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In the literature on the empirical unconditional distribution of foreign 
exchange rate returns there is indication that the type of distribution function 
is related to the form of exchange rate regime. The analysis has been 
hampered by the nonnestedness of alternative distribution models. The paper 
investigates the issue by means of extremal analysis which allows for a 
unified treatment. In particular, we try to sort out whether apparent 
distributional differences are due to differences in techniques or in regimes. 
(JEL F31. F33) 

The research on the unconditional distribution of foreign exchange rate returns 
is organized around the one important stylized fact that the empirical distribution 
has fat tails. Therefore distributions like the Student-t and stable, for which not 
all moments are defined, are used in modeling exchange rate returns, while the 
normal distribution, for example, is not employed.’ The conclusions from the 
few papers that have estimated these models across different exchange rate regimes 
are as follows. Westerfield (1977) and Rana (1984) estimated the stable model 
on pre and post Bretton Woods data, i.e., for a fixed and floating regime, and 
found a generally higher characteristic exponent /j for the latter period.2 A rise 
in the characteristic exponent implies a decline of probability mass in the tails. 
Using Westerfield’s data Rogalski and Vinso ( 1978) estimated the Student-t model 
and found a slightly higher degrees of freedom parameter c for the floating period, 
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thus indicating somewhat thinner tails for the float. In summary, both types of 
studies corroborate the theoretical presumption that a float smoothens the 
fluctuations in exchange rates uis-d-vis a fixed parity system. Interestingly, 
Rogalski and Vinso by using the likelihood ratio of the Student versus stable 
model also find that the stable model has the higher posterior odds (using the 
Bayesian interpretation of the likelihood ratio) for the period of fixed rates, while 
the Student model dominates for the float. Hence, a regime change may not only 
affect a model’s parameters, but the entire model, i.e., inducing a switch from the 
stable to the Student-r model. The problem with these alternative data-generating 
mechanisms is that they are nonnested in the parameter space. This impairs the 
usefulness of the likelihood ratio criterion as its asymptotic distribution is 
unknown. Hence one cannot determine whether the regime switch had any 
significant effects in terms of model changes. 

In this paper we employ extremal analysis in order to overcome this difficulty, 
and use the econometric techniques introduced by Koedijk et al. ( 1990).3 As was 
indicated above, the organizing principle is the fatness in the tails of the 
distribution. Extremal analysis investigates the distribution of the maximum 
(minimum) in large samples, thereby determining the shape of the tails of a 
distribution. In fact, the limit law for the maximum is characterized by, the so- 
called tail index IX, which happens to be one to one with the number of moments 
that exist. Thus TX is a good indicator for the thickness of the tails. The important 
point to note is that the alternatives like the stable and Student-t model are 
nested within the limit law for extremes, as the characteristic exponent p < 2 
corresponds to values M < 2, while the degrees of freedom u 3 2 equal a 3 2. The 
idea is then to estimate this tail index directly, and to use the known distribution 
of the tail estimator in order to test for regime switches affecting the type of 
distribution. The gain of this procedure is that one can nest and test for different 
tail sizes. The loss consists of information about the center characteristics of the 
distribution. Given the predominance of outliers in the return series, however, 
one may benefit from this tradeoff for studying issues like exchange rate volatility. 

Interestingly, in a recent issue of this journal, Akgiray et al. (1988) studied the 
distribution of black market exchange rate returns using extremal analysis as one 
of their techniques. On the basis of the maximum likelihood procedure Akgiray 
et al. find for 12 Latin American countries c( values which range between l/2 
and 7. This diversity is somewhat disturbing as studies that estimate a specific 
distribution typically imply a values for different currencies which do not vary 
much, see, e.g., Boothe and Classman (1987). The diversity may be due to the 
specific regime.4 However, the reported confidence intervals are also rather large. 
In fact, the maximum likelihood procedure is not the most efficient method as 
the CramCrRao bound does not apply. Recently simple nonparametric 
estimators which are more efficient have become available. (see the review by 
Hols and De Vries, 1991). Therefore, we propose to use these new estimators to 
estimate the tail index of exchange rate returns under alternative regimes. 

