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Abstract

In this paper, we construct a universal type space for a class of possibility models
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and Zamir (1985) or Brandenburger and Dekel (1993), we show that the space of all
hierarchies of compact beliefs that satisfy common knowledge of coherency (types) is
canonically homeomorphic to the space of compact beliefs over the state of nature and
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1. Introduction

In models of interactive beliefs, a state of the world should contain a specification of the

state of nature, and a specification of the players’ epistemic state, that is, their beliefs about

the state of nature and the other players’ beliefs. The specification of the players’ beliefs can

lead to an infinite regress or circularity problem: the beliefs of a player, say player a, are in

part defined over the beliefs of the other players, which are in turn defined over the beliefs

of player a, and so on. A key question raised by the infinite regress problem is whether

it is possible to construct a complete model of a situation of incomplete information, in

which each state is an exhaustive description of the state of nature and of the other players’

epistemic states.

As argued by Aumann (1976), a model that is not common knowledge among the players

is necessarily incomplete, as an exhaustive description of a state should include the infor-

mational partitions and beliefs of all players in that state. Starting from the information

partitions or, alternatively, Kripke structures (Fagin, Halpern, Moses and Vardi (1995, Chap-

ter 2)), to define hierarchies of beliefs presumes that the information partitions are common

knowledge in an “informal” sense. Of course, if the players’ types fully specify the players’

knowledge, one should be able to incorporate common knowledge of information partitions

into the players’ types. One is thus led to ask how, starting from a given incomplete infor-

mation situation, a commonly known model can be specified (see Dekel and Gul (1997) for

an overview of this issue).

In the context of Harsanyi’s (1967-1968) model of games with incomplete information,

Mertens and Zamir (1985) and Brandenburger and Dekel (1993) have solved this problem for

the case of probabilistic beliefs by showing the existence of a universal type space consisting

of all hierarchies of beliefs (types) for which coherency is common knowledge. In particu-

lar, a type of a player determines unambiguously a joint belief over the state of nature and

the other players’ types, and any such joint belief is represented by a type. The hierarchi-

cal construction of this canonical homeomorphism accomplishes the desired task: common

knowledge of coherency is the formal equivalent of the “informal” hypothesis that informa-

tion partitions are common knowledge. Battigalli and Siniscalchi (1999) have extended this

result to the case of conditional beliefs, and Epstein and Wang (1996) to an important class

of non Bayesian beliefs.
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The infinite regress problem persists in knowledge and possibility models where the be-

liefs of a player are represented by a possibility set consisting of all states regarded possible.

Instead of assuming the existence of a commonly known model, Fagin, Halpern and Vardi

(1991) attempt to construct such a model from primitive terms and syntactic operators.

However, it turns out that, in general, hierarchies of beliefs and their representation by

(commonly known) knowledge structures do not necessarily characterize fully the players’

knowledge. Indeed, even if an epistemic situation can be represented by a “local” (Kripke)

structure, it does not follows that such an epistemic situation is a complete representation

of the knowledge of the players. As pointed out by Dekel and Gul (1997), the problem is

that the same hierarchy of beliefs can in principle be associated with several beliefs over the

beliefs of the other players. An “informal” common knowledge assumption may then help to

uniquely determine the players’ beliefs. Specifically, Fagin, Halpern and Vardi (1991) have

shown that countable hierarchies of knowledge are not sufficient to describe adequately the

interactive knowledge of the players, and Fagin (1994) and Heifetz and Samet (1998) that

indeed no ordinal level in the hierarchy of knowledge suffices. Furthermore, Brandenburger

(1998) and Brandenburger and Keisler (1999) have shown that, except in degenerate cases,

any purely set-theoretic type model of beliefs is necessarily incomplete in that it is always

possible to construct a belief that is not held by any type. A positive result is shown in Fagin,

Geanakoplos, Halpern and Vardi (1999): if a countable description of the players’ interac-

tive beliefs satisfies a “continuity” condition, all higher levels of knowledge are determined

unambiguously.

A related concern with possibility models is the nonexistence of a universal space for the

agents’ beliefs. Heifetz and Samet (1998) have shown that, given at least two agents and two

states of nature, there is no universal knowledge space to which any knowledge space can

be mapped in a knowledge-preserving way. This result has been extended recently to every

class of Kripke structures that contains all knowledge spaces (Meier (2003)). Although not

every knowledge space is a possibility structure, and hence the results of Meier (2003) do

not apply directly, these results provide strong evidence that there is no universal possibility

structure for the class of all possibility structures.

These negative results suggest that a natural strategy to obtain a complete and universal

representation of players’ interactive knowledge in possibility models is to impose further

restrictions on beliefs. The objective of the present paper is to provide such a construction
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for a class of possibility models by assuming that players’ beliefs satisfy some topological re-

quirements. Specifically, we assume that the basic uncertainty space is a compact Hausdorff

space and we construct hierarchies of compact possibility sets. Endowing spaces of compact

subsets with the standard Hausdorff topology ensures that this procedure can be repeated

from any stage of the hierarchy to the next. We show that the space of all hierarchies of com-

pact beliefs satisfying common knowledge of coherency (types) is canonically homeomorphic

to the space of compact beliefs over the state of nature and the types of the other players,

and is universal for the class of compact and continuous possibility structures. A natural

concern raised by any construction that imposes restrictions on player’s beliefs is how limita-

tive these restrictions are. In that respect, the topological assumptions made in the present

paper are not overly restrictive. Indeed, finite possibility structures are commonly used in

applications, and every such structure, appropriately endowed with the discrete topology,

yields a compact and continuous possibility structure.

Our construction enables to establish which hierarchies of beliefs are complete descrip-

tions of the knowledge of the players. The existence of a universal space delivers completeness

in two senses. First, common knowledge of coherency ensures that a hierarchy of beliefs of

a player is just a belief about the state of nature and the hierarchies of beliefs of the other

players. In particular, every type of a player exactly pins down a partitional model, as in

the probabilistic setups of Mertens and Zamir (1985) or Brandenburger and Deckel (1993).

Second, common knowledge of coherency also ensures that the possibility correspondence

is onto: any belief about the state of nature and the hierarchies of the other players corre-

sponds to a hierarchy of beliefs, so that there is no loss of generality in representing player’s

types by hierarchies. Of course, other representations are possible. But the universality of

the resulting type space implies that any compact and continuous possibility structure can

be uniquely represented within it, and thus can essentially be viewed as a subspace of it.

Thus the universal type space is (internally) complete but also (externally) without loss of

generality.

An important motivation for introducing hierarchical models of beliefs is to provide epis-

temic conditions for solution concepts in games (Tan and Werlang (1988)). For normal-form

games, our construction can be used to provide an axiomatization of Bernheim’s (1984) con-

cept of point-rationalizability (Mariotti (2003)). The recent debate on backward induction

has also prompted the development of epistemic models for extensive-form games. Battigalli
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and Siniscalchi (1999) provide a complete model of conditional probability systems for the

epistemic analysis of games. As pointed out by Brandenburger and Keisler (1999), however,

epistemic conditions for solution concepts in games of perfect information should carry over

to non probabilistic frameworks. In the last part of the paper, we extend our analysis to con-

ditional systems of compact beliefs by adjusting the construction of Battigalli and Siniscalchi

(1999) to our framework.

The paper is organized as follows. The model is introduced in Section 2, and the universal

type space is constructed in Section 3. The main assumptions and results are discussed in

Section 4. Conditional compact beliefs are studied in Section 5. All proofs are in the

Appendices.

2. The model

2.1. Possibility structures

Definition. Consider two individuals1, a and b, facing uncertainty over a space S. The

concept of a possibility structure delivers the simplest model of interactive beliefs over S.

Specifically, for any set X, let P(X) denote the set of non-empty subsets of X. The following

definition is borrowed from Brandenburger and Keisler (1999):

Definition 1 An S–based possibility structure is a pair (T, R) consisting of:

(i) A non-empty set T ;

(ii) A mapping R : T → P(S × T ).

Elements of T are called types. R is a possibility mapping that assigns to each type t ∈ T

of a player a set-theoretic belief R(t) ⊂ S × T about the basic uncertainty parameter and

the type of the other player. For any t ∈ T , R(t) represents the pairs in S × T considered

possible by type t, and is called the possibility set of type t.

An incompleteness result. Possibility models highlight a conceptual difficulty for the notion

of interactive beliefs. Suppose, for example, that T represents all possible beliefs of the

players. Then, any subset of S × T should be, in principle, a possible belief. The following

result shows that this is impossible.

1This is without loss of generality. Our results easily extend to an arbitrary number of agents.
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Lemma 1 Let (T,R) be an S–based possibility structure. If R is onto, then S and T are

singletons.

The intuition is simple. If S contains at least two elements, then so must T . But then, a

simple adaptation of Cantor’s theorem implies that P(T ), and thus P(S × T ), must have

a strictly larger cardinality than T . This result shows that, in contrast with probabilistic

models, there does not exist a complete possibility structure: one can always find a belief

over S and the beliefs of the opponent that is not represented within the model. (See

Brandenburger (1998) for a similar result.)

Remark 1 Lemma 1 relies on a cardinality argument. Brandenburger and Keisler (1999)

prove a stronger result: if S is not a singleton then, for any S–based possibility structure

(T, R), it is possible to define a subset of S × T that is not a possibility set using only the

resources of the first-order language induced by (T, R).

To derive a universal type space, it is necessary to impose structural conditions on S and T ,

and impose restrictions on the possibility mapping R. This is the objective of the next two

subsections.

2.2. Technical preliminaries

Given a topological space X, let K(X) denote the set of non-empty compact subsets of X.

We endow K(X) with the Hausdorff topology. This is the topology generated by all subsets

of the form {K ∈ K(X) | K ⊂ U} and {K ∈ K(X) | K ∩ U 6= ∅} for U open in X. For the

remainder of this paper, K(X) will always be endowed with the Hausdorff topology. The

following lemma is standard; a proof is available in Appendix A.

Lemma 2 Let X, Y be topological spaces, and f : X → Y a continuous map. Then,

(i) If X is Hausdorff, K(X) is Hausdorff;

(ii) If X is compact, K(X) is compact;

(iii) The mapping fK : K(X) → K(Y ) : K 7→ f(K) is continuous;

(iv) If Z is a topological space and g : Y → Z a continuous map, then (g ◦ f)K = gK ◦ fK.
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For future reference, define the space O(X) of open subsets of X distinct from X itself.

Its Hausdorff topology is generated by all subsets of the form {O ∈ O(X) | F ⊂ O} and

{O ∈ O(X) | O ∪ F 6= X} for F closed in X. By taking complement sets, it is immediate

that if X is compact and Hausdorff, O(X) is homeomorphic to K(X).

2.3. A topological model of beliefs

Compact possibility structures. The restrictions that we shall impose on S, T and R are

topological. The following assumption will be maintained throughout the paper.

Assumption 1 S is a compact Hausdorff space.

The basic drawback of the pure set-theoretic model of Subsection 2.1 is that players can

distinguish too finely between different subsets of S × T . An intuitive restriction is that

players cannot distinguish very “close” subsets. Specifically, given a topology on S × T , we

shall assume that players cannot tell apart two subsets of S×T with the same closure. This

leads to the following definition.

Definition 2 An S–based compact possibility structure is a pair (T,R) consisting of:

(i) A non-empty Hausdorff space T ;

(ii) A mapping R : T → K(S × T ).

As in Definition 1, a player’s type specifies a set-theoretic belief about the basic uncertainty

parameter and the type of the other player. The difference is that we restrict the possibility

sets of each player to be compact subsets of S×T . If T is a compact Hausdorff space, this is

equivalent to considering the quotient space P(S×T )/ ∼ where any two sets X, Y ∈ P(S×T )

are ∼–equivalent if and only if they have the same closure. This follows from the fact that

compact and closed subsets of a compact Hausdorff space coincide.

An S–based compact possibility structure (T,R) is complete if the possibility mapping

R is onto, and is continuous if R is continuous. The set of S–based compact continuous

possibility structures is denoted by C.

Define IdS to be the identity map on S and consider a family F of S–based compact

possibility structures. An S–based compact possibility structure (TF , RF) is universal for

6



F , if for any (T, R) in F , there exists a unique mapping ϕ such that the following diagram

commutes:

T
ϕ−−−−−−−→ TF

yR

yRF

K(S × T )
(IdS ;ϕ)K

−−−−−−−→ K(S × TF)

.

In the terminology of Mertens and Zamir (1985) or Battigalli and Siniscalchi (1999), (TF , RF)

is universal if there is a unique belief morphism ϕ from (T, R) to (TF , RF).

3. The universal possibility structure

In this section, we show the existence of a universal possibility structure for C. We first

construct a canonical homeomorphism between hierarchies of beliefs that satisfy common

knowledge of coherency and beliefs over S and such hierarchies. The line of argument

is similar to that in Brandenburger and Dekel (1993). We then show that this space of

hierarchies of beliefs together with the canonical homeomorphism form a universal compact

continuous possibility structure.

3.1. The canonical homeomorphism

We restrict players’ beliefs at any stage of the hierarchy to be compact. A player first-order

belief over S will be represented by an element of K(S). A player’s second-order belief will be

represented by an element of K(S×K(S)), a joint belief over S and his opponent’s first-order

belief. In general, define inductively the sets

X0 = S, Xn+1 = Xn ×K(Xn); n ≥ 0.

A player’s type is a hierarchy of beliefs {κn}n≥1 ∈
∏

n≥0K(Xn). We denote by T0 the set of

all possible types.

As in Bayesian models, a natural coherency condition on a player’s type is that different

levels of beliefs do not contradict each other. For any sets X and Y , let us denote by ProjX

be the projection of elements in X×Y on X. The following definition provides the coherency

condition.
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Definition 3 A type {κn}n≥1 ∈ T0 is coherent if and only if

κn = ProjXn−1
(κn+1); n ≥ 1.

The next lemma, a topological version of Kolmogorov’s extension theorem, states that a

compact subset of a countable product of compact Hausdorff spaces is determined by its

projections on the cylinder sets.

Lemma 3 Let {Zn}n≥0 be a collection of compact Hausdorff spaces. For each n ≥ 0, let

Zn =
∏

0≤ν≤n Zν and Z∞ =
∏

ν≥0 Zν . Define

D =
{{κn}n≥1 | κn ∈ K(Zn−1) and ProjZn−1(κn+1) = κn

}
.

There exists a homeomorphism f : D → K(Z∞) such that, for any {κn}n≥1 ∈ D,

ProjZm−1 (f({κn}n≥1)) = κm; m ≥ 1.

Let T1 be the set of coherent types. The following proposition is an immediate consequence

of Lemma 3. It states that a coherent type for a player is equivalent to a belief over S and

the type of the other player.

Proposition 1 There exists a homeomorphism f : T1 → K(S × T0) such that, for any

{κn}n≥1 ∈ T1,

ProjXm−1
(f({κn}n≥1)) = κm; m ≥ 1.

It should be noted that the homeomorphism f is canonical in that it preserves the marginal

beliefs associated to any level of the hierarchy by any coherent type. As is customary in

this literature, we close the model by imposing common knowledge of coherency. Define

inductively the sets

Tk+1 = {t ∈ T1 | f(t) ⊂ S × Tk}; k ≥ 1,

and let T∞ =
⋂

k≥1 Tk. T∞ × T∞ is interpreted as the set of players’ types such that each

player believes that the other player’s type is coherent, believes that the other player believes

that his type is coherent, and so on. Hereafter, we shall refer to T∞ as the universal type

space. We can now state our main result.

Proposition 2 T∞ is non-empty. Moreover, the restriction of f to T∞ induces a homeo-

morphism g : T∞ → K(S × T∞).
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It should be noted that the non-emptiness of T∞ depends crucially on the compactness of the

sets {Tk}k≥1. As the homeomorphism f , g preserves the beliefs associated by a player’s type

to any level of the hierarchy. The reader familiar with the results in Fagin, Geanakoplos,

Halpern and Vardi (1999) mentioned in the Introduction will surely notice that restricting

the beliefs to belong to K(S × T∞) ensures that appropriate “continuity” conditions are

satisfied.

3.2. Universality

In possibility structures, continuity is not only a desirable property but also a crucial one,

as we shall argue, for the representation of hierarchical knowledge.

Preliminaries. To investigate the relationship between hierarchical beliefs and compact pos-

sibility models, it is convenient to construct a second hierarchy of beliefs, hereafter called

∗–beliefs. The starting point of this hierarchy is the same as in Subsection 3.1, i.e., a belief

over S represented by an element of K(S). However, for any n ≥ 2, a player’s nth order

∗–belief consists of a joint belief over S and his opponent’s (n− 1)th order ∗–belief. Define

inductively the sets

X∗
0 = S, X∗

n+1 = S ×K(X∗
n); n ≥ 0.

A ∗–hierarchy is a sequence {κ∗n}n≥1 ∈
∏

n≥0K(X∗
n). We denote by T ∗

0 the set of all possible

∗–hierarchies. As for hierarchies of beliefs, a coherency condition is imposed in order to

ensure that the different levels of ∗–beliefs do not contradict each other. Define the family

{Pn}n≥1 of operators Pn : K(X∗
n) → K(X∗

n−1) inductively as

P1 = ProjKS , Pn+1 = (IdS; Pn)K; n ≥ 1.

Since ProjS is continuous, Lemma 2(iii) guarantees that the operator Pn is well defined

and continuous for any n ≥ 1. The following definition states a coherency condition for

∗–hierarchies analogous to that given for hierarchies in Definition 3.

Definition 4 A ∗–hierarchy {κ∗n}n≥1 ∈ T ∗
0 is coherent if and only if

κ∗n = Pn+1(κ
∗
n+1); n ≥ 1.

A player’s coherent ∗–hierarchy generates the same beliefs over S at all levels, and coherent

hierarchical ∗–beliefs about the other player’s lower order ∗–beliefs. Let T ∗
1 be the set of

coherent ∗–hierarchies.
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We shall later show formally that T ∗
1 is homeomorphic to T∞. To see this intuitively,

consider, for instance, the space:

X3 = S ×K(S)×K(S ×K(S))×K(S ×K(S)×K(S ×K(S)))

used to model fourth-order beliefs in the construction of the original hierarchies. If a player,

say a, believes that the beliefs of the opponent b are coherent, the second and third elements,

K(S) and K(S ×K(S)), of the Cartesian product that defines X3 are redundant since they

can be derived by projection of K(S×K(S)×K(S×K(S))). By the same token, if a believes

that b believes that a’s beliefs are coherent, K(S) inside K(S ×K(S)×K(S ×K(S))) is also

redundant. Deleting these redundant spaces, one obtains X∗
3 .

A representation result. We now return to the problem of representation of hierarchies by

types. Consider a compact possibility structure (T,R) and define inductively the sets

X̂0 = S × T, X̂n+1 = S ×K(X̂n); n ≥ 0.

We then have the following lemma.

Lemma 4 Suppose that (T,R) is in C. Then, the inductive family of functions

R0 = R, Rn+1 = (IdS; Rn)K; n ≥ 0

is well defined and, for each n ≥ 0, the mapping Rn : K(X̂n−1) → K(X̂n) is continuous.

The continuity of R guarantees that compactness is preserved in the iteration. The mappings

{Rn}n≥0 operate on their respective domains by “expanding” a type into the set of hierarchies

consistent with it. Specifically, if R is continuous, one can associate to any type t ∈ T a

sequence {κ̂n}n≥1 ∈
∏

n≥0K(X̂n) by setting κ̂n = Rn−1 ◦ . . . ◦R0(t) for any n ≥ 1.

Any sequence {κ̂n}n≥1 ∈
∏

n≥0K(X̂n) can be transformed into a ∗–hierarchy. First,

define the family {Qn}n≥0 of operators Qn : K(X̂n) → K(X∗
n) inductively as

Q0 = ProjKS , Qn+1 = (IdS; Qn)K; n ≥ 0.

Again, since ProjS is continuous, Lemma 2(iii) guarantees that Qn is well defined and con-

tinuous for any n ≥ 0. The following lemma clarifies the relationships between the families

of operators {Pn}n≥1, {Qn}n≥0 and {Rn}n≥0.
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Lemma 5 Suppose that (T,R) is in C. Then, the following diagram commutes:

T
R0−−−−→ K(X̂0)

R1−−−−→ K(X̂1)
R2−−−−→ K(X̂2)

R3−−−−→ · · ·
yQ0

yQ1

yQ2

K(X∗
0 )

P1←−−−− K(X∗
1 )

P2←−−−− K(X∗
2 )

P3←−−−− · · ·

The proof is by induction, and to be found in the Appendix. Composing the operators Qn

and Rn for any n ≥ 0, one can map a type to a ∗–hierarchy.

Definition 5 Consider (T, R) in C. A type t ∈ T generates a ∗–hierarchy {κ∗n}n≥1 ∈ T ∗
0 if

κ∗n = Qn−1 ◦Rn−1 ◦ . . . ◦R0(t); n ≥ 1.

Now denote by ϕT,R the mapping T → T ∗
0 : t 7→ {Qn−1 ◦Rn−1 ◦ . . . ◦R0(t)}n≥1.

Proposition 3 Suppose that (T, R) is in C. Then,

(i) ϕT,R is continuous and maps T into T ∗
1 ;

(ii) ϕT∞,g : T∞ → T ∗
1 is a homeomorphism.

Proposition 3 shows that continuity of the possibility mapping in a compact possibility

structure (T,R) allows to map any type in T to a coherent ∗–hierarchy, or, equivalently by

(ii), to an infinite hierarchy in T∞. This transformation is possible in general only if R is

continuous (See Mertens and Zamir (1985) or Battigalli and Siniscalchi (1999) for similar

results in the Bayesian setting).

The homeomorphisms g : T∞ → K(S × T∞) and ϕT∞,g : T∞ → T ∗
1 induce a homeomor-

phism g∗ = (IdS; ϕT∞,g)
K ◦ g ◦ϕ−1

T∞,g between T ∗
1 and K(S×T ∗

1 ). Using the canonicity of g, it

follows that g∗ is also canonical in the sense that, for any coherent ∗–hierarchy {κ∗n}n≥1 ∈ T ∗
1 ,

ProjKS ◦ g∗({κ∗n}n≥1) = κ∗1,

(IdS; ProjK(X∗
m))

K ◦ g∗({κ∗n}n≥1) = κ∗m+1; m ≥ 1.

That is, g∗ preserves the marginal beliefs associated to any level of the hierarchy by any

coherent ∗–hierarchy. Naturally, ϕT ∗1 ,g∗ = IdT ∗1 , since any coherent ∗–hierarchy coincides

with its own representation. It should be noted that ϕ−1
T∞,g : T ∗

1 → T∞ is the mapping that

associates to any coherent ∗–hierarchy the universal type that generates it.
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Take (T, R) ∈ C. It is easy to verify that the following diagram commutes:

T
ϕT,R−−−−−−−→ T ∗

1yR

yg∗

K(S × T )
(IdS ;ϕT,R)K

−−−−−−−→ K(S × T ∗
1 )

.

Hence ϕT,R is a belief morphism from (T, R) to (T ∗
1 , g∗). To prove that (T ∗

1 , g∗), and therefore

(T∞, g) by homeomorphism, is universal for C, we need only to check that ϕT,R is the unique

belief morphism from (T,R) to (T ∗
1 , g∗). We only sketch the argument. Given a compact,

continuous possibility structure (T, R), construct the mappings {Rn}n≥0, {Qn}n≥0 as above.

The same procedure applied to (T ∗
1 , g∗) instead of (T, R) yields the analogous mappings

{R∗
n}n≥0, and {Q∗

n}n≥0. If φ : T → T ∗
1 is a belief morphism from (T, R) to (T ∗

1 , g∗), then it

is immediate by construction that the following diagram commutes:

PPPPq

PPPPq

Q1 Q∗1

Q0 Q∗0

T
φ−−−−−−−−−→ T ∗

1yR0

yR∗0

K(S × T )
(IdS ;φ)K

−−−−−−−−−→ K(S × T ∗
1 )

yR1 K(X∗
0 )

yR∗1

K(S ×K(S × T ))
(IdS ;(IdS ;φ)K)K

−−−−−−−−−→ K(S ×K(S × T ∗
1 ))

yR2 K(X∗
1 )

yR∗2

... · · · ...

.

³³³³)

³³³³)

We leave it to the reader to verify that the commutativity of this diagram and the fact that

ϕT ∗1 ,g∗ = IdT ∗1 imply that φ = ϕT,R.

4. Discussion of the results

We shall now discuss the results proved in the previous section.
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4.1. On the compactness assumption

It is not a priori clear why one should restrict the possibility sets to be compact. Indeed,

since K(X) is homeomorphic to O(X) for any compact Hausdorff space X, our construction

implies the existence of a type space T̃∞ and of a homeomorphism g̃ : T̃∞ → O(S × T̃∞).

This seems to indicate that one could choose the open sets as well as the closed sets as a

basis for the construction of a complete interactive model. Intuitively, this would correspond

to a situation in which players cannot distinguish different subsets of the type space with the

same interior.2 The problem is that, contrary to the space of compact subsets, removing the

empty set from the space of open sets undermines the compactness of the resulting space.3

A type space based on the open sets would then have to include the empty set as a possible

belief. Intuitively, O(S× T̃∞) should instead be interpreted as the set of subsets regarded as

impossible by a player, and the resulting impossibility structure (T̃∞, g̃) as the mirror image

of (T∞, g). Of course, one could eliminate the empty set from O(S × T̃∞) after constructing

the type space T̃∞. This procedure, however, would not prevent the empty set from being

“possible” for lower order beliefs. Moreover, the resulting model would not exhibit common

knowledge of “impossibility” of “possible” empty sets. The arguments used above to obtain

common knowledge of coherency are of little use since, as we have shown, removing the

empty set from O(S × T̃∞) does not preserve compactness.

4.2. Continuity and the Bayesian model

Complete possibility structures can also be derived from the universal Bayesian type space

constructed by Mertens and Zamir (1985) or Brandenburger and Dekel (1993). Specifi-

cally, let S be a compact metric space. Brandenburger and Dekel show that there exists a

non-empty compact metric space Θ∞ (the “universal Bayesian type space”) and a home-

omorphism γ from Θ∞ to ∆(S × Θ∞), the set of Borel probability measures on S × Θ∞

endowed with the weak∗ topology. Denote by Supp : ∆(S×Θ∞) → K(S×Θ∞) the support

mapping. It is easy to check that it is onto. Since γ is a homeomorphism, it follows that

the mapping Supp ◦ γ : Θ∞ → K(S × Θ∞) is onto, and therefore that (Θ∞, Supp ◦ γ) is an

2The fact that the trivial belief S × T̃∞ does not belong to O(S × T̃∞) might seem disturbing at first.
However, for any compact Hausdorff space X, K(X) ∪ {∅} is compact and homeomorphic to O(X) ∪ {X}.
Hence, adding ∅ to K(X) allows to extend the homeomorphism g̃ to include the trivial belief.

3Formally, when X is an infinite compact Hausdorff space, O(X) \ {∅} is not compact even if O(X) is.
To see why, note that the collection {O ∈ O(X) | {x} ⊂ O}x∈X is an open cover for O(X) \ {∅} which, since
X is Hausdorff, does not have a finite subcover.
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S–based complete compact possibility structure.

However, the support mapping is not continuous and hence, the possibility mapping

Supp ◦ γ is not continuous either. Indeed, two probabilistic types θ1, θ2 ∈ Θ∞ can be

arbitrarily close to each other and thus induce arbitrarily close beliefs γ(θ1) and γ(θ2) (in

the sense of the weak∗ topology on ∆(S×Θ∞)), whereas the probability measures γ(θ1) and

γ(θ2) have very different supports (in the sense of the Hausdorff topology on K(S × Θ∞)).

More importantly, the construction of the previous section does not apply: one cannot in

general translate a Bayesian type θ ∈ Θ∞ into an explicit hierarchy of compact beliefs. The

reason is that even if the possibility mapping Supp ◦γ maps each type θ ∈ Θ∞ to a compact

subset of S × Θ∞, the map (IdS, Supp ◦ γ) does not necessarily map a compact subset of

S ×Θ∞ to a compact subset of S ×K(S ×Θ∞).

Example 1 Suppose S = [0, 1], θ ∈ Θ∞, and {sn}n≥1 a sequence in (0, 1] converging to 0.

For any n ≥ 1, define θn = γ−1(1/n δ(sn,θ) + (1− 1/n) δ(1,θ)) and θ∞ = γ−1(δ(1,θ)), where for

any x ∈ S × Θ∞, δx is the point mass at x. Clearly, {θn}n≥1 converges weakly to θ∞, so

{θn | 1 ≤ n ≤ ∞} ∈ K(Θ∞). Hence, since Supp ◦ γ is onto, there exists ϑ ∈ Θ∞ such that

R0(ϑ) ≡ Supp ◦ γ(θ̃) = {(0, θn) | 1 ≤ n ≤ ∞}. But

(IdS, R0) ◦R0(ϑ) = {(0, {(sn, θ) | n ≥ 1})} ∪ {(0, {(1, θ)})}

is not a compact subset of S × K(S × Θ∞) as {sn}n≥1 converges to 0, not 1. In particular,

its projection on S ×K(S), {(0, {sn | n ≥ 1})} ∪ {(0, {1})}, does not belong to K(X∗
1 ).

Example 1 can be easily generalized to any compact Hausdorff space S with at least one

accumulation point, and to any discontinuous mapping S → K(S ×Θ∞), but not to a finite

set S, for instance. However, it should be noted that, even if S is finite, in which case any

θ ∈ Θ∞ induces a hierarchy in T ∗
1 , closeness of two types in the summary structure Θ∞ does

not imply closeness of the induced hierarchies in T ∗
1 .

One may also argue that this lack of continuity is an artifact of using the support mapping

in the above construction, and that a different mapping could associate compact subsets of

S × Θ∞ to elements of Θ∞ continuously. However, the following example shows that, in

general, such mapping does not exist.

Example 2 Suppose that S is not connected, and let (T, R) be an S–based complete com-

pact possibility structure such that R is continuous. Since S is not connected, it can be
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partitioned into two disjoint open sets S1 and S2. This yields a partition of K(S × T ) into

two disjoint open sets {K ∈ K(S×T ) | K ⊂ S1×T} and {K ∈ K(S×T ) | K ∩S2×T 6= ∅}.
Therefore, K(S×T ) is not connected. Since R is onto and continuous, it follows that T is not

connected. On the other hand, ∆(S × Θ∞) and hence Θ∞ by homeomorphism are arcwise

connected, hence connected. Thus if (Θ∞, R) is an S–based complete compact possibility

structure, R cannot be continuous.

It follows from our previous observations that if S is disconnected and has an accumulation

point, and if (Θ∞, R) is an S–based complete compact possibility structure, there always

exists a type θ ∈ Θ∞ that has no explicit representation in T ∗
1 . Hence, the probabilistic

(support) model cannot be embedded in a model of compact set-theoretic beliefs.

4.3. Comparison with Epstein and Wang (1996)

The existence of a space T homeomorphic to K(S × T ) can be directly derived from the

embedding result in Theorem 6.1 of Epstein and Wang (1996). Our objective, however,

is not restricted to showing the existence of such a homeomorphism. Rather, our main

focus is to show that any compact and continuous possibility structure can be uniquely and

canonically represented in T∞. We also wish to remark that, in general, a type space T in

a compact continuous possibility structure (T, R) where R is a homeomorphism between T

and K(S × T ) is not necessarily homeomorphic to the universal type space T∞. To see this,

define inductively the sets

Y0 = [0, 1], Yn+1 = K(Yn); n ≥ 0.

Consider the mapping p0 : Y1 → Y0 : y1 7→ inf{y0 | y0 ∈ y1}. Using the usual metric for

the Hausdorff topology on K([0, 1]), it is easy to verify that p0 is onto and continuous. For

any n ≥ 1, define the mapping pn : Yn+1 → Yn : yn+1 7→ {pn−1(yn) | yn ∈ yn+1}. Together

with Lemma 2(iii), the fact that p0 is onto and continuous implies by induction that all the

mappings {pn}n≥0 are also onto and continuous and that pn+1 = pKn for any n ≥ 0. Define

Y∞ = {{yn}n≥0 | yn ∈ Yn and yn = pn(yn+1); n ≥ 0} .

Following the same lines as in the proof of Lemma 3, it is easy to check that Y∞ is a

non-empty compact subset of
∏

n≥0 Yn endowed with the product topology. Moreover:

Lemma 6 There exists a homeomorphism p : Y∞ → K(Y∞).
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We are now ready to complete our example. Suppose that S is a singleton. Then p induces

a homeomorphism from Y∞ to K(S × Y∞). However, T∞ is then a singleton, whereas Y∞ is

not. Hence Y∞ and T∞ cannot be homeomorphic.4

5. Infinite hierarchies of conditional compact beliefs

In this section, we show how the infinite hierarchies of Section 3 can be generalized to

compact conditional belief systems by adapting the construction provided by Battigalli and

Siniscalchi (1999) for probabilistic beliefs.

5.1. Conditional belief systems

Consider an agent facing uncertainty over the space S. As in Section 2, a belief of the

agent is a possibility set, that is, an element of P(S). In addition, let B ⊂ P(S) be a non-

empty collection representing the events that are observable by the agent. A conditional

belief system assigns to any observable event B ∈ B a belief about the basic uncertainty

parameter, representing the states in S considered possible by the agent conditional on B.

The following definition is adapted from Brandenburger (1997):

Definition 6 A conditional belief system on (S,B) is a mapping ξ : B → P(S) such that:

(i) For all B ∈ B, ξ(B) ⊂ B;

(ii) For all A,B ∈ B, if A ⊂ B and ξ(B) ∩ A 6= ∅, then ξ(A) = ξ(B) ∩ A.

Condition (i) means that an observable event is self-evident whenever it occurs. Condition

(ii) can be interpreted as a set-theoretic version of Bayes’ rule. It captures the idea that

the agent maintains his beliefs as long as they are not contradicted by further evidence. It

implies in particular that if A and B are two observable events such that A refines B and the

agent believes that A obtains conditional on B, then he must have the same beliefs at A and

B. It should be noted that a conditional belief system need not be monotonic. For instance,

if A ⊂ B and ξ(B)∩A = ∅, that is, the agent thinks that A is impossible conditional on B,

then necessarily ξ(A) ∩ ξ(B) = ∅.
4See Mertens, Sorin and Zamir (1994, Chapter III, Theorem 1.2, Remark 2) for a related point in the

Bayesian setup.
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5.2. Topological restrictions

To construct a universal space of conditional belief systems, we need to impose conditions

on S and B, as well as on conditional belief systems. We maintain that S is a compact

Hausdorff space. In addition, we shall impose the following condition on B. (Recall that a

subset of a topological space is clopen if it is both closed and open.)

Assumption 2 B is a collection of non-empty clopen subsets of S such that S ∈ B.

As in Battigalli and Siniscalchi (1999), Assumption 2 is crucial for our results. Together with

Assumption 1, it implies that every event B ∈ B is compact as well as its complementary.

Although this might seem a very strong assumption, it holds in a variety of situations. The

less interesting case is when B = {S}, that is, the only observable event is the state space

itself. More interestingly, Assumption 2 is also satisfied when S is a product space S ′ × T ,

where S ′ is a finite set, and B is composed of events of the form B′ × T , where B′ is any

non-empty subset of S ′. It should be noted that, since separability plays no role in our

analysis, there is no need to restrict the family B to be at most countable, as Battigalli and

Sinischalchi (1999) do. For instance, one can take S to be the product of an uncountable

number of copies of a finite set endowed with the discrete topology, and let B be the family

of non-empty finite cylinders, which is uncountable.

Definition 7 A conditional belief system ξ on (S,B) is compact if for any B ∈ B, ξ(B) ∈
K(S).

We shall denote by K(S,B) the set of compact conditional belief systems on (S,B). Note that

K(S,B) can be seen as a subset of the product space K(S)B, which is a compact Hausdorff

space when endowed with the product topology. We then have the following lemma.

Lemma 7 K(S,B) ∈ K(K(S)B).

This result provides us with the recursivity necessary to any hierarchical construction. In-

deed, since K(S,B) is itself compact and Hausdorff, so is S ×K(S,B). We can then endow

this latter set with the family of compact events inherited from B, that is, the family C(B)

of cylinders C(B) = B ×K(S,B), B ∈ B. These cylinders form a family of clopen events in

S × K(S,B). Hence the space of conditional systems of compact beliefs over S × K(S,B),

K(S × K(S,B), C(B)) is a compact subset of K(S × K(S,B))C(B), and the construction can

be iterated again.
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Definition 8 An (S,B)–based compact conditional possibility structure is a pair (T, R)

consisting of:

(i) A non-empty Hausdorff space T ;

(ii) A mapping R : T → K(S × T,Bc), where Bc = {B × T | B ∈ B}.

As before, the elements of T are called types. R is a conditional possibility mapping that

assigns to each type t ∈ T of a player a conditional belief system R(t) about the basic

uncertainty parameter and the type of the other player. An (S,B)–based compact conditional

possibility structure (T, R) is complete if the possibility mapping R is onto, and is continuous

if R is continuous. Consider a family F of (S,B)–based compact conditional possibility

structures. An (S,B)–based compact conditional possibility structure (TF , RF) is universal

for F if for any (T, R) in F , there exists a unique mapping ϕ such that, for any B ∈ B, the

following diagram commutes:

T
ϕ−−−−−−−→ TF

yRB

yRFB

K(S × T )
(IdS ;ϕ)K

−−−−−−−→ K(S × TF)

,

where RB and RF
B denote respectively the B-components of R and RF .

5.3. The infinite hierarchy

We are now ready to construct the universal space of compact conditional belief systems

over (S,B). For notational simplicity, we assume that there are only two agents, a and b,

facing the same basic uncertainty space S, and sharing the same collection B of observable

events. These agents have beliefs about S and about each other’s beliefs conditional on each

observable event B ∈ B. Let X0 = S, B0 = B, and construct inductively the sets

Xn+1 = Xn ×K(Xn,Bn),

Bn+1 = {C ⊂ Xn+1 | ∃B ∈ Bn : C = B ×K(Xn,Bn)} ; n ≥ 0.

A player’s (n+1)th-order conditional system of compact belief is an element ξn+1 ofK(Xn,Bn).

A nth-order conditioning event is an element of Bn, that is, given some B ∈ B, a cylinder
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set of the form

Cn(B) = B ×
∏

0≤m≤n−1

K(Xm,Bm).

For each B ∈ B, any ξn+1 ∈ K(Xn,Bn) determines a compact belief ξn+1(Cn(B)) on Xn

conditional on B. Since Bn is essentially a copy of B in Xn, we can without risk of confusion

write K(Xn,B) instead of K(Xn,Bn). A player’s type is a hierarchy of beliefs {ξn}n≥1 ∈∏
n≥0K(Xn,B). We denote by T0(B) the set of all possible types. By Lemma 7, it is clear

that T0(B) is compact and Hausdorff in the product topology. It follows also that K(S×T0,B)

is compact Hausdorff as well. For any B ∈ B, we set C∞(B) = B × T0(B).

5.4. The universal possibility structure

The coherency condition in Definition 3 easily extends to compact conditional beliefs systems.

Definition 9 A type {ξn}n≥1 ∈ T0(B) is coherent if and only if, for any B ∈ B,

ξn(Cn−1(B)) = ProjXn−1
(ξn+1(Cn(B))); n ≥ 1.

Let T1(B) be the set of coherent types. The following proposition states that a coherent type

for a player is equivalent to a system of conditional compact beliefs over S and the type of

the other player.

Proposition 4 There exists a homeomorphism f(B) : T1(B) → K(S × T0(B),B) such that,

for any {ξn}n≥1 ∈ T1(B) and B ∈ B,

ProjXm−1
(f(B)({ξn}n≥1)(C∞(B))) = ξm(Cm−1(B)); m ≥ 1.

Finally, we close the model by imposing common knowledge of coherency. This is done in a

manner similar to the unconditional model. Define inductively the sets:

Tk+1(B) = {t ∈ T1(B) | f(B)(t)(C∞(B)) ⊂ B × Tk(B); B ∈ B} ; k ≥ 1,

and let T∞(B) =
⋂

k≥1 Tk(B).5 The following result parallels Proposition 2.

Proposition 5 T∞(B) is non-empty. Moreover, the restriction of f(B) to T∞(B) induces a

homeomorphism g(B) : T∞(B) → K(S × T∞(B),B).

5As noted by Battigalli and Siniscalchi (1999) in their construction of hierarchies of conditional proba-
bilistic beliefs, there cannot be any inconsistency in assuming that there is common knowledge of coherency
conditional on any event B ∈ B, since these “external” events are defined on the basic uncertainty space S,
and therefore do not convey any restriction about the epistemic types of the players.
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Finally, (T∞(B), g(B)) can be shown to be an universal compact continuous conditional

possibility structure by arguments analogous to those in Section 3.

Acknowledgements

We are particularly indebted to John Sutton for drawing our attention to this topic, and

to Eddie Dekel for his comments on an earlier draft of this paper. We are also grateful to an

anonymous referee for urging us to clarify the interpretation of our results. We would also

like to thank Adam Brandenburger, Faruk Gul, Aviad Heifetz and Jörn Rothe for helpful

conversations. All errors are ours.

20



Appendix A

Proof of Lemma 1. It is immediate that if S and T are singletons, the mapping R

is onto. Conversely, suppose there exists an onto mapping R : T → P(S × T ). Then,

for any s ∈ S, there exists an onto mapping Rs : T → {s} × P(T ). Then the mapping

f : T → P(T ) : t 7→ ProjP(T )(t) is onto. Let A = {t ∈ T | t 6∈ f(t)}. If A 6= ∅, the usual

diagonalization argument applies. Hence A = ∅, and f−1({{t}}) = {t} for any t ∈ T . If T

is not a singleton, there does not exists a t ∈ T such that f(t) = T , a contradiction. (This

argument follows Brandenburger (1998), Lemma 4.4.) Thus T is a singleton, hence R is

one-to-one, and therefore a bijection. It follows that S is a singleton as well. ¤

Proof of Lemma 2. (i) Let K1, K2 ∈ K(X), K1 6= K2, and, without loss of generality, take

x1 ∈ K1\K2. Since X is Hausdorff, there exist two disjoint open subsets of X, U and V , such

that x1 ∈ U and K2 ⊂ V . Let U = {K ∈ K(X) | K∩U 6= ∅} and V = {K ∈ K(X) | K ⊂ V }.
Then U and V are open subsets of K(X) such that K1 ∈ U , K2 ∈ V , and U ∩ V = ∅. Hence

K(X) is Hausdorff.

(ii) SK(X) = {{K ∈ K(X) | K ⊂ U}, {K ∈ K(X) | K ∩ U 6= ∅}, U open in X}
forms a subbase of the Hausdorff topology on K(X). By Alexander’s subbase theorem,

K(X) is compact if and only if every SK(X)–cover of K(X) has a finite subcover. Let

C = {{K ∈ K(X) | K ⊂ Ui}, {K ∈ K(X) | K ∩ Vj 6= ∅}}i∈I,j∈J be an SK(X)–cover of

K(X) associated to collections {Ui}i∈I and {Vj}j∈J of open subsets of X. Suppose first that

X =
⋃

j∈J Vj. Then since X is compact, one can extract a finite subcover {Vj}j∈J ′ of X

from {Vj}j∈J , and C ′ = {{K ∈ K(X) | K ∩ Vj 6= ∅}}j∈J ′ is a finite subcover of K(X).

Suppose next that X 6= ⋃
j∈J Vj. Then

⋂
j∈J V c

j is closed, hence compact in X. Since C is

an SK(X)–cover of K(X), there must exists i0 ∈ I such that
⋂

j∈J V c
j ⊂ Ui0 . Note that U c

i0

is closed, hence compact in X, and that U c
i0
⊂ ⋃

j∈J Vj. Hence there exists a finite subcover

{Vj}j∈J ′ of U c
i0
. It follows that if K ∈ K(X) is such that K 6⊂ Ui0 , then there exists j ∈ J ′

such that K ∩ Vj 6= ∅. Hence C ′ = {{K ∈ K(X) | K ⊂ Ui0}, {K ∈ K(X) | K ∩ Vj 6= ∅}}j∈J ′

is a finite subcover of K(X).

(iii) Let SK(Y ) = {{L ∈ K(Y ) | L ⊂ V }, {L ∈ K(Y ) | L ∩ V 6= ∅}, V open in Y }
and SK(X) as in (ii). It is immediate to check that (fK)−1(SK(Y )) ⊂ SK(X) provided f is

continuous. Since SK(X) and SK(Y ) are respectively subbases of the Hausdorff topology on

K(X) and K(Y ), the result follows.
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(iv) Simply remark that for any A ∈ K(X), gK(fK(A)) = gK({f(x) | x ∈ A}) =

{g(f(x)) | x ∈ A}. The result follows immediately. ¤

Appendix B

Proof of Lemma 3. Let {κn}n≥1 ∈ D, and let Kn = κn ×
∏

ν≥n Zν ⊂ Z∞. It is obvious

from the definition of D that {Kn}n≥1 is a nested sequence of sets. Let K =
⋂

n≥1 Kn.

For any n ≥ 0 and kn ∈ κn, there exists kn+1 ∈ κn+1 such that ProjZn−1(kn+1) = kn. In

particular (ProjZ0
(k1), . . . , ProjZn

(kn+1), . . .) ∈ K 6= ∅. Tychonoff theorem implies that the

sets Z∞ and {Kn}n≥1 are compact in the product topology, hence K is compact as well. By

construction, ProjZn−1(K) = κn for all n ≥ 1. It follows that f : D → K(Z∞) : {κn}n≥1 7→ K

is one-to-one and onto. By Lemma 2(i), K(Zn−1) is Hausdorff for each n ≥ 1; hence D is

Hausdorff in the relative product topology. By Lemma 2(ii), K(Z∞) is compact. Since f−1

is a bijection from a compact space into a Hausdorff space, it is a homeomorphism if and

only if it is continuous. It is thus sufficient to prove that for each n ≥ 1, the mapping

ProjKZn : K(Z∞) → K(Zn−1) : K 7→ ProjZn(K), is continuous. This follows from Lemma

2(iii) and the definition of the product topology on Z∞. ¤

Proof of Proposition 1. Set Z0 = X0, and Zn = K(Xn−1) for each n ≥ 1. Thus Zn = Xn

and Z∞ = S × T0. By Lemma 2(i)-(ii), the sets {Zn}n≥1 are compact Hausdorff provided S

is. The set of coherent types is exactly D. The result follows then from Lemma 3. ¤

Proof of Proposition 2. Using the fact that f is a homeomorphism, it is immediate to

check by induction that the sets {Tk}k≥2 are non-empty and nested. We now prove that for

each k ≥ 1, Tk ∈ K(T1). For k = 1, this follows from Proposition 1. Suppose next that

Tk−1 ∈ K(T1), for some k ≥ 2. By compactness of S and Tk−1, K(S × Tk−1) is a compact

topological subspace of K(S × T1). Since t ∈ Tk if and only if f(t) is a compact subset of

S × Tk−1 in the relative topology induced by S × T1, it follows that Tk = f−1(K(S × Tk−1)),

and hence that Tk is compact since f is a homeomorphism. Since the sets {Tk}k≥1 are nested,

T∞ 6= ∅. One has T∞ = {t ∈ T1 | f(t) ⊂ S×T∞}, so f(T∞) = {K ∈ K(S×T0) | K ⊂ S×T∞}
since f is onto. But f(T∞) is homeomorphic to T∞ and {K ∈ K(S × T0) | K ⊂ S × T∞} is

homeomorphic to K(S × T∞), hence the result. ¤
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Proof of Lemma 4. If the mapping R0 = R is continuous, then so is the mapping

(IdS; R0) : X̂0 → S×K(X̂0). Therefore R1 = (IdS; R0)
K is continuous by Lemma 2(iii). The

claim follows by iterated applications of this argument. ¤

Proof of Lemma 5. We have to prove that, for any n ≥ 0, Pn+1 ◦Qn+1 ◦ Rn+1 = Qn. We

proceed by induction. First, note that by construction, Q1 ◦R1 = (IdS; ProjS)
K ◦ (IdS; R0)

K,

which in turn is equal to (IdS; ProjS ◦ R0)
K by Lemma 2(iv). Since P1 = ProjKS and the

first component of Q1 ◦ R1 is IdS, P1 ◦Q1 ◦ R1 = ProjKS = Q0 by construction. This proves

the claim for n = 0. Suppose now that the claim holds for some n ≥ 0. By construction,

Pn+2 ◦Qn+2 ◦Rn+2 = (IdS; Pn+1)
K ◦(IdS; Qn+1)

K ◦(IdS; Rn+1)
K, which is equal to (IdS; Pn+1 ◦

Qn+1 ◦ Rn+1)
K by Lemma 2(iv), and therefore to (IdS; Pn)K = Pn+1 by the induction step

and the definition of Pn+1. This completes the proof. ¤

Proof of Proposition 3. (i) Let κ̂ : T → ∏
n≥0K(X̂n) : t 7→ {Rn−1 ◦ . . . ◦ R0(t)}n≥1

and κ∗ :
∏

n≥0K(X̂n) → T ∗
0 : {κ̂n}n≥1 7→ {Qn−1(κ̂n)}n≥0. By Lemma 4, Rn−1 ◦ . . . ◦ R0 is

continuous for any n ≥ 1. By definition of the product topology on
∏

n≥1K(X̂n), this implies

that κ̂ is continuous. Next, Qn is continuous for each n ≥ 0. Since κ∗ maps
∏

n≥0K(X̂n)

component by component into T ∗
0 , κ∗ is continuous, as well as ϕT,R = κ∗ ◦ κ̂. Finally, it is

immediate from Lemma 5 that ϕT,R(t) is a coherent ∗–hierarchy for any t ∈ T , and therefore

that ϕ maps T into T ∗
1 .

(ii) Note first that if T is a compact space and (T, R) is a complete possibility structure,

then the mappings {Rn}n≥0 are onto. Indeed, if (T,R) is complete, R0 = R is onto by

definition. If R0 is continuous, the inverse image by R0 of any compact κ̂1 ∈ K(X̂0) is closed

in T , hence compact if T is compact. (Note that since X̂0 is Hausdorff, any compact subset

of X̂0 is closed.) The claim follows by iterated applications of this argument. Next, we

show that if T is compact and (T, R) is complete, then ϕT,R : T → T ∗
1 is onto. Indeed,

fix {κ∗n}n≥1 ∈ T ∗
1 . Note that since Qn−1 is continuous and K(X̂n−1) is compact, Q−1

n−1(κ
∗
n)

is a non-empty compact subset of K(X̂n−1) for any n ≥ 1. Consider κ̂n ∈ Q−1
n−1(κ

∗
n) and

κ̂n−1 ∈ R−1
n−1(κ̂n). If n = 1, κ̂n−1 ∈ T . If n ≥ 2, it follows from the previous claim and the

coherency of {κ∗n}n≥1 that Qn−2(κ̂n−1) = Pn−1(κ
∗
n) = κ∗n−1. This implies in particular that

R−1
n−1(Q

−1
n−1(κ

∗
n)) ⊂ Q−1

n−2(κ
∗
n−1). Repeated applications of this argument using the mappings

Rn−1, ..., R0 allow us no construct a sequence (t, k̂1, . . . kn) ∈ T × ∏
0≤m≤n−1K(X̂m) such

that k̂1 = R0(t), Rm(κ̂m) = κ̂m+1 and Qm−1(κ̂m) = κ∗m for each m ∈ {1, . . . , n − 1}. For
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any n ≥ 1, let Tn = {t ∈ T | κ∗n = Qn−1 ◦ Rn−1 ◦ ... ◦ R0(t)}. By the previous claim,

Tn is a non-empty and compact subset of T for any n ≥ 1. Moreover, using the fact that

R−1
n−1(Q

−1
n−1(κ

∗
n)) ⊂ Q−1

n−2(κ
∗
n−1) for each n ≥ 2, it is easy to check that Tn+1 ⊂ Tn for

any n ≥ 1. Therefore
⋂

n≥1 Tn 6= ∅. To complete the proof, remark that by construction

ϕT,R(t) = {κ∗n}n≥1 for any t ∈ ⋂
n≥1 Tn. Hence ϕT,R is onto, as claimed. Now, suppose

that (T, R) = (T∞, g). From (i) and the above argument, the mapping ϕT∞,g is continuous

and onto. Since T∞ is compact and T ∗
1 is Hausdorff, it is sufficient to prove that ϕT∞,g is

one-to-one. For any n ≥ 1, let Kn = {κn ∈ K(Xn−1) | ∃t ∈ T∞ s.t. κn = ProjK(Xn−1)(t)}
and Kn = {{κm}1≤m≤n ∈

∏
1≤m≤nKm | ∃t ∈ T∞ s.t. κm = ProjK(Xm−1)(t); m ∈ {1, . . . , n}}.

We shall now show that, for any n ≥ 1, there exists a one-to-one and continuous mapping

fn : Kn → K(X∗
n−1) such that, for any t ∈ T∞, Qn−1 ◦Rn−1 ◦ . . .◦R0(t) = fn(ProjK(Xn−1)(t)).

Note first that, for any t ∈ T∞, Q0 ◦R0(t) = ProjKX0
(g(t)) = ProjK(X0)(t) by canonicity of g.

Hence f1 = IdK(S) = IdK1 , which proves the claim for n = 1. Next, suppose that the claim

holds for n ≥ 1. Consider the mapping τn : Kn → Kn : (κ1, . . . , κn) 7→ κn, i.e., the restriction

to Kn of ProjK(Xn−1) :
∏

1≤m≤nK(Xm−1) → K(Xn−1). Since any type in T∞ is coherent, τn

is a continuous bijection, hence a homeomorphism from Kn to Kn. Then, for each t ∈ T∞,

Qn ◦Rn ◦ . . . ◦R0(t) = (IdS; Qn−1)
K ◦ (IdS; Rn−1)

K ◦ . . . ◦ (IdS; g)K ◦ g(t)

= (IdS; Qn−1 ◦Rn−1 ◦ . . . ◦ g)K ◦ g(t)

=
{
(s̃, fn(ProjK(Xn−1)(t̃)) | (s̃, t̃) ∈ g(t)

}

=
{
(s̃, fn ◦ τn(ProjK(X0)(t̃), . . . , ProjK(Xn−1)(t̃)) | (s̃, t̃) ∈ g(t)

}

= (IdS; fn ◦ τn)K
({

(s̃, ProjK(X0)(t̃), . . . , ProjK(Xn−1)(t̃)) | (s̃, t̃) ∈ g(t)
})

= (IdS; fn ◦ τn)K
(
ProjXn

(g(t))
)

= (IdS; fn ◦ τn)K
(
ProjK(Xn)(t)

)
,

where the second equality follows from Lemma 2(iv), the third from the induction hypothesis,

the fourth from the definition of τn together with the coherency of t̃, and the seventh from

the canonicity of g. Since fn is continuous and one-to-one, and τn is a homeomorphism, it

follows that fn+1 ≡ (IdS; fn ◦ τn)K : Kn+1 → K(X∗
n) is continuous and one-to-one. Consider

two types t 6= t̃ ∈ T∞, and let n(t, t̃) = inf{n ≥ 1 | ProjK(Xn−1)(t) 6= ProjK(Xn−1)(t̃)} < ∞.

From the above argument, it follows that for any n ≥ 1, t and t̃ have different images under
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Qn−1 ◦Rn−1 ◦ . . . ◦R0 if and only if n ≥ n(t, t̃). Thus ϕT∞,g is one-to-one, as claimed. ¤

Proof of Lemma 6. For any {yn}n≥0 ∈ Y∞, define inductively H1 =
∏

n≥1 yn and, for

any n ≥ 1, Hn+1 = {υ ∈ Hn | υn−1 = pn−1(υn)}. Along the same lines as in the proof of

Lemma 3, it is easy to check that H =
⋂

n≥1 Hn is a non-empty compact subset of Y∞ and

that the mapping p : Y∞ → K(Y∞) : {yn}n≥0 7→ H is one-to-one and continuous. Now,

let κ ∈ K(Y∞). For each n ≥ 0, ProjYn
(κ) is a compact subset of Yn, hence an element of

Yn+1. Define a sequence {yn(κ)}n≥0 ∈
∏

n≥0 Yn by y0(κ) = inf{y0 | y0 ∈ ProjY0
(κ)}, and

yn(κ) = ProjYn−1
(κ) for each n ≥ 1. Note first that p0(y1(κ)) = y0(κ) by construction. Next,

for any n ≥ 1, pn(yn+1(κ)) = {pn−1(yn) | yn ∈ ProjYn
(κ)} = ProjYn−1

(κ) = yn(κ) since

any sequence in κ belongs to Y∞. Hence {yn(κ)}n≥0 ∈ Y∞. Since p({yn(κ)}n≥0) = κ by

construction, this implies that p is onto, which completes the proof. ¤

Proof of Lemma 7. Note first that ξ = IdB trivially satisfies Definition 6, so K(S,B) is non-

empty. The set of ξ ∈ K(S)B that satisfy Definition 6(i) is homeomorphic to
∏

B∈BK(B),

hence compact. Now fix A,B ∈ B, A ⊂ B, and let ΞA,B be the set of ξ ∈ K(S)B that

satisfy Definition 6(ii) for the pair A,B, that is, ΞA,B = {ξ ∈ K(S)B | ξ(B) ∩A = ∅} ∪ {ξ ∈
K(S)B | ξ(B)∩A 6= ∅ and ξ(B)∩A = ξ(A)}. The first set in this union is homeomorphic to

K(S)B\{B}×K(Ac) and is therefore compact as A is open. The second set is homeomorphic

to K(S)B\{A,B} × {(K ∩ A,K) | K ∈ K(S), K ∩ A 6= ∅}. Note that, as A is closed, {K ∈
K(S) | K ∩ A 6= ∅} is compact. Moreover, {(K ∩ A,K) | K ∈ K(S), K ∩ A 6= ∅} is

homeomorphic to Graph(φ), where φ : {K ∈ K(S) | K ∩ A 6= ∅} → K(S) : K 7→ K ∩ A.

Using the fact that A is clopen, it is easy to check that φ is continuous. Hence, since K(S)

is Hausdorff, Graph(φ) is closed, and therefore compact as a subset of the compact space

{K ∈ K(S) | K ∩A 6= ∅} × K(S). Thus ΞA,B is compact, as the union of two compact sets.

Finally, K(S,B) can be written as
∏

B∈BK(B) ∩⋂
A,B∈B,A⊂B ΞA,B and hence is compact. ¤

Proof of Proposition 4. For any B ∈ B, {ξn}n≥1 7→ {ξn(Cn−1(B))}n≥1 is a continuous

map from T1(B) into D ≡ {{κn}n≥1 | κn ∈ K(Xn−1) and ProjXn−1
(κn+1) = κn; n ≥ 1}.

Define Z0 = S, Zn = K(Xn−1,B) and note that Xn−1 = S × ∏
0≤m≤n−2K(Xm,B) =

∏
0≤m≤n−1 Zm for any n ≥ 1. Since the spaces {Zn}n≥0 are compact Hausdorff, it follows

from Lemma 3 that there exists a homeomorphism f : D → K(S × T0(B)) such that, for all

{κn}n≥1 ∈ D and m ≥ 1, ProjXm−1
(f({κn}n≥1)) = κm. Thus for any B ∈ B, the mapping

fB : T1(B) → K(S×T0(B)) : {ξn}n≥1 7→ f({ξn(Cn−1(B))}n≥1) is well defined and continuous,
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and ProjXm−1
(fB({ξn}n≥1)) = ξm(Cm−1(B)) for each {ξn}n≥1 ∈ T1(B). This implies that the

mapping f(B) = (fB)B∈B : T1(B) → K(S × T0(B))B is continuous and one-to-one, and satis-

fies the condition required by the result. Hence, since T1(B) is compact and K(S × T0(B))B

is a Hausdorff space, we only have to prove that f(B)(T1(B)) = K(S × T0(B),B). To prove

that f(T1(B)) ⊂ K(S × T0(B),B), note first that for any B ∈ B and {ξn}n≥1 ∈ T1(B),

ProjX0
(fB({ξn}n≥1)) = ξ1(B) ⊂ B since ξ1 is a compact conditional belief system over

(S,B). It follows that f(B)({ξn}n≥1)(C∞(B)) ⊂ C∞(B) = B × T0(B) and thus Definition

6(i) is satisfied. Next, let A,B ∈ B such that A ⊂ B and f(B)({ξn}n≥1)(C∞(B))∩ C∞(A) 6=
∅. Then, for each m ≥ 0, ProjