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Abstract

In this and a sequel paper (Combinatorial designs with two singular values. II. Partial

geometric designs, preprint) we study combinatorial designs whose incidence matrix has two

distinct singular values. These generalize 2-ðv; k; lÞ designs, and include partial geometric
designs and uniform multiplicative designs. Here we study the latter, which are precisely the

nonsingular designs. We classify all such designs with smallest singular value at most
ffiffiffi
2

p
;

generalize the Bruck–Ryser–Chowla conditions, and enumerate, partly by computer, all

uniform multiplicative designs on at most 30 points.

r 2004 Elsevier Inc. All rights reserved.

MSC: 05B20; 05C50; 62K10

Keywords: Multiplicative designs; Singular values; Bipartite graphs with four eigenvalues

1. Introduction

Combinatorial designs (a set of points, a set of blocks, and an incidence relation
between those) are usually defined in terms of nice combinatorial properties, such as
‘‘each block has the same size’’, ‘‘every pair of points occurs in the same number of
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blocks’’, etc. Many combinatorial designs defined in this way have the property that
their (0,1)-incidence matrix has nice algebraic properties. These algebraic properties
are in turn relevant to the statistical properties of the designs.
Here we start from the point of view of such an algebraic property, i.e., the

property that the incidence matrix N has two distinct singular values (the positive

square roots of the (nonzero) eigenvalues of NNT ). Designs with zero or one singular
value are trivial: they are empty or complete, respectively. Designs with two singular
values include 2-ðv; k; lÞ designs and certain group divisible designs, but also some
less familiar designs such as partial geometric designs and uniform multiplicative
designs. The latter are precisely the nonsingular designs, and these form the subject
of this paper. In a sequel paper [10] we will study the partial geometric designs, that
is, the singular and non-square 1-designs with constant block size and two singular
values.
Multiplicative designs were introduced by Ryser [13], and have been studied by

Bridges [1], Bridges and Mena [2–4] and Host [11,12]. Here we shall collect some of
the known results on uniform multiplicative designs, give some new examples, and
classify, partly by computer, all designs on at most 30 points. Some of these designs
have four distinct block sizes, while up to now only designs with at most three
distinct block sizes were known. We also classify all uniform multiplicative designs

with smallest singular value at most
ffiffiffi
2

p
; and give a generalization of the Bruck–

Ryser–Chowla conditions.
There is an important connection to algebraic graph theory in the sense that the

incidence graphs of the studied designs are precisely the bipartite graphs with four
eigenvalues. Graphs with few distinct eigenvalues have been studied before by the
authors, cf. [6–9], but so far not much attention has been paid to bipartite graphs. As
a consequence of our results all bipartite graphs with four eigenvalues up to 60
vertices have now been classified.
In order to eliminate some trivialities, we assume that the studied designs (and

their bipartite incidence graphs) are connected, i.e., that there is no (nontrivial)
subset of points and subset of blocks such that all incidences are between those
subsets, or between their complements. Consequently, the Perron–Frobenius theory
(cf. [5, p. 80]) can be applied, and it follows that the largest singular value has
multiplicity one and a positive eigenvector.

2. Uniform multiplicative designs

If the incidence graph of a design with two singular values s04s1 has four distinct
eigenvalues ð7s0;7s1Þ then the design (i.e., its incidence matrix) must be square
and nonsingular. It is clear then that NNT � s21I is a rank one matrix. It follows that
NNT ¼ s21I þ aaT ; where a is the positive eigenvector of NNT with eigenvalue s20
such that aTa ¼ s20 � s21: Such designs are called (square) uniform multiplicative

designs by Ryser [13]. We note that the dual design of such a design is also
uniform multiplicative, since there must similarly be a (positive) vector b such
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that NT N ¼ s21I þ bbT ; in fact, this vector is b ¼ 1
s0

NTa: If the incidence matrix can be

rearranged such that NNT ¼ NT N ða ¼ bÞ; then the design is called normal. In this
case the design and its dual have the same intersection pattern. Most known examples
of multiplicative designs are indeed normal, such as symmetric 2-ðv; k; lÞ designs.

2.1. Parameter restrictions

From the equation NNT ¼ s21I þ aaT ; we derive that

rp ¼ s21 þ a2p;

lpq ¼ apaq;

(

where rp equals the replication of point p; i.e. the number of blocks incident with p (also

row sum p in N); and lpq is the number of blocks containing the pair of points p; q:

From this it follows that if the design has constant replication r; then a is

a constant vector, and thus l ¼ lpq is constant. Hence NNT ¼ ðr � lÞI þ lJ and

NJ ¼ rJ: From this it follows that N�1 ¼ 1
r�lðNT � l

r
JÞ; and consequently that

l
r

JN ¼ NT N � ðr � lÞI ; which is symmetric with rank one. Now we may conclude
that JN ¼ rJ; i.e., the design has constant block size r; and thus is a symmetric
design. Thus we have the following.

