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ABSTRACT

This introductory tutorial gives a survey on the use of statistical designs for what-if or sensitivity
analysis in simulation. This analysis uses regression analysis to approximate the input/output transfor-
mation that is implied by the simulation model; the resulting regression model is also known as
metamodel, response surface, compact model, emulator, etc. This regression analysis gives better re-
sults when the simulation experiment is well designed, using classical statistical designs (such as frac-
tional factorials, including 2  designs). These statistical techniques reduce the ad hoc character ofk - p

simulation; that is, these techniques can make simulation studies give more general results, in less time.
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1  INTRODUCTION

A primary goal of simulation is what if analysis: what happens if inputs of the simulation model
change? Therefore we run a given simulation program for (say) n different combinations of the k
simulation inputs. These combinations are often called scenarios. The simulation inputs are called
factors in design of experiments (DOE); factors may be a parameter, an input variable, or a module of
the simulation model (or computer simulation program or code). By definition, a factor takes at least
two levels or 'values' during the experiment. The factor may be qualitative, for example, a factor may
represent different priority rules corresponding with different computer modules. A detailed discussion
of qualitative factors and various measurement scales is given in Kleijnen (1987, pp. 138-142). Note
that the terminology varies so much because simulation is applied in so many disciplines.

Given the set of n scenarios, we run the simulation model and observe the outputs. Most
simulation models have multiple outputs. In practice, however, these outputs are handled through the
application of the techniques surveyed in this tutorial, per output type. Also see Khuri (1996) and
Kleijnen (1987).

Why is DOE needed? To answer this question, let us consider the following case study. A deci-
sion support system (DSS) was developed for production planning in a specific Dutch steel tube
factory. The DSS and the factory were modeled through a stochastic, discrete-event simulation. The
DSS was to be optimized. This DSS, however, had fourteen input or decision variables; there were two
output variables (namely, productive hours and lead time). The simulation of one combination of these
fourteen inputs took six hours of computer time, so searching for the optimal combination had to be



performed with care. Details are given in Kleijnen (1993).
So, the central problem in DOE is the astronomically great number of possible factor combi-

nations. In the case study, at least 2  combinations may be distinguished. In general, DOE can be14

defined as selecting the combinations of factor levels that will be actually simulated in an experiment
with the simulation model. In the DSS example, a few sequences - each consisting of 16 combinations -
were actually run.

The other side of the coin is: How to analyze the simulation’s input/output (I/O) data? Classic
analysis uses regression modeling, also known in DOE as Analysis of Variance (ANOVA). Actually,
design and analysis is a well-known chicken-and-egg problem: Before we decide on the design, we
specify (explicitly or implicitly) a regression metamodel. The simpler this model is, the fewer scenarios
we need to simulate. For example, suppose we assume an additive model (ANOVA with main effects
only, no interactions at all). Then the number of scenarios may equal the number of factors, plus one
(that one is needed because of the overall effect or grand mean): n = k +1. In the DSS example with k =
14 we had n = 16 . 14 + 1.

Note that a metamodel is an approximation of the  I/O transformation implied by the 
underlying simulation program. Many other terms are popular in certain (sub)disciplines: response sur-
face, compact model, emulator, etc. Also see the monograph by Friedman (1996).  

A metamodel treats the simulation model as a black box; that is, the simulation model's I/O is
observed, and the factor effects in the metamodel are estimated. This black-box approach has the
following advantages and disadvantages.

An advantage is that DOE can be applied to all simulation models, either deterministic or
stochastic, either in steady-state or in transient state. Further, DOE gives better estimates of the factor
effects than does the intuitive approach often followed in practice, namely change one factor at a time
(see section 3). A disadvantage is that DOE cannot take advantage of the specific structure of a given
simulation model (whereas other techniques such as perturbation analysis and score function can).

