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Abstract 

The formulation of interior point algorithms for semidefinite programming has become an active research area, following 
the success of the methods for large-scale linear programming. Many interior point methods for linear programming have 
now been extended to the more general semidefinite case, but the initialization problem remained unsolved. 

In this paper we show that the initialization strategy of embedding the problem in a self-dual skew-symmetric problem can 
also be extended to the semidefinite case. This method also provides a solution for the initialization of quadratic programs 
and it is applicable to more general convex problems with conic formulation. @ 1997 Elsevier Science B.V. 
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1. Introduction 

The extension of interior point algorithms from lin- 
ear programming (LP) to semidefinite programming 
(SDP) [1] has received much attention recently, as is 
clear from the number of  recent papers dealing with 
the subject (e.g. [14, 10, 12]). The question of initial- 
ization has not been satisfactorily solved up to now, 
and 'big-M' methods are often employed in practice 
to obtain feasible starting points. In the LP case an 
elegant solution for the initialization problem is to 
embed the original problem in a skew-symmetric self- 
dual problem which has a known interior feasible so- 
lution [16, 7]. The solution of the embedding problem 
then yields the optimal solution to the original prob- 
lem, or detects infeasibility or unboundedness. In this 
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paper we show how to extend this idea to semidefinite 
programming. 

We give a self-dual, skew-symmetric embedding 
with known interior feasible solution on its central 
path, and show that a so-called maximally comple- 
mentary optimal solution of this problem yields in- 
formation about the solution of the original problem. 
In particular, exactly one of  the following three cases 
occu r s :  

(I) an optimal solution with zero duality gap for the 
original problem is obtained; 

(II) a recession direction for either the primal and/or 
dual problem is obtained; 

(III) a certificate is obtained that no optimal solution 
pair with zero duality gap exists and that neither 
the primal nor the dual problem has a recession 
direction. This can only happen if one or both of  
the primal and dual SDP problems fail to satisfy 
the Slater regularity condition [14]. 
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Since our embedding problem has an initial interior 
feasible solution on its central path any interior point 
method can be applied to it. 

It is known [14] that convex quadratic program- 
ming (QP) is a special case of SDP. Thus, the 
initialization via self-dual embedding for QP prob- 
lems is covered as well. Via this reformulation and 
embedding the problems arising from the nonlinear- 
ity of the objective as mentioned in [15] are avoided. 
A homogeneous embedding of monotone nonlinear 
complementarity problems is discussed in [3]. An 
infeasible start algorithm is proposed there to solve 
the homogeneous model. The homogeneous embed- 
ding idea was first analysed for SDP by Potra and 
Sheng [ 10]. 

Contrary to [3, 10] our embedding problem has a 
nonempty interior and a perfectly centered initial start- 
ing point. 

The paper is organized as follows. In Section 2 
the primal~zlual SDP pair is defined in the symmetric 
form. First, the orthogonality properties of the primal 
and dual solutions are proved. Further, after defining 
the central path of the SDP problem it will be proved 
that any convergent subsequence on the central path 
converges to a maximally complementary solution. In 
Section 3 the self-dual embedding model is presented. 
This problem has a trivial initial solution on its central 
path. We show that any limit point of the central path 
of the embedding problem either provides an optimal 
primal-dual pair with zero duality gap, or shows that 
such solutions do not exist. 

with the associated dual problem (D) 

max bTy 
S,y 

m 

s . t .  ~ y iA i  q- S : C, 
1 

i=1 

S ~ 0 ,  

y~>0, 

where C and the Ai's a r e  symmetric n × n matrices, 
b E •", and X ~ 0 means X is positive semidefinite. 
The solutions (X,z) and (y ,S)  will be referred to as 
feasible solutions as they satisfy the primal and dual 
constraints, respectively. Observe that the duality gap 
for (P) and (D) is given by 

)) Tr(CX) - bTy = Tr yiAi -b S X 
\ \ i = 1  

m 

- Z yi(Tr(AiX) - zi) 
i=1 

= Tr(SX) + yTz. 

A basic property of LP problems known as the or- 
thogonality property easily extends to SDP. 