Proposition 1. A uniform multiplicative design is a symmetric design if and only if it

has constant replication or constant block size.

Since symmetric designs are well-studied objects, we will focus on nonsymmetric
designs, that is, we will assume in the remainder of this paper that the designs do not
have constant replication, and do not have constant block size. To be absolutely
clear, we remark that a non-symmetric design can have a symmetric incidence
matrix. Indeed, we shall see some of such examples.
Let us first make some observations about the form of the singular values

(of the integer v � v matrix N). The characteristic polynomial ðx � s20Þðx � s21Þ
v�1

of NNT is a monic polynomial with integer coefficients. The minimal polynomial

ðx � s20Þðx � s21Þ is monic with rational coefficients (since it can be obtained by
Gaussian elimination from a system of v2 equations with integer coefficients), and
since it divides the characteristic polynomial, it has integer coefficients. The quotient

ðx � s21Þ
v�2 of the two polynomials therefore also has integer coefficients, hence s21;

and consequently also s20; is an integer, unless maybe when v ¼ 2: Indeed, for v ¼ 2

there is one design with two singular values: its incidence matrix is

N ¼
1 1

1 0

� �
;

which has singular values 127
1
2

ffiffiffi
5

p
: Now let us assume in the remainder of this section

that vX3: As derived we know then that the singular values are square roots of
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integers. Furthermore, since s20s
2ðv�1Þ
1 ¼ detðNNTÞ is a square integer, we have the

following.

Proposition 2. Let vX3 be the number of points of a uniform multiplicative design with

singular values s04s1: If v is odd, then s0 is an integer, and if v is even, then s0s1 is an

integer.

From the equations rp ¼ s21 þ a2p and lpq ¼ apaq; it now follows that a ¼ w
ffiffiffi
d

p
;

where d is a square-free integer and w is a positive integer vector. Dually,

we have that b ¼ u
ffiffi
e

p
; where e is a square-free integer, and u a positive integer

vector. Since NTa ¼ s0b; we have that s0
ffiffiffiffiffi
de

p
is rational, and hence an integer.

If the design is normal (then d ¼ e), then s0 is an integer. We thus have the
following.

Proposition 3. For a uniform multiplicative design with singular values s04s1 on vX3

points, with vectors a ¼ w
ffiffiffi
d

p
and b ¼ u

ffiffi
e

p
as above, we have that s0

ffiffiffiffiffi
de

p
is an integer.

If moreover the design is normal, then s0 is an integer.

Some examples we shall see have two distinct replications and the same block
sizes, and moreover they are normal. Such multiplicative designs have been studied
by Bridges and Mena [3]. Here we shall use the following.

Proposition 4. A uniform multiplicative design with two distinct replications r1 and r2;
which also has block sizes r1 and r2; is normal and its singular values are both integers.
Moreover, each point with replication ri is in rij blocks of size rj ; where rij is uniquely

determined by the equations ri1 þ ri2 ¼ ri and ri1w1 þ ri2w2 ¼ s0wi:

Proof. Consider such a design. Let vi be the number of points with replication

ri ði ¼ 1; 2Þ: Then v1 þ v2 ¼ v; and v1r1 þ v2r2 ¼ s20 þ ðv � 1Þs21 (which follows from
the trace of NNT ). Thus v1 and v2 are uniquely determined. Similarly, this hold for
the blocks: the number of blocks of size ri is also vi ði ¼ 1; 2Þ: It follows now that the
incidence matrix can be rearranged such that NNT ¼ NT N; hence N is normal. By
the previous proposition, we now have that s0 is an integer.
Consider now a point with replication ri ði ¼ 1; 2Þ; and suppose that it is

contained in rij blocks of size rj ð j ¼ 1; 2Þ: Then ri1 þ ri2 ¼ ri and ri1w1 þ ri2w2 ¼
s0wi: It follows that rij ði; j ¼ 1; 2Þ is uniquely determined, i.e., it only depends on i

and j: Thus N has a regular partition with quotient matrix

r11 r12

r21 r22

� �

which has eigenvalues s0 and r11 þ r22 � s0: The latter eigenvalue must be7s1; from
which it follows that also s1 is an integer. &
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More generally, we have the following on the numbers rij :

Proposition 5. In a uniform multiplicative design, let p be a point with replication

rp ¼ s21 þ a2p: If rpj is the number of blocks of size kj ¼ s21 þ b2j containing p, thenX
j

rpj ¼ rp;
X

j

rpjbj ¼ s0ap; and
X

j

rpjkj ¼ s21 þ ðaT jÞap: ð1Þ

If the design has three distinct block sizes then the numbers rpj are uniquely determined

by the replication rp:

Proof. The first equation is clear, while the second follows from the equation Nb ¼
s0a: The third follows from the fact that NðNT jÞ ¼ s21jþ ðaT jÞa; and by observing
that NT j is a vector containing the block sizes kj: It is easy to show that if there are

only three block sizes, then the obtained system (three equations with three
unknowns, for each p) is nonsingular, hence has a unique solution. &

Host [11] derived rational congruence conditions for uniform multiplicative
designs by using the Hasse–Minkowski theorem. These conditions seem to be rather
complicated though. Here we derive the following elementary generalization of the
well-known Bruck–Ryser–Chowla conditions for symmetric designs, by adjusting
Ryser’s proof (cf. [14]) for these conditions.

