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ABSTRACT

Response variances, var(yi), are estimated using replications

for each experimental condition., The resulting estimated variances

si can be used to derive the correct variances of the Ordinary
Least Squares (OLS) estimators B, The estimates 52 can also be

1
used to compute the Estimated Weighted Least Squares (EWLS) esti-

*
mators B . The asymptotic covariance formula for EWLS might be
utilized to test the EWLS estimators. The type I and type II

errors of this test procedure are compared to the corresponding

errors for the OLS estimators B8.

1. INTRODUCTION

This paper is a continuation of Kleijnen, Brent and Brouwers

(1981) and Nozari (1984); also see Deaton, Reynolds and Myers

85

Copyright © 1985 by Marcel Dekker, Inc. 0361-0918/85/1401-0085$3.50/0



86 KLEIJNEN, CREMERS, AND VAN BELLE

(1983). The problem we tackle is as follows. In the classical

general linear model
I=XB+e (1.1)

the errors e may show strong heterogeneity of variance. We have

varlance estimators si based on replicating the experimental con-
ditions 1, say, my times:

m
- -3 ,-1) (1 =1 ) (1.2)
i = j=1 (yij yi) mi‘ ) = lyese,n *

We examine the following questions:

(1) Can we continue to use the classical Ordinary Least Squares
(0LS) formulas? So we compute

8 = (g'.g)'l.g'.z (1.3)
g .= (x.p .ot (1.4)
B
~ 2 n i ~ 2
o n = I T (yyy ;7N (1.5)
i=1 3=1 3
n -~ ~
where N = I m, and v,.=7v and q denotes the number of para-—
i 1j 1

i=
meters. The cllassical t statistic with v = N-q degrees of freedom
is:

t = = ~ l (3= 14000,q) (l~6)
V. {var (Bj)}

(2) Can we use the OLS estimator 8 of eq. (1.3) combined with the

correct expression for the covariance matrix £, in case of unequal

variances? Obviously this expression is: 8

.= (B0 g g5 @D (1.7
B
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We can estimate gy in eq. (1.7), using si of eq. (1.2). But how
many degrees of freedom has the t statistlc corresponding to eq.
(1.6)? It 1s easy to derive that eq. (1.3) reduces to eq. (1.8),
where Eij is the (i,j)th element of the m x g matrix g formed by
the n different rows of the N x q matrix § (remember: N = I mi;

my replicates), and we restrict this study to orthogonal experi—

mental designs, that is, g'.g = n.E.

- n
Bj = I Xij'yi/n (3 =1,.00,9) (1.8)
i=n
Because (;iij)2 equals plus one and the observations are indepen-

dent, we obtain:

var (;i)/n2 (1.9)
1

[ =]

var (Bj) = .

Using the estimator si of eq. (1.2) we get:

n
E (si/mi)/n2 (1.10)

var (Sj) = .

i
We further restrict our study to an equal number of replications
(my = m); 1f the variances were homogeneous, then var (Bj) would
reduce to a sum of XZ variates; because of the additivity of X2

variates, the t statistic of eq. (1.6) would have degrees of free-

dom v = n(m~1).

Note: If my # m then we might take a pilot sample to estimate
var(yi); next we make m; equal to cvir (y;) so that var (;i) is

approximately constant (¢ denotes a constant).

2
(3) Can we use the variance estimators s1 to compute the Estimated

~%
Welghted Least Squares (EWLS) estimators g§ ? In other words, we

have
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g = (x'.sz— Ht .g§, 3 (1.11)

Its asymptotic covarlance matrix is:

2% = (.ot H7! (1.12)
y

Eqs. (1.11) and (1.12) result in the analogue of the t statistic

of eq. (1.6). However, we do not know the correct degrees of free—
*
dom v'. We might investigate:

*
(1) v = N-q = n.m-q; see the classical OLS formulas.
n
*
(1) v =% (mi—l) = n.(m~1) = n,m~n; see eq. (1.10).
1
*

(114) v min (mi—-l) = m—1; see Scheffé (1964).
i

*
{(iv) v ® or t, = z with =z ~ N(0,1); the asymptotic case.

