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D I F F E R E N C E  G A M E S  A N D  P O L I C Y  

E V A L U A T I O N :  A  C O N C E P T U A L  F R A M E W O R K  


B y  A. J. de ZEEUW and F, van der PLOEG* 

1. Introduction 

THIS paper gives an overview of the various equilibrium concepts used in 
non-cooperative difference games and their economic interpretation. Difference 
games are dynamic games in discrete time. The state of the economy at time 
t, say yt depends on the state of the economy at time t - 1, y,- ,, and on the 
actions of the various players undertaken during this period. (Differential games 
are dynamic games in continuous time.) Difference games are unlike repeated 
games (supergames), because the latter refer to the repetition of a static game 
where the state of the economy in each game is independent of the state of the 
economy in previous games. History in repeated games matters only because 
players might condition their strategies on the history of play, but history in 
difference games matters also due to the dynamics of capital accumulation, 
wages, prices, etc. 

To  illustrate the various concepts employed in difference games, it is useful 
to discuss a classic example where actions can take on only one of two values. 
Figure 1 gives a simple example of such a dynamic game (due to Simaan and 
Cruz (1973)). The economy starts off in the state yo = 0. Subsequently each 
player can either take the action L or H. Each player minimizes a welfare loss 
function, which is time separable. The welfare losses incurred during the 
transition from the state at time 0 to the state at time 1 are given above the 
actions. From each state at time 1, each player can again take the actions L 
or H and at time 2 arrive at four possible states. The Nash solution concept 
represents the standard approach to non-cooperative games and is applicable 
when both players have equal strength. The actions in a Nash equilibrium must 
be the best response of player 1 to the action of player 2 and the best response 
of player 2 to the action of player 1. In dynamic games one distinguishes 
between the open-loop Nash equilibrium and the feedback Nash or subgame- 
perfect equilibrium. Two assumptions distinguish the feedback concept from 
the open-loop concept, namely information structure ( B a ~ a r  and Olsder (1982)) 
and period of commitment (Reinganum and Stokey (1985)). The open-loop 
Nash equilibrium presumes that the players at time 1 and 2 can only observe 
the initial state of the economy, yo,  i.e. have open-loop information patterns. 
The open-loop Nash equilibrium also presumes that at time 0 each player can 
make binding commitments about the actions he or she announces to undertake 

* This  paper arose f rom an  earlier paper, entitled Non-cooperative strategies for dynamic policy 
games and the problem of time inconsistency: A comment, and has benefited f rom the comments o f  
three anonymous referees, Andries Brandsma and the editorial advice o f  Peter Sinclair. 

'(, Oxford Uni~ersityPress 1991 
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FIG.I .  Feedback equilibria in a dynamic game (extensive form) 

in period 1 and 2, i.e. the period of commitment is equal to the entire planning 
period. 

The normal form of the open-loop game associated with Figure 1 is presented 
in Table 1. The open-loop Nash equilibrium corresponds to the intersection of 
the reaction curve of player 1 (indicated by ") and the reaction curve of player 
2 (indicated by b).  The open-loop Nash equilibrium means that player 1 plays 
H in the first period and L in the second period, that player 2 plays H in both 
periods, and that the welfare losses are 8 to player 1 and 9 to player 2. The 
feedback Nash equilibrium presupposes that each player can observe the state 
of the economy at the beginning of the current period and therefore corresponds 
to a dynamic information structure and a period of commitment of one. It is 
constructed by imposing subgame perfectness, that is the Nash equilibrium for 
the whole game must remain a Nash equilibrium for every subgame starting 



DIFFERENCE GAMES AND POLICY EVALUATION 

TABLE1 
Open-loop equilibria in a dytlanlic game (nornlal fortn) 

Player 2 
Player I LL LH HL H H  

V e s t  response of player I to player 2 (player 1's reaction curve) 

"est response of player 2 to player I (player 2's reaction curve) 

'Open-loop Nash equilibrium 

"pen-loop Stackelberg equilibrium (with 2 as leader) 


from an abritrary state at some point in time after the beginning of the whole 
game. One constructs the feedback Nash or subgame-perfect equilibrium by 
dynamic programming. This can be done with the aid of the extensive form of 
the game presented in Figure 1. First, one calculates the Nash equilibrium for 
each of the three subgames in the second period. One then adds on the resulting 
welfare losses to the welfare losses in the subgame of period 1, which results in 
7 ,2  for L, H, l l , 6  for L, L, 8 ,9  for H, H and 5, 12 for H, L, and finally calculates 
the Nash equilibrium for the game starting from yo = 0 i.e. 7, 2 for L, H .  In the 
resulting feedback Nash equilibrium player 1 's actions are L and H whilst player 
2's actions are H and L and both players are better off than in the open-loop 
Nash equilibrium (see Table 2). It is also possible to construct examples where 
the players are better off in the open-loop Nash equilibrium (see section 2.2). 
Hence, making use of information as it becomes available, can make players 
worse off in the context of a dynamic game, even though it always is profitable 
in a one-player context. There are many applications of open-loop and feedback 
Nash equilibria in dynamic games, e.g. conflict over the distribution of income 
in capitalist economies (Lancaster (1973)), conflict over the harvesting of a 

TABLE2 
Weyare losses under the various outcomes 

Actiotls o f  Actions of W e b r e  
Solution co~lcept player I player 2 losses 

Feedback Nash (subgame-perfect) LH HL 7, 2 
equilibrium 

Feedback Stackelberg equilibrium LH LL 6 4  
(and reneging outcome) 

Open-loop Nash equilibrium H L H H  8,9 

Open-loop Stackelberg equilibrium LL LH 11, 6 
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common renewable resource (Reinganum and Stokey (1985); van der Ploeg 
(1986)), price sluggishness in duopolistic competition (Fershtman and Kamien 
(1987)), capacity investment in industrial organization (Reynolds (1987)), 
conflict over arms accumulation (van der Ploeg and de Zeeuw (1990)), and 
international pollution control (van der Ploeg and de Zeeuw (1991)). 

The Lucas (1976) critique of econometric policy evaluation has increased the 
interest in applications of rational expectations and non-cooperative difference 
(or differential) game theory to dynamic economic or econometric models, 
because these techniques take explicit account of the reaction of the private 
sector (such as households and firms) to expected changes in government 
economic policy. Non-cooperative difference (or differential) games of the 
Stackelberg variety, with the government as leader and the private sector as 
follower, can provide a behavioural foundation of macroeconomic models with 
expectations of future government economic policy affecting the current state 
of the economy. Obviously, the advantage of difference (or differential) games 
of the Stackelberg variety over ad hoc rational expectations models is that they 
are immune to the Lucas (1976) critique policy evaluation as the behaviour of 
the private sector is no longer invariant to the policy rule adopted by the 
government. 

To illustrate some counter-intuitive results and other problems found with 
Stackelberg equilibria, it is best to return to the example presented in 
Figure 1. The open-loop Stackelberg equilibrium with player 2 as leader and 
player 1 as follower assumes that both players have open-loop information 
structures (i.e. can only observe yo)  and that player 2 can make binding 
commitments about his or her future policy actions. Player 2 chooses the best 
action taking account of player 1's reaction curve (denoted by " in Table I), so 
that he or she chooses to play L followed by H and obtains a welfare loss of 
6. The follower plays L in both periods and gets a welfare loss of 11. Note that 
the leader is better off (which is always the case) whilst the follower is worse 
off (which is not always the case) than in the open-loop Nash equilibrium (see 
Table 2). It is well known that open-loop Stackelberg dynamic games (or 
economies with rational expectations) are characterized by forward-looking 
(as well as backward-looking) behaviour due to the anticipation of future 
actions of dominant players (such as the Treasury or the Central Bank). In 
such models the problem of time inconsistency arises, that is dominant players 
have an incentive to alter previous plans when they are called upon to execute 
those plans (Kydland and Prescott (1977)). For example, in the beginning of the 
planning period the leader finds it optimal to play L followed by H. However, 
once the first period has elapsed, the leader finds it optimal to renege and play 
L, inducing the follower to play H, as this reduces his or her welfare loss from 
6 to 4. If there are no binding commitments, it is quite clear that such models 
are vulnerable to cheating from the side of the dominant player (e.g. the 
government) and, therefore, the initial plan of the dominant player will generally 
not be believed. It is important to note that cheating is only to be expected 
when the short-term gains of cheating outweigh the long-term losses of cheating, 
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which is more likely to happen when the rate of time preference used to discount 
punishments from cheating is large (Barro and Gordon (1983); Meijdam and 
de Zeeuw (1986)). In the case of incomplete information about preferences it 
is possible that the dominant player builds a reputation by being tough in the 
early stage of the games and blows its reputation in the final stages of the game 
(Kreps and Wilson, (1982); Backus and Driffill(1985)). 