Proposition 6. Let v be odd. If a uniform multiplicative design on v points exists,

with singular values s04s1; and eigenvector a ¼ w
ffiffiffi
d

p
as before, then the equation

x2 ¼ s21y
2 þ ð�1Þðv�1Þ=2dz2 has a nontrivial integer solution ðx; y; zÞ:

Proof. Let b ¼ u
ffiffi
e

p
be as before, then Nb ¼ s0a: Let M be the rational matrix

given by

M ¼
N w

deuT s0
ffiffiffiffiffi
de

p
� �

:

Then MðI"½�d
ÞMT ¼ s21I"½�d2es21
; hence I"½�d
 is rationally congruent to
s21I"½�d2es21
: By using Lagrange’s four squares theorem, this implies that for v � 1

(mod 4), we have that ½1
"½�d
 is rationally congruent to ½s21
"½�d2es21
: This
implies that x2 ¼ s21y

2 þ dz2 has a nontrivial integer solution. For v � 3 (mod 4), we

have that I3"½�d
 is rationally congruent to ½s21I3
"½�d2es21
; and hence that

½s21
"I3"½�d
Ds21I4"½�d2es21
DI4"½�d2es21
; which implies that ½s21
"½�d
 is
rationally congruent to ½1
"½�d2es21
: This implies that x2 ¼ s21y

2 � dz2 has a

nontrivial integer solution. &

As an application we mention a parameter set which is ruled out by this rational

congruence condition. This parameter set has v ¼ 31; s0 ¼ 19; s1 ¼
ffiffiffi
6

p
; d ¼ 1; and

it satisfies all other known conditions. A design with these parameters is normal
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with 10 points with replication 10, 3 points with replication 15, and 18 points with
replication 22. Proposition 5 implies that if the points and blocks are partitioned
according to replications and block sizes, then the incidence matrix has a
corresponding regular quotient matrix ½1 0 9; 0 3 12; 5 2 15
: The Bruck–Ryser–
Chowla condition is however not satisfied, so such a design cannot exist.

2.2. Reducible designs

A design is called reducible if there exist a set of t blocks (called the reducing set of
blocks) such that the union of these blocks is a set of t points, called the reducing set
of points. In [3], Bridges and Mena classified the reducible multiplicative designs. We
specialize to obtain the following on the uniform ones.

Proposition 7. If a uniform multiplicative design is reducible, then the reducing blocks

form a symmetric design on the reducing points, the remaining blocks contain all

reducing points, and with these points deleted they form a symmetric design on the

remaining points. The parameters ðv1; k1; l1Þ and ðv2; k2; l2Þ of these two symmetric

designs are related by the equations k1 � l1 ¼ k2 � l2 ¼ l1l2 ¼ s21:

Proof. Let N be the incidence matrix of a reducible design, say

N ¼
N1 M

O N2

� �
;

where N1 has size t � t (the reducing ‘‘design’’). It follows by inspection of NNT and

NT N that both designs N1 and N2 are, like N; uniform multiplicative (and thus

nonsingular). Moreover, MNT
2 has rank 1, so M must have rank 1. Since each entry

of NNT is positive, M has no zero rows or columns, so M ¼ J: It now follows that if
i is a reducing point, and j is not a reducing point, then aiaj ¼ rj (notation is as

usual). This implies that a is constant over the reducing points, and thus that N1 is a
symmetric design. Similarly (dually) N2 is also a symmetric design. The parameter

restrictions easily follow from working out NNT : We remark further that these
restrictions are also sufficient. &

2.3. The designs with small second singular value

Propositions 4 and 7 are useful in the following classifications of the designs with

s1p
ffiffiffi
2

p
:

Proposition 8. There are two non-symmetric uniform multiplicative designs with

singular values s04s1 ¼ 1: They are described by the incidence matrices

J3 � I3 J3

O3 J3 � I3

� �
and

1 jT

j I4

� �
:
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Proof. Let N be the incidence matrix of such a design, such that NNT ¼ I þ aaT ;

with a ¼ w
ffiffiffi
d

p
; with d a square-free integer, and w an integer vector. Consider two

points p and q with distinct replications rp4rq: Then wpXwq þ 1; and hence

rqXlpq ¼ dwpwqXdw2q þ dwqXdw2q þ 1 ¼ rq: Thus we have equality in the entire

chain of inequalities, and hence d ¼ 1;wp ¼ 2;wq ¼ 1: The only possible replications

are therefore 2 and 5. For the dual the same holds, hence the design is normal.
Since lpq ¼ 2; the two blocks containing p contain also q; and moreover, all points

with replication 5. It thus follows that N can be rearranged such that

N ¼
N1 J

O N2

� �
;

whereN1 is on the points with replication 5 andN2 is on the points with replication 2.
Say these designs have v1 and v2 points, and b1 and b2 blocks, respectively.
If b1 ¼ 0; then v ¼ b2 ¼ 5 and v1 ¼ 1 (since two points with replications 5 meet in

4 blocks). Since the design is normal, it follows that there is also one block
containing all points, and we obtain the second design in the proposition.

Finally assume that b140: It follows from inspecting NNT that N1N
T
1 ¼ I þ

4J � b2J and N2N
T
2 ¼ I þ J: By considering ranks we find that b1Xv1 and b2Xv2

(note that b2o4 since NNT40). But the total number of blocks b1 þ b2 equals the
total number of points v1 þ v2; hence N1 and N2 are square, and hence they are
symmetric designs by Proposition 7. It also follows that N1 and N2 are both 2-(3,2,1)
designs. &

Proposition 9. There are two non-symmetric uniform multiplicative designs with

singular values s04s1 ¼
ffiffiffi
2

p
(up to duality). They are described by the incidence

matrices

N1 J7

O7 N2

� �
and

1 jT jT

j I5 I5

j I5 J5 � I5

2
64

3
75;

where N1 and N2 are the incidence matrices of symmetric 2-(7,3,1) and 2-(7,4,2)
designs, respectively.

Proof. Let N be the incidence matrix of such a design, such that NNT ¼ 2I þ aaT ;

with a ¼ w
ffiffiffi
d

p
(with d a square-free integer, and w an integer vector, as before). A

similar argument as in the classification of designs with s1 ¼ 1 shows that dp2; and
moreover the replications can be either 4 and 10 ðd ¼ 2Þ or 3, 6, and 11 ðd ¼ 1Þ:
Let us first consider the case d ¼ 2: A point with replication 4 ðwi ¼ 1Þ and a point

with replication 10 ðwj ¼ 2Þ meet in 4 blocks, hence N can be rearranged such that

N ¼
N1 J

O N2

� �
;
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where N1 is on the points with replication 10 and N2 is on the points with replication
4. Say these designs have v1 and v2 points, and b1 and b2 blocks, respectively.
If b1 ¼ 0; then v ¼ 10 and v1 ¼ 1 (since two points with replications 10 meet in 8

blocks). From the trace of NNT we find that s20 ¼ �s21ðv � 1Þ þ 10þ 4ðv � 1Þ ¼ 28;
which contradicts Proposition 2.

Hence we may assume that b140: As before, we find that N1N
T
1 ¼ 2I þ 8J � b2J

and N2N
T
2 ¼ 2I þ 2J; from which it follows that b1Xv1 and b2Xv2 (note that

NNT40; hence b2p7). But the total numbers of points and blocks are equal, so N1

and N2 are square, and hence they are symmetric designs. From the parameters it
follows now that N1 is a 2-(7,3,1) design, and N2 is a 2-(7,4,2) design.
Secondly, consider the case d ¼ 1:Without loss of generality, we may also assume

that the dual design has d ¼ 1: Proposition 4 implies that the design or its dual must
then have a point with replication 11. We assume the design itself has one. From the
parameters it follows that also here we can write the incidence matrix as

N ¼
N1 J

O N2

� �
;

whereN1 is on the points with replications 11 andN2 on the points with replications 3
or 6.
Like before it follows now that if b140; then N1 and N2 are square, hence N1 and

N2 are symmetric designs by Proposition 7. It follows that N2 is a 2-(7,3,1) design
(a 2-ðv2; 6; 4Þ design does not exist), and N1 is a 2-(7,4,2) design, which is the dual of
the example found above (so dually d ¼ 2 after all).
If b1 ¼ 0 however, then v ¼ 11; and v1 ¼ 1: If v3 is the number of points with

replication 3, then s20 ¼ �s21ðv � 1Þ þ 11þ 3v3 þ 6ðv � 1� v3Þ ¼ 51� 3v3: By Pro-

position 2 this number must be square, which implies that v3 ¼ 5: If b3; b6; b11 are the
numbers of blocks of sizes 3, 6, and 11, respectively, then it follows (from the trace of

NT N) that 3b3 þ 6b6 þ 11b11 ¼ 56: Since there can be at most one block of size 11,
this implies that b11 ¼ 1; and b3 ¼ b6 ¼ 5: From these and the other parameters it
now follows easily that this gives the second design in the proposition. &

We remark that the first example in Proposition 9 is interesting in view
of Proposition 4, since it has only two replications (4 and 10) and two block sizes
(3 and 11), but s1 is not an integer.

