(x, y), D 1 := ( Ix I ~< 1} n L~-, /92 := 
( l Y l  >~Ys} and U:=Cy. 

The analyticity and the continuity of Y(x) in { I x I < 1} n L~- and { ] x I ~< 1} 
n L~- respectively, follow from the implicit function theorem for complex varia- 
bles [5, p. 101]. �9 

The following lemma will be needed for proving claim (R2). 

LEMMA 3.3 
The function Y(x) defined in proposition 3.1 can be analytically continued up 

to L 8 (only to L 1 - {1} if 8 = 1), and moreover, 

Y ( X ( y o ) ) = y  o, for a n y y 0 ~ C y  ~. (3.7) 

Proof 
Fix Yo ~ Cys with Y0 ~ 1 if 8 ~ 1, and define Xo '= X(yo) (cf. lemma 3.1). It is 

easily seen from (3.2) and the assumption (3.3) that 

(xo,Yo) 

Consequently, the implicit function theorem applies to K(x, y) (see an analogous 
treatment in the proof of lemma 3.1), which shows that there exists a unique 
function Y.(x) analytic in a neighborhood Sxo of x0, such that K(x, Y.(x)) = 0 
for any x ~ Sxo and Y.(xo) =Y0. Since the equation K(x, y)  = 0 has exactly one 
solution in { ] y [ >~ Y8 } for fixed x ~ { [ x I ~< 1} n L~- n SXo. This shows from the 
principle of analytic continuation that Y.( x ) is the analytic continuation of Y( x ) 
in SXo. In particular, Y( X(yo) ) = Y(xo) --Y0- 

If Y0 = 1 whenever 8 ~< 1, then clearly Y(X(1)) = 1, which concludes the proof. 
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PROPOSITION 3.2 

For every x ~ L~, the equation K(x, y) = 0 has no roots in { l Yl >~Ys}- 

Proof 
The proof is contained in appendix A. 

4. The integral equation 

In this section we shall prove the following two results: 
(R3) the sought function g'(x, y) is fully determined in ( [x I ~< 1, x ~ L~ ) x 

( l Yl <Y~) by the values ~2(y) takes on the circle Cy~; 
(R4) $2(y) satisfies a homogeneous Fredholm integral equation of the second kind 

on Cy a. 
Let us first show that for 6 > 1 the functions g'(x, y) and $2(y) can be both 

anal2r continued up to the contour Cy~, for every fixed x with Ix [ ~< 1. 
Recall from section 2 that the unknown functions g'(x, y), ~(x,  y)  and (J(y) 

must satisfy the following equation, cf. (2.15), 

A(y) ~b(x, y)+ T(x, y)fg(y) (4.1) X~ Y ) =  K(x, y) 

for Ixl <1, lYl <1,  ~ ( X ( 1 - x ) + / x ( 1 - y - 1 ) ) > ~ 0 ,  where K(x, y), A(y) are 
given in (2.17), (2.18) respectively, and where 

B(x, y) (4.2) 
T(x, y ) : =  K(x, y)" 

Set (x, y) = (X(y),  y) in (2.15) with [y[ = 1, where X(y) has been defined in 
lemma 3.1. This immediately yields the following relation 

A(y) cb(X(y), y) [ y l = l .  (4.3) 
I2(y) = - B ( X- - ~ I  y)  

For 1 < [y I ~< Y~, it is seen that the r.h.s, of (4.3) is a meromorphic function. This 
follows from the properties of the functions ~(x,  y) and X(y) (see (2.16) and 
lemma 3.1). The possible poles of this meromorphic function are the zeros of 
B(X(y), y) for 1 < I Y l ~<Y~- Let us show that there do not exist any such zeros. 
From (2.19) the identity B(X(y), y) = 0 implies that 

(i) a(1 - XCy)) +ix(I-y-I)  =0 ,  

o r  

(ii) f l ( h ( 1 -  X(y)) +/t(1 _ y - l ) )  =0 .  
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Since X(y) =yfl(X(1 - X(y)) +/~(1 _ y - l ) )  for 1 < l yl -<y~ (cf. the definition 
of X(y)), then (i) necessarily entails that X(y)=y,  which is impossible if 
1 < I Y] ~<Ys, since in that case [ X(y) [ ~< 1 by lemma 3.1. 