To summarize, in this paper we attempt to overcome the maintained hypothesis 
problem by following the device of Akgiray et al. and employing extremal analysis. 
The distribution of the extremes nests the alternative models in a natural way. 
To improve upon the maximum, likelihood procedure, we employ a more efficient 
nonparametric approach described below. In order to provide a comparison of 
techniques we employ the same data set for the analysis of black market returns 
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as Akgiray et al. The nonparametric estimator is then applied to foreign exchange 
rate returns from five different regimes: Bretton Woods, the Snake, the free float, 
the EMS, and various black markets. In this way we are able to sort out 
unconditionally how regime switches affect the distribution of the returns and 
the behavior of ‘outliers’ in particular. 

I. Theory and simulations 

For the purpose of this paper it suffices to provide a brief summary of the theory 
of extremes. The interested reader is referred to Hols and De Vries ( 1991) for 
theoretical details. Consider a stationary sequence X,, X,, . , X, of independent 
and identically distributed (i.i.d.) random variables with a distribution function 
F (d.f.F). Suppose one is interested in the probability that the maximum 

(1) M, = max(X,,X,,...,X,) 

of the first n random variables is below a certain level x. As is well known, this 
probability is given by 

(2) P.jM, <.x) = F”(x). 

Extreme value theory studies the limiting distribution of the order statistic M, 
appropriately scaled. That is, one is interested under which conditions there exist 
suitable normalizing constants u, > 0, h,, such that: 

(3) P{a,(M, - h,) < .x) + G(x), 

where G(s) is an extreme value distribution. If F( x) is fat tailed, i.e., F is regularly 
varying at infinity, then h, = 0, and for J’ = -Y/U,,: 

(4) G(y) = e-*J’ ‘, 

where r is the tail index, x > 0, and T is the scaling parameter which is a function 
of the marginal distribution of the Xi and the possible dependency between the 
X,s. Formal results for the i.i.d. and dependent case are given in Leadbetter et 
ul. (1983). Values for x for specific d.f. F(x) and processes are as follows.5 The 
Student-t model has the tail index x equal to its degrees of freedom U, see, e.g., 
Mood rt al. (1974. p. 262). The fat tailed stable models have ‘x equal to the 
characteristic exponent 0 < /I < 2. The ARCH( 1) model Y = X,( /3 + iYf_ r)l,” 
has a tail index which is defined implicitly by the following equation 
1-((a + 1)/2) = n’!2(2/1)-@, and where the X, are i.i.d. N(0, 1) (see De Haan et 
ul., 1989). Thus, the stable model implies 0 < r < 2, while the Student-r and 
ARCH model allow for x 3 2. 

How to estimate the tail index x? For notational convenience let 7 = 1 /a denote 
the inverse tail index. As is shown in Smith (1987) y can be estimated consistently 
by maximum likelihood (m.1.) and this estimator Frn, is asymptotically normal 
distributed:h 

(5) (;;& - ?;)j, - N(O, (1 + ;1J2), 

where m is the number of highest observations from a sample of size y1 > m. Next, 
consider the nonparametric estimator proposed by Hill (1975). Define 

X,1, G X,1, .. < . . < X,,,) as the ascending order statistics from a sample X 1, . . , X,. 
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The Hill estimator reads 

465 

Goldie and Smith (1987) have shown that asymptotically 

(7) (%I - r)& N N(OY Y2). 

Remark, if the distribution F(x) is symmetric, both tails have the same index. 
Moreover, asymptotically the maxima and minima are independent, c.f. 
Leadbetter et al. (1983). It then pays to pool the highest and lowest observations 
by taking the absolute value and then ordering from low to high. 

From (5 ) and (7) it is immediate that for given m, f,, is asymptotically more 
efficient than 3,,,[ by a factor (1 + u)-~. The importance of this result can be 
motivated by the following example given in Dumouchel (1983). In his study 
Dumouchel investigates the relative efficiency of the Smith m.1. procedure with 
the m.1. procedure for estimating all the parameters of a d.f., if it were known 
that the true d.f. is stable. Evidently, the former estimator will be less efficient 
than the latter, because the latter estimator exploits the extra a priori information. 
For /I = a = 1.5, Dumouchel (1983, p. 1028) concludes: ‘Thus the efficiency of 
the robust procedure is only 0.034, a large price to pay for robustness.’ Continuing 
Dumouchel’s example and using our nonparametric technique shows, however, 
that the nonparametric q,, is 4.75 times more efficient than Smith’s ljmlr but only 
0.16 times as efficient as the m.1. procedure for estimating F if the d.f. is known 
to be stable. The gain from using the nonparametric technique is thus quite 
considerable. One should also bear in mind that it is usually not known whether 
the true d.f. F(x) is stable or not. In this vein, Dumouchel writes: ‘Alternative 
strategies which fit t-distributions or other families of long tailed distribution to all 
of the data are beside the point. Presumably, any method which uses the central 
observations to help make inferences about tail behavior is somewhat nonrobust.’ 

