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Abstract

A form p on Rn (homogeneous n-variate polynomial) is called positive semidefinite (p.s.d.) if it is nonnegative on Rn.

In other words, the zero vector is a global minimizer of p in this case. The famous 17th conjecture of Hilbert [Bull.

Amer. Math. Soc. (N.S.), 37 (4) (2000) 407] (later proven by Artin [The Collected Papers of Emil Artin, Addison-

Wesley Publishing Co., Inc., Reading, MA, London, 1965]) is that a form p is p.s.d. if and only if it can be decomposed

into a sum of squares of rational functions.

In this paper we give an algorithm to compute such a decomposition for ternary forms (n ¼ 3). This algorithm

involves the solution of a series of systems of linear matrix inequalities (LMI�s). In particular, for a given p.s.d. ternary

form p of degree 2m, we show that the abovementioned decomposition can be computed by solving at most m=4 systems

of LMI�s of dimensions polynomial in m. The underlying methodology is largely inspired by the original proof of

Hilbert, who had been able to prove his conjecture for the case of ternary forms.

� 2003 Elsevier B.V. All rights reserved.
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1. Introduction

The question of whether a given polynomial in

nonnegative everywhere is ubiquitous in (applied)

mathematics, and finds applications in stability

analysis of dynamic systems (see e.g. [13]), global
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and combinatorial optimization (see e.g. [10,11]),

etc.

The history of this problem dates back to a

famous conjecture of David Hilbert, who posed

the following question in his address to the first

International Congress of Mathematicians in 1900

[9]: Can a given positive semidefinite (p.s.d.) n-ary

form (homogeneous polynomial on n variables) p
be represented as a finite sum of squares (s.o.s.) of

rational functions, i.e.
p ¼
XN
j¼1

q2
j

r2
j
: ð1Þ
ed.

https://core.ac.uk/display/6635484?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mail to: dima@thi.informatik.uni-frankfurt.de


40 E. de Klerk, D.V. Pasechnik / European Journal of Operational Research 157 (2004) 39–45
It later became known as the 17th Hilbert
problem, and was affirmatively solved in full gen-

erality by Artin [1, pp. 273–288], albeit in a rather

non-constructive way. Reznick [24] gives an ex-

cellent historical survey of developments since the

problem was first posed in 1900 (see also [17,18]).

It was already established by Hilbert that the

rj�s in (1) cannot in general be constants. The fol-

lowing example that illustrates this fact is due to
Motzkin [12, p. 217] (see also [24]). The form

Mðx; y; zÞ ¼ z6 þ x4y2 þ x2y4 � 3x2y2z2 ð2Þ
is p.s.d., but not a s.o.s. of forms.

Hilbert himself was able to give a solution for

the 17th problem in the case of ternary forms [8],

that is, when the number n of variables equals 3. In

this paper we give an algorithm for computing the

decomposition (1) for p.s.d. ternary forms. Our

algorithm uses a key ingredient of Hilbert�s ap-
proach. Namely, the main ingredient in his ap-

proach, finding a p.s.d. form p1 of degree

deg p1 ¼ deg p � 4 ¼ 2m� 4 such that

p ¼
PN

j¼1 q
2
j

p1

; ð3Þ

can be restated as a semidefinite feasibility prob-

lem, 3 at least when Hilbert�s extra condition
N ¼ 3 is replaced by a weaker one, N <1. Once

such p1 and the set of qj ¼ q0j is found, (3) can be

applied to p1 in place of p ¼ p0, and some p2 in

place of p1. Repeating this sufficiently many times,

say k, one arrives at the situation when deg pk 6 4.

It is known that a ternary p.s.d. form of degree at

most 4 can be decomposed in a s.o.s. of forms,

using the method that is known to algebraic ge-
ometers as Gram matrix method. It is then easy to

construct a sum (1) from pi and qij. We will give

details in the proof of Theorem 1.

For instance, for p ¼ Mðx; y; zÞ in (2), k ¼ 1 step

suffices, and the following decomposition of M as

in (1), with p1 ¼ x2 þ y2 þ z2, can be found (see

[13]).
3 Given a system of LMI�s, the problem of deciding whether

a solution exists is known as the semidefinite feasibility

problem.
Mðx; y; zÞ ¼ p1ðx2yz� yz3Þ2

p2
1

þ p1ðxy2z� xz3Þ2

p2
1

þ p1ðx2y2 � z4Þ2

p2
1

þ p1ðxy3 � x3yÞ2

4p2
1

þ
ffiffiffi
3
p 2

p1ðxy3 þ x3y � 2xyz2Þ2

4p2
1

: ð4Þ

Specifically, we obtain the following.

Theorem 1. A p.s.d. ternary form p of degree 2m can

be decomposed as in (1) via solving a sequence of at

most m=4 systems of linear matrix inequalities of

dimensions polynomial in m. The degrees of the de-

nominators in (1) will be bounded from above by

3m2=2.

We must mention that the complexity status of

the semidefinite feasibility problem is not known,

but it cannot be an NP-complete problem unless
NP ¼ co�NP (see [15,20,21]). Moreover, we will

actually require a solution in the relative interior of

the solution set of each of the sets of linear matrix

inequalities. This does not influence the computa-

tional complexity of the procedure (see Section

2.1). In particular, we can state the following result.

Corollary 1. The complexity of computing the de-

composition (1) in the real number model see [2] is

in NP \ co�NP.

For further remarks concerning complexity, see

Section 4.

Remark 1. The degree bound in Theorem 1 is the

sharpest known, and optimal for m6 4. In fact,
this is the only bound known to us on those de-

grees for forms with real roots, that is, p.s.d., but

no positive definite. The bounds for the latter, such

as [16,22,23] all involve the minimal value taken by

the form on the unit sphere.

The main work in proving Theorem 1 lies in

proving the following.

Theorem 2. For a p.s.d. ternary form p of degree

2m, a p.s.d. form p1 of degree 2m� 4 satisfying (3)
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can be found by solving a system of LMI’s of di-

mensions polynomial in m.

The existence of a decomposition (3) just men-

tioned was proved in [8]. Thus, one needs to

demonstrate how to compute one using LMI�s. We

defer this task to the following sections.

Let us show how to derive Theorem 1 from
Theorem 2. Denote Qi ¼

PNi
j¼1 q

2
ij. We also abuse

notation by assuming
Qi¼it

i¼i0 Qi ¼ 1 whenever
i0 > it. Then repeated application of (3) gives

p0 ¼ p ¼ Q0

p1

¼ p2Q0

Q1

¼ Q0Q2

p3Q1

¼ 	 	 	

¼ f

Qk�1

i¼0 Q2iQk�s
i¼0 Q2iþ1

; ð5Þ

where f ¼ p2k, s ¼ 1 for m ¼ 4k þ 1 or 4k þ 2, and

f ¼ 1=p2k�1, s ¼ 2 for m ¼ 4k � 1 or 4k.

Note that for odd m the degree of f (respec-

tively, of 1=f ) is two, while for even m the degree

of f (respectively, of 1=f ) is four. Such an f (re-

spectively, 1=f ) can always be decomposed as a
s.o.s. of forms. This is well known for degree 2.

For degree 4 it was first proved by Hilbert [7], and

an easy modern proof can be found in [3].

Multiplying both the numerator and the de-

nominator D (it will include f when m ¼ 4k � 1 or

4k) in (5) by D presents p as a sum of squares of

rational functions with the same denominator D.

This allows one to compute the degree of D2 in
(5), using the fact that degQi ¼ 4m� 8i� 4.