On the other hand, (ii) implies from the definition of X(y) that X(y)= O. 
However, it is seen from (2.14), (2.16), that ~(x,  y) also vanishes if x = 0 and 
f l ( X ( 1 - x )  +/~(1 _ y - l ) ) =  0, which therefore shows that the r.h.s, of (4.3) is 
analytic in ( 1 < [ y [ < Y8 } and continuous in ( 1 < [ y [ ~ y~ }. 

Consequently, we deduce from the principle of analytic continuation that (4.3) 
gives the analytic continuation of I2(y) to ( [y[ ~<y~}. This, in turn, entails that 
the r.h.s, of (4.1) defines the analytic continuation of gt(x, y) to ( [y[ <y~}, for 
fixed x with Ix[ ~< 1. 

We are now ready to prove a part of claim (R3). Set y = t in (4.1) with t ~ Cy~, 
multiply by d t / ( 2 r r i ( t - y ) )  and integrate along the contour Cy,, where Cy~ is 
traversed in the positive direction. Then, 

1 fc,.g'(x' t) dt= 1 f A(t)~(x, t) 
2~'i t - y ~ ce. K--~, t - ~  - y  ) d t 

1 fcy T(x, t)S2(t) dt, (4.4) 
+ - ~ i  ~ t - y  

for Ixl ~<1 with x ~ L n  and [y[ <y~. 
Note that K(x, y) ~ 0 for I x [ ~< 1 with x f~ L 8 and y ~ Cy,, cf. lemma 3.1, 

which ensures that both integrals in the r.h.s, of (4.4) are well defined. 
The function ~P(x, y) being analytic (respectively continuous) for l ysI < 1 

(respectively [Y8 [ ~< 1) for every fixed x with I x [ ~< 1, the residue theorem [10, p. 
122] applies to the integral in the left-hand side of (4.4), which gives: 

1 1 g'(x, y) = ~ fcy, ~A(t)~(x't)-(t---t)y) dt + ~ fCy, T(x,t_yt)f2(t) dt, (4.5) 

for Ixl < 1  with x ~ L ,  and lyl <Yn. 
By proposition 3.1, we know that K(x, y) has exactly one zero y = Y(x) in 

Cy~ 1 if x ~ ( Ix l .<  1} n L~. Similarly, proposition 3.2 expresses that K(x, y) 
has no zeros in C~ U Cy~ if x ~ L~-. 

This entails that the function 

A(t)e(x, t) 
t--* 

K(X, t) 

is analytic in Cs and continuous in C~ U Cy 8 for any x ~ L~-, and that it has 
exactly one zero y = Y(x) in Cy~ for any x ~ ( [x [ ~ 1} C~ L~-. 
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Consequently, the residue theorem now applies to the first integral of the r.h.s. 
of (4.5), which gives, for arbitrary ~ > O, 

II(x, y), F ( x )  

�9 (x, y )=t I I (x ,  y)+ y'(--~--y, 

f o r x ~ L ~ - ,  [Yl <Y~; 

f o r x ~  { Ixl  ~<1) AL~-, 

lyl <y~, 

(4.6) 

where 

1 fcy T(x, t)12(t) dt;  (4.7) H(x, y):= 2~ri , t - y  

- / ~ ( 1 -  Y(x))~(x, Y(x)) 
F(x) ,= (4.8) ( x + F f l  0) X ( 1 - x ) + / ~  1 Y(x) 

F(x)  is the residue of the function 

A(t)~(x , t )  
t-'* K(x, t) 

at the point t = Y(x), for any x ~ { Ix I ~< 1) n L~-. 
It remains to compute the residue / ' (x )  in { ]xl ~ 1} n L~- to conclude the 

proof of claim (R3). To this end, we state the following: 

LEMMA 4.1 
For any 8 > 0, the function F (x )  is continuous in { Ix [ ~ 1} n (L~- U L~). 