What do we precisely mean by what-if analysis in a simulation context? Unfortunately, the
vast literature on simulation does not provide a standard definition. In this paper we interpret sensitivity
analysis as the systematic investigation of the reaction of the simulation outputs to extreme values of
the model's input or to drastic changes in the model's structure. For example, what happens when a
parameter doubles; what happens if a module changes? (So we do not discuss marginal changes or
perturbations in the input values.)

Sensitivity analysis can also help in optimization and validation of the simulation model. In this
tutorial, however, we do not explicitly discuss the latter two topics, but refer to Kleijnen (1998, 2000).
Further, if the simulation model has hundreds of factors, then the designs discussed in this tutorial
require too much computer time, and special ‘screening’ designs are needed, discussed in Campolongo,
Kleijnen, and Andres (2000).

To summarize this section, we claim that DOE is an important practical method for answering
what-if questions in simulation. This claim is not surprising: By definition, simulation means that a
model is used, not for mathematical analysis or numerical methods, but for experimentation. But,
experimentation requires a good design and a good analysis.

The remainder of this paper is organized as follows. In section 2 we discuss regression
metamodels. In section 3 we present designs to estimate these models. In section 4 we give conclusions.
A list of references enables the reader to study the topic in depth.

2 REGRESSION MODELS

In DOE applied to simulation, the regression metamodels typically fall into one of the following three
classes: (i) a first-order polynomial, which consists of main effects only, besides an overall mean; (ii) a
first-order polynomial augmented with interactions between pairs of factors (two-factor interactions); and
(iii) a second-order polynomial, which also includes purely quadratic effects. (In equation 1 we shall give
an exact formulation.) Whatever metamodel we choose initially, this  metamodel should be validated.
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In stochastic simulation (deterministic simulation will be discussed below equation 1), scenarios
are often run for different, non-overlapping pseudo-random number sequences, which gives identically and
independently distributed (IID) replicated outputs (say)  where i = 1, ..., n refers to the scenario
(combination of k factors) and r = 1, ...,  to the replicate (obviously, the integers must satisfy  n > k and

 $ 1). In other words, let the simulation model have the single output (say) W and the k inputs  (h =
1, ...., k). Then the linear regression (meta)model is

with the following symbols: 
Y: the regression estimator of a function of the simulation output W (for example, ),

: a function of the simulation input (for example,  with  = 1, ...., k), 
: the j  regression parameter, andth

E: the noise (discussed next).
In deterministic simulation  equals one and E reduces to pure fitting error, whereas in stochastic

simulation E is the fitting error plus the so-called intrinsic simulation noise (generated through pseudo-
random numbers; see equation 3 later).

The regression parameters in (1) can be estimated through least squares (LS), which uses a
mathematical criterion. Statistics become relevant if we introduce assumptions regarding the noise E in (1).
Indeed, ordinary LS (OLS) gives the best linear unbiased estimator (BLUE) - with ‘best’ meaning
minimum variance - if this E represents white noise: E is IID with zero mean. Moreover, OLS gives the
maximum likelihood (ML) estimator if this E has a Gaussian (normal) distribution. So OLS is optimal
under many criteria if

where E denotes the vector of  E’s, N (a, b) denotes a p-variate normal distribution with mean a andp

covariance matrix b,  0 denotes a vector of zeroes, and  denotes the common (constant) variance of E;
the number of components of all these vectors is p = .

In practice, however, not only the mean but also the variance of W is not constant; for example,
in many simulated queueing systems W has a much larger variance as the traffic rate (say, ) increases.
Then, the covariance matrix of E does not involve the identity matrix I, but some diagonal matrix. Then
BLUE results if weighted LS (WLS) is applied. It is convenient to present WLS as a special case of
Generalized LS (GLS), discussed next.