Lemma 2.1 (Orthogonality). Let (X,z, S, y) and 
(X o, z 0, S 0, yO ) be two pairs of  feasible solutions. The 
following orthogonality relation holds: 

Tr((X - X° ) (S  - sO)) + (z - z0)T(y -- y0) = 0. 

2. Orthogonality, maximal complementarity in 
SDP 

The semidefinite programming problem will be con- 
sidered in the symmetric form. Thus our primal prob- 
lem (P) is 

min Tr (CX) 
X,z 

s.t. Yr(AiX) - zi = bi, 

X ~ O ,  

i =  1 . . . .  ,m, 

z~>0, 

Proof. The proof uses only the feasibility conditions 
o f (P)  and (D). 

Tr((X - X°) (S  - sO)) + (z - zO)T(y -- yO) 

m 

+ Z Tr(Ai(X - X°) (y i  - yO)) = O. 
i=1 

[] 

It is well known that the pair of problems (P) and 
(D) has optimal solutions (X*,S*,z*,y*)  with zero 
duality gap (Tr(CX*) - bTy * ---- 0) if both the primal 
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and dual problems satisfy the Slater regularity condi- 
tion [4], which will be assumed in the remainder of 
this section. 

The optimality conditions for (P) and (D) are 

T r ( A i X )  - zi ---- bi, 

m 

Z yiAi  q- S : C, 
i=1 

X S  = O, 

i =  1, . . . ,m, 

y>~0, S~>0, 

z~>O, X~O,  

(1) 

yizi = 0, i = 1 . . . . .  m. 

Solutions (X,z) and (S,y)  satisfying the last two 
equality constraints are called complementary. Since 
X and S are symmetric positive-semidefinite matrices 
the complementarity of X and S (XS  = 0) is equiva- 
lent to Tr(XS) = 0. Complementary feasible solutions 
are optimal. If the complementarity conditions are 
relaxed to 

T r ( A i X ) - z i  =bi,  i =  1 . . . . .  m, 

~-'~yiAi + S = C, 
i=1 

X S  = #L 

YiZi : #, i :  1, . . . ,m,  

X,S>~ O, 

z,y~>0, 

with some # > 0, then this system has a unique so- 
lution X(#),  z(#), S(#), y(#)  if the matrices Ai are 
linearly independent. This solution can be seen as the 
parametric representation of  a smooth curve (the cen- 
tralpath) in terms of the parameter #. 

We show that any limit point of the central path in 
the optimal set is a so-called maximally complemen- 
tary solution, defined as follows. 

Definition 2.1. An optimal solution (X*, S*,z*, y* ) is 
called a maximally complementary solution if z* and 
y* have the maximal number of strictly positive com- 
ponents, and if X* and S* have maximal rank. 1 

A maximally complementary solution can be ob- 
tained by a central path following algorithm - we 
prove below that all accumulation points of the cen- 
tral path in the optimal set are maximally complemen- 
tary solutions. This result is analogous to the result 
that the central path of an LP problem converges to a 
strictly complementary solution, the so-called analytic 
center of the optimal set [6, 7]. 2 Recall that in the 
LP ease a strictly complementary solution always ex- 
ists [7]. This is not necessarily the ease for nonlinear 
problems, not even for convex quadratic problems. 

Theorem 2.1 (Maximal complementarity). Consider 
any sequence {#t} 4 0  with #t >0, t=  1 . . . .  Any con- 
vergent subsequence o f  (X(#t) ,z(#t) ,  S(#t), Y(#t))  
on the central path converges to a maximally com- 
plementary solution as fit ""+ O. 

Proof. We will prove the theorem in two steps. First, 
we prove that a limit point (z, y)  of (z(#t), Y ( # t ) )  e x -  

i s ts .  In a second step we show that any such limit 
point is maximally complementary. The existence of 
the limit points is proved by showing the following 
lemma. 

Lemma 2.2. Given fi > 0, the set 

{(X(#), z(#), S(#), y(#)):  0 ~< # ~< fi} 

is bounded. 