Namely, one gets

This completes the proof of Theorem 1.

m degD2

4k � 1 16k2 � 16k þ 4

4k 16k2 � 8k
4k þ 1 16k2

4k þ 2 16k2 þ 8k
2. Preliminaries

2.1. Linear matrix inequalities

The notation we use here is fairly standard and
taken largely from [15,25].
Denote the space of symmetric k 
 k matrices
by Sk. A matrix A 2Sk is p.s.d. is the associated

quadratic form xTAx is p.s.d., that is, xTAxP 0 for

all x 2 Rk. Write A � 0 if A is p.s.d., and A � B if

A� B � 0. The elements of the standard basis of

Rk are denoted ei, for 16 i6 k. For a vector v, we

denote by diagðvÞ the diagonal matrix with the

entries specified by v, and for a square matrix A we

denote by DiagðAÞ the vector of diagonal entries of
A. For a subset U  Rk, we denote Uþ ¼ fx 2 U j
xP 0g.

In what follows we are concerned with certain

convex subsets T of the cone of the p.s.d. matrices

fA 2Sk j A � 0g. We need the definition of the

relative interior riðTÞ of T. Namely, riðTÞ con-

sists of A 2T such that for any B 2T there exists

� > 0 satisfying ð�þ 1ÞA� �B 2T.
Then, TrðAÞ ¼

P
i Aii denotes the trace of A.

Equip Sk with the inner product hA;Bi ¼ TrðABÞ.
A linear matrix inequality (LMI, for short) on Sk

is specified by a K-tuple of matrices ðAi; . . . ;AKÞ,
where Ai 2Sk, and c 2 RK , as follows:

hAi;X i ¼ ci for 16 i6K; ð6Þ

X � 0: ð7Þ

We say that the LMI (6) and (7) is feasible if

there exists X 2Sk satisfying (6) and (7), and we

denote the set of such X by TðA1; . . . ;AK ; cÞ. The

numbers k and K are called the dimensions of the
LMI here.

In fact, the feasible set of a system of LMI�s is

sometimes called a spectrahedron which is a gen-

eralization of the concept of a polytope. Just as for

linear programming, that is, linear optimization on

polytopes, there is rich theory and practice of

solving linear optimization problems on spectra-

hedra, known as semidefinite programming (see e.g.
[26]). In particular, the semidefinite feasibility

problem can be solved by interior point methods

(see e.g. [5,6]). This can be done by embedding (6)

and (7) into a larger semidefinite programming

problem that is strictly feasible (has positive defi-

nite feasible solutions) and is its own dual problem

(i.e. is self-dual). Thus the so-called central path of

the embedding problem exists, and interior point
methods �follow� the central path approximately to

reach the optimal set of the embedding problem.
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An optimal solution of the embedding problem
tells us whether (6) and (7) has a solution or not.

Moreover, if TðA1; . . . ;AK ; cÞ 6¼ ;, the limit point

of the central path of the embedding problem

yields a solution in the relative interior of

TðA1; . . . ;AK ; cÞ. The only difficulty is that the

limit point of the central path can only be ap-

proximated to within �-accuracy in time polyno-

mial in k, K and logð1=�Þ for each � > 0, and it is
not known if it can be computed exactly (in the

real number model); for a detailed discussion of

these issues, see [5,6].

For future reference, we summarize the above

as follows.

Lemma 1. There is an iterative algorithm that ei-

ther produces iterates that converge to an

X 2 riðTÞ, where T ¼TðA1; . . . ;AK ; cÞ, or certi-

fies that T ¼ ;.

The iterative interior point algorithm would be

the practical way to find an �-approximation of a

relative interior solution in T, but for theoretical

purposes this is not satisfactory, since an exact

relative interior solution will be required. One can
avoid the restriction to an iterative algorithm by

following a two-step procedure:

1. We first regularize the set T so that we obtain a

new set of LMI�s that has a positive definite so-

lution if and only if T had a nontrivial solution

(see [14]).

2. Now we can apply an algorithm due to Ramana
[19] that decides whether the new set of LMI�s
has a positive definite solution, and if so, com-

putes it.