2.4. Enumeration of small designs

In this section we will enumerate all nonsymmetric uniform multiplicative designs
on at most 30 points (all symmetric designs on at most 30 points have already been

enumerated). We found already 5 designs in the above having s1o
ffiffiffi
3

p
: To determine

the other ones, we may assume vX3 and s1X
ffiffiffi
3

p
:

Since vp30; the integer eigenvector w has entries at most 5. We will show first that
wi ¼ 5 cannot occur however (we remark that wi ¼ 5 implies that

ri ¼ s21 þ dw2i X28).
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The case wi ¼ 5; s1 ¼
ffiffiffi
3

p
; d ¼ 1 is easily excluded by similar arguments as used in

Propositions 8 and 9.
A design with v ¼ 29;wi ¼ 5; s1 ¼ 2; d ¼ 1 has one point p with replication 29 and

the other points can only have replications 5 and 20 (otherwise the number of blocks
where a point and p meet is too large). If v1 and v2 are the numbers of points with

replications 5 and 20, respectively, then v1 þ v2 ¼ 28 and 5v1 þ 20v2 þ 29 ¼ s20 þ
28s21: This implies that s

2
0 ¼ 57þ 15v2 which is however never a square (for the

relevant v2), a contradiction. A design with v ¼ 30;wi ¼ 5; s1 ¼ 2; d ¼ 1 also has one
point with replication 29. From the intersection pattern it follows however that the
block not containing this point must be empty, a contradiction. A design with

v ¼ 30;wi ¼ 5; s1 ¼
ffiffiffi
5

p
; d ¼ 1 has one point with replication 30, but also here the

intersection numbers and the replications do not match.
Hence we may assume that wip4; and consequently at most four distinct

replications and four distinct block sizes can occur.
By computer we generated all parameter sets ðv; s0; s1; v1;y; v4; r1;y;

r4; b1;y; b4; k1;y; k4Þ for designs on vp30 points with singular values

s04s1X
ffiffiffi
3

p
; satisfying Propositions 2 and 3, with vi points with replication ri and

bi blocks of size ki; satisfying the equations
P

i vi ¼
P

i bi ¼ v;
P

i viri ¼
P

i biki ¼
s20 þ ðv � 1Þs21; and

P
i bik

2
i ¼ s21v þ ð

P
i viaiÞ2 (and the dual equation). The last

equation follows from summing all entries in the equation NNT ¼ s21I þ aaT ; i.e., by

working out the equation jT NNT j ¼ jTðs21I þ aaT Þj: We also checked that the

parameters are such that for any two points p; q we have that lpqprp (and the same

for the dual). We obtained 26 parameter sets, as displayed in Table 1 (together with

the five parameter sets with s1o
ffiffiffi
3

p
). The column ‘‘#’’ gives the number of designs

for each parameter set. Comments on these parameter sets now follow:

� v ¼ 17: This must be a symmetric 2-ð16; 6; 2Þ design extended by a point and
block in the obvious way. Since there are 3 such symmetric designs, there are 3
nonsingular designs with two singular values on 17 points.

� v ¼ 18: The two possible parameter sets are related. Both are normal with two
block sizes. If the incidence matrix of the first one is partitioned (regularly)
according to block sizes and replications as

N11 N12

N21 N22

� �
;

which (by using Proposition 4) has quotient matrix

2 6

6 7

� �
;

then the design with incidence matrix

J � N21 J � N22

N11 N12

� �
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has the other parameter set with 18 points, and the other way around (see also
[3]). By computer we enumerated all (three) designs with these parameter sets. All
these designs are self-dual. One design (for each parameter set) was already
known by Bridges and Mena [3].

� v ¼ 20: A design with the first parameter set can be constructed from the unique
symmetric 2-(21,5,1) design of PG(2,4) by deleting an incident point-block
pair ðp;BÞ; and adding all remaining four points of B to all blocks incident with p

(cf. [3]). The obtained design has a regular partition as desired with quotient
matrix ½4 1; 4 4
: Moreover, it follows that each design with this parameter set
must be constructed in this way, and hence is unique.