The intuition behind the dominance of 5h over Fml is as follows. The m.1. 
estimator is based on the hypothesis that the limit law is the correct model, 
whereas it holds only in an approximate sense for finite sample sizes (and F(x) 
unequal to G(x)). Therefore the ml. estimator does not attain the CramerRao 
bound, and more efficient estimators may exist. In order to demonstrate the 
relative efficiency of the two estimators, we conducted a simulation study. Before 
presenting the results of this study, however, we discuss a second motive for 
running the experiments. 

A problem associated with all extreme value estimation techniques is that they 
require one to select a number m of highest order statistics. While m(n) has to 
go to infinity at a lower rate than the sample size n, it is not known how to 
choose m optimally. In the numerical example discussed above, Dumouchel 
suggested the use of m = n/ 10 if one samples from one of the tails. Our simulations 
below show that this procedure is suboptimal in general. We exploited the 
asymptotic normality of the estimators to select an optimal m on the basis of the 
MSE criterion. In order to achieve this, we ran a Monte Carlo experiment by 
drawing from different d.f.s F(x). For each distribution the tail indexes were 
calculated for different m-levels. Replications were used to compute the associated 
MSE and Bias squared. The optimal m-levels for given d.f. and estimation 
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T~BLF 1. MSE, Bias squared and m-levels.* 
Sample size n = 119, 500 replications 

Distribution CX=l s(=3 

Estimator 

m 

6 
8 

12 
16 
1% 
22 
26 
28 
32 
36 
50 

0.5QO.15) 0.20 (0.00) 0.13 (0.02) 
0.46( 0.07) 0.13 (0.00) 0.11 (0.01) 
0.37(0.05) 0.09 (0.00) 0.09 (0.02) 
0.26( 0.04) 0.08 (0.00) 0.08 (0.01) 
0.24(0.03) 0.06*(0.00) 0.08 (0.02) 
0.21(0.02) 0.06 (0.01) 0.06 (0.02) 
0.20(0.01) 0.07 (0.02) 0.06 (0.03 ) 
0.19(0.03) 0.06 (0.02) 0.06 (0.03) 
0.16(0.03) 0.08 (0.04) 0.06*( 0.03) 
0.14(0.03) 0.12 (0.08) 0.06 (0.03) 
0.13(0.05) 1.74 (1.45) 0.06 (0.04) 

0.04 (0.01) 
0.03*(0.01) 
0.04 (0.02) 
0.05 (0.03) 
0.05 (0.04) 
0.08 (0.07) 
0.12 (0.10) 
0.14 (0.13) 
0.21 (0.19) 
0.30 (0.30) 
1.30 (0.89) 

*The first column reports the number of order statistics m taken into account. The other columns record 

the MSE and Bias squared between brackets. Stars refer to the minimum MSE. Note. MSE and Bias are 

computed for :’ = 1 :r. 

technique are recorded in Table 1 together with the associated MSE and Bias 
squared. The sample size of Table 1 corresponds to the sample size of Akgiray 
et ~1.’ Two distributions were used in the simulations: the Cauchy, as it is a 
member of the stable distributions with x = fl = 1; and the Student-t with 3 
degrees of freedom, i.e., LX = u = 3. 

From Table 1 it is immediate that the optimal m-level varies considerably with 
the type of distribution function F(x). As the Cauchy distribution has more 
probability mass in the tails than the Student-t with u = 3, a larger number of 
extreme realizations can be used for estimation than for the Student model. The 
number of order statistics needed for the m.1. approach, though, is quite large 
(for Y. = 1 the lowest MSE was obtained at the highest m-value used in the 
experiment; Akgiray et al. recommend setting m = 18). In order to check the 
usefulness of extreme value analysis, the theoretically predicted MSE levels can 
be compared with the simulated outcomes at the m-levels where the MSE is 
minimal. For example, when CI = 3 and m = 32 the theoretical MSE for 9ml is 
0.06 and for m = 8 the value for fh is 0.01. 