If the government cannot commit itself or does not have a strong reputation, 
the private sector cannot be expected to believe time-inconsistent announce- 
ments and therefore such policies are not credible. The feedback Stackelberg 
solution concept (Simaan and Cruz (1973)) assumes that the players can change 
their strategies at all points in time on the basis of observations on the evolution 
of the state of the economic system and is therefore by construction time- 
consistent. This solution concept can be seen as an extension of the principle 
of optimality (Bellman (1957)) to games. In terms of the example, one first 
calculates the Stackelberg equilibrium associated with every subgame in the 
second period, then adds on the resulting welfare losses to the welfare losses of 
the game starting with p, = 0, and finally calculates the Stackelberg equilbrium 
for this game. In the feedback Stackelberg equilibrium the follower plays L and 
H whilst the leader plays L and L. The associated welfare losses are 6 and 4, 
respectively. This provides a counter-example to the view that the leader is 
always better off in a Stackelberg than in a Nash game. In fact, the leader's 
welfare loss increases from 2 in the feedback Nash equilibrium to 4 in the 
feedback Stackelberg equilibrium whilst the follower's welfare loss improves 
from 7 to 6. It also provides a counter-example to the view that in the 
(time-consistent) feedback Stackelberg equilibrium the players are worse off 
than in the (time-inconsistent) open-loop Stackelberg equilibrium, because the 
leader reduces his or her welfare loss from 6 to 4 and the follower reduces his 
or her welfare loss from 11 to 6. 

When the idea of a subgame is restricted to a game starting at some point 
of time from every possible state of the economy at that point of time, 
the feedback Stackelberg equilibrium may be called the subgame-perfect 
Stackelberg equilibrium, although Selten's (1975) original concept of subgame 
perfectness is only relevant for the Nash equilibrium concept. Because it is 
assumed that the players are ex ante given the opportunity to renege at each 
stage of the game, ex post they will not renege and therefore the feedback 
Stackelberg equilibrium leads to time-consistent policies by construction. 
However, subgame perfectness is stronger than time consistency, so that it is 
possible to formulate a time-consistent open-loop Stackelberg solution which 
is not subgame perfect (Meijdam and de Zeeuw (1986)). The point is that time 
consistency implies that there is no incentive to deviate from the equilibrium 
path and that subgame perfectness implies that there is no incentive to deviate 
from points that are off the equilibrium path either. The open-loop Nash 
equilibrium is another example of a time-consistent solution which is not 
subgame perfect, because the fact that there is no dominant player that can 
manipulate the current actions of the other players by making announcements 



617 A. J. DE ZEEUW A N D  F. VAN DER PLOEG 

about its own future actions implies that as long as there are no unexpected 
deviations from the equilibrum path none of the players has an incentive to 
renege. When the information structure is such that players have information 
on all past states of the economy and the period of commitment is the planning 
period, i t  is common to refer to a closed-loop (with memory) dynamic game. 

An alternative solution concept for non-cooperative games to the Nash or 
Stackelberg equilibrium is the consistent conjectural variations equilibrium, 
which was introduced in oligopoly theory by Bresnahan (1981) and was recently 
applied to an open-loop difference game (Hughes Hallett (1984); Brandsma 
and Hughes Hallett (1984)) and a feedback difference game (Bavar, Turnovsky 
and d'Orey (1986)). Although it has been argued that the concept is logically 
inconsistent (Daughety (1985)); de Zeeuw and van der Ploeg (1987)), the main 
importance for the discussion in this paper is that the open-loop consistent 
conjectural variations equilibrium is time-inconsistent. 

The conventional 'stacking' procedure is often applied to an economic system 
of difference games to obtain a final-form model (Theil (1964)), which is then 
used for policy evaluation purposes (e.g. Hughes Hallett, (1984)). A problem 
with this final-form approach is that in fact the open-loop model results, so 
that it is more difficult and cumbersome to discuss dynamic issues such as 
subgame perfectness and time inconsistency (even though it is possible to 
discuss with some difficulty the principle of multiperiod certainty equivalence 
in a one-player world). 

This paper gives an overview of different solution concepts with their 
properties and derives the results for a standard class of linear-quadratic policy 
evaluation problems. The main difference between this framework and the 
example of Figure 1 is that the strategy space is continuous rather than discrete, 
which makes it much more appropriate for economic applications. A comparable 
survey can be found in Bagar (1986), but this paper focusses on different issues 
and attempts to give more verbal explanation of the various solution concepts 
and associated issues of time consistency, subgame perfectness and credibility. 
Special attention is also given to the consistent conjectural variations approach, 
because it is felt that there are some problems with this approach. In section 
2 a linear-quadratic class of difference games is formulated and different decision 
models or game-theoretic solution concepts are discussed. In section 3 properties 
such as time consistency, subgam~ perfectness and credibility are defined and 
evaluated. Section 4 concludes the paper. 

2. Linear-quadratic difference games: An evaluation 

2.1. Model and solution concepts 

In this section some essential concepts for dynamic policy evaluation are 
discussed and a standard class of linear-quadratic difference games is formulated 
in order to elucidate the conceptual discussion. 
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The starting point is a linear dynamic economic model in state-space form: 

The transition of the state y of the economy from period t - 1 to period t is 
influenced by two players (such as the government and the private sector) who 
independently control the exogeneous variables x 1  and x 2 , respectively. The 
non-controllable exogeneous variables are denoted by s. The objective of player 
i, i = 1 ,  2, is to minimise a quadratic welfare loss function over a finite horizon: l 

where Qf and Rf are symmetric and Qf 2 0 and Rf  > 0. An extension with linear 
terms in the welfare loss function is straightforward by redefining the state 
vector, y,, and s, in an appropriate way. The convex linear-quadratic structure 
is not essential for the discussion but facilitates analytical solutions. It can 
always be considered as an approximation to the real structure of a specific 
model. The problem is called an optimal control problem with two decision 
makers or a difference game. 

The traditional approach (Theil (1964)) to an economic optimal control 
problem is to cast the economic model (1)  into a final-form model: 

where y, x 1 and x 2 stack the state variables y, and the policy instruments x: 
and x: for all periods of the finite planning horizon. Consequently, B1and B2 
are block-triangular matrices composed of A,, B: and BZ,and s contains the 
non-controllable exogeneous variables s, as well as the influence of the initial 
state vector The corresponding objective functionals become 

where the matrices Qi and R i  are block-diagonal as the welfare loss functions 
(2)  were assumed to be time separable. In this form the problem cannot be 
distinguished from a static problem, so that it corresponds to the normal form 
of the open-loop difference game. It explains why after this transformation into 
final form it is very difficult to discuss some dynamic issues such as the impact 
of new information or the absence of commitments to future actions. This will 
become clear in the sequel. 