Actually we do not investigate approach (i). One reason is that
approach (1) assumes a correctly specified regression model,
whereas the other approaches use the unblased estimators si. The
difference between (i) and (ii) is negligible if q » n (with q <
n).

2. MONTE CARLO INPUT PARAMETERS

Appendix 1 gilves details oun the parameters of our Monte Carlo
experiment. All n x g matrices z( satisfy the condition g'g = nl.
One ¥ 1s a 16 x 13 matrix taken from a simulation study of the
Rotterdam harbor (with design generators 1= 5 6 and 3 = 4 5)
other matrices X are based on a 23 and a ?_2 experimental design.
We combine each of these three cases with several degrees of

heterogeneity, measured by

2 2 2

H = (omax - cmin)/c’m:i.n (2.1)

where 52 (and 02 ) is the maximum (and minimum) element of Q .
max min

H varies between zero {constant variances) and 1,455.69 (taken
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from the harbor case-study), The variances are estimated from »
replications; we vary @ between two (a technical minfmus) and
twenty-five. We rapeat each Monte Carle experiment (specified by
% 8 o and m) 150 times to reduce chance effects.

3. MONTE CARLO RESULTS

Appendix 2 gives details on an experiment that substantiates the

experimental results of Kleijwen et al. (1981), t.e., we repeat

thelr experiment with different random numbers and find the follo-

wing resultsi

(1) Blas: Both OLS and EWLS give unblased estimators of B, as we
knew,

(11) Standard errors: The asymptotic covariance forsuls of eq.

(1.12) holds, provided we estimate var(y) from twenty-five
replications (m = 2%), For m = 9 our results deviate from
Klelijnen et al. (1981), 1.e.,, the asymptotic formula may un-
derestimate the varlance,

(111) Relative efficiency: In case of strong heterogeneicvy EWLE

give smaller variances for the g estimators, provided we

have mora than two replications (m > 2).

Next we try to angwer a new set of questions, nsmely can we
use the Student t statlstle £, when we estimate the unknown varl-
ances var(§i) and apply OL8 and EWLS respectively, whers the
degrees of freedom v may equal n(e~1) for OLS and (m~1), ale-1)
or » for EWLS. We eatimate the true distribution from 130 realfzae~
tions, and apply three popular goodness~of-fit tesce, aamely
the xz, the Kolmogorov-8mirnov, and the Anderson=-Darlinp testa. We
apply each goodness-of-fit test to each of the q parametors ﬁ}.
uaing a 1% significance level. We do not present the resulting
mass of data but report only preliminary results (which are fup~
ther investigated below): EWLS based on only two replications
result in distributions not well approximated by any Student dig~
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tribution., If we have more replications (m > 2), then we may use
the Student t statistie with the (conservative) degrees of freed6m
equal to m-l. If m is as high as 25, then we may use the normal
approximation. OLS with the corrected variance formula accounting
for unequal varlances {eq. 1.7) result in a t distribution with
degrees of freedom equal to n(m—1), provided n{m~1) > 15 (as n
increases the variance of v;r({;) decreases). We shall give more

detailed results for the following more specialized question.

Because we use the t distribution only to select the critical

a2
constant tv/ y we test the hypothesis:

8. =~ 8.
B P> % s a (= 1.,0) (3.1)
0 [var (sj)}* v

If e denotes the event within the outer brackets of eq. (3.1) then
the alternative hypothesis H; 1s P{e} # a or H; is the one-sided
and conservative alternmative hypothesis: P{e} > a. To test Hy we
use the binomial test as follows. We estimate P{e} from 150 in-
dependent replications and compute a confidence interval. TFor
example, for the one-sided H; the lower limit of the 1~YO confi-
dence interval is given by the following expression where

Yo

z~ N(0,1) and P(z > z ") = Yo!