It is apparent that both theoretical values are close to the experimental MSE 
values. Thus extreme value analysis seems a useful tool, but one has to exercise 
care in selecting an appropriate m-level when applying the estimators. In 
particular, the m.1. estimator requires much higher m-levels. As the MSEs at the 
optimal m-levels are quite close to the theoretically predicted MSE, it also follows 
from the simulations that the Hill estimator dominates the m.1. estimator. 
Continuing the above example, i.e., x = 3, n = 119, $,1 has an experimental MSE 
of 0.06, while the MSE for 9h is 0.03 respectively, thus the relative efficiency is 
0.06/0.03 = 2. Theoretically one expects an asymptotic relative efficiency of 
( 1 + c()’ * (m,/m,,) = 16 * (8/32) = 4. Clearly, the Hill estimator dominates, but 
by less than would be expected on the basis of the asymptotic difference. Using a 
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much larger sample of n = 6000 (see note 7) the same computations yielded 
an asymptotic difference of 16(75/400) = 3, while the simulations gave 
0.0063/0.0023 = 2.74, which is quite close to the theoretical value. Henceforth we 
propose to use the Hill estimator instead of the m.1. procedure. 

Before we turn to the empirical application, we present one more theoretical 
result. An obvious and interesting question is whether the a values for the different 
regimes will be significantly different from each other. Due to the independence 
of the samples and asymptotic normality of the estimator &,,. we are able to test 
for this by means of the following statistic Q: 

(8) 

where c( = l/y and m are as in (7), and the subindexes refer to two independent 
samples. It is easy to see that Q is asymptotically x2(2) distributed. 

II. Empirical results 

In this section we apply the above methodology to estimate the tail index of 
exchange rate returns for different regimes. To enhance comparability, we start 
with results for the black market regime. In Table 2 we have applied the 
nonparametric estimation procedure to the data of Akgiray et al. (1988) as well 
as to an extended sample. 8 Because the extreme value method relies on there 
being a sufficient number of tail observations, increasing the relatively small 
sample size of 119 used by Akgiray et al. may potentially lead to improved 
estimates. The restrictiveness of the stable model vis-d-vis the entire class of fat 
tailed distributions is clear from the contrast between the first column and the 
others. The characteristic exponent /j hovers around 1 while some of the tail 
indexes are above 2, thus pointing to a finite variance. The second column records 
Akgiray et al’s application of the Smith y,, procedure for estimating the tail 
index.’ Not only is there a wide diversity in a values, the confidence intervals 
are also very large, leaving much uncertainty. A negatively valued right end point 
of the confidence interval has to be interpreted as follows. In general the inverse 
tail index 1’ can be positive, negative, or zero. If y < 0, the domain of the d.f. F(x) 
is bounded from above, and if y = 0 the d.f. F(x) has thin tails like the normal 
distribution. Therefore, a negative right end point for c( indicates that the 
hypothesis of thin tailed distributions, CI = ‘13, or bounded random variables, 
LX < 0, cannot be rejected. All other evidence, however, shows that these latter 
two alternatives are not plausible models for nominal exchange rate returns. 

The third and fourth column record tail index values that we found on the 
basis of the more efficient Hill estimator.” The second and third column are 
based on the same sample, but the third column has mostly tighter confidence 
intervals and all point estimates hover around 2. For the extended sample the 
point estimates are somewhat lower, and in some cases significantly below 2, 
thereby supporting the stable hypothesis. To conclude, theory, simulations, and 
empirical applications show that the nonparametric approach to extreme value 
problems is a relatively efficient technique which can be used to estimate and 
test hypotheses about the tail index of exchange rate returns. 