Proof. Let (X° , z° ,S° ,y  °) be any strictly feasible 
primal-dual solution, and (X(# ) , z (p ) ,S (# ) , y (# ) )  
a central solution corresponding to some # >0.  By 
orthogonality (Lemma 2.1 ) one has 

Tr((X(#) - X°) (S (# )  - sO)) 

+ (z(p) - z°)T(y(p) -- y0) = 0. (2) 

The centrality conditions imply Tr(X(#)S(#))  = nkt 
and z(#)Ty(#) = m#, which simplifies (2) to 

Tr(X(#)S °) + Tr(X°S(#)) + (z0)ry(#) + z(#)Ty ° 

= (m + n)# + Tr(X°S °) + (zO)Ty °. (3) 

1 Results pertaining to bounds on the rank of optimal solutions 
may be found in [8, 9], and on nondegeneracy and strict comple- 
mentarity properties of  optimal solutions in [2]. 

2 Since the first submission of this paper, Goldfarb and 
Scheinberg [5] have proved that the central path always converges 
in the SDP ease. The limit is the analytic center of  the optimal set. 
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The left-hand side terms of  the last equation are non- 
negative by feasibility. For a given fi > 0, and defining 
rc := Tr(X°S °) + (z0)Ty ° one therefore has 

(m+n)fi+~: V#<~fi, 
IIX(~)ll < J.min (S0) , 

where 2min(S 0) denotes the smallest eigenvalue of  S O 
and 

(rn + n)fi + x 
yi(#)  < ,Vi = 1, m, lz<~fi 

Zi 0 " . .  

with similar bounds for S(#)  and z(#).  [] 

By feasibility each term in (4) is nonnegative and con- 
sequently bounded from above by m + n. This proves 
the second part o f  the lemma. Furthermore, for the 
sequence/~t, one has limu,__.0 z:(#t) > 0 if  z* > 0 and 

limu,__,0 y j ( # t ) > 0  i f y f > 0 .  [] 

To prove Theorem 2.1 we still need to show 
that limit points of  the sequences X(lzt) and 
S(#t) are also maximally complementary, i.e. if  
X -- lim#,~0 X(#t) and S = limu,_-.0 S(#t) then X 
and X* have the same rank and, further, S and S* 
have the same rank. 

In the following two lemmas we show that the limit 
points are also maximally complementary. 

L e m m a  2.4. The matrices X := lim~,~0 X(#t ) and 
S : -  lim~,__.o S(&) are maximally complementary. 

Lemma2.3 .  Any limit point (z ,y )  of the se- 
ries (z(#t),y(pt)) is maximally complementary. 
Furthermore, for any maximally complementary 
solution (X*, S*, z *, y* ) the series 

Tr(S-I(#t)S *) and Tr(X*X-l(pt)) 

are uniformly bounded. 

Proof. Let (X*,S*,z*, y*) be a maximally comple- 
mentary solution, and (X(#),z(#),S(#), y(# ) )  a cen- 
tral solution corresponding to some # > 0. Similar to 
the previous lemma, the orthogonality Lemma 2.1 
yields 

Proof. We prove here that the rank of  X is the same as 
the rank of  X* .  The proof  for S proceeds analogously. 
Recall from Lemma 2.3 that T r ( X ( # t ) -  1X* ) ~< m + n 
for all #t > 0. Let the rank of  X* be k, its eigenval- 
ues be denoted by (2~, . .  "* • , '~k ), and a set of  its or- 
thonormal eigenvectors be given as (e* . . . . .  e~ ). Then 
X* P*A*P *T where P* * * = = (e  I . . . .  , e k ) is an n x k 
orthonormal and A* = diag(2~ . . . . .  2~) is a k x k di- 
agonal matrix. Then we have 

Tr(X(pt ) - IX * ) = Tr(X(#t )-I p* A* p * T ) 

= Tr(p*Tx(#t)-1p*A *) Gm + n. (5) 

Tr( (X(#)  - X* )(S(,u) - S* )) 

+ (z(p)  - z* )T(y(p)  -- y* )  = 0. 

Using the centrality conditions as before, and the op- 
timality conditions T r (X*S*)  = 0 and (z*)Ty* = 0, 
this simplifies to 

Tr(X(It)S*) + Tr(X*S(p)) 

+ (z*)Ty(#) + z(p)Ty * = (m + n)#. 