The by now standard approach to a difference game is to distinguish 
information patterns and periods of commitment. The decision makers or 
players announce strategies for the whole planning period but may or 

' Attention is restricted to finite-horizon games, because this is analytically much more tractable. 
The infinite-horizon game can be viewed as the asymptotic case of the finite-horizon game as T 
tends to infinity. 

To be precise, B' = (B i , )  where Bi, = 0, j < k ,  Bjj = B:, Bi, = n;:: ( A , ) @ ,j > k ,  for j = 1, . . . 7; 
k = 1 ,  . . .T a n d i = 1 , 2 .  
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may not be committed to stick to these strategies. A strategy is a mapping 
from the information set and time to the set of available actions. Considering 
the state of the economic system, this information set can in principle contain 
only the initial state (open-loop information), only the current state 
(closed-loop, no memory information) or all the states up to the current state 
(closed-loop, memory information). Memory information complicates matters 
considerably and is sometimes excluded on the grounds of bounded rationality 
(e.g. Rubinstein (1987)).The model with an open-loop information structure 
and a period of commitment equal to the planning horizon is called the 
open-loop model. The model with a closed-loop, (no)  memory information 
structure and a period of commitment equal to the planning horizon is called 
the closed-loop model. The model with a closed-loop, no memory information 
structure and a period of commitment of one period is called the feedback 
model. In the feedback model the players have access to the current state of 
the economy and are ex-ante given the opportunity to renege on announced 
strategies at each stage of the game, so that in equilibrium they have no incentive 
to renege. The open-loop model is equivalent to the optimal control model 
based on a final-form economic model, which was described earlier in (3)  and 
(4). It is also possible to have asymmetries between the two players such as 
different roles in the game (i.e. leader/follower), different information patterns 
and different periods of commitment (see also section 3 and Cohen and Michel 
(1988)). 

The standard techniques to solve optimal control problems are Bellman's 
dynamic programming and Pontryagin's minimum principle. For an optimal 
deterministic control problem with one decision maker the two techniques yield 
the same optimal actions and pe~formance.~ For an optimal control problem 
with two or more decision makers these techniques lead in general to different 
solutions. The reason is that dynamic programming solves the feedback 
model and the minimum principle solves the open-loop model. To put it 
differently, dynamic programming presupposes information on the current state 
of the economic system and no commitments, whereas the minimum principle 
presupposes information on the initial state of the economic system and binding 
commitments. In the context of a game these assumptions have their influence, 
even when the world is deterministic. In the feedback model the players can 
observe the effects of the actions of their opponent and they can react 
to these observations, whereas in the open-loop model they cannot. Dynamic 
programming as a solution technique to a one-player optimal control problem 
is based on Bellman's principle of optimality. Dynamic programming as a 
solution framework for a difference game presupposes a generalization of the 
principle of optimality to dynamic games, which is also called subgame 
perfectness and which is treated in more detail in the next section. 

In a stochastic world, dynamic programming leads to policy feedback rules that take account 
of stochastic shocks and therefore leads to a lower expected welfare loss. 
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The two solution techniques have in common that they transform the 
dynamic optimization problem into a series of static optimization problems in 
a dynamic setting. When the minimum principle is applied, the optimization 
part of the solution is the static optimization of the Hamiltonian. When dynamic 
programming is applied the optimization part of the solution is the static 
optimization of the right-hand side of the Hamilton-Jacobi-Bellman equation. 
As a consequence the game theory involved can be reduced to static equilibrium 
concepts. 

2.2. Open-loop and feedback Nash equilibrium 

The standard non-cooperative equilibrium concept is the Nash concept which 
is based upon the idea that there should be no individual incentive for any 
player to deviate from the equilibrium. The Nash equilibrium assumes that 
strategy choice is simultaneous. Hence, the players choose their actions 
simultaneously and form expectations about each other's actions, which in 
equilibrium are fulfilled. This implies that the Nash equilibrium is the intersection 
of the hypothetical reaction curves which express the optimal decisions of each 
player conditional on the actions of the rival. For the prototype model ( I ) ,  (2) 
the first-order conditions of the optimization problem, 

where y, is given by (I),  lead to the hypothetical reaction functions 

~f = - (R;  + B ~ ' K ~ B ~ ) - ~ B ~ ' { K ~ ( A , ~ , - ,+ s,) + g f ) ,+ ~ j x j  

j # i ,  i = l , 2 .  (5') 

For the open-loop decision model the terms {Kfy,+ g f )  are the so-called 
co-states (also called shadow prices or adjoint variables) of Pontryagin's 
minimum principle. They show by how much the welfare loss is increased when 
there is a marginal increase in the state of the economy, y,. The parameters Kf  
and gf can be determined from the backward recursive equation^:^ 

where 

An outline of the proofs of these and later results in this section can be found in the appendix 
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For the feedbnck decision model the terms Kf and gf are the parameters of 
the quadratic so-called value functions of dynamic programming: 

= min { f y ; - l Q f - l y t - l+ f x f ' R f x f+ i y ; ~ f y i+ g;'y,+ c f ) .  
x i  

They follow from the backward recursive equations: 

The Nash equilibrium for both decision models is given by the intersection 
of the two hypothetical reaction functions, (5'): 

X I  = Giy,-l + h f ,  i = I ,  2, (10) 

where 

Gf = - [ ~ i ] - l B i ' K i [ ~] -
t t t ' A ,  

and 

It is essential to note that the relationship between xf and y i - ,  in (10) is only 
a real functional relationship between actions and state of the economy in the 
feedback model; it does not represent the policy rule of player i in the open-loop 
model. Furthermore, the feedback equilibrium strategies { G f ,  h f )  are not 
binding; in the feedback model the strategies can be changed whenever one of 
the players wants to do so. However, because they form a feedback equilibrium, 
there will be no incentives to change the policy rule, even after unexpected 
events. The open-loop equilibrium consists of binding sequences of actions { x f) 
which result from (10) and (1) together with (6) and ( 7 )  and which only depend 
upon the initial state j,, so that unexpected state trajectories cannot have their 
influence. This open-loop outcome coincides with the Nash equilibrium of the 
static problem (3) ,  (4). The transformation of the economic model into final 
form implies that the open-loop model with static information patterns and 
periods of commitment equal to the planning horizon is implicitly assumed. It 
is worth mentioning here that both open-loop and feedback policy rules can 
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be inferior to closed-loop memory policy rules where the players condition their 
strategies on information on current and past states of the economy ( B a ~ a r  and 
Olsder (1982), Section 6.3; de Zeeuw (1984), Section 4.3). 

The open-loop and feedback Nash decision models can imply very different 
economic results. Consider as an example the problem of an oligopoly with 
restricted entry and exit harvesting a renewable resource with zero extraction 
costs, iso-elastic demand and serially uncorrelated shocks to the natural 
replenishment rate. It can then be shown that the open-loop extraction rates 
obey Hotelling-type arbitrage rules and are therefore efficient whilst the 
feedback Nash equilibrium leads to excessive extraction rates or even extinction 
of the resource (van der Ploeg (1986)). The reason is that when an individual 
firm decides to harvest an additional unit, it realizes that the lower stock 
increases harvesting costs to the other firms and therefore the other firms will 
in the feedback model react by harvesting less. This means that the marginal 
cost of harvesting an additional unit is less than in the absence of such a 
response from its rivals, hence the feedback model leads to excessive harvesting. 
(With free entry and exit, the harvesting rates in the feedback model 
become efficient.) To take another example, in a model of competitive arms 
accumulation between two countries, where each country has a 'guns versus 
butter' dilemma, the feedback Nash equilibrium proves to be more efficient and 
leads to less arms accumulation and thus to more consumption than the 
open-loop Nash equilibrium (van der Ploeg and de Zeeuw (1990)). The reason 
is that when one country decides to invest in an additional weapon, it realizes 
that the security of rival countries is threatened and therefore in the feedback 
model the rivals respond by investing more in weapons. Obviously, this 
increases the marginal cost of investment in an additional weapon and 
therefore the feedback model results in lower weapon stocks. (The policy 
recommendation is that countries should agree to monitor each other's weapon 
stocks.) This is an example where the feedback equilibrium proves to be better 
for both players in terms of utility than the open-loop one, which is in contrast 
with the usual implication in the literature. 