ARTICLE IN PRESS

Table 1

Nonsymmetric uniform multiplicative designs with vp30

v s0;s1 ðv1;y; v4Þ ðr1;y; r4Þ ðb1;y; b4Þ ðk1;y; k4Þ # Remarks

2 1
2
71
2

ffiffiffi
5

p
(1,1) (1,2) (1,1) (1,2) 1

5 3,1 (4,1) (2,5) (4,1) (2,5) 1 Proposition 8

6 4,1 (3,3) (2,5) (3,3) (2,5) 1 Proposition 8

11 6;
ffiffiffi
2

p
(5,5,1) (3,6,11) (5,5,1) (3,6,11) 1 Proposition 9

14
ffiffiffiffiffi
72

p
;

ffiffiffi
2

p
(7,7) (3,11) (7,7) (4,10) 1 Proposition 9

17 8,2 (16,1) (7,16) (16,1) (7,16) 3 From (16,6,2)

18 11,2 (9,9) (8,13) (9,9) (8,13) 3 Computer

18 7,2 (9,9) (5,8) (9,9) (5,8) 3 Computer

20 6,2 (16,4) (5,8) (16,4) (5,8) 1 From PG(2,4)

20 10,2 (16,4) (7,16) (16,4) (7,16) 1 From PG(2,4)

21 11,2 (15,6) (7,16) (15,6) (7,16) 1 From hyperoval in PG(2,4)

22 10,2 (8,9,4,1) (5,8,13,20) (8,9,4,1) (5,8,13,20) 0

22 10,2 (15,6,1) (6,12,22) (15,6,1) (6,12,22) 1 From hyperoval in PG(2,4)

22 8,2 (21,1) (6,22) (21,1) (6,22) 1 From PG(2,4)

22 14,2 (8,14) (7,16) (8,14) (7,16) 4 Computer; from (8,4,3)

22 13,2 (11,11) (7,16) (11,11) (7,16) 1 From (11,6,3)

23 13,2 (7,14,2) (5,13,20) (7,14,2) (5,13,20) 0 v4 ¼ 2

24
ffiffiffiffiffiffiffiffi
192

p
;

ffiffiffi
3

p
(13,11) (4,19) (11,13) (6,15) 1 ð11; 6; 3Þ þ ð13; 4; 1Þ

24
ffiffiffiffiffiffiffiffi
147

p
;

ffiffiffi
3

p
(16,8) (4,19) (16,8) (6,15) 0

25 12;
ffiffiffi
3

p
(14,7,4) (4,12,19) (14,7,4) (4,12,19) 0

25 13;
ffiffiffi
5

p
(6,4,14,1) (6,9,14,21) (6,4,14,1) (6,9,14,21) 0

25 12;
ffiffiffi
5

p
(6,9,9,1) (6,9,14,21) (6,9,9,1) (6,9,14,21) 5 Computer

25 10;
ffiffiffi
5

p
(10,10,5) (6,9,14) (10,10,5) (6,9,14) 5 Computer

27 12,2 (12,7,4,4) (5,8,13,20) (12,7,4,4) (5,8,13,20) 0

29 12;
ffiffiffi
5

p
(11,11,4,3) (6,9,14,21) (11,11,4,3) (6,9,14,21) 0

29 9;
ffiffiffi
5

p
(20,5,4) (6,9,14) (20,5,4) (6,9,14) 1 From PG(2,5)

29 13;
ffiffiffi
6

p
(3,19,4,3) (7,10,15,22) (3,19,4,3) (7,10,15,22) 0

29 15;
ffiffiffi
7

p
(1,7,21) (8,11,16) (1,7,21) (8,11,16) 137,541 Computer

30 14,2 (12,9,9) (5,8,20) (12,9,9) (5,8,20) 0

30 20,2 (9,21) (6,22) (9,21) (6,22) 0

30 12,2 (25,5) (6,22) (25,5) (6,22) 0
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Similarly the design with the second parameter set is obtained from the
complementary 2-(21,16,12) design of PG(2,4).

� v ¼ 21: A design with this parameter set can be regularly partitioned with
quotient matrix ½3 4; 10 6
: It is straightforward to check that such a design must
be obtained from the unique hyperoval in PG(2,4) by complementing all
incidences except between the points not in the hyperoval and the blocks not in
the dual hyperoval (cf. [3]; a hyperoval consist of 6 points, no three on a line; there
is a dual hyperoval consisting of the 6 blocks not intersecting the hyperoval), and
hence is unique.

� v ¼ 22: Similarly, the second parameter set with v ¼ 22 is realized uniquely by
considering a hyperoval in PG(2,4), by complementing the incidences between the
hyperoval and the dual hyperoval, and by extending the obtained design by a
point and block in the obvious way. We remark that the design is normal, and by
Proposition 5 the incidence matrix can be partitioned regularly with quotient
matrix ½3 2 1; 5 6 1; 15 6 1
:
The first parameter set with v ¼ 22 is excluded by the following argument. If

such a design would exist, then the unique point p with replication 20 and a point
with replication 5, 8, or 13 meet in 4, 8, or 12 blocks, respectively. This implies
that the points with replications 5, 8, or 13 are contained in 1, 0, or 1 of the two
blocks not containing p: Thus the sum of the block sizes of these two blocks is
v1 þ v3 ¼ 12; which gives a contradiction.
The third parameter set with v ¼ 22 is realized uniquely by extending PG(2,4)

