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Abstract

The energy of a graph is the sum of the absolute values of the eigenvalues of its
adjacency matrix. Koolen and Moulton have proved that the energy of a graph
on n vertices is at most n(1 +

√
n)/2, and that equality holds if and only if the

graph is strongly regular with parameters (n, (n+
√

n)/2, (n+2
√

n)/4, (n+2
√

n)/4).
Such graphs are equivalent to a certain type of Hadamard matrices. Here we survey
constructions of these Hadamard matrices and the related strongly regular graphs.
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1 Introduction

Throughout G will denote a graph on n vertices with adjacency matrix A and eigenvalues
λ1 ≥ . . . ≥ λn. The energy E of G is defined by

E =
n∑

i=1

|λi|.

The energy of a graph was introduced by Gutman (see [3]). The name and the motivation
come from chemistry. A graph G is strongly regular with parameters (n, k, λ, µ) whenever
G is regular of degree k, every pair of adjacent vertices has λ common neighbors, and every
pair of distinct nonadjacent vertices has µ common neighbors. Although it is standard to
exclude the complete graph (and its complement) from being strongly regular, we will not
do so in this paper. In terms of the adjacency matrix A, the definition translates into:

A2 = kI + λA + µ(J − A − I)

(as usual, I is the identity matrix, and J denotes the all-ones matrix, so J − A − I is the
adjacency matrix of the complement of G). Koolen and Moulton [7] proved the following:
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Theorem 1 The energy of a graph G on n vertices is at most n(1+
√

n)/2. Equality holds

if and only if G is a strongly regular graph with parameters

(n, (n +
√

n)/2, (n + 2
√

n)/4, (n + 2
√

n)/4).

We will call a strongly regular graph with the above parameters, a max energy graph of
order n. From the theory of strongly regular graphs (see for example [4]), it follows that a
max energy graph has eigenvalues

[(n +
√

n)/2]1, [
√

n/2](n−
√

n)/2−1, [−
√

n/2](n+
√

n)/2

(with multiplicities written as exponents). So the energy equals (n+
√

n)/2+(n−1)
√

n/2 =
n(1 +

√
n)/2, which is indeed maximal. In [7] a family of max energy graphs (coming from

finite geometries) with n a power of 4 is given. However, many more max energy graphs
exist, as we shall see in the coming sections. Since the parameters are integer, n must be
an even square, and the author conjectures that this necessary condition for existence is
also sufficient.

2 Hadamard matrices

We recall some results of Hadamard matrices (see for example [2]). A square (+1,−1)-
matrix H of order n is a Hadamard matrix whenever HH⊤= nI. For example

H+ =




1 1 1 −
1 1 − 1
1 − 1 1
− 1 1 1


 and H− =




1 − − −
− 1 − −
− − 1 −
− − − 1




are two Hadamard matrices of order 4 (we write − instead of −1). It follows that n = 1, 2,
or a multiple of 4. A Hadamard matrix is called graphical if it is symmetric with constant
diagonal. If H is a graphical Hadamard matrix with δ on the diagonal, then A = 1

2
(J−δH)

is the adjacency matrix of a graph G. A Hadamard matrix is called regular if all its row
and column sums are constant, that is, H1 = H⊤1 = ℓ1 for some integer ℓ (1 is the all-
ones vector). For example, the two Hadamard matrices, given above, are both regular and
graphical. Note that H1 = H⊤1 = ℓ1 and HH⊤ = nI imply that ℓ21 = n1. So ℓ2 = n.
Suppose H is a regular graphical Hadamard matrix with row sum ℓ, and δ on the diagonal.
We call H of type +1, or positive type if δℓ > 0, and of type −1, or negative type if δℓ < 0.
Let ε be the type of H , then δℓ = ε

√
n, and the associated graph G of H is regular of

degree (n− δℓ)/2 = (n−ε
√

n)/2. Moreover, HH⊤= H2 = nI, H1 = ℓ1 and J − δH = 2A,
imply

A2 = n−δℓ
2

I + n−2δℓ
4

(J − I).
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Therefore G is a strongly regular graph with parameter set

(n, (n − ε
√

n)/2, (n − 2ε
√

n)/4, (n − 2ε
√

n)/4). (1)

And conversely, if A is the adjacency matrix of a strongly regular graph with one of the
above parameters then J − 2A is a regular graphical Hadamard matrix. So, the regular
graphical Hadamard matrices of negative type give max energy graphs. Note that the
complement of a max energy graph is a strongly regular graphs with parameter set

(n, (n −
√

n)/2 − 1, (n − 2
√

n)/4 − 2, (n − 2
√

n)/4) ,

which is only slightly different from the parameter set (1) with ε = 1.
In the example above, H+ is of positive type and the corresponding graph is 2K2 (two

disjoint edges), and H− is of negative type, and the corresponding graph is K4, the complete
graph on 4 vertices. And indeed, K4 is the max energy graph for n = 4.