2.3. Open-loop and feedback Stackelberg equilibrium 

Another standard non-cooperative equilibrium concept is the Stackelberg 
concept. The difference with the Nash concept is the leader/follower structure 
which means that one of the players (the leader) acts first or, to put it differently, 
the action or strategy of the leader is part of the information set of the follower. 
This may be relevant when one of the players has a dominant position on the 
market. There are again two optimization problems. The first one determines 
the rational reaction of the follower to the action or strategy of the leader. This 
rational reaction, which is not a hypothetical reaction as in the Nash concept 
but a real reaction, is given by the reaction function for the follower (5'). The 
second optimization problem determines the optimal action or strategy of the 
leader given the rational reaction of the follower. 
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For the open-loop decision model this implies that the constraints of this 
optimization problem consist of the forward recursive system ( I ) ,  equation (5') 
for the follower and the backward recursive system for the co-states. The 
resulting open-loop Stackelberg equilibrium (Kydland (1975); Baaar and 
Olsder (1982), Section 7.2; de Zeeuw (1984), Section 4.5) for the prototype 
model will not be given here, because it is not immediately relevant for this 
e~a lua t i on .~The backward recursiveness of the so-called adjoint system implies 
forward-looking behaviour of the follower, which leads to, what is called, time 
inconsistency of the optimal actions of the leader. The leader can, by making 
decisions about its future policy actions, manipulate the current policy actions 
of the follower. However, once the follower has implemented those actions, it 
might pay the leader (where it is possible) to renege and deviate from the 
previous decisions about its policies. These issues of time inconsistency will be 
dealt with in the next section. 

For the feedback decision model the first-order conditions of the two 
optimization problems are 

~ j x j+ { g '  + ( a x f l a x j ) ' ~ ; ' }  + gj} = (11){ ~ j y ,  0 

where i is the follower and j is the leader. This implies that the action xf  follows 
the action xj, so that they are not simultaneous. The crucial difference with the 
Nash concept is the reaction coefficient 8 x f l d x j  = - ( ~ t t '+f Bf'KfBf)- '  Bf 'KiBj  
The feedback Stackelberg equilibrium is given by 

where 

and the backward recursions by 

In any case, one could in principle obtain the open-loop Stackelberg equilibrium as the static 
Stackelberg equilibrium of the final-form model ( 3 ) . That is, x i  = - ( R i+ B"QiBi)- '  (B jx j  + s) is 
the optimal reaction of the follower i to the actions of the leader j .  The leader minimizes its welfare 
loss function subject to the reaction function of the follower, which gives xj = - ( R j + @ ' Q j E 1 ) ' s  
where B* = [I - B ' ( R i f B " Q I B ' ) - ' ] B J .  
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= A ; { ( I+ B ~ F ~ ) ' F ~ ' R ~ [ F ~ ( I+ B ~ F ~ ) s ,  

+ Ff ig f+ f7fBjFjigf+ ~ f ~ j j ] ~ j j 
r Sr 

+ ( I  + B ~ F ~ ) ' ( I  + B ~ F ; ) ( I+ B ~ F : ) ' { K ~ [ ( I  + B ~ F ~ ) s ,  

+ B f F f i g f+ ( I + B f F f ) B j ( F j i g f+ Fjjgj)] + g f ) )  

Given the parameters, the action x f  of the follower i is a function of the state 
y,- ,  and the action xj of the leader i which both belong to the follower's 
information set. The action xj of the leader j is only a function of the state y,- ,  . 
It is essential to note that for logical reasons the players have each other's 
action in their information set at the same time. Either player i acts first, so 
that the action xi is part of the information set of player j, or it is the other 
way around. Otherwise, the equilibrium is not well-defined and one may end 
up with a multiplicity of 'solutions'. The follower just plays optimally given 
the state of the economy and the action of the leader. In the Stackelberg 
equilibrum the leader expects the follower to react rationally and the action is 
chosen accordingly. The rational reaction is determined by the first equation 
of ( 1 1 )  and influences the reaction coefficient 3xfl;lxj as well as the state 
transition y, in the second equation of ( 1 1 ) .  After substitution of this rational 
reaction, the second equation of ( 1  1 ) determines the optimal action of the leader 
and not an optimal reaction, because the leader is not reacting to the follower. 
These considerations are essentially of a static nature and they apply also to 
the open-loop decision model, especially when the final-form representation ( 3 ) ,  
(4)  is used. The only difference is that in the feedback decision model the leader 
reacts indirectly to past actions of the follower through observations on the 
state of the economy. The feedback equilibrium is obtained from dynamic 
programming and therefore satisfies subgame perfectness in the sense described 
before. Subgame perfectness implies that the leader has no incentive to deviate 
in subsequent periods. These issues are treated in more detail in section 3. 
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2.4. Consistent conjectural cariations equilibrium 

Recently, a third non-cooperative equilibrium concept for difference games 
has been developed: the consistent conjectural variations equilibrium (for the 
open/closed-loop case from the final-form representation: Hughes Hallett 
(1984); Brandsma and Hughes Hallett (1984); for the feedback case: Bagar, 
Turnovsky and d'Orey (1986). The equilibrium was originally introduced in 
the context of oligopoly theory (Bresnahan (1981)) and is based upon the 
concept of conjectural variation (Bowley (1924)). A conjectural variation in this 
context is a reaction coefficient dx;/?xj as in ( l l ) ,  which comes from a 
conjecture of player j with respect to the reaction of player i. In the Stackelberg 
equilibrium the leader conjectures a rational reaction function of the follower 
and will be right in this conjecture. In the Nash equilibrium the two players 
conjecture the action of the other player and they are assumed to be right 
in their conjecture (consistency argument). The idea behind the consistent 
conjectural variations equilibrium is that the two players conjecture the reaction 
of the other player and that they are assumed to be right in their conjecture. 
In the literature up to now the equilibrium is determined by introducing 
conjectural variations for both players and requiring consistency of conjectural 
variations and hypothetical reaction coefficients. Since the Nash equilibrium 
requires correct conjectures of action for both players and the Stackelberg 
equilibrium requires that the leader has correct conjectures about the reactions 
of the follower, one could argue that the consistent conjectural variations 
equilibrium is a natural extension as it requires correct conjectures about 
reactions for both players. However, as it is done, the extension leads to logical 
inconsistencies (Daughety (1985); de Zeeuw and van der Ploeg (1987)). The 
reason is simply, that one cannot mix the idea of hypothetical reactions in 
notional time of the Nash concept with the idea of conjectured reactions, which 
actually degenerate the game into separate optimization problems. This will 
become more clear in the sequel. The consistent conjectural variations concept 
is not well-defined. It is certainly not true that the proposed equilibrium is a 
Nash equilibrium or, worse, a superior one (in contrast to the statements in 
Hughes Hallett ( 1984)6 and Brandsma and Hughes Hallett ( 1984)). 