Using the centrality conditions once more, we have 

T r (S -1 (# )S  *) + T r ( X * X - l ( p ) )  

+ 2 + 2 
zA#) y;(~) j=l  j=l  

V >0 y; >o 

- -m+n.  (4) 

Using this bound we derive 

Tr(p* Tx(#t)-I p* )=Tr(p* Tx(#t )-I p* A* A *-l)  

1 ~< - -  Tr(P* TX(#t )- 1 p* A* ) <~ m + n 
• )-min(A* ) ~rnin(A* )" 

For further reference we introduce the notation 
K : =  (m + n)/2min(A*). Since X ( p t )  is symmetric 
positive definite, its orthonormal eigenvalue decom- 
position for each #t can be given as 

X(u t )  = Q(#t)TL(#t)Q(#t) ,  

where L(/.tt) is an n × n positive diagonal matrix and 
Q(#t)T=Q(#t) -1 is an n ×n orthonormal matrix. Then 
X(#t  )-1 = Q(pt)TL(#t)-1 Q(#t) and further B(pt)= 
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Q(#t)P* is also an orthonormal matrix. Using this we 
have 

To decide about the duality state of the problems 
(P) and (D) we need the following definition. 

Tr(P.  T X(#t  )-a p .  ) 

= Tr(p*TQ(#t)TL(#t) - IQ(pt)p*)  

= Tr(B(#t)TL(pt)-1B(#t))  

= Tr(L(#t)- lB(#t)B(pt)7)  

= ~ B(#t)iB(#t)~ <~K, (6) 

i=1 L(#t ) i  

where B(#t)i denotes the ith row of the matrix B(#t ) .  

Introducing the notation rl(#t)i = B(#t)iB(#t)xi, we 
have that 0 ~<rl(#t)i ~< 1 for all i and 

n 

E q(#t )i = Tr (B(# t )TB(#  t )) 
i = 1  

= Tr (B(#t)B(#,)7) = k. 

These last two relations imply that at least k of the 
n ~/(#t)i S are larger than or equal to 1/(n - k + 1). 
We can choose an appropriate subsequence (indicated 
again by subscript t for the sake of simplicity) where 
these coordinates are fixed. Denote the set of these 
indices by I. Then we have 

1 
?l(~lt )i ~ 1' i E I n - k +  

and by (6) 

1 
L(pt)i>~ (n - k  + 1)K' iCl .  

Using the notation L =lim~,~0 L(#t ) we conclude that 
the diagonal matrix L has at least k nonzero diagonal 
elements. Since Q(#t) is orthonormal, for an appro- 
priate subsequence (still indicated by subscript t) one 
has Q = limu,~0 Q(p t )  orthonormal, thus 

X = lim Y ( # t ) =  lim Q(#t)TL(#t)Q(#t)= Q'rLQ 
#t--~O #t'--*O 

has at least rank k. By noting that X* has max- 
imal rank among the optimal solutions, one has 
rank(X)~<rank(X*) and thus rank(X) = k. This 
completes the proof. [] 

Definition 2.2. We say that the primal problem (P) 
has a ray if there is a symmetric matrix )? ~ 0 such 
that Tr(Ai)?)>~O, Vi and Tr (C) ( )<0 .  Analogously, 
the dual problem (D) has a ray if there is a vector 
0~<p E •" such that - E im__l  ~iAi ~ 0 and bTfi>0. 

If there is either a primal or dual ray, then no optimal 
solution to either (P) or (D) exists: If there is a dual 
ray )3 then (P) is infeasible, since by assuming pri- 
mal feasibility one has 0/> Y]7=l Yr(AiX)Yi >I bTy > 0 
for any primal feasible X, which is a contradic- 
tion. If one has a primal ray )? then (D) is infea- 
sible since by assuming dual feasibility one has 
0~<~"=1 Yr(Ai,~)yi<~Yr(C)?)<O for any dual fea- 
sible y, which is also a contradiction. 