In practice, simulationists often use common random numbers (CRN) to simulate all the n
scenarios. So, replicate #1 uses a set of seeds (say) s  (seed s  is used for process 1 in replicate 1, seed1 1; 1

s   for process 2 in replicate 1, etc.), replicate #2 uses the set s , etc.; no sequence of pseudo-random1; 2 2

numbers should overlap; see Law and Kelton (2000).
For CRN, (2) is replaced by

where we sometimes abbreviate  to  . The goal of CRN is to create positive non-diagonal
elements in this . Given (3), we get the BLUE if we use the GLS estimator
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where W denotes the p-dimensional vector with simulation outputs.
Note that if we insert a diagonal matrix for  into the GLS formula (4), then we get the WLS

formula.  For  shown in (2), we get the well-known OLS formula, namely (say) .
Actually, the covariance matrix  in (4) is unknown. The replications, however,  enable us to

compute estimated covariances (including variances: i =  in the next equation):

where for simplicity of presentation we assume equal number of replicates ( ); further,
 denotes the overall average of combination i. To form   - the matrix of estimated

error covariances - we use the fact that each of the first m elements of E has the same distribution, namely
, ..., and each of the last m elements has the distribution . Dykstra(1970) proved that the

resulting matrix is not singular if m $ n. If this condition holds, then substituting the covariance estimates
defined in (5) into the GLS formula (4) gives estimated GLS (EGLS), analyzed extensively by Kleijnen
(1992). If this condition is not satisfied (so m < n), then the mean squared residuals (MSR) can be used;
see Kleijnen (1987). 

To validate the estimated metamodel, we may use cross-validation, as follows. We eliminate one
combination (say combination i) and re-estimate the regression model from the remaining n - 1 combina-
tions, giving (say)  (we focus on OLS; EGLS is similar). This yields the regression predictor

We repeat this for all values of i (with i = 1, ..., n). We make a scatter plot of the simulation outputs 
versus the predicted values computed through (6). We may quantify the metamodel’s validity through the
(Pearson) correlation coefficient. Details are discussed in Kleijnen and Van Groenendaal (1992) and Van
Groenendaal and Kleijnen (1998).

If the metamodel is rejected, we may try other transformations of the simulation I/O, or reduce the
experimental area; see Kleijnen and Sargent (2000).

If the metamodel fits, then we may check whether the signs of the estimated effects agree with
prior, qualitative expert knowledge.

If we ignore interactions and quadratic effects, then the relative importance of a factor is obtained
by sorting the absolute values of the first-order (or main) effects, provided the factors are standardized,
as follows. 

Suppose that in the simulation experiment the original (non-standardized) factor z   ranges betweenh

a lowest value l  and an upper value u ; that is, the simulation model is not valid outside that range or inh h

practice that factor can range over that domain only (for example, the number of servers can vary only be-
tween one and five). The variation (or spread) of that factor is measured by a  = (u  - l )/2; its location (orh h h

mean) by b  = (u  + l )/2. Then the following standardization is appropriate:h h h

(7)

Software for OLS is abundant; for EGLS it is more limited. However, for EGLS we can use OLS
software, after we have transformed the I/O data linearly; see Kleijnen and Van Groenendaal (1992, pp.
140, 157). 

3 SOME CLASSICAL DESIGNS
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To get unique, unbiased estimators of the q regression effects  in (1), it is necessary to simulate at least
n  q factor combinations. Which n combinations to simulate, can be determined such that the accuracy
of the estimated factor effects is maximized (variance minimized). This is the goal of the statistical theory
on DOE. Unfortunately, classic DOE assumes white noise for E (so OLS gives BLUE). If this assumption
does not hold, then the resulting estimators are still unbiased, but we do not know whether they have
minimum variance. Details, including simulation applications are presented in Kleijnen (1998).

3.1 Main Effects Only

Consider a first-order polynomial in the k simulation inputs , which is a metamodel with only k main
effects, plus the intercept (overall mean). In practice, analysts usually first simulate the 'base' situation, and
next they change one factor at a time; so, all together they simulate 1 + k runs. However, DOE derives
orthogonal designs, that is, designs that satisfy

where x = (x ) denotes the matrix with i = 1,... , n; j = 1,... , k + 1; n > k; x  = 1 is the dummy factori; j i; 1 

corresponding with the intercept; and I is the identity matrix with appropriate dimensions (namely n×n).
It can be proven that orthogonal designs give estimators of  that are unbiased and have smaller variances
than the estimators resulting from designs that change one factor a a time.