The ideas of conjectures (about actions) and conjectural variations (about 
reactions) are alright, but the consistency argument should be different. There 
are two ways out. The first one is to formulate an infinite regress decision model 
of the type 'player i conjectures that player j conjectures that player i 
conjectures.. . . ad infinitum' (Daughety (1985)). The other way out is to start 
with conjectures and corresponding conjectural variations and to require 

In this and later papers an unfortunate mistake has slipped in. Apart from a type-setting error 
(the term G ~ ' " , Q " ' ( l / O )should not appear at the end of the first line of equation (16)), there is 
also a more fundamental error (the ' - ' after Gt' in the first line of (16) should be a ' + ') which 
seems to lead a persistent life in later papers as well. However, Andries Brandsma has said in 
private communication that most computer algorithms are, in fact, based on equation (14) so that 
may of the empirical results may not be affected by this second error. 
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consistency of conjectures and actions. To  stress the difference the resulting 
equilibrium will be called consistent conjectures equilibrium. Player i minimizes 
the welfare loss function ( 2 )subject to (1) and subject to the conjectures about 
the reactions of player j, x j ( x f ) .  Player j faces a similar problem. The conjectures 
x : (x f )  and x f ( x j )account for the conjectural variations axj/dxf and dxflaxj .  
The first-order conditions with conjectures are for player i: 

Rfxf + {Bf ' + ( a x / / d x f ) ' ~ 2 1 , ' } { ~ f j ) ,  0+ gf} = 

and for player j: 

R jx j  + {&'+ ( a ~ f / d ~ ~ ) ' B f ' ) { ~ j j ) ,= 0+ g j }  

y, = A,y,- ,  + B f x f ( x j )+ Bjxj  + s,. 

The first set of equations yields an equation in xf determining the optimal action 
of player i and the second set yields an equation in xj determining the optimal 
action of player j. In equilibrium consistency of conjectures and actions is 
required, that is these optimal actions have to fit the conjectures, and therefore 
yield restrictions on the parameters of the conjectures. This weaker concept of 
consistency is not enough to guarantee uniqueness and usually leads to multiple 
equilibria. How can the idea of consistency of conjectures and reactions arise? 
In that literature reaction functions are created by not substituting the 
conjectures in the state transition y,, which does not seem very sensible. As 
first-order conditions with conjectures are then taken: 

and 

yr = A,y,-I  + B f x f+ B / x j  + s,. 

The resulting 'reaction functions', 2 f ( x j )and 2 j (x f ) ,lead to reaction coefficients, 
d2fldxj and z.i?/(xf),which must match the conjectural variations. There are, 
however, not only logical difficulties with this approach. The consistent 
conjectural variations equilibrium for the open-loop model in final form ( 3 ) ,  
( 4 ) suffers from more problems. The result is time-inconsistent for the same 
reason as the Stackelberg open-loop equilibrium is (see section 3).Furthermore, 
the outcome is typically worse for the players than the Nash outcome and it 
suffers from non-uniqueness and instability. Two (static) examples will clarify 
these statements. 

Example I (Hughes Hallett (1984)pp. 389-90) 
Consider the game with objectives wi = y2 + (x i ) '  where y = x 1  + x 2  - 1. 

The Nash equilibrium is x 1  = 113 with outcome w i  = 219. 
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Hughes Hallett argues that x i '  215 is a better solution, because the 
associated outcome wi = 115 implies an improvement for both players. This is 
not surprising, since it is well known that it is possible to find Pareto 
improvements over the Nash outcome even though there is no unilateral 
incentive for any player to deviate from the Nash equilibrium. In fact, x i  = 215 
is what is generally called the Nash bargaining solution. However, this solution 
is not sustained as a consistent conjectural variations equilibrium. To find one, 
Hughes Hallett describes an iterative procedure and searches for a fixed point 
in the conjectured and actual 'reaction coefficients'. This procedure starts from 
an initial pair (d l ,  d 2 )  of conjectural variations, where d i  - 2xi/2xj, and yields 
new pairs corresponding to the 'reaction coefficients' ( - ( 1 + d2) / (2+ d2), 
- (1 + d1)/(2 + dl)). There are two fixed points here, namely di  = -312 ) 112 
$with corresponding actions x i  = 112 $ 1/10 $and outcome w i  = 112 + 
1/10 fi.Both consistent conjectural variations equilibria produce worse 
results for both players as compared to the Nash equilibrium. Futhermore, they 
do not satisfy the Nash property since each player can unilaterally improve by 
playing, for example, x i  = 114 f 1/20 fi. Finally, it follows from the derivative 
of the fixed point mapping, - 1/(2 + di)' = -312 -t 112 $, that one of the 
fixed points (d i  = -312 + 112 4)is stable whilst the other is unstable. 

The Nash bargaining solution x i  = 215 is, however, sustained as a consistent 
conjectures equilibrium. The conjectures 'my rival mimicks what I do', x i  = xj, 
implies conjectural variations equal to 1 and leads to optimal actions x'= 2/5, 
which are consistent with the conjectures. The non-cooperative Nash equilibrium 
is, as always, also sustained as a consistent conjectures equilibrium, since it 
corresponds to zero conjectural variations. A final example of such an 
equilibrium is the solution xi = 0 with outcome wi = 1, which results from the 
conjectures x i  = -x j  with conjectural variations -1. However, this outcome 
is obviously unattractive for the players: 

Example 2 
Consider the game with objectives MI' = 1/2(y1y+ xi'xi) where y = x1 + x2 

+ s, s = [I ,  11' and xi are two-dimensional vectors. The non-cooperative Nash 
equilibrium is xi = [ - 113, -1/31' with outcome w i  = 219. 

The consistent conjectural variations (Dl, D2) are characterized by 

(0')'+ 3Di + I = 0. (14) 

There are an infinite number of solutions to (14) (see appendix), which can be 
found analytically after some tedious calculations. Hughes Hallett's iterative 
scheme corresponds to: 

= - (21 + D;)-'(I + D;) = (21 + D;)-' - I. 

The local stability of the iterative scheme in the neighbourhood of the fixed 
points follows if all of the eigenvalues of the Jacobian 

2 v e c ~ ~ + , / d v e c D j =- ((21 + 0;)-"@(21+ Dj)- l ) ,  



628 DIFFERENCE GAMES AND POLICY EVALUATION 

evaluated at Dj, are inside the unit circle. It can be shown after considerable 
manipulation that Di = ( -312 + 1!2,,/5) I is the only stable fixed point (see 
appendix). Again the corresponding welfare loss, tvi = 112 - 1/ 104,is higher 
than the welfare loss which can be obtained under the Nash concept. Finally, 
the Nash equilibrium is not sustained as a conjectural variations equilibrium, 
because x i  = -113 s, x i  = ~ ' ( x '+ s )  and (14) are inconsistent. 

3. Time inconsistency, subgame perfectness and atomistic agents 

In section 2 several decision models for dynamic policy evaluation problems 
have been discussed. This section discusses properties of these dynamic decision 
models, such as time inconsistency, subgame perfectness and credibility. 

A decision model is time inconsistent if there is an incentive for one of the 
players to renege on the initially chosen strategy in the future (Kydland and 
Prescott (1977)). A decision model which typically is time-inconsistent is the 
open-loop Stackelberg equilibrium. It should be noted here that there is a 
semantic difficulty with this analysis. Strictly speaking it is assumed that it is 
impossible for players to renege in an open-loop decision model. However, in 
practice such commitments are difficult to enforce and time inconsistency may 
therefore be regarded as an undesirable property of a decision model. In the 
open-loop Stackelberg equilibrium the leader's strategy { x i , .. . , x $ )  is optimal 
given the follower's rational reaction { x i , .. . , x k } .  However, at time s > 1 the 
remaining strategy { x i , .. . , x $ )  of the leader is typically not optimal anymore, 
given the rational reaction of the follower at time s > 1. The reason is that at 
lime s the actions { x i , .. . , x $ }  have done the job of influencing the past actions 
of the follower and can now be solely employed to influence the current and 
future actions of the follower. This is particularly so when the leader does not 
have sufficient instruments, in the face of private market failures, to achieve the 
first-best outcome in the first place. When the leader does have sufficient 
instruments to achieve the first-best outcome there is clearly no problem of 
time inconsistency (Hillier and Malcomson (1984)). The strategy announcement 
{ x i , .. . ,x i )  can be considered as some sort of threat which helped to force the 
follower to play { x i , .. . , x t - ,  ). The leader tries to influence the future 
expectations of the follower in order to get a better outcome by making 
such an announcement, irrespective of whether the leader will stick to the 
announcement or not. 