Given this conclusion, we broaden our scope and investigate regimes other 
than the black market. Table 3 provides tail index estimates for three different 
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TAHLF 2. Black market tail indexes.* 

Country 

Characteristic 
exponent 

fi 

Argentina 1 .oo 1.24 
(0.65, 14.20) 

Bolivia 0.57 0.97 
(0.54,4.55) 

Brazil 1.49 6.90 
( 1.90, - 4.25 

Chile 0.84 0.58 
(0.35, 1.61) 

Colombia 1.29 6.45 
(1.89, -4.56 

Costa Rica 0.78 2.20 
(1.07. -41.73) 

Ecuador 0.97 2.57 
(1.17. - 12.68) 

El Salvador 0.74 1.52 
(0.70, - 8.29) 

Nicaragua 0.52 1.58 
(0.77, - 29.60) 

Paraguay 1.20 0.61 
(0.37. 1.78) 

Peru 1.82 6.71 

(1.62. -3.12) 

Uruguay 0.68 5.41 

(1.50, -3.35) 

Tail indexes 

s(h ah 11 (m) 

2.12 

(0.65, 3.59) 

1.85 

(0.57,3.13) 

3.72 

(1.14,6.31 

4.34 

( 1.33, 7.34 

1.46 
(0.44.2.47 

1.76 

(0.54, 2.98) 

2.02 

(0.62, 3.42) 

1.87 

(0.57,3.17) 

2.07 

(0.63, 3.50) 

1.31 

(0.40, 2.2 I ) 
3.20 

(0.98, 5.43) 

1.91 

(0.58, 3.23) 

1.83 

(1.17, 2.48) 

2.26 

(1.45,4.36) 

3.21 

(2.06,4.36) 

2.34 

(1.51, 3.18) 

1.73 

( 1.06,2.39) 

1.25 

(0.80, 1.70) 

1.55 

( I .oo, 2. I 1 ) 
1.27 

(0.68, 1.86) 

1.38 

(0.88, 1.87) 

1.42 
(0.87, 1.96) 

1.92 

(1.23.2.61) 

1.86 

(1.19,2.52) 

443 

(30) 
431 

(29) 
443 

(30) 
431 

(29) 
383 

(26) 
431 

(29) 
443 

(30) 
275 

(18) 
443 

(30) 
383 

(26) 
443 

(30) 
443 

(30) 

*The first two columns record the estimates provided by Akgiray C/ crl. The third column contains our 
estimates of the tail index on the basis of the same sample and using WI = IX. The last two columns 

rerecord estimates for extended samples, the sample size ~1 and number of order statistics no. The latter 
number wx chosen on the basis of simulations. In parentheses arc the 95 per cent confidence intervals 

(Akgiray cur trl. used twice the standard deviation instead of 1.96). 

periods: Bretton Woods (the sample conforms to Westerfield, 1977; and Rogalski 
and Vinso, 1978, covering 1962 71); the first part of the float (the sample conforms 
to Boothe and Classman, 1987, covering 1973-87); and the entire float (1973-91) 
for five different US dollar exchange rates. We first estimated tail indexes for the 
upper and lower index separately, but we could never reject symmetry (by the 
Q-test). Therefore, we decided to pool the extremes from both tails in order to 
increase the efficiency. In comparison with existing studies that commit to 
estimating a specific distribution model, the following can be noted. 

The fixed regime Dmark, Pound and Canadian Dollar estimates are similar 
to Westerfield’s (1977) stable estimates, but differ drastically from Rogalski and 
Vinso’s (1978) Student-t estimates as these hover around 3.7. In contrast, the 
estimate for the Guilder rate is above 2, which was not possible in Westerfield’s 
study due to the restriction 1 d p < 2 in the estimation procedure. Nevertheless, 
the estimate is still significantly below the 3.9 value reported by Rogalski and 
Vinso. The other studies do not report estimates for the Yen. For the floating 
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TABLF 3. Tail indexes for different exchange rate regimes.* 

21 
fix (62-71) 

x2 
float (73-84) 

x3 
float (73-91) 

n 485 605 962 
m 51 54 81 
Dmark 1.20 3.45 3.51 # # 

(0.86, 1.52) (2.53,4.37) (2.75.4.28) 
Pound 1.14 3.21 3.58 # # 

(0.82, 1.45) (2.35,4.06) (2.80,4.36) 
Yen 1.26 2.74 2.74 # # 

(0.91L1.60) (2.01-3.47) (2.15-3.34) 
Guilder 2.42 3.35 3.45 2.26, 3.25 2.52,3.23 

( 1.75,3.08) (2.45,4.24) (2.70,4.21) 
Can Dollar 1.59 2.66 2.99 # # 

(1.15-2.03) (1.95-3.37) (2.34-3.64) 

*Estimates are based on end of the week recordings for the following periods: fixed exchange rates, January 