Orthogonal designs are tabulated in many publications. The analysts may also learn how to con-
struct those designs; see Kleijnen (1987).

A well-known class of orthogonal designs are 2  fractional factorials. An example is a simulationk - p

experiment with k = 7 factors in only n = 2  = 8 factor combinations; see Table 1 where 4 = 1.2 means7 - 4

that we multiply the elements of columns 1 and 2 pairwise, etc. Note that the column for the dummy factor
is not displayed, since it is known to be a column of one’s, whatever design we select; so 1 refers to the first
simulation input . This table can be easily checked for typos: each column has four elements -1; of
course it is easy to check that all columns are indeed orthogonal.
 

Table 1: A 2  Design7 - 4

1 2 3 4 = 1.2 5 = 1.3 6 = 2.3 7 = 1.2.3

-1 -1 -1  1  1  1 -1

 1 -1 -1 -1 -1  1  1

-1  1 -1 -1  1 -1  1

 1  1 -1  1 -1 -1 -1

-1 -1  1  1 -1 -1  1

 1 -1  1 -1  1 -1 -1

-1  1  1 -1 -1 1 -1

 1  1  1  1  1  1  1

In practice, however, it is unknown whether only main effects are important. Therefore orthogonal
designs with n  k + 1 should be used only in optimization through RSM; see Kleijnen (1993). Moreover
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these designs are useful as building blocks if interactions are accounted for, as we shall see next.

3.2 Main Effects Unbiased by Interactions

It seems prudent to assume that interactions between pairs of factors may be important. Then the k main
effects can still be estimated without bias caused by these interactions. However, the number of simulated
factor combinations must be doubled; for example, k = 7 requires n = 2  8 = 16: double the number of
rows in Table 1 by adding the negative values of the original rows; for example row 9 becomes the negative
of row 1 or (1, 1, 1, -1, -1, -1, 1).  These designs may also give an indication of the importance of interac-
tions; see Kleijnen (1987).

3.3 Individual Interactions

Suppose the analysts also wish to estimate the individual two-factor interactions between  and  (h
<  = 2, ..., k). There are k(k - 1)/2 such interactions. Then many more simulation runs are necessary. An
example is k = 7, which means 21 interactions besides 7 main effects and one grand mean. However, the
standard 2  design requires n = 2  = 64 combinations; see Kleijnen (1987) for details. Therefore onlyk - p 7 -1

small values for k are studied in practice.
Of course, if k is really small (say, k = 3), then all 2  combinations are simulated, so all interactionsk

(not only two-factor interactions) can be estimated. In practice, these full factorial designs are sometimes
used indeed. High-order interactions, however, are hard to interpret.

3.4 Quadratic Effects: Curvature

If the k quadratic effects of  are to be estimated, then at least k extra runs are needed; moreover, each
factor must be simulated for more than two values.

Popular in statistics and in simulation are central composite designs. They have five values per
factor, and require relatively many runs (n >> q). For example, if there are k = 2 factors, then q = 6 effects
are to be estimated but n = 9 factor combinations are actually simulated.

4 CONCLUSIONS

In the Introduction (§1) the question was raised: What happens if we change parameters, input variables,
or modules of a given simulation model?

 We can use regression analysis to generalize the results of the simulation experiment, since
regression metamodels characterize the input/output behavior of the underlying simulation model.

We can apply design of experiments (DOE) to get good estimators of the main effects, interac-
tions, and quadratic effects that occur in the regression metamodel. These designs require relatively few
simulation runs, and are much better than one-at-a-time designs.

These statistical techniques have already been applied many times in practical simulation studies,
in many domains. Hopefully, this tutorial will stimulate even more analysts to apply these techniques. The
goal of these techniques is to make simulation studies give more general results, in less time.

In the mean time the research on statistical techniques adapted to simulation, continues in both Eu-
rope and the USA.
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