AY ~ -~
p—zo.{p.(l-p)/lso}ir (3.2)

so that we reject Hy 1f « is smaller than this limit. Actually we
reject HO if any of the q parameters Bj exceeds the critical
level: Applying the Bonferromi inequality, we reject Hy of eq.
(3.1) if

~ -~

Y/q.{pj.(1—;j)/1so}*] > a (3.3)

max [p,~z
IKjcq

For y in eq. (3.3) we select the value 5%. We apply the procedure
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of eq. (3.3) for three classical o values in eq. (3.1), namely 1%,
5% and 10%. This approach results in Tables I and II where the
symbol * means that we reject Hye These tables suggest the follo-
wing conclusions: If the n responses § have different variances
and we can estimate these varlances from more than two replica-
tions (m > 2), then the OLS estimators é can be tested using a
Student t statistlc with degrees of freedom equal to v = n{m-1),
provided we test B with an o exceeding 17%. Testing the EWLS esti-
mators E* requires more replications, say m = 25 (and o > 0.01).

This conclusion agrees with Nozari (1984)'s conclusion.

If and only if both OLS and EWLS pass the test of eq. (3.3),

then it makes sense to compare their power functions. We estimate
the power function in eight to ten polnts, using different random

numbers per point (Kleijnen (1983) presents a more efficient pro-
cedure). For each point we generate 150 replicates. The result is
that in all experiments EWLS dominate OLS (as we might expect be—
cause In previous experiments we found that var(B ) < var(B)), we
test this dominance using the sign test. Appendix 3 gives some
details.

4. CONCLUSIONS

We limited our study to experimental designs with g‘g =n I.

If we suspect heterogenelty of variances, then we should try to
estimate the n different variances, obtaining more than two repli-
cations (m > 2). We can use these estimated varlances to derive
the correct variances of the OLS estimators é and to test their
significance, through the Student t statistic with n(m-1) degrees
of freedom. If we have firm estimators of the response variances -
say 25 replications - then it is better to use the EWLS estima-
tors é* with the t distribution with degrees of freedom equal to
n(m-1). We should test OLS and EWLS estimators using an a higher
than 1%,
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APPENDIX 1: DETAILS OF MONTE CARLO INPUT

Case 1 is inspired by a case study, namely a simulation of a
harbor in Rotterdam, reported in Kleljnen, Van den Burg and Van
der Ham (1979). There are sixteen experimental conditions and

thirteen parameters g, i.e., the matrix Z( 1s as follows (the num-
ber one is mot displayed):
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e . T S S I .
+ - N S T - m .- =
B T T T
T L S
e L . S
T T " ST T S S
T T T N
o= = B T T N N T
T T T B
T T A S B
T T T T T
e T T T T S &
T L T T -
. - = ok
+ 4 - - . b+ e -
+ - - - - 4 po - + -+

We use the estimates of the case study as the (true) population
parameters, i.e., ' « (~1.42 ~0.769 13,4 =11.508 3.5 ] 37%
140,918 15.391 0.046 281,098, 21.25 11,8735 -49.48)). The three
degrees of heterogenelty are: If H = 0 (constant varlances) then
var(?i) m | for 4 = L,...,06, Tf H e 11,84 (intervediate hetaroge=
neity) then vgp(;) wa (1l 234 4,5 5 6 7 7.5 89 95 10 11 12
12.84), If H =» 1455 (extreme heterogenaity, found ln case atudy)
then V9f<§) w (93228.38 821,78 2B0Y 69.44 2967.11 177,78 15129 976
27115.11 560,11 4181.,77 64 12693,77 529 20640.11 608.44),

Case 2 18 a 23 design (see the submatrin of Case 1| formaed by
the first four columns and the first sight rows). §' = (=1.42
-0.769 1%:44 ~11,508). 1f H = 0 then var(;i) a 1, 1f H = 10.4)
then var(y) = (1 2 4 5 6 7 9 11.83), If H = 1455 then
vgr(;) = (93228.38 821.78 2809 64 2567.11 177,78 15129 576).

Case 3 is a 22 deaign (see Case ), first three columns and
first four rows) with B' = (1 1 1). If H = 0 then var(?i) # 1,
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If # = 10.38 then var(y) = (I 4 8 11.38). If H = 1289 then
var(y) = (1 200 600 1290.15).

We use a multiplicative random number generator with malti~
plier 1313 and modulus 259. This generator was developed by NAG

(Numerical Algorithms Group) and it is standard on our ICL 2960
computer.