by a point and block in the obvious way.
A design with the fourth parameter set with v ¼ 22 can be regularly partitioned

with quotient matrix ½0 7; 4 12
: It follows that the incidences between the 8
points with replications 7 and the 14 blocks of sizes 16 form a 2-(8,4,3) design.
Dually, the same holds. Previously, one example was known, where the 2 designs
are the unique resolvable 2-(8,4,3) design. The incidence matrix of this example
can even be rearranged such that it is symmetric with zero diagonal, and hence
can be seen as the adjacency matrix of a graph. This graph has three distinct
eigenvalues (14, 2, and �2), cf. [3,8]. By computer we determined that there are 3
more designs. Also in these designs the corresponding 2-(8,4,3) designs are
resolvable, and all designs are self-dual.
A design with the final parameter set with v ¼ 22 can be regularly partitioned

with quotient matrix ½1 6; 6 10
: It follows that the incidence matrix can be
rearranged as

I N12

N21 J � I

� �
:

It then follows that N12 and N21 are symmetric 2-(11,6,3) designs, and that

N21 ¼ NT
12: Hence there is a unique design with this parameter set.

� v ¼ 23: This parameter set cannot be realized since there should be two points
with replication 20, and these should meet in 16 blocks, a contradiction.

� v ¼ 24: There is a unique design with the first parameter set. From the parameters
it follows that it is reducible (and not normal), and consequently that it
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must be obtained from the unique 2-(13,4,1) and 2-(11,6,3) designs, see
Proposition 7.
Also a design with the other parameter set would be reducible, but the required

symmetric designs (on 16 and 8 points) do not exist, since the parameters are not
right. Hence such a design on 24 points does not exist.

� v ¼ 25: A design with the first parameter set does not exist since each point with
replication 19 must be in 5 blocks of size 19, according to Proposition 5, while
there are only 4 such blocks.
A design with the second parameter set does not exist either. Each point with

replication 14 in such a design would be contained in the block of size 21, since
there is a unique (nonnegative integral) solution to system (1) in Proposition 5
with variables r3j ; satisfying r34p1: This solution has r34 ¼ 1: But then r43 ¼ 14;

which gives a contradiction with the system with variables r4j:

For a design with the third parameter set the system of equations (1) for r4j has

one (nonnegative integral) solution with r4jpbj: This solution is given by

r41 ¼ 3; r42 ¼ 9; r43 ¼ 9; r44 ¼ 0: This implies that r24 ¼ r34 ¼ 1: Now the systems
of equations for the r2j and r3j have unique solutions r21 ¼ 1; r22 ¼ 2; r23 ¼ 5 and

r31 ¼ 1; r32 ¼ 5; r33 ¼ 7: Since r41 ¼ 3; r14 equals 1 for three points, and 0 for the
remaining three points with replication 6. If r14 ¼ 1; then r11 ¼ 2; r12 ¼ 3; r13 ¼ 0;
if r14 ¼ 0; then r11 ¼ 3; r12 ¼ 0; r13 ¼ 3: Dually the same holds. If we partition the
incidence matrix according to replications and block sizes, and further partition
the points with replication 6 into the ones occurring in the block of size 21 (type
A) and the others, and the blocks similarly (dually), then it follows by counting
the blocks containing a given pair of points with replications 6 and 21, that each
point with replication 6 occurs in 1 block of type A. Consequently, the (finer)
partition is regular with quotient matrix

1 1 3 0 1

1 2 0 3 0

1 0 2 5 1

0 1 5 7 1

3 0 9 9 0

2
6666664

3
7777775
:

By computer we determined that there are 5 such designs, one of which is given in
the appendix. We remark that these designs are all self-dual, and they are the first
known uniform multiplicative designs with four distinct block sizes!
A design with the last parameter with v ¼ 25 is normal with three distinct

replications. The quotient matrix obtained from Proposition 5 is
½3 2 1; 2 3 4; 2 8 4
: This determines already part of the structure of the design.
By computer we enumerated all (five) such designs. All these designs are self-dual.
One of them is given in the appendix.