A maximally complementary solution to our em- 
bedding problem, presented in the next section, will 
enable us to construct optimal solutions with zero 
duality gap to (P) and (D) if they exist, or to detect 
rays, or to exclude these two possibilities. 

3. Self-dual embedding 

We now embed the primal-dual pair of problems 
(P) and (D) in a larger problem. We no longer require 
the Slater regularity condition for (P) or (D). The 
embedding is done in two steps: A homogeneous, 
self-dual SDP problem is constructed which is then 
extended to a problem with nonempty interior of the 
feasible region. The following model can be obtained 
by homogenizing the optimality conditions of (P) 
and (D). 

Find a • > 0 such that 

Tr(AiX)  - "rbi - zi = 0 
m 

- Z  yiAi + ~C - S = O, 
i = 1  

bTy - Tr(CX) - p = 0, 

Vi, 

(7) 

y>~0, X ~ 0 ,  ~>0,  

z>~0, S ~ 0 ,  p~>0, 
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is feasible. Note that the model (7) always ad- 
mits the trivial zero solution. Moreover, a solution 
(X*,S*,z*,y*,r*,p*) to (7) with ~*>0  yields an 
optimal solution to the original problem pair (P) and 
(D) (scale the variables X*, S*, z* and y* by l/z*). 
This is true due to the last constraint which requires 
the duality gap for the original pair of  problems (P) 
and (D) be nonpositive. As the gap is always non- 
negative by weak duality, optimality of the scaled 
solutions is established. Clearly, if (P) and (D) have 
no optimal solutions with zero duality gap then the 
skew-symmetric problem has no solution with v* > 0. 

By the above arguments, the last constraint of prob- 
lem (7) prohibits an interior solution: if r > 0  one 
cannot have p > 0 as well, due to weak duality. The 
formulation must therefore be extended. By introduc- 
ing some new vectors, parameters and variables a 
self-dual model with known initial interior solution is 
obtained. The construction is analogous to that given 
in [7] for LP. In what follows e denotes the all one 
vector: 

min 
y,X,z,O,z,S,p,v 

s.t. 

08 

Tr(AiX) - rbi  q- O[~i - z i  = 0 

- ~  yiAi + "rC - OC - S = O, 
i=1 

bTy -- Tr(CX) + 0~ - p = 0, 

--bTy + Tr(CX) - z~ - v = -f l ,  

y~>0, X ~ 0 ,  r~>0, 0~>0, 

z~>0, S~0,  p~>0, v>~0, 

where 

bi := bi + 1 - Tr(Ai), 

m 

-C:----I + Z A i - C ,  
i=1 

7 := 1 + Tr(C) - bTe, 

f l : = m + n + 2 .  

Vi, 

(8) 

i =  1,. . . ,m, 

It is straightforward to verify that a feasible interior 
starting solution is given by y o = z o = e, X ° = S O = I, 
and O°=p ° = r  ° =v ° = 1. It is also easy to check that the 
embedding problem is self-dual via Lagrangean dual- 
ity. This implies that the duality gap equals 20fl and 

therefore 0* = 0 at an optimal solution since the self- 
dual embedding problem satisfies the Slater condition. 
It also proves existence of the central path. Lemma 2.1 
furthermore guarantees that any limit point of the 
central path is a maximally complementary optimal 
solution. 

We can now use a maximally complementary solu- 
tion of  the embedding problem (8) to obtain informa- 
tion about the original problem pair (P) and (D). In 
particular, we will distinguish between the three pos- 
sibilities as discussed in the Introduction, namely 
(I) A primal-dual optimal pair (X*, S*, z*, y*)  is ob- 

tained with zero duality gap Tr(CX* ) - b T y  * = 0; 
(II) A primal and/or dual ray is detected; 

(III) A certificate is obtained that no optimal pair with 
zero duality gap exists, and that neither (P) nor 
(D) has a ray. 

Theorem3.1. Let (X*,S*,z*,y*,r*,O*,S*,p*,v*) 
be a maximally complementary solution to the self- 
dual embedding problem. Then 

(i) / f r*  >0  then case (I) holds; 
(ii) / f r*  = 0 and p* >0  then case (II) holds; 

(iii) / f r*  = p* = 0 then case (III) holds. 