Proof 
First of all, let us recall that u is a continuous and non-vanishing function 

for x ~ ( Ix I ~< 1} n (L~- U L~) (cf. proposition, 3.1 and lemma 3.3). Conse- 
quently, in view of (4.8) we only have to verify that the denominator  of I'(x) 
does not vanish in ( ix I ~< 1) n (L;- U Ls), or if it does, that the numerator  also 
vanishes at this point. For x ~  ( I x l ~ <  1)nLZ, it is readily seen that the 
denominator of F(x) cannot vanish because of the uniqueness of the solution of 
the equation K(x, y) = 0 (see proposition 3.1). For x ~ L~ with x 4:1 if i~ = 1, 
the denominator does not vanish because of (3.3) and (3.7). Finally, if x = 1 and 

= 1, then Y(x)= 1, and the numerator  and the denominator  of I'(x) both 
vanish at the point 1, which shows that F(1) is also well defined in that case. �9 
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This result can be used as follows. Since the r.h.s, of (4.3) is the analytic 
continuation of the function fg(y) to {[Y[ ~<Ys}, we find from (2.18), (2.19), 
(3.7), (4.8) and lemma 4.1, that 

F(X(y))=O(y)I2(y) ,  f o r a n y  y~Cys, (4.9) 

where 

X(y)o(y)  . (4.10) 
Q(Y) := X(y) + I z f l ( 1 ) ( o ( y ) )  ' 

1 o(y) := X(1-  X(y)) + l~(a - y ). (4.11) 

The idea is now to derive a second relation satisfied by F (x )  for x ~L~ .  
Formally, this relation will be obtained by letting successively y tend to 1 and x 
tend to a point of Ln in the second relation of (4.6), and by noting that ~/'(x, 1) is 
known for any x with I x]~< 1. More precisely, it is seen by letting y = 1 in 
(2.15) (cf. (4.2)), that 

q~(x, 1 ) = I 2 ( 1 ) T ( x ,  1), for Ixl < 1, (4.12) 

where 

~2(1) = 1 - - ,  (4.13) 
O~ 

from a standard result on the M / G I / 1  queueing system (cf. (2.3), (2.7)). 

Let us now come back to equations (4.6), (4.7). For  8 > 1, the integral 
H(x, y) is clearly continuous at the point y = 1, for fixed x with Ix I<  1, 
x q~L 8. However, if ~ <  1, i.e. C y =  { l y l - -1} ,  then H(x, y) is a singular 
integral at the point y = 1, for fixed x with ] x [ ~< 1, x ~ L~. Consequently, the 
behavior of H(x, y) whenever y tends to 1 with l Yl < 1, must be carefully 
examined. This is the purpose of the following lemma. 

LEMMA 4.2 

Let 8 ~ 1 and I x [ ~< 1 with x ~ L 8. Then the function 

-~f'~(t) T(x, t)t ---y- r(x, 1) dt  Y 

on passing through the point y = 1 of the contour C behaves as a continuous 
function, i.e. this function has a definite limiting value on approaching the point 
1 by y from any side of C and along any path. 

Proof 
Fix ~ and x with 6 ~< 1 and [ x [ ~< 1 with x ~ L 8. It is easily seen that the 

function y ~ T(x, y) possesses a bounded derivative on Cy. Therefore, this 
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function satisfies a Halder condition on Cy~, cf. [7, p. 6]. Moreover, ls l is 
bounded on Cy. Consequently, the proof of the lemma can be constructed in 
direct analogy with the proof of the basic lemma in [7, pp. 20-23], and it is 
therefore omitted. �9 

For x {Ixl ~<1} AL~-, 
(4.6)): 

g'(x, y)= ~ fcyg(t) T(x, t)t -yT(X' 1) dt 

T(x, 1) { / 2 ( t )  dt  + F(x) 
+ 2rri Jcy~ t - y  Y(x) - y  

[yl<y~, let us rewrite g'(x, y)  as follows (cf. 

- 2r fcyfa(t ) T(x, t)t -yT(X' 1) dt + T(x, 1)/2(y)  

+ y(F(x;)_y, (4.14) 

by using the residue theorem together with the analyticity of ~2(y) in Cy+. 
Now, letting y tend to 1 in (4.14), we get from lemma 4.2 and (4.12), that for 

arbitrary 8 > 0 

1 -  V(x) f, I2(t) T(x, t ) -  T(x, 1) F(x) 2~ri c,~ t - - 1  dt, (4.15) 

for any x ~ ( Ix l ~ 1} n L g .  

Substitution of (4.15) into (4.6) yields for [ y [ < y~, 

(II(x, y), for x ~L~-; 

II-I(x, y) 
q ( x ,  y ) = { _ ( ~  fc ~2(t )T(x,  t)--?(x, 1)d t ,  (4.16) 

I \ Y -  ~ )} Y~ t 
k f o r x ~ { I x l ~ l } n L ~ - .  

This concludes the proof of claim (R3). 