For example, a benevolent government, who maximizes the gross consumers' 
surplus of the representative household, may announce taxation of the supply 
of labour rather than of capital tomorrow in order to induce agents to 
accumulate capital today. Once the capital stock is in place, it pays the 
government (improves economic welfare) to renege by taxing capital, instead 
of labour, tomorrow, despite the fact that the government has the same 
preferences as the representative household. The use of lump-sum taxation gives 
the first-best result in this case and avoids the problem of dynamic inconsistency 
(Fischer (1980)). The crucial point is the forward-looking behaviour of the 
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follower which looses its impact as soon as actions are performed. In the 
example, once the investment has occurred, the government can extract the 
quasi-rent on it. The same phenomenon occurs in other models with forward- 
looking variables such as models with rational expectations. For example, the 
optimal taxation of a monetary economy with a Cagan-type money demand 
function is time inconsistent (Calvo (1978)). The reason is that the government 
finds it optimal to announce a low monetary growth rate in order to induce 
large holdings of real money balances and low inflation, but once the real money 
balances have been accumulated it pays the government to renege and impose 
a surprise inflation tax. Strictly speaking, the incentives to renege in these two 
examples are only hypothetical as the commitment in the open-loop Stackelberg 
equilibrium extends over the entire planning period. 

This type of forward-looking behaviour can easily be derived for the class of 
models defined in section 2. For the follower the strategy x j  of the leader has 
the same role as the exogeneous input s,. The rational reaction x f  of the follower 
is given by equation (5') which means that it is a function of x{ and g f .According 
to (7) gf is a function of all the future exogeneous inputs, so that xf is a function 
of current and future actions of the leader: 

The feedback Stackelberg equilibrium, however, is time consistent by 
construction, because it is based on the idea that the players are ex-ante 
constantly given the opportunity to renege and therefore ex-post have no 
incentive to renege. But there is more. Feedback decision models have the 
stronger property of subgame perfectness. A game equilibrium is subgame 
perfect if it remains an equilibrium for any subgame. A subgame in this respect 
is a game with the same players, objectives and system dynamics, but starting 
from an arbitrary state y, at time s, 1 5 s 5 7: This concept reveals precisely 
the structure of dynamic programming and thus of the feedback decision model. 
To avoid confusion with the original definition of subgame perfectness in 
extensive-form games (Selten (1975)), it might be better to call this concept 
subgame perfectness without perfect recall or Markov subgame perfectness 
(Fershtman (1989)). It can be said that subgame perfectness is time consistency 
on the equilibrium path as well as off the equilibrium path and is therefore a 
stronger concept. A subgame perfect equilibrium is robust against mistakes or 
other unexpected events (Selten (1975)). Because subgame perfectness is 
stronger than time consistency, it is possible to formulate a Stackelberg 
equilibrium which is time consistent but not subgame perfect and which can 
be called a consistent open-loop Stackelberg equilibrium (Buiter (1983)); 
Meijdam and de Zeeuw (1986)). Such an equilibrium ignores the effect of the 
leader's future actions on the follower's current actions. This was already 
proposed by Kydland and Prescott (1977, p. 476), but they did not recognize 
that this is only one possible consistent equilibrium. The consistent solution in 
Fischer (1980) is another example of a consistent open-loop Stackelberg 
equilibrium. It can be viewed as a subgame-perfect equilibrium with infinitely 
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TABLE3 
Optimal dynamic taxation (Fischer, 1980)* 

Tax rates on 
Solution Social welfare Capital capital labour 

Command optimum 0.759 1.576 
Open-loop 0.706 1.274 0.334 0.332 
Consistent open-loop 0.625 0.986 0.479 0.000 
Subgame perfect 0.724 1.275 0.435 0.000 

*The subgame-perfect solution is relewnt under the assumption of a dominant 
government faced with only one household-producer. The consistent open-loop solution 
is relevant under the assumption of a dominant government faced with an infinite number 
of atomistic agents. 

many identical consumers or atomistic agents (de Zeeuw, Groot and Withagen 
(1988)). This equilibrium leads to lower social welfare than the time-inconsistent 
open-loop Stackelberg equilibrium. Many authors have argued that this is the 
price one has to pay for a lack of credibility. However, it is a mistake to think 
that players are alwaysworse off in a time-consistent equilibrium. Table 3 shows 
that for Fischer's (1980) example of optimal dynamic taxation of capital and 
labour the feedback Stackelberg equilibrium, which is based on the assumption 
of one dominant government and one large household-producer rather than 
on the assumption of atomistic agents, leads to higher social welfare than the 
open-loop Stackelberg equilibrium. The reason is that the losses from avoiding 
the problem of time inconsistency are off-set by the gains from additional 
information (see also the example of arms accumulation discussed in 
section 2.2). 

It is also possible to achieve time consistency by requiring that the leader 
employs a feedback decision model, whereas the follower still employs the 
open-loop decision model (Cohen and Michel (1988)). In our framework the 
ideas of subgame perfectness and dynamic programming are equivalent and 
these ideas imply time consistency. However, there are time-consistent equilibria 
which are not subgame perfect and which can therefore not be found by 
dynamic programming. 

The open-loop Nash equilibrium is time-consistent. As long as the state of 
the economic system follows the open-loop Nash equilibrium path none of the 
players has an incentive to renege. The open-loop consistent conjectural 
variations equilibrium, however, is time inconsistent for the same reason as the 
open-loop Stackelberg equilibrium is. Time inconsistency is a property of an 
equilibrium and can only be avoided by changing the equilibrium concept. 
There is no technical problem as is claimed by Hughes Hallett (1984) and 
Brandsma and Hughes Hallett (1984).7 

A strategy is credible if it contains announcements on future actions and if 

'Hillier (1987) points at the same mistake in his comment on Hughes Hallett (1987) 
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these announcements are believed by the other players. Announcements are 
believed if the announced actions are considered to be optimal at the time of 
action or, alternatively, if there will be no incentive, in the eyes of the other 
players, to act differently at the time the action has to be implemented. 
Time-inconsistent strategies are an example of strategies that are not credible. 
Strictly speaking, this applies only to decision models without commitments. 
The credibility problem can also occur in a static context where players are in 
principle of equal strength and act simultaneously. One of the players can try 
to become a Stackelberg leader by announcing the action beforehand. If the 
announcement has effect the Stackelberg equilibrium may result. In this case, 
however, the 'leader' can do even better, because generally there will be an 
incentive to deviate from the announcement under the assumption that the 
other player expects it to be true. In this simple framework the only credible 
announcement is the Nash action, because this is the only announcement that 
is at the same time the optimal reaction to the optimal reaction to the 
announcement (Meijdam and de Zeeuw (1986)). However, in a more advanced 
framework with imperfect (or incomplete) information, reputational effects in 
a sequential equilibrium can lead to credible strategies which differ from the 
complete-information Nash equilibrium (Kreps and Wilson (1982)). For 
example, with incomplete information it is possible to have the private sector 
believing announcements of the government that it will fight inflation, whereas 
with complete information the Nash announcement of high inflation is the only 
credible one (Backus and Driffill (1985)). Alternatively, reputational effects can 
occur when the game is repeated indefinitely (e.g. Barro and Gordon (1983)). 
When the discount rate is small enough, reneging results in punishments which 
are relatively large and therefore there may be no temptation to renege even 
though the policy actions may be time-inconsistent in the absence of such 
reputational effects. 