4, 1962 to April 29, 1971 (source: pinunciczl Tirnr,s): first float, January 5, 1973 to February 6, 1987 (source: 

Harrisbank): second float, January 5, 1973 to June 14, 1991 (source: Harrisbank and Datastream). Point 

estimates are calculated by pooling the extremes from both tails. The 95 per cent asymptotic confidence 

intervals are given between brackets. The last two columns record the Q-test for equality of the tail indexes; 

the # sign indicates rejection, otherwise the region of acceptance is recorded. 

regime, the Dmark, Pound and Guilder estimates are in line with the Student-t 
values of 3.9 reported by Rogalski and Vinso, and with the values obtained by 
Boothe and Glassman (1987) using daily data and the Student-t model. Our 
estimates for the Canadian dollar are lower, while our estimates for the Yen are 
higher. These estimates are of course out of line with the stable estimates reported 
by Westerfield, and Boothe and Glassman, as these are necessarily below 2. 

Thus the advantages of our approach now come to the fore as it immediately 
detects the apparent model switch due to the regime change, whereas the other 
studies can and do not uncover this phenomenon. Comparing the two regimes 
we find the stable model is a tenable hypothesis for the period of fixed rates, 
while the Student-t or ARCH model prevails during the period of the float. Note 
that the results of the Q-test reported in columns 4 and 5 show that the fix and 
floating regimes are significantly different from each other. The other studies 
cannot detect this because their estimates are conditional on specific nonnested 
distributions, while our estimation procedure admits the entire class of fat tailed 
distributions. The estimates for the float are both significantly greater than 2 in 
all cases (using a one-sided test of hypothesis), and above the point estimates for 
fixed rates. 

These results are intuitively plausible for the following reason. Recall that the 
higher the tail index, the lower is the probability mass in the tails. This result 
thus substantiates the notion that flexible exchange rate regimes tend to smooth 
the movements in the foreign exchange markets. Given this conclusion for the 
fixed and free float regimes it is also of some interest to consider the halfway 
station of the EMS target zone. In the Appendix we briefly summarize the results 
which appeared in Koedijk et al. (1990), who report tail index estimates for EMS 
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rates. They did find indexes below. but not too much different from, 2 for both 
the snake and the EMS period. Apparently, the snake and EMS arrangements 
are closer to the Bretton Woods setup than the (dirty) float of the US dollar 
rates.” The benefits of the EMS may instead derive from changes in the center 
of the density. But this issue is addressed elsewhere and is outside the scope of 
the present methodology. 

III. Conclusions 

This paper addresses the issue of comparing the empirical unconditional 
distribution function of foreign exchange rate returns for different exchange rate 
regimes. In order to pursue this issue, one needs a statistical model which is 
robust across different specific alternatives. The reason is that an exchange rate 
regime switch may not only cause a change in parameters but also a change in 
the entire data-generating mechanism. Traditional modeling is precommitted to 
a specific nonnested maintained hypotheses. Therefore, different values for either 
the characteristic exponent or the degrees of freedom parameter under different 
exchange rate regimes cannot be directly ascribed to regime differences as this 
may stem from maintaining the wrong model. Extremal value theory offers a 
way to nest the different models. Regardless of the specific exchange rate regime 

in place, all exchange rate return d.f. exhibit the fat tail property. This stylized 
fact is exploited by extremal value theory. For application one needs to estimate 
the so-called tail index which is indicative of the amount of tail thickness, but 
conventional m.1. procedures are not always the best way to proceed in this area. 
In order to overcome the lack of precision associated with the m.1. procedure for 
estimating the tail shape, we proposed using the more efficient nonparametric 
Hill estimator. Its uses and relative efficiency were demonstrated by a simulation 
study and on real data. 

This estimator was then used to estimate the tail index for several different 
regimes: black markets, Bretton Woods, flexible exchange rates. the snake, and 
the EMS. Remarkably, all tail indexes are found to be in the same range between 
1 and 2, except for the flexible exchange rate regime. The latter regime had 
significantly higher tail indexes. The economic interpretation of this result is that 
a float lets exchange rates adjust more smoothly than any other regime that 
involves some amount of hxity. Of course the other regimes may have had d.f.s 
with different center characteristics. But in some sense the extreme movements 
count the most for the economic process. and here Friedman’s ( 1953) prediction 
about the workings of flexible exchange rates seems to be borne out. 