We now focus our attention on the determination of $2(.) on the contour Cy~ 
(see claim (R4)). According to the sketch previously given for deriving a second 
relation for F(x) on L~, it remains to let x tend to a point of the contour L~ in 
(4.15). However, since the function T(x, t ) -  T(x, 1) has a pole at the point 
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x = X(t) if t ~ Cy~ (except if 8 < 1 and t = 1, cf. (4.2) and lemma 3.1), it follows 
that the integral in (4.15) is a singular integral for any x ~ L 8 (except for x = 1 if 
8 < 1). The forthcoming two lemmas will help us to remove this singularity. 

LEMMA 4.3 

For fixed 8 and Yo ~ Cy~ - { Y8 }, there exists a neighborhood Vy ~ of the point 
Yo, such that 

(1) X(y) is analytic in Vyo; 
(2) S(VyonC~)c{Ix  I ~<1} ~L~-;  
(3) X(Vyo r C~) c L  Z. 

Proof 
Let Yo ~ Cy, - (y~). Since X(y) is analytic at the point  y =Y0 (cf. lemma 3.1), 

there exists a number  r > 0  such that X(y)  is analytic in {lY-Y01 < r ) .  
Moreover, XO)(y0):~ 0 from (3.3). Consequently, the theorem of the inverse 
function appfies [5, p. 104], which shows that there exists a neighborhood Vy ~ of 
the point Y0 (Vyo c ( l Y -Y01 < r ) )  such that X(y)  has a unique inverse in Vy o. 
We immediately deduce from lemma 3.3 that this inverse is Y(x). Let us choose 
Vy ~ small enough in order that I S ( y )  l < 1 for any y ~ Vy0, which is always 
possible since IS(y0) l < 1. Then, statements (2) and (3) directly follow from 
propositions 3.1 and 3.2. �9 

From now on, we shall assume that (see remark 4.2) 

84 :1 .  

For convenience, let us introduce the set 

v:= U V,o, 
YO ~ Cy~ - { Ys ) 

and let us define for y ~ V, t ~ Cy~, 

H ( y , t ) , =  T ( X ( y ) , t ) - T ( X ( y ) , I )  R ( y )  
t - 1  t - y  ' 

where 

Q ( y )  

R ( y ) : =  Y - I '  /z_X 

( 1 -  ' 

if y:~ 1; 

if y = l .  

(4.17) 

Note  that R(y)  is continuous at y = 1. 
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LEMMA 4.4 

The function H(y, t) possesses the following properties: 
(1) Vy ~ V, the mapping t ---, H(y, t) is continuous on the circle Cy+; 
(2) Vt ~ Cy+, the mapping y ---, H(y, t) is continuous in V. 

Proof 
The proof is given in appendix B. 

We are now ready to prove claim (R4). To this end, relations (4.9) and (4.15) 
will be used. In (4.15), set x = X(z) for z ~ V(~ C~. Note that this change of 
variable is allowed because of property (2) of lemma 4.3. Then, cf. (4.17), 

F(X(z ) )=  1-z2~_____F t)dt+ (1-z)R(z)~ dt, 

_ 1-z2~ri fc o s2(t)H(z' t) dt, (4.18) 

for any z ~ V n Cy~, from the residue theorem. 
By evoking an elementary result on the integrals depending on a parameter, 

we deduce from lemma 4.4 that the integral in the fight-hand side of (4.18) is 
continuous (in particular) on Cy,, i.e. this integral has a definite limiting value 
whenever z ---, y with z ~ V ~ C~ and y ~ Cy. On the other hand, we know that 
F(.) is continuous on L, (lemma 4.1) and that X(.) is continuous on Cy+ (lemma 
3.1). Consequently, letting z ~ y  in both sides of (4.18) with y ~ Cy+, we get 

1 - y  fc~ ~2(t)H*(y, t) dt, (4.19) r (  xC y ) ) = -2-g; + 

for any y ~ Cy+, where 

H*(y '  t)'= ( H(y '  t)'H2(y), 

with 

if t v~y; 

if t=y ,  

H2(y ) :=  lim H(z, y). 
z "-'+y 

z E  V n C ~  

Finally, by combining (4.9) and (4.19), we derive the following integral equation: 

12(y) = .f~ N(y,  t)I2(t) dt, (4.20) 
- ~y 

8 

for any y ~ Cy+, where 

N(y,  t ) ' =  ( 1 - y ) H * ( y ,  t) ' 
2~riO(y) (4.21) 
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It is shown in remark 4.1 that N(y, t) belongs to  L2(Cys)X L2(Cy~) , where 
L2(Cy,) denotes the class of functions which are square integrable on Cy. 
Consequently, (4.20) defines a homogeneous Fredholm integral equation of the 
second kind on the circle Cy, [8]. 