It is well known (and easily verified) that if H1 is a Hadamard matrix of order n1, and
H2 is a Hadamard matrix of order n2, then the Kronecker product H1 ⊗H2 is a Hadamard
matrix of order n1n2. In addition, if H1 and H2 are regular and graphical, then so is
H1 ⊗ H2, and the type of H1 ⊗ H2 is just the product of the types of H1 and H2. Because
regular graphical Hadamard matrices of order 4 of both types exist, we have the following
result.

Lemma 1 If there exist a regular graphical Hadamard matrix of order n of positive, or

negative type, then there exist regular graphical Hadamard matrices of order 4n of both

types.

In particular, we can make regular graphical Hadamard matrices of order 4k of any type
for all positive integers k. Hence, for n a power of 4, there exist strongly regular graphs
with parameters (1) for ε = 1 and for ε = −1. So we can conclude that max energy graphs
exist for all orders n = 4k.

3 Bush type Hadamard matrices

A Hadamard matrix H of order n = ℓ2 is said to be of Bush type if H is partitioned into
ℓ × ℓ blocks of size ℓ × ℓ such that all diagonal blocks are all-ones matrices, and each off-
diagonal block has all its row and column sums equal to 0. For example H+ is of Bush
type, but H− is not. It is easily seen that a symmetric Bush type Hadamard matrix is
regular graphical of positive type. Bush type Hadamard matrices did get much attention
in recent years. An important construction method is due to Muzychuk and Xiang [9]. They
construct symmetric Bush type Hadamard matrices of order 4m4 for all odd m. Together
with Lemma 1 this gives:
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Proposition 1 Regular graphical Hadamard matrices of negative type, and max energy

graphs of order n = 4k+1m4 exist for all positive integers k and m.

An older construction is due to Kharaghani [6]. He constructs symmetric Bush type
Hadamard matrices of order n2 from an ordinary Hadamard matrix of order n. Like above,
we can apply Lemma 1 and find max energy graphs of order 4n2, but it turned that
Kharaghani’s construction can be modified, such that the outcome is a regular graphical
Hadamard matrix of negative type of order n2.

Theorem 2 If n is the order of a Hadamard matrix, then there exist regular graphical

Hadamard matrices of negative type, and max energy graphs of order n2.

Proof. Let H be a Hadamard matrix of order n such the last column of H equals 1

(this can always be achieved by multiplying rows by −1). Write H = [c1, . . . , cn], define
Ci = cic

⊤
i for i = 1, . . . , n − 1, and put Cn = −J . Then it is easily verified that:

1. Ci is symmetric with constant diagonal 1 for i = 1, . . . , n − 1,

2. Ci1 = C⊤
i 1 = 0 for i = 1, . . . , n − 1,

3. CiCj = O for i 6= j, 1 ≤ i, j ≤ n,

4.
∑n

i=1 C2
i = n

∑n
i=1 cic

⊤
i = nHH⊤= n2I.

Next, take a symmetric Latin square with entries 1, . . . , n with constant diagonal 1 (such a
Latin square can be constructed easily from a back-circulant Latin square of order n − 1).
Make the n2 × n2 matrix H̃ by replacing each entry i of the Latin square by Ci. Then
properties 3 and 4 above show that H̃ is a Hadamard matrix, property 1 implies that H̃ is
graphical with diagonal 1, and property 2 gives that H̃ has constant row sum −n. So H̃ is
regular graphical of negative type. ⊔⊓
The famous Hadamard conjecture states that Hadamard matrices of order n = 4m exist
for all positive integers m. The conjecture has been confirmed for many values of m. For
example if 4m − 1 or 2m − 1 is a prime power. The smallest open case is m = 167. With
the above results this leads to:

Corollary 1 There exist regular graphical Hadamard matrices of negative type and max

energy graphs of order n = 4k+1m2 for all positive integers k, if 4m − 1 is a prime power,

if 2m − 1 is a prime power, if m is a square, and if m < 167.

4 Small cases

The smallest example of a max energy graph is the complete graph K4. The second case is
a strongly regular graph with parameters (16, 10, 6, 6). There is a unique such graph (see
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[10]), which is known as the Clebsch graph. Its adjacency matrix can be obtained easily from
the corresponding graphical Hadamard matrix H = H+ ⊗ H− (with H+ and H− as in the
example above). The next case is the parameter set (36, 21, 12, 12). McKay and Spence [8]
have enumerated all these strongly regular graphs by computer, and found exactly 180
such max energy graphs. Also for the orders 64, 100, and 144 constructions exist. Max
energy graphs for n = 64 and n = 144 can be constructed by taking Kronecker products,
or by the method of Theorem 2. Since there is much freedom in these constructions there
exist many max energy graphs for these orders. Max energy graphs for n = 100 have been
constructed by Jørgenson and Klin [5]. They found five such graphs. The first open case
is n = 196. There does exist a regular graphical Hadamard matrix of positive type for this
order. But the negative type is still open (see [1]). In fact, if m is odd, only for m = 1, 3
and 5 existence of a max energy graph of order n = 4m2 has been established.

It would be interesting if it were possible to adjust the construction of Muzychuk and Xi-
ang for Bush-type Hadamard matrices in a way similar to what was done with Kharaghani’s
construction (Theorem 2). This would give max energy graphs of order n = 4m4 for all
odd m.
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