We shall need a slight extension of (6) and (7),

where c is not fixed, but rather given by an affine

linear map C from RL0 
 RL
þ to RK , so that

ci ¼ di þ CT
i y þ C0iTy

0; y 2 RL
þ; y0 2 RL0 ; di 2 R:

ð8Þ

First of all, there is no loss in generality in as-

suming L0 ¼ 0, as any y 0 in (8) can be written as

y0 ¼ yþ � y�, with yþP 0 and y�P 0, and adjust-
ing Ci accordingly (there are other ways of dealing
with y0 that require less extra dimensions added).
Now we have to consider just

ci ¼ di þ CT
i y; y 2 RL

þ; di 2 R: ð9Þ

It is well-known that this problem can be con-

verted into (6) and (7) by adding L diagonal 1 · 1

blocks to X . Namely, one replaces X by X�
diagðy1; . . . ; yLÞ, ci by di and Ai by Ai � diagð�CiÞ,
where � is the operation that constructs the matrix

A� B ¼ A 0

0 B

� �

from matrices A and B, and constraints ensuring

that the extra off-diagonal entries of X are 0.

2.2. Forms

We introduce the following standard notation

for writing multivariate polynomials. We write

xa ¼ xa1

1 xa2

2 . . . xan
n . The vector space of n-ary f

forms of degree d is denoted HdðRnÞ. In what fol-

lows we restrict ourselves to polynomials with
coefficients in R and write HdðnÞ instead of HdðRnÞ.

An f 2 HdðnÞ can be written as

f ðxÞ ¼
X

kak1¼d;a2Zn
þ

aaxa; ð10Þ

with a ¼ ðaa1
. . . aaN Þ ¼2 RN being the N -tuple of

coefficients of f . Note that N ¼ nþ d � 1

n� 1

� �
. The

Newton polytope of f is the convex closure Cðf Þ ¼
Convða1; . . . ; aN Þ.

Further, one easily checks that for

f ¼
P

a aaxa 2 HdðnÞ and g ¼
P

b bbxb 2 Hd 0 ðnÞ,
the product as given as follows:

fg ¼
X
c2Zn

þ

X
c¼aþb

aabb

 !
xc: ð11Þ

That is, coefficients cc of fg are as follows:

cc ¼
X

c¼aþb;kak1¼d;kbk1¼d 0
a;b2Zn

þ

aabb: ð12Þ

By definition, a form f 2 HdðnÞ is p.s.d. if

f ðxÞP 0 for all x 2 Rn. Note that d ¼ 2m is nec-

essarily even here, unless f ¼ 0. Then, f is s.o.s.

of forms (we will simply write s.o.s. in what fol-
lows) if



E. de Klerk, D.V. Pasechnik / European Journal of Operational Research 157 (2004) 39–45 43
f ¼
XM
j¼1

h2
j ; for hj 2 HmðnÞ; M <1: ð13Þ

If f is s.o.s. then f is p.s.d., but the converse only
holds for ðn;mÞ ¼ ð2;mÞ, ðn;mÞ ¼ ðn; 1Þ and

ðn;mÞ ¼ ð3; 2Þ.
Let hj ¼

P
b u
ðjÞ
b xb for hj in (13), and let

Ub ¼ uð1Þb ; . . . ; uðMÞb

	 
T

2 RM : ð14Þ

Then

f ¼
XM
j¼1

X
b

uðjÞb xb

 ! X
b0

uðjÞb0 x
b0

0
@

1
A

¼
X
b;b0
ðUT

b Ub0 Þxbþb0 : ð15Þ

Eq. (16) shows U and the corresponding mo-

nomials involved in the decomposition (4) for

f ¼ Mðx; y; zÞðx2 þ y2 þ z2Þ, where M is defined in
(2).