REMARK 4.1 
For every t ~ Cys, the function y --* N(y, t) is continuous on Cy~. This comes 

from property 2 of lemma 4.4, together with the definition of Hz (y  ). 
Similarly, the function t ~ N(y, t) is continuous on Cy~ - { y } (see lemma 4.4, 

property 1), and discontinuous at point y, for any y ~ Cy. More precisely, one 
can observe from (B.1) and (B.2) that 

H I ( y ) ~  H2(y),  

for any y ~ Cy~ (to see this, compute for instance the coefficient of fl(2~(o(y)) in 
both equations (B.1), (B.2)). In particular, these results show that 

fGfcy IN(y,  t)12 d y  dt  < + oo. (4.22) 

REMARK 4.2 

If 3 = 1, i.e. lz = a, then the analysis becomes much more cumbersome. 
Indeed, by expanding H(y, 1) into a power series in the vicinity of 1, it is seen 
that H(y, 1) has a pole of order two at the point y = 1, which entails that the 
integral in the r.h.s, of (4.20) is a singular integral at the point  y = 1. (Note that 
this result is basically due to the fact that whenever 3 = 1, then the function 
K(1, t) has a zero of multiplicity two at the point t = 1, cf. lemma 3.1). 
Consequently, this case requires a special analysis which is not reported here for 
the sake of simplicity. 

5. The generating function 

Recall the Fredholm integral equation (4.20) to be satisfied by ~2(y) on Cy,. 
We then have the following result: 

PROPOSITION 5.1 

For fixed 8 4= 1, the real part of 12(y) on the circle Cy, is given as the unique 
non-zero and continuous solution of the following homogeneous Fredholm 
integral equation of the second kind: 

~2R(y ) = fo2~2R(t)Nt~(y, t) dep, (t=y~ e i~)  (5.1) 
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for y ~ Cys, where 

OR(y ) ,= ~ ( O ( y ) ) ;  

NR(y, t):= 2~( i tN(y ,  t)). 

(5.2) 

(5.3) 

Proof 
For [w ] = 1 and t = ynw, we clearly have 

o ( t )  = -  -03, 

= 2 ~ ( O ( t ) )  - O(~), 

since the coefficients of the generating function O(y)  are all real numbers, cf. 
(2.7) (here ~ denotes the complex conjugate of z). 

By substituting (5.4) into (4.20), we get 

O(y)=2Y fcoR(t)U(y, t)dw-Y fco( )U(y, y~w) dw, (5.5) 

for y ~ Cy~ and t =YsW with I wl = 1. 
Since the function N(y, y~w)O(yJw) is analytic for I wl > 1 and continuous 

for [w [ >/1 for fixed y ~ Cy, (see section 4), it follows from Cauchy's theorem 
[10, p. 84] that the second integral in the r.h.s, of (5.5) vanishes, i.e. 

O(y) = 2Ys fcOR(t)N(y, t) dw. (5.6) 

Taking now the real part in both sides of (5.6), we obtain (5.1). 
Similarly to (4.20), equation (5.1) defines a homogeneous Fredholm integral 

equation of the second kind, since clearly (see (4.22) and (5.3)) NR(y, t) belongs to 
L2(Cys) X L2(Cys). 

From the theory of Fredholm integral equation we know that the integral 
equation (5.1) has either the trivial solution O(.)-:  0 or an infinite number  of 
solutions [8, p. 35]. 

The existence of a non-zero solution to equation (5.1) is a consequence of the 
ergodicity of the Markov process X under condition (2.1). Indeed, if 6 ~< 1 then 
clearly O(1) > 0 (see (4.13)). On the other hand, if 8 > 1 then, of. (4.3), (2.16), 
(2.14), 

O(ya) = ya,~(1, 0, /~(1 _ y - l ) )  + O(0) 

is strictly positive, since O(0)=  Prob(X 1 = 0, X 2 = 0) is strictly positive if the 
Markov process X is ergodic (here X i stands for the number  of customers in 
queue i at steady state, i = 1, 2). Consequently, O(ya) > 0 for any 8 > 0, which 
shows that the function O(y)  is not identically zero on Cy. 
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The existence of at least one continuous solution also follows from the 
ergodicity of the Markov process X, since we have shown in that case that ~2(y) 
is necessarily continuous in { [ y [ ~< y~ ) (see section 4). 