Appendix EMS rates 

This appendix provides a summary of the results for the EMS and the snake as reported in 
Koedijk et al. ( 
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TABLE 4. Tail indexes for EMS exchange rates.* 

471 

Snake EMS 

I1 412 412 
m 28 28 
French Franc/Dmark 1.92 1.25 1.07, 1.82 

(1.21,2.63) (0.78, 1.71) 
Italian Lire/Dmark 1.41 1.78 1.07,2.03 

(0.89, 1.93) (1.12,2.44) 
Dutch Guilder/Dmark 1.69 1.62 1.11,2.19 

(1.06,2.32) ( 1.02,2.22) 
Pound/Dmark 2.66 2.17 1.6333.11 

(1.67-3.64) (1.3772.98) 

*Estimates are based on end of the week recordings for the following periods: Snake. April 1971 to March 

1979; EMS, March 1979 to March 1987. 

1. 

5. 

6. 

7. 

Notes 

An excellent review of the field is contained in Boothe and Glassman ( 1987). Other models 
used to capture the leptokurtic return distribution are the discrete mixture of normals; 
the mixed diffusion jump process (see, e.g., Akgiray and Booth, 1988; and Tucker and 
Pond, 1988); and the power exponential or GED (see Hsieh, 1989). Among the non i.d.d. 
processes the ARMA and ARCH models are most popular. The ARCH process is especially 
relevant since it exhibits clusters of volatility, which is the other well known empirical 
property ofexchange rate returns (see, e.g., Diebold, 1988; Hsieh, 1989; and De Vries, 1991). 
The study by Farber rt al. ( 1977) is omitted as their division of periods is now questionable 
given the currently available data. 
Their study contains an application of extremal analysis to EMS issues. Here we broaden 
the scope and investigate several different exchange rate regimes. 
Triangular arbitrage implies that returns on different currencies are linked. This places 
additive restrictions on the distributions for the different returns. In fact, this explains 
the appeal of the stable model, as these are the only distributions which are invariant 
under addition. In the case of black markets, triangular arbitrage may be absent or 
imperfect, and hence the tail indices may be different for different exchange rate return 
series. 
The normal mixtures of the normal. mixed diffusion jump processes and the power 
exponential are all thin tailed instead of fat tailed so that 2 = x (see Theorem 1.6. I in 
Leadbetter et al., 1983). 
This procedure for estimating c1 must not be confused with the m.1. procedure for fitting 
a specific d.f. in order to estimate all parameters of this d.f. 
We also conducted an experiment with the much larger sample size n = 6000. As the 
results of this experiment were quite similar to those for the smaller sample, this experiment 
is not recorded here, but is available from the authors upon request. 
For Columbia and Chile our data set differs slightly from the data set in Akgiray et al. 
to correct for the monetary reform in Chile and some recording differences. All data are 
available from the second author upon request. The Akgiray et al. data cover the period 
April 1973 to April 1983, while the extended data set runs from 1947 to 1983, except for 
the data for Bolivia, Chile, and Costa Rica which start in 1948, the data for Columbia 
and Paraguay which start in 1952, and the data for El Salvador which start in 1961. The 
exchange rate data are monthly quotations of black market rates from various issues of 
Pick’s Currency Yearbook. 
The right endpoints of the confidence intervals were computed on the basis of the 
information given by Akgiray et ul. in their Table 3. 



In the computations. we used rn-levels on the basis of the simulations of Table 1 and 
simulations for the extended sample sizes (not summarized here). The simulations show 
that the optimal m-level varies with the I values, and the latter are of course unknown. 
In general, WC decided to trade off unbiasedness against efficiency, cf. Table I, and used 
the number of order statistics suggested by the Cauchy simulations. 
As was pointed out to us by a referee. triangular arbitrage relates the Guilder.:Dmark 
rate tail estimate of Table 4 to the estimates for the Dmark;US and Guilder;LJS rates 
of Table 3, cf. note 4. Suppose that the latter two exchange rate returns are independent. 
then by Theorem 2 of Koedijk rt ol. ( IWO) the Guilder.Dmark rate should have a tail 
index of the same size as the other two rates. The value of the Guilder/Dmark rate, 
though, is considerably lower. This may be an interesting problem to follow up in future 
research. Also note that for the Pound, which effectively did not participate in the EMS, 
the problem stems absent. 
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