U ¼

0 0 �1 0 0

�1 0 0 0 0

0 �1 0 0 0

0 0 0 0 �2

0 1 0 0 0

0 0 0 1 1

1 0 0 0 0

0 0 1 0 0

0 0 0 0 1

0
BBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCA

;

CðhjÞ \ Z3 ¼

ð0; 0; 4Þ
ð0; 1; 3Þ
ð1; 0; 3Þ
ð1; 1; 2Þ
ð1; 2; 1Þ
ð1; 3; 0Þ
ð2; 1; 1Þ
ð2; 2; 0Þ
ð3; 1; 0Þ

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>;

: ð16Þ

Comparing coefficients aa of f at both sides of

(15), one gets
aa ¼
X

bþb0¼a

UT
b Ub0 :

This observation reduces testing whether f is s.o.s.
to checking feasibility of the LMI, where G ¼
UUT,

aa ¼
X

bþb0¼a

Gbb0 for a 2 Zn
þ; kak1 ¼ d;

G � 0:

ð17Þ

This is called Gram matrix method in [4,24]. In

particular, one sees that, M 6 dimHmðnÞ ¼
nþ m� 1

n� 1

� �
in (13), as G 2 HmðnÞ. Obviously, M

equals the rank of G obtained from (17).

Further refinements to this can be found, for

instance in [24]. E.g., as the Newton polytopes

CðhjÞ of the forms hj from (13) must be contained
in 1

2
Cðf Þ, not all the monomials from HmðnÞ are

allowed in hj�s. For instance, for f ¼ Mðx; y; zÞ

ðx2 þ y2 þ z2Þ only the 9 monomials on the right-

hand side of (16) are allowed, and G 2 Hm0 ðnÞ with

m0 < m.
3. LMIs and products of forms

As we already mentioned, a p.s.d. f need not be

a s.o.s. One can try to find g ¼
P

l blxb 2 Hm0 ðnÞ,
for m0 < m, such that the product fg is a s.o.s., and

f ¼ ð
P

j h
2
j Þ=g. The former is easy to accomplish

by plugging (12) into (17).X
aþl¼c

aabl ¼
X

bþb0¼c

Gbb0 for c 2 Zn
þ;

kck1 ¼ 2ðmþ m0Þ; ð18Þ

G � 0: ð19Þ

Obviously, this is an LMI of the form (6)–(8). Not

always a solution ðg;GÞ of (18) and (19) would
satisfy the second requirement that f ¼ ð

P
j h

2
j Þ=g.

Indeed, ð0;GÞ is always a trivial solution of (18)

and (19). More precisely, to satisfy f ¼ ð
P

j h
2
j Þ=g,

one needs to ensure that the set of real roots VRðgÞ
of g is contained in VRðf Þ. However, noting that

the solutions ðg;GÞ to (18) and (19) form a convex

set, and observing that all g appearing in solutions



44 E. de Klerk, D.V. Pasechnik / European Journal of Operational Research 157 (2004) 39–45
ðg;GÞ are p.s.d., one sees that VRððg þ g0Þ=2Þ ¼
VRðgÞ \ VRðg0Þ. That means that a ‘‘generic’’ solu-

tion ðg;GÞ has VRðgÞ as small as possible. This is

made precise in Lemma 3.

Finally, we should make sure that g obtained

from (18) and (19) is p.s.d. This will always be the

case as long as f and fg are not identically 0 and

p.s.d. Indeed, assume gðx�Þ ¼ g0 < 0 for some x�.
Then f ðx�Þ ¼ 0. Applying a nondegenerate linear

transformation, one can assume that x� ¼ e1. This

means that g has a term xdeg g with negative coeffi-

cient, and thus for any x there exists l0 > 0 such

that gðyÞ < 0 for y ¼ x� ðl� x1Þe1 and any lP
l0. Hence f vanishes on every such y, clearly a

nonsense. To summarize, we have proved the fol-

lowing.

Lemma 2. Let ðg;GÞ be a solution of (18) and (19)

for a p.s.d. form f ¼
P

a aaxa 2 HdðnÞ. Then g is

p.s.d. If g satisfies VRðgÞ  VRðf Þ then f ¼
ð
P

j h
2
j Þ=g, with the coefficients uðjÞ of hj obtained

from G ¼ UUT using (14).