The uniqueness of a (non-zero) continuous solution follows from the well 
known result that a function which is analytic in Cy + and continuous in Cy+ U Cy~ 
is completely determined in Cs (up to an additive constant which can be 
determined by using the relation (4.13)) by the values its real part takes on Cy r 
This boundary value problem is called the Dirichlet problem for the circle [9, pp. 
107-108]. Consequently, two distinct non-zero continuous solutions of equation 
(5.1) will yield two distinct functions $a(y), for y ~ Cy+ U Cyg which is dearly 
impossible if the process X is ergodic. �9 

Up to a standard numerical procedure (see for instance [3, pp. 349-350]), 
proposition 5.1 provides us with the realpart of the function fa(y) on the circle 
Cy r Let us now show that the knowledge of QR(Y) on Cy~ is actually sufficient 
for determining the generating function F(x, y). 

Using (5.4), the function II(x, y) defined in (4.7) can be rewritten as follows, 
for Ix[ ~<lwith x ~ L ~  and [y[ <y~, 

1 T(x, t)fgR(t ) dt 1 fc T(x, ~_~y(-t) dt 
II(x, y)= ~ ~ t - y  - 2~r---i "y, t 

- rriX fc~, T(x,t t)~2R(t)--y dr, (5.7) 

from Cauchy's theorem, since the function 

T(x, t)~2(yjw) 
W - +  , t = y S w ,  t - y  

is analytic for [w [ > 1 (respectively continuous for I wl >t 1) for fixed x, y with 
Ixl and ]Yl <Ys. 

Consequently, (cf. (4.16), (5.7)): 

[ l fc~, T(x, t)~2R(t ) dt, for x~L-~" 
rri t - y  

1 f T(x, t)~R(t ) dt 
Xp(x, y ) =  7ri Jc~, t - y  (5.8) 

( X - Y ( x ) )  1 fc~fg T(x, t ) -  T(x, 1) 
- y Y ( x )  ~ R(t) t 1 dt, 

f o r x ~  { Ix[ ~<1} AL~-, 

for any [y] < Ys, where DR(. ) is provided by proposition 5.1. 
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These results are collected in the following theorem: 

THEOREM 5.1 

For 8 ~ 1 and if conditions (2.1), (3.3) and (3.4) hold, then the generating 
function F(x,  y) for the stationary joint distribution of the number  of customers 
in the system is given by 

F(x ,  y ) =  

1 1 x 

x,§ 1) 
for I x I < 1 and I Y l < 1, where 
�9 g'(x, y)  is g ivenin  (5.8) for Ixl  < 1 ,  xq~L8 and l y l  <Yn; 
�9 ~,(x) :=/~/ (X(1 - x )  +/~).  

6. Average number of customers at node 2 

This section is devoted to the computat ion of E(X2),  the average number  of 
waiting customers at node 2, in steady state. Note  that the corresponding 
quantity at node 1 is known - and given by the so-called Pollaczek-Khinchin's 
formula - since this node is a standard M / G I / 1  queue. 

Starting from the relation 

= ~ ) , E ( X 2 )  OY F ( x '  Y (x,y)=(1,1) 

we easily get by using (2.21) and (4.12), that 

X + O  
E(  Xz) = - -  , (6.1) 

where 

0 := y)  . ~~ q~t( x '  (x,y)=(1,1) (6.2) 

COMPUTATION OF 0 

Since ff'(x, y)  is a continuous function for I x ] < 1 and I Y I < Y~, it turns out 
that /9 can be computed by using either (5.8a) or (5.8b). Let us consider relation 
(5.8a). First, let us investigate the case 8 < 1 (i.e, y, = 1 and Cy, = C). 
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The function T(1, t) being well defined for any It[ = 1 if 8 < 1 (see sections 3 
and 4), it is readily seen that 

g'(1, y )  = lim g ' (x ,  y)  = I__L T(1, t)12R(t ) dt,  (6.3) 
x'--~ 1 ~ri .,~ t - y  
x~L~ 

for any y with l Yl < 1. 
It now remains to differentiate equation (6.3) and then to let y tend to 1. For 