APPENDIX 2: REPEATING THE EXPERIMENT OF KLEIJNEN ET AL. (1981)

We first verify the correctness of our (Monte Carlo) computer
program as follows. We know that the OLS estimator E of eq. (1.3)
or (1.8) is unbiased and that its covariance matrix is given by
eq. (1.7) or (1.9) where Qy or var (¥) is known in the Monte Carlo
experiment. So we estimate the expected values E(B ) and the vari~
ances var(sj) from the 150 Monte Carlo repetitions, andztest these
values using the standard normal statistic z and the y~ statistic

with 149 degrees of freedom. Next we examine the quality of the
various B estimators in several steps:
(1) Bias of B estimator

We know that OLS always give unbiased estimators E, and that (un-—
der mild technical assumptions) EWLS also give unbiased estima-
tors é* (under normality § and 52 are independent so that EWLS
give unbiased estimators). In the preceding paragraph we verified
the lack of bias in OLS, using the standard normal statistic z.
For EWLS we compute the (approximate) Student t statistic:

150 .,
(x g, /150) - B,
9, el J
149 ¥ 7150 . 150 .

{z @) - & 85,/150% s x 150}
&=l g=1

(i=1,.00,9) (A.D)

Note: We do not use the equality sign in eq. (A.l) because the

EWLS estimator B is not a linear transformation of z, also
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uses the random vector with the elements si. However, the t sta-

tistic is supposed to be robust,
tions as 150.

especlally with as many observa-

We obtain 160 realizations
from Table III later on: eight

of ty,q (the number 160 follows

combinations of H and m, and q

parameters, l.e., 160 = 8 x 13+ 8 x 4 + 8 x 3). We use a 5% sig-

nificance level per realization, so that we expect eight false

significances. We find zero significances for OLS and six for
EWLS. We conclude that OLS and EWLS indeed give unbiased estima-
tors of B8, which agrees with Kleijnen et al. (1981).

(1i) Standard error of g estimator

The standard errors of the OLS estimators g follow from eq. (1.7)
or eq. (1.10). For EWLS we have the asymptotic formula of eq.
(1.12)., We compute the x2 approximation:

150 .. 150,

I (BT - £ B /150)%/149
2) gzt Y8 g1 8 (3 =1 ) (A.2
X149 Al =1 3= 100050 -2)

where ( )jj means the jth element on the main diagonmal of ( ).
Table III displays the maximum and the minimum of the q realiza-
tions. We compare the maximum and minimum using a two—sided X§49
test with 1% significance, resulting in the critical wvalues 0.73
and 1.32. Table III suggests the following conclusions. If we have
only two replications (m) to estimate var(y), then we underesti-
mate the true variance of E*. With m = 25 the asymptotic formula
gives unbiased estimators of var(;*). With m = 9 it is very well
possible that we underestimate the variance; our results for m = 9
conflict with Kleijnen et al. (1981) who reported unbiased estima-
tors.

~%
Note: We use the xz statistic even though B may be nonnormal and

we know that the XZ statistic is not robust. We do not apply a
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TABLE III
Adequacy of asymptotic variance formula
Case l: n =16, q = 13
Heterogeneity H
0 11.84 1,455.69
m 9 25 2 9 25 2 9 25
2 * * * 224
max y 1.3997 1.207 1.643" 1,215 1.238 1.792" 1.186 L.
min xz 0.834 0.823 1.013 0.914 0.676%  1.236 0,923 1.005
Case 2: n = 8, q = 4
Heterogeneivy H
0 10.83 1,455.69
m 9 25 2 9 25 2 9 25
max x2 1,195 1.211  2.427% 1.348% 1.038  3.635" 1.183 0.918
min XZ 0.948 1.047 1.680 1.074 0.899 2.642 0,947 0.873
Case 3:n=4, q=3
Heterogeneity H
10.38 1,289.15
o 4 5 9 25 4 5 9 25
2
max X2 1.251 1.100 1.092 1.120 1.315 1.184 1.399% 1.049
min x 1.169 0.903 0.945 0.962 1.012 0.978 0.993 0.792
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TABLE IV
Bfficlency of OLS versus EWLS

,,,,,,

Heterogenelty H

0 11.84 1,455.69

m 9 25 2 9 25 2 9 25

max x> 1.399% 1.207  1,453% 1,195 1,217 1.436" 0.949 0.941

min x2  0.834 0.823  0.993 0.864 0.673%  0.097* 0.077* 0.075"

Cage 2t n = B, q = 4
Heterogeneity H

0 10.83 1,455.69

m 9 25 2 9 25 2 g 25

max x> 1,195 1211 1.827% 1.20 0,989  0.560 0.190 0,162
min x  0.948 1,047 1.389 0.732 0.635%  0.150" 0.052% 0.066"

Case 3t n= 4, q= 3
Racgroganmtéy H

10.38 1,289.15

m 4 5 9 28 4 5 9 2%

max x> 1,237 1,100 1.017 1.096 1,214 1.119 1.262 0,915
min x> 0.763 0.589% 0.684* 0.730  0.352* 0.395" 0.345* 0.275"
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distribution-free procedure, because we have 149 degrees of free—
dom and ultimately we are not interested In the standard errors
themselves but only in their role in the t statistiec of eq. (1.6);
see Section 3.

(1i1) Efficiency of OLS versus EWLS

We quantify the efficlency through the variance. Therefore we com~
pare the estimated variance of the EWLS estimator (the numerator
of eq. (A.2)) to the known variance of the OLS estimator (see eq.
{1.9)) and this results in a xi&Q statistic analogous to eqe.
(A.2). Table IV suggests the following conclusions (which agree
witﬁ Kleijnen et al., (1981)):

(1) If we knew that the variances var(y) are constant (B = 0),
then we should not estimate them, i.e., we should not use EWLS.
(11) In case of strong heterogenelity EWLS is more efficient provi-

ded we can estimate var(y) from more than two observations.

APPENDIX 3: POWER FUNCTIONS

An example 1s as follows. We consider Case 3 where we have

three parameters (51, 82, 33) besides the general mean (BO)- We
test the null hypothesis:

of 63 =

We may estimate 83 using OLS and test Hy applying the t test with

a = 0.05 and degrees of freedom v = n(m~1). Suppose that actually

83 has the value 1.15. Then we sample the responses y from the
linear model of eq., (l.1) with the value 83 = 1.15. Repeating this
sampling 150 times, we obtain an estimate of the power at the
value 83 = 1.,15:

P(HO: 33 =1 rejectedls3 = 1.15)
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TABLE V

Estimated power: P(Hyt B4 = 1|63)

B, 1 1015 1,25 1.37 1.50 1.62 1.75 2.05 2.45

0LS, ven(m-1) .047  .073 .213 .313 ,527 .687 .867 .980

EWLE, v = m~1 .047 ,080 .167 .267 .507 .687 .893 ,993
ven(m-1) 053  ,087 ,220 .307 .533 .707 .907 .993
Ve w 053,093 .,227 .533 ,720 .920 .993 1

— e g e

We repeat this process for eight values different from 1.15, ine-
cluding the value ﬂB m ] (where the power coincides with the a
arror). We estimate the power function, not only for OLS but also
for EWLS, using three different values for v (see the end of sec-
tion 1) and we obtain Table V.

Obviously the power increases as the true B deviates from the
hypothesized value, and the power increases as the degrees of
freedom used for the t statistlc increase. For the other two para-
meters (al and 32) of Case 3 (with H = 10, m = 25) we obtain
similar tables. The results for the three parameters are indepen~

dent.

We further study several other m values, degrees of heteroge-
neity (M), a values, and X matrices, provided OLS and EWLS pass
the test of eq. (3,3).

We never use common random numbers, i.e., outputs are inde=-
pendent (obviously outputs within a particular column of tables
like Table V are dependent). Purther we know that a two—-sided test
results in a symmetric power function, and theraefore we estimate
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the power function only for 63 > 1 in Table V. We compare the
power of OLS and EWLS through the sign test, using a 5% signifi-
cance level and eight to ten observations (the power is estimated

in so many points).
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