Proof. We first consider the two possibilities z* = 0 
and z* >0.  

If r* > 0, then (X*,z*)/r* and (y*, S*)/r* are max- 
imally complementary and optimal for (P) and (D), 
respectively, i.e. case (I) holds. 

If r* = 0 then we have r = 0 in any optimal solu- 
tion of the embedding problem. This implies that we 
cannot have a pair of optimal solutions for (P) and 
(D) with duality gap zero, because if such a pair ex- 
ists we can construct an optimal solution of the em- 
bedding problem with r = 1. If r* = 0 it also follows 

m *A that Tr(A iX*)~O for all i and E i = I  Yi i<~O. We 
further distinguish between two sub-cases: p* > 0 and 
p*=0. 

If/9* >0  then bTy * -- T r ( C X * ) > 0 ,  i.e. bTy * >0  
and/or T r ( C X * ) <  0. In other words, there are primal 
and/or dual rays and case (II) applies. IfbTy * > 0 then 
y* is a dual ray. In this case (P) is infeasible, and if 
(D) is feasible it is unbounded. If T r ( C X * ) < 0  then 
we have a primal ray. In this case (D) is infeasible, and 
if (P) is feasible it is unbounded. If both bTy * > 0 and 
Tr(CX*)  < 0 then we have both a primal and a dual 
ray and in this case both (P) and (D) are infeasible. 
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Conversely, we must show that if there exists a pri- 
mal and/or dual ray, then any maximally complemen- 
tary solution of the embedding problem must have 
p* > 0 and z* = 0. Given a primal ray X, one can con- 
struct an optimal solution to the embedding by setting 
X * =  r,X, where s: >0  is a constant to be specified 
later, and further setting z* = 0, y* = 0 and 0* = 0 
(which guarantees optimality), to obtain 

p* = -1< Tr(CX) > O, 

z* = ~Tr(Ai)[)~>O, i = 1 . . . . .  m, 

S* = O, 

The first three equations show that 0", z* and S* are 
feasible. It remains to prove that v* is nonnegative. 
This is ensured by choosing ~ sufficiently small to 
guarantee 

2n + 2 ~> - K Tr C X  - -  2 - -  A i ) (  

which in turn ensures v* >~ 0. The proof for a dual ray 
proceeds analogously. 

Finally, if a maximally complementary solution is 
obtained with z* = p* = 0, then we again have that 
all optimal solutions yield p -- z = 0, i.e. cases (I) and 
(II) cannot occur. This completes the proof. [] 

Remark 1. Item (iii) in Theorem 3.1 (where z* = p* = 
0) covers different situations (which can only occur if 
one or both of (P) and (D) are not strictly feasible), 
including 
1. Existence of optimal solutions to (P) and (D) with 

nonzero duality gap; 
2. Existence of a zero duality gap for (P) and (D) in 

the sense that inf Tr(CX) = sup bTy, but where no 
optimal solutions exists to both (P) and (D). 
If z * =  p* = 0, some additional information can 

be obtained by monitoring the sequence p ( l d t ) / ' r ( l A t )  

of centered iterates. The variables p and z are 
complementary and along the central path of 
the embedding one has P ( # t ) z ( # t ) = # t .  On the 
other hand, flO must be proportional to the dual- 

ity gap O ( g t ) = ( n  + m + 2)l~t/fl. It follows that 
O ( ] d t ) / ~ ( ~ t t )  --.-r 0 as ~tt ~ O. This implies the sequences 
( X ( p , ) , z ( l ~ , ) ) / z ( # , )  and ( y ( ~ , ) , S ( # t ) ) / z ( g t )  are 
asymptotically feasible for (P) and (D), respectively. 
If  one also has P ( # t ) / z ( # t ) ~  0 then there also holds 

T r ( C X ( g t ) / z ( # t ) )  - bT y ( p t ) / z ( g t )  --~ 0 

as ktt ~ 0. In this case, the sequences X(k t t ) / z (p t )  and 
S(# t ) / z (k t t )  cannot both converge, since then an opti- 
mal feasible pair with zero duality gap is obtained. 