� v ¼ 27: A design with this parameter set does not exist. The system of
equations (1) on r4j does not have a (nonnegative integral) solution with r43p4
and r44p4:
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� v ¼ 29: A design with the first parameter set does not exist. The system of
equations (1) on r4j has a unique (nonnegative integral) solution with r43p4 and
r44p3: This solution is given by r41 ¼ 4; r42 ¼ 10; r43 ¼ 4; r44 ¼ 3: This implies
that the pairs of points with replication 21 occur in all 7 blocks of sizes 14 and 21,
and in 9 blocks of size 9. Hence such a pair cannot occur in a block of size 6. Since
r41 ¼ 4; b1 ¼ 11; and v4 ¼ 3; this gives a contradiction.
According to Proposition 5, a design with the second parameter set with v ¼ 29

can be regularly partitioned with quotient matrix ½4 1 1; 4 1 4; 5 5 4
: It is
straightforward to show that such a design must be constructed in the following
way, and hence is unique. Consider the unique 2-(31,6,1) design of PG(2,5). Fix
an incident point-block pair ðp;BÞ; and another point p0 on B; and another block
B0 through p: Remove p; p0;B;B0; include the remaining four points p00 of B in all
blocks through p or p0; and include the remaining five points p000 through B0 in all
blocks through p:
The third parameter set with v ¼ 29 cannot be realized. The system of

equations (1) on r1j has a unique (nonnegative integral) solution r11 ¼ 3; r12 ¼
2; r13 ¼ 2; r14 ¼ 0: But b1 ¼ 3 then implies that a pair of points with replications 7
occurs in at least 3 blocks, a contradiction.
According to Proposition 5, a design with the last parameter set with v ¼ 29

can be regularly partitioned with quotient matrix ½1 7 0; 1 1 9; 0 3 13
: This
implies among others that the incidences between the points with replication 11
and the blocks of size 16 form a 2-(7,3,3) design, and the same holds for the dual
design. By computer we enumerated all possible designs, and we found 137,541
pairwise non-isomorphic designs. One of these is given in the appendix. Up to
duality there are 69,460 designs.

� v ¼ 30: There exist no designs with these parameter sets. According to
Proposition 5, a design with the first parameter set can be regularly partitioned
with quotient matrix ½2 0 3; 0 2 6; 4 6 10
: But there are only 9 blocks of
size 20, a contradiction. Similarly the other two parameter sets are excluded
after using Proposition 4 (the first of these has r11 ¼ �1; the second has
r33 ¼ 74b3).

2.5. Final remarks

Not many infinite families of uniform multiplicative designs are known. Ryser [13]
already mentioned a family of reducible examples (which can easily be rediscovered
using Proposition 7), and a family of ‘‘borderings’’ of symmetric designs. These are
symmetric designs on v points extended by a point and block of size v or v þ 1: We
saw examples of these with 17 points and 22 points.
Besides these, Bridges and Mena [3] mentioned sporadic examples on 39 points,

constructed from a 2-(40,13,4) design in the same way as the examples on 20 points
constructed from PG(2,4), examples of ‘‘borderings’’ on 46 and 97 points with three
distinct replications, an example on 45 points constructed from a 2-(45,12,3) design
with a 9� 9 empty sub-design, and an example on 52 points with a cyclic structure.
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All these examples are normal and have two distinct replications, unless mentioned
otherwise.
In this paper we found examples for 5 new parameter sets: on 22 points we

constructed one from the hyperoval in PG(2,4); on 29 points we constructed one
from PG(2,5); and for three parameter sets (two with v ¼ 25; one with v ¼ 29) we
constructed examples by computer. The 5 designs for one of the parameter sets with
v ¼ 25 have 4 distinct replications and 4 distinct block sizes. Such designs were not
known before.
We found no counterexamples to the conjecture (cf. [2]) that a uniform

multiplicative design is normal or reducible. It is however interesting to note that
one candidate parameter set for such a counterexample suggested that a
(nonexisting) projective plane of order 6 with a hyperoval would give a counter-
example by adding all (8) points of the hyperoval to all (15) lines not intersecting
the hyperoval. We challenge the interested reader to come up with the first
‘‘real’’ counterexample. Another candidate parameter set for such a counterexample
has v ¼ 47;s0 ¼ 22; s1 ¼ 3; with 12, 28, and 7 points with replications 13, 18,
and 34, respectively, and 28, 7, and 12 blocks of sizes 13, 18, and 34, respectively.
According to Proposition 5, a design with this parameter set can be regularly
partitioned with quotient matrix ½7 0 6; 6 3 9; 16 6 12
: The dual quotient matrix for
this partition is ½3 6 4; 0 12 6; 6 21 7
: It follows that the incidence matrix N can be
written as

N ¼
N22 O N25

N32 N33 N35

N52 J � I J

2
64

3
75;

where N52 is the incidence matrix of a 2-(7,4,8) design, and NT
33 is the incidence

matrix of a 2-(7,3,4) design.
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Appendix

In this appendix we give three designs found by computer with parameter sets for

which no designs were previously known. The left one has v ¼ 25; s0 ¼ 12; s1 ¼
ffiffiffi
5

p

(with 4 distinct replications), the middle one has v ¼ 25; s0 ¼ 10; s1 ¼
ffiffiffi
5

p
; and the

right one has v ¼ 29; s0 ¼ 15; s1 ¼
ffiffiffi
7

p
(with a symmetric incidence matrix, and the

corresponding 2-(7,3,3) designs consisting of three copies of the Fano plane).
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