4. Conclusion 

In this paper several methods to analyze policy problems with two or more 
decision makers are evaluated. These methods employ decision models which 
are distinguished according to different non-cooperative game-theoretic solution 
concepts (Nash, Stackelberg, consistent conjectural variations), different 
information structures (open-loop, closed-loop) and different periods of 
commitment. The decision models are evaluated by considering properties such 
as time consistency, subgame perfectness and credibility, and the links with 
solution techniques like dynamic programming and Pontryagin's minimum 
principle are precisely described. 

The formulation of the problem on the basis of economic models in final 
form is rejected for games, because it is difficult to employ crucial dynamic 
concepts and techniques in this formulation. The consistent conjectural 
variations equilibrium is rejected on principles of logic and the alternative 
consistent conjectures equilibrium is presented. The decision model with 
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open-loop information structure and binding commitments can suffer from time 
inconsistency. The assumption of binding commitments means that it is 
impossible to renege and therefore time inconsistency can, strictly speaking, not 
be a problem. However, time inconsistency is an unattractive feature for a 
decision model to display, because it puts great strain on the assumption of 
binding commitments. The decision models with closed-loop information 
structure and without commitments are subgame perfect and thus time-
consistent, and therefore they deserve more attention. When the Stackelberg 
leader/follower structure is based upon announcements and not upon sequential 
actions, the requirement of credibility leads back to Nash. Credible strategies 
can also be based on reputational effects. 

The class of difference games discussed in this paper assumes quadratic 
preferences and linear, discrete-time models, which keeps matters tractable. The 
extension of the methods discussed in this paper to continuous-time models is 
easy and leads to so-called differential games. The extension to models with 
non-quadratic preferences and non-linear models is not easy, which is a pity 
as many interesting economic problems fall into this category. Although it is 
relatively straightforward to develop iterative Gauss-Newton algorithms to 
derive open-loop Stackelberg or Nash equilibria, it is very difficult to calculate 
feedback Stackelberg or Nash equilibria for non-linear models and/or non- 
quadratic preferences. The reason is that it usually is impossible to find 
analytical expressions for the functional forms of the value functions. All that 
one can do in such cases is to discretize the space of control variables of the 
players and calculate the subgame-perfect solution numerically by dynamic 
programming (as was done in Figure 1). This procedure rapidly runs into 
combinatorial problems and is thus very expensive in terms of computer 
requirements of storage and time. (Discretization also means that it is not 
possible to calculate the consistent conjectural variations equilibrium, but this 
is not too serious as this equilibrium suffers from logical problems anyway.) 
This problem disappears when there are no externalities or market imperfections, 
because then it is possible to invoke the fundamental theorem of welfare 
economics which says that the market (read differenceldifferential game) 
outcome is the same as the outcome of a centrally planned or command 
economy. Kydland and Prescott (1982) use this to avoid the difficult derivation 
of value functions for the market outcome. Unfortunately, most interesting 
policy problems are real games and are therefore characterized by externalities 
and market imperfections so that the approach used by Kydland and Prescott 
(1982) cannot be applied. It follows that future research must be concerned 
with the technical difficulties of calculating value functions and subgame-perfect 
outcomes for non-linear models and non-quadratic preferences (cf. Lucas, 1987). 

Tilburg University, The Netherlands 
University of Anzsterdam, The Netherlands 



633 A. J. DE ZEEUW AND F. VAN DER PLOEG 

REFERENCES 

BACKUS,D. and DRIFFILL, J. (1985). 'Inflation and reputation', American Economic Review, 75, 3, 
530-8. 

BARRO.R. J, and GORDON, D. M. (1983). 'Rules, discretion and reputaton in a model of monetary 
policy ', Journal of Monetary Economics, 12, 10 1-21. 

BASAR,T. and OLSDER, G.  J. (1982). Dynamic Noncooperatioe Game Theory, Academic Press, New 
York. 

BASAR,T. (1986). 'A tutorial on dynamic and differential games', in T. B a ~ a r  (ed.),Dynamic Games 
and Applications in Economics, Springer-Verlag, Berlin. 

BASAR,T.,TURSOVSKY, V. (1986). 'Optimal strategic monetary policies in dynamic S. J. and ~ ' O R E Y ,  
interdependent economies', in T.  B a ~ a r  (ed.), D ~ n a m i c  Games and Applications in Economics, 
Springer-Verlag, Berlin. 

BELLMAS,R. (1957). Dynatnic Programminy, Princeton University Press, Princeton. 
BOWLEY,A. L. (1924). The Mathematical Grotrndwork of Economics, Oxford University Press, 

Oxford. 
BRANDSMA,A. S. and HUGHES HALLETT,A. J. (1984). 'Economic conflict and the solution of dynamic 

games', European Economic Reciew, 26, 13-32. 
BRESKAHAN,T. F. (1981). 'Duopoly models with consistent conjectures', American Economic Review, 

71, 934-45. 
BUITER, W. H. (1983). 'Optimal and time-consistent policies in continuous time rational 

expectations models', discussion paper No. A.39, Econometrics Programme, London School of 
Economics. 

CALYO,G. A. (1978). 'On the time consistency of optimal policy in a monetary economy', 
Econometrica, 46, 141 1-28. 

COHEN, D. and MICHEL, Ph. (1988). 'How should control theory be used to calculate a 
time-consistent government policy'?', The Revie\r5of Economic Studies, 55 ,  182, 263-74. 

DAUGHETY,A. F. (1985). 'Reconsidering Cournot: the Cournot equilibrium is consistent', Rand 
Journal of Economics, 16, 3, 368-79. 

FERSHTMAS, M. I. (1987). 'Dynamic duopolistic competition with sticky prices', Ch. and KAMIEK, 
Econometrica, 55, 5, 1151-64. 

FERSHTMAN,Ch. (1989). 'Fixed rules and decision rules: Time consistency and subgame perfection', 
Economics Letters, 30, 3, 185-91. 

FISCHER,S. (1980). 'Dynamic inconsistency, cooperation and the benevolent dissembling 
government', Journal of Economic Dyrlarrlics and Control, 2, 1, 93-108. 

HILLIER,B. and MALCO~V~SON, J. M. (1984). 'Dynamic inconsistency, rational expectations, and 
optimal government policy', Econometrica, 52, 6, 1437-51. 

HILLIER,B. (1987). 'Forecasting and policy evaluation in economies with rational expectations: 
the discrete time case-a comment', Bulletin of Economic Research, 39, 1, 71-8. 

HUGHES HALLETT, A. J. (1984). 'Non-cooperative strategies for dynamic policy games and the 
problem of time inconsistency', Oxford Economic Papers, 36, 381-99. 

HUGHES HALLETT, A. J. (1987). 'Forecasting and policy evaluation in economies with rational 
expectations: the discrete time case', Bulletin of Economic Research, 39, 1, 49-70. 

KREPS,D. M. and WILSON, R. (1982). 'Reputation and imperfect information', Journal of Economic 
Theory, 27, 253-79. 

KYDLASD,F. E. (1975). 'Noncooperative and dominant player solutions in discrete dynamic games', 
International Economic Review, 16, 301-35. 

KYDLAND, E. C. (1977), 'Rules rather than discretion: the inconsistency of F. E. and PRESCOTT, 
optimal plans', Journal of Political Economy, 85, 3, 473-91. 

KYDLASD, F. E. and PRESCOTT,E. C. (1982). 'Time to build and aggregate fluctuations', 
Econometrica, 50, 6, 1345-70. 

LASCASTER,K. (1973). 'The dynamic inefficiency of capitalism', Journal of Political Economy, 81, 
5. 1092-109. 



634 DIFFERENCE GAMES AND POLICY EVALUATION 

L u c ~ s ,R. E. Jr. (1976). 'Econometric policy evaluation: a critique', in K. Brunner and A. H. Meltzer 
(eds.), The  Phillips Curve and Labour Markets,  North-Holland, Amsterdam. 