Infeasibility of (P) (resp. (D)) is only detected by 
the embedding approach if it corresponds to a ray 
in (D) (resp. (P)). This excludes pathological cases 
where, e.g. (P) is solvable but (D) is infeasible. A sug- 
gestion for future research is to extend the results of 
Todd and Ye [13] concerning approximate Farkas lem- 
mas to the semidefinite cone. This may allow one to 
use the above to detect infeasibility in general. 

It would also be interesting to study the self-dual 
embedding problem of the dual semidefinite program- 
ming formulation of Ramana [ 11 ], where a zero dual- 
ity gap is always guaranteed for a feasible primal-dual 
problem pair without requiring the Slater condition. 
This may extend the analysis to include case 1 of Re- 
mark 1, should it occur. To do this is th e subject of 
further research. 

Remark 2. The self-dual embedding may be solved 
directly with any primal algorithm, yielding an infea- 
sible primal-dual algorithm for the original problem. 
It is therefore unnecessary to use the primal-dual KKT 
conditions of  the embedding problem. 

Remark 3. The embedding strategy can be adapted 
to accomodate given, strictly feasible starting solu- 
tions. For example, if X°> - 0 and z ° > 0  are feasi- 
ble for (P) and /~°>0 is given, one can construct 
z°>0,  0 °>0 ,  p °>0 ,  v°>0 ,  y ° > 0 ,  andS° >- 0 such 
that z°p ° = i ~°, O°v ° = kt °, yi°z ° -- #0 for all i and 
X ° S  ° -- i1°I. The  parameters for the embedding prob- 
lem now become 

19 i := z°bi + z  0 - Tr(AiX °) 
O0 , i =  1 , . . . , m ,  

m 
so  + ~-,i=1 Yi °Ai - z °C  

Oo 
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p0 + T r ( C X  0) _ bTyO 

0 o 

fl :=  v0 + roe _ T r ( ~ X  0) + ~Ty0. 

It is straightforward to verify that the self-dual prob- 
lem obtained with the use o f  these vectors admits the 
above specified initial positive solution which is on 
its central path associated to the point with #0 >0 .  
It is also easy to check by simple calculation that 
fl • (m + n + 2 ) # 0 > 0 .  In this way, re-optimization 
can be done if  some problem data change. Whether 
such a 'warm-start '  strategy via the embedding can be 
made computationally efficient remains a question for 
future research. 

where em and en denote the all-one vectors in ~m and 
R n, respectively. 

One can show via Lagrangean duality that this em- 
bedding problem is self-dual with the all one solu- 
tion as an initial interior feasible solution. Analogous 
results can be derived as for the positive semidefinite 
case - maximal complementarity o f  the scalar vari- 
ables (which are in E+)  can be proved the same way 
as in Lemma 2.3. This is sufficient to prove the valid- 
ity o f  the above embedding. To define and prove max- 
imal complementarity o f  the general conic variables 
is the subject o f  further research. 

Remark 4. The results o f  the previous sections can 
be generalized to primal-dual convex problems in the 
conic formulation. Consider the primal problem as 

mixn{ cTx l A x  -- b E C~l, x E ~ 2 }  

and its dual problem as 

m a x { b ' r y l - A ~ y + c E ~ f ~ ,  yEC~l * } 
Y 
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min 
x, y, z, 0 

where if1, c~2 are convex cones, c~1", c~2" are their dual 
cones, respectively, A is an m x n matrix, b, y E R m 
and c , x  E ~ ' .  These problems can be embedded in 
the skew-symmetric self-dual problem with nonempty 
interior as follows. 

0fl 

s.t. Ax - zb + 0b E off1, 

- -ATy + zc -- 05 E c ~ ,  

bT y -- cTx + 0C¢>~0, 

- -bTy + C x  -- z~t >/ -- 8, 

y E ~ ,  x E ~ 2 ,  ~>~0, 0>10, 

where 

D : = b + e m  - Ae , ,  

- 5  :=  en + AT en -- c, 

a :=  1 + c T e n  - -  bTem, 

fl:=m+n+2, 
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