[Yl < 1, we have 

0@ 1 fc T(1, dt  (6.4) g,(1, y)= (t_y) 2 

1 (T (1 ,  t ) -_ao-- (_ t -1)al )d t  
- rifc  R(t) ( t _ y )  2 

where 

a o [ ~2R(t ) a 1 f ( t -  1)lJR(t ) +--= . . . .  d t + - =  dt ,  (6.5) 
~1JC ( t - y )  2 7 t l  Jc ( t - y )  2 

a0"= limT(1, t); (= a/z ) (6.6) 
t"-~ 1 O/ - -  ] l  

~ T(1, t ) [  ( =  a2tx(l--lx2/a+tx2fl(2)(O)//2)) (6.7) 
a l  : =  - ~  t = 1 �9 - - -  - 

It is readily checked that (i) the first integral in the r.h.s, of (6.5) has a definite 
limiting value at the point y = 1, (ii) the second integral reduces to a012(1)(y), 
(iii) the third integral is equal to al[~2(y ) + ( y -  1)I2(1)(y)] ((ii) and (iii) are 
obtained by using (5.4), and by applying both Cauchy's theorem and the residue 
theorem). Consequently, we get by letting y tend to 1 in (6.5) (cf. also (4.13)), 

O= l fci2R(t)( T(l' t ) -ao- - (_ t -1 )a l  ) 
~r---i ( t -  1) 2 

dt+ao~2(1)(1)+al(1-~), 

(6.8) 

where ~2(1)(1) is obtained by differentiating (5.6). 
Let us now examine the case ~ > 1 (i.e. Y8 > 1). In (5.8a), set x = X(z) with 

z ~ V n C~. Note that this change of variable is allowed because of property (3) 
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of lemma 4.3. We then have, 

r(X(z), t) 
~ ( x ,  y ) y = l = l  ~2R( t  ) --~t:~ 2 dt 

- ~ri fc,, a"(t) ~ :  1) 2 (Z-- 1)2(t--z) 

Q(z) Q 0R(t)  dt, (6.9) 
+ rri(z - 1 )  2 t - - - - - -~7-  

for any z ~ VN Cs and for [y] < Ys. 
It is readily checked that the first integral in the r.h.s, of (6.9) is continuous at 

the point z =y8 (since Q(z) is the residue of the function t --+ T(X(z), t) at the 
point t -- z, for any z ~ Cy,) and that the second integral in the r.h.s, of (6.9) is 
equal to Q(z)fa(z)/(z- 1) 2. Consequently, we get by letting z tend to y8 in 
(6.9), 

1Qg~R(t)( T(I' t) _Q(Y8____)_ ) dt + Q(Ys)__ ~(yS) 
O=rr-- ~ (-77_1-(2 (ys-X)2(t-ys) (y~ - 1) 2 ' 

(6.10) 

where ~2(y8) is determined from (5.6). 

Appendix A 

Proof o/proposition 3.2 
Define for [x [ ~< 1, x ~ L~: 

z) 
�9 J(x).'= K(x, z) dz; 

�9 n z ( x )  the number of zeros of K(x ,  z) in {Iz  >y~}; 

�9 np(x)  the number of poles of K(x,  z ) i n  {]z  >yn}. 

From the argument principle [10, p. 130], we have 

J(x)=n?(x)-nz(X) ,  
for any [x[ ~<1, x~L~. 

Note that ne(x ) = 1 for any [ x [ ~ 1, x ~ L 8 (cf. (2.17)), so that 

S ( x ) = l - n z ( X  ), 
for any Ix[ ~1 ,  xq~L~. 

(A.1) 

(A.2) 
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Let us show that  J(x) = 1 for any x E L ~ ,  which will prove propos i t ion  3.2. 
Set z = Y(u) in (A.1) for u ~ L 8. Note  that  this change of variable is allowed 

f rom lemma 3.3. It comes 

~--TK(x, z)~=r(.) 

] ( x )  = K(x ,  r(u)) 2-~i f~ rO)(u) du, 
for any Ixl  ~ 1 ,  x~L~. 