If g� corresponds to a solution ðg�;G�Þ in the
relative interior of the feasible set of (18) and (19),

then VRðg�Þ  VRðgÞ for any solution ðg;GÞ of (18)

and (19). (Recall that the iterates of a suitable in-

terior point algorithm converge to a solution in the

relative interior.)

Lemma 3. Let T be the feasibility set of (18) and

(19) and let ðg;GÞ 2 riðTÞ and ðg0;G0Þ 2T. Then

VRðgÞ  VRðg0Þ. Furthermore, if ðg0;G0Þ 2 riðTÞ
then VRðgÞ ¼ VRðg0Þ.

Proof. By the definition of the relative interior,

there exists an � 2 ð0; 1Þ and a pair ðg00;G00Þ 2T
such that ðg;GÞ ¼ �ðg0;G0Þ þ ð1� �Þðg00;G00Þ 2T.

It follows that VRðgÞ ¼ VRðg00Þ \ VRðg0Þ, and, in

particular, VRðgÞ  VRðg0Þ.
The second part of the lemma follows from the

first part. h

To complete the proof of Theorem 2, we use the

following result of Hilbert.

Theorem 3 (Hilbert [8], cf. [24]). Let p 2 H2mð3Þ be
p.s.d., mP 3. Then there exists p1 2 H2m�4ð3Þ such
that p ¼ ð
PN

j¼1 h
2
j Þ=p1 for N ¼ 3 and some hj 2

H2m�2ð3Þ, j ¼ 1; 2; 3.

We will not use the N ¼ 3 part of Hilbert�s re-

sult. As observed above, without assuming N ¼ 3,

the corresponding p1 and hj can be computed using

an interior point method for SDP on the system of

LMIs (18) and (19). This completes the proof of
Theorem 2.

To summarize, we state our algorithm concisely

(Algorithm 1).

Algorithm 1. Computing s.o.s. of rational func-

tions decomposition of p

INPUT: a ternary form p
i :¼ 1; p1 :¼ p
while deg pi > 4 do

compute g of degree deg pi � 4 such that pig
is s.o.s. and VRðgÞ is minimal finding a rela-

tively interior solution of the LMI�s (18)

and (19).

if g ¼ 0 then

STOP––p is not p.s.d.
end if

piþ1 :¼ g; Qi :¼ piþ1pi.
i iþ 1

end while

compute f :¼ (resp. 1=f :¼) s.o.s. (pi).
OUTPUT: p given by (5).
4. Discussion

The main result of the paper gives an algorithm

to find a decomposition of a p.s.d. ternary form of

degree 2m into a s.o.s. of rational functions with

degrees of denominators bounded from above by

Oðm2Þ. For a given p.s.d. ternary form p of degree

2m, the algorithm requires the solution of at most
m=4 systems of LMI�s of dimensions polynomial

in m.

The Oðm2Þ bound for the degrees of the de-

nominators appears to be close to being the best

possible.

The number of terms in (1) is however far from

optimal, for Hilbert [8] has shown that N ¼ 4

terms suffice. The obstacle here lies probably in
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(18) and (19), as the number of terms in the in-
termediate s.o.s. obtained equals the rank of G; if

pðxÞ > 0 for all x 2 R3 then G can be of full rank.

Reducing the number of terms in the decomposi-

tion remains a topic for future research.

Another intriguing question is when, for a given

n-ary p.s.d. form p, there exists a form p1,

deg p1 < deg p, such that p admits a decomposition

as in (3). This cannot be the case for all n, unless
P¼NP.

A last remark concerns the complexity of our

algorithm. A practical (polynomial-time) imple-

mentation of the algorithm would use �-approxi-

mations of a relatively interior solution of the

system of LMI�s (18) and (19), instead of an exact

solution in the relative interior. Such a polynomi-

al-time implementation can probably still detect
nonnegativity of positive definite ternary forms

(i.e. ternary forms positive on the unit sphere in

Rn). In this case one would choose � as a function

of the minimum value of the form on the unit

sphere. It is of practical interest to prove rigorous

results along these lines.
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