L u c ~ s ,R. E. Jr. (1987). Models of Business Cj~cles,  Basil Blackwell, Oxford. 
MEIJDAM,A. C. and de ZEEUW, A. J. (1986). 'On expectations, information and dynamic game 

equilibria', in T. Bagar (ed.), Dynamic Games and Applications in Economics, Springer-Verlag, 
Berlin. 

PLOEG, F. van der (1986). 'Inefficiency of credible strategies in stochastic renewable resource 
markets with iso-elastic demand and zero extraction costs', Journal of Economic Dynamics and 
Control, 10, 112, 309-14. 

PLOEG, F. van der and de ZEEUW, A. J. (1990). 'Perfect equilibrium in a model of competitive arms 
accumulation', International Economic Review, 31, 1, 131-46. 

PLOEG, F. van der and de ZEEUW, A. J. (1991). 'International aspects of pollution control', 
forthcoming in Enoironmental and Resource Economics. 

REISGANUM, N. L. (1985). 'Oligopoly extraction of a common property natural J. F. and STOKEY, 
resource: the importance of the period of commitment in dynamic games', International 
Economic Review, 26, 1, 161-73. 

REYNOLDS,S. S. (1987). 'Capacity investment, preemption and commitment in an infinite horizon 
model', International Economic Reuiew, 28, 1, 69-88. 

RUBINSTEIS,A. (1987). 'The complexity of strategies and the resolution of conflict: an introduction', 
S T I I C E R D ,  discussion paper No. 871150, London School of Economics. 

SELTEN,R. (1975). 'Reexamination of the perfectness concept for equilibrium points in extensive 
games', International Joitrnal of Game Theory. 4, 25-55. 

SIMAAN,M. and CRUZ Jr., J. B. (1973). 'Additional aspects of the Stackelberg strategy in 
nonzero-sum games', Journal of Optimization Theory and Applications, 11, 6, 613-26. 

THEIL,H. (1964).Optimal Decision Rules for Gooernment and Industrj,  North-Holland, Amsterdam. 
ZEEUW,A. J. de (1984). Difference Games and Linked Econometric Policj Models, Ph.D. Thesis, 

Tilburg University. 
ZEEUW, A. J. de and PLOEG, F. van der (1987). 'Consistency of conjectures and reactions?', 

Economics Letters, 24, 2, 181-5. 
ZEEUW,A. J. de, GROOT, F. and WITHAGEN, C. (1988). 'On credible optimal tax rate policies', 

mimeo., Tilburg University. 

APPENDIX 

1. Open-loop Nash equilibrium 

Pontryagin's minimum principle is applied to the problem (2), ( I )  for each player, given the 
strategy of the other player. Because Qf 2 0 and Rj > 0, the welfare loss functions (2)  are strictly 
convex in x and convex in y. Because the state transition (1)  is linear in y and x,the welfare loss 
functions (2)  are in fact strictly convex on the strategy spaces. If follows, that the necessary 
conditions of the minimum principle are also sufficient and lead to a unique optimal solution. 

The Hamiltonians are 
, . 

H1(j jr-,,x:, t ,  p:) = t ( j 1 ; - ,Q ; ,  y , ,  + xi Rf.xf} 

where pf is the so-called co-state or adjoint variable. Necessary and sufficient conditionx for minima 
are (1 )  and 

For an open-loop Nash equilibrium the two-point boundary value problems ( I ) ,  (A.2), (A.3) for 
i = 1,2  have to be solved simultaneously and can be solved analytically by postulating a linear 
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relationship between the state y and the co-state p: 

p; = K;y i + g:. 

Substitution of (A.4)  into (A.2) leads to ( 5 )  and to 

= - t ~ t+ g i )[ R ; ]- I B ; ' { K ~  , ' 

Substitution of ( A S )  into ( I )  and some rewriting yields 

E , y ,  = A,y,- ,  + s t  - B ; [ R : l 1 B j ' y : - B ~ [ R ~ ] ' B : ~ ~ ,  

where 

E,  = I + B : [ R : ] ' B ~ ' K :+ B f [ R : l l B f  K f ,  

which is assumed to be non-singular. Substitution of (A.6) into (A.4) and then of (A.4) into (A.3)  
leads to equations which have to hold for every y , - ,  and which, therefore, lead to the backward 
recursive equations ( 6 )  and (7).  

2. Feedback Nash equilibrium 

The feedback Nash equilibrium is found by solving simultaneously the equations of Bellman's 
principle of dynamic programming 

Because the welfare loss functions (2 )  are quadratic in y and x and the state transition ( I )  is linear 
in ).and x, the optimal actions must be linear in J and hence the value functions must be quadratic 
in y :  

~ ' i ( t , ~ , ~ , ) = ~ ~ ~ ~ ~ , K ~ ~ l ~ ~ ~ - ,  (A .8 )+ ~ ~ ' ~ , ~ ~ , - , + c ~ ~ , ,  

where, without loss of generality, it is assumed that the matrices K are symmetric. 
The minimizations of the right-hand sides of (A.7),where y, is given by (11, lead to the conditions 

( 5 ) which yield (A .5 )and (A.6) .These results give the values of the right-hand sides of(A.7) .Because 
the equations of dynamic programming have to hold for every y , - ,  , the quadratic terms in y , - ,  
of the left-hand sides and the right-hand sides of (A.7)and the linear terms in y , ,  can be compared 
separately. These comparisons yield the backward recursive equations ( 8 )  and (9 ) .  

3. Feedback Stackelberg equilibrium 

The feedback Stackelberg equilibrium is found by solving the equations of dynamic programming 
(A.7) ,where now the action r ; of the follower is a function of the action x: of the leader. The value 
functions are again given by (A.8) .The minimizations of the right-hand sides of (A.7) ,where J ,  is 
given by ( I ) ,  lead to the conditions (11) .  The first equation of (11)  and ( 1 )  lead to the rational 
reaction of the follower, which is given by the first equation of (12).The reaction coefficient becomes 

Substitution of the first equation of (12)  into ( 1 )  yields 

jJr= ( I  + B f F ~ ) ( A , ! , , _ ,+ B;s: + s , ) + BiF:igf. (A.lO) 

Substitution of (A .9 )  and (A.lO) into the second equation of (11)  yields the second equation of 
(12) .The matrices that are inverted are non-singular, because they are positive definite on the basis 
of the convexity assumptions with respect to the welfare loss functions. 
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Substitution of the second equation of ( 1 2 )into the first equation of ( 1 2 )and into ( A . l O )yields 

x: = F ; ( 1+ B:F: ) (A , y , - ,  + s,) 

+ F : ~ ;+ F ; B : F : " ~ ;+ F ; B : F : J ~ :  ( ~ . 1 1 )  

and 

y ,  = ( I  + B ; F : ) ( I+ B : F : ) ( A , ~ , - ,+ s , )  

+ B ; F ( ' ~ ;+ ( 1  + B : F ; ) B / ( F : ' ~ :+ ~ r g : ) .  (A .12 )  

These results give the values of the right-hand sides of ( A . 7 ) .Comparing quadratic terms and linear 
terms in ji-,leads to the backward recursive equations of the feedback Stackelberg equilibrium. 

4. Example 2 

The solutions of equation (14) are: 

The sets of eigenvalues of i! vec Dl,,  /i! vec Di that have to be evaluated are 


{four times -312 + l / 2 $ } ,  (four times -312 - ( -312 -312 1 / 2 & 
1 / 2 ~ / 3 } ,  + 1 1 2 ~ 3 ,  - 1, 

11, { -312  + 1 1 2 ~ 3 ,-312 - 1 / 2 4 ,  l , l }  and ( - 3 1 2  + 1 /2$ ,  -312 - 1 / 2 ~ 3 , 1 ,I } ,  res-
pectively, so that the first solution is the only one with all eigenvalues inside the unit circle and is 
therefore the only stable fixed point. 