We easily see that  the funct ion 
a 

u --, ~ K ( x ,  ~)~=~(u)r(1)(u) 
K(x, r(u)) 

has a pole of multiplicity one at the point  u = x, for any x ~ La; its residue is 1. 
Let us now rewrite g(x) as follows: 

J(x )= 1 1 
~ K(x, Y(u)) Y(1)(u) u - x  du 

1 ~ 1 du, (A.3) 
+-~i ~u--x 

f o r a n y  Ix[ < 1 ,  xq~L a. 
The first integral in the r ight-hand side of (A.3) is clearly cont inuous  in 

{ Ix[ ~< 1} f rom the preceding result. On the other hand,  Plemelj-Sokhotski's 
formulas for singular integrals [3, p. 32] apply to the second integral. We 
therefore deduce that  

J(x) is cont inuous in L~- U L~ (respectively { Ix] < 1 } N (L~- U L , ) ) ,  

(A.4) 

and that  

J+(xo) -J - ( xo )  = 1, (A.5) 

for any x o ~ L~, where 

J + ( x o ) . ' =  t im J ( x ) ;  
X..-+ X 0 

x~L~ 
J-  ( xo ) := lim J( x ). 

X---+ X o  

x~{ Ixl <1} nL~- 

We know by proposi t ion 3.1 that  n z ( x )  = 1 for any x ~ { I x I ~< 1} N L g ,  i.e. (cf. 
(A.2)) 

J ( x ) = 0 ,  f o r a n y x ~ ( l x  I < I } N L ~ - .  
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By continuity, cf. (A.4), this result necessarily entails that 

J-(xo) =0, 
for any x o ~ La, since J(x) is an integer-valued function from (A.2). 

Combining now (A.5) and (A.6), we get 

g+(xo)  = 1, 

for any Xo ~ Ls, and by continuity, cf. (A.4), 

J(x) = 1, for any x e L~-, 

which concludes the proof. �9 

(A.6) 

Appendix B 

Proof of lemma 4. 4 
If y ~ V -  Cys, then the continuity of t ---> H(y,  t) on Cy 8 readily follows from 

definition (4.17). Similarly, if y ~ Cy~ then H(y, t) is clearly continuous on 
Cy~ - (y} .  It remains to prove that H(y, t) has a finite limit whenever t ~ y  if 
yE  Cy. 

The existence of this limit follows from the fact that R(y) is the residue of the 
function 

T(X(y) ,  t ) -  T(X(y) ,  1) 
t"-> t - 1  

at the point y if y ~ Cy r In that case, a tedious but routine calculation shows 
that 

Hl(y ) := lim H(y, t) 
t~y 

t~Cyn-{y} 

is given by 

_ T(X(y_______~), 1__)) Q(y_____~) 
�9 y - 1  ( y _ l )  2 

+ /* 

( y 2 ( y - 1 ) (  X(y)  + l.tfl(a)(o(y))) ) 

Hi(Y)= X ( -lxQ(Y)-~-2'-(-~ + X(y)  + y(o(y))fl(1)(o(y))); 

i f y r  

{ a~ ~[1 + ~ + a/~2fl(2)(0) t if -- 1, 
/ / * - a } t  ot 2 ( o t - ~ )  ) Y -  

for any y ~ Cy., which concludes the proof of property 1. 

(B.1) 



J.P.C Blanc et al. / M /  GI /1  ~ . /  M / 1  queueing model 155 

Fix now t E Cy. Then, clearly y ~ H(y, t) is continuous in V - (  t } from 
definition (4.17). It remains to prove that H(y, t) has a finite limit whenever 
y ~ t. After lengthy computations, we find that 

W(t)-tT---_(ff(t)'l),  if t:# 1; 

/ - / 2 ( t )  = lim H(y,  t )  = ( B . 2 )  
c~ + 1Q(2)(1), if t =  1, y---~ t 

y ~ V - ( t )  C 2 

for any t ~ Cy,, where 

XX(1)(t) ( ) w ( t )  := /,:l(t) t + t~ ( ' (" ( t ) )" ( t )  + 

KI(t):= ~---fK(X(y), t ) y = ;  

1 0 2 K ( X ( y ) ,  t )y=,;  
K2(t) := 2 3y2 

( ) Co := X(1) (1)  2 -~k2pt ~ + - - - a - ( / z - ~ k )  

o t - / x  

63 := ( 1 -  ~)(X(2)(1)(1 - ~ ) -  h2X(1)(1)zfl(2)(O)), 

which therefore ensures the validity of property 2. �9 

a ( t )X ( t )K2( t )  

tKl(t)  2 

+ �89 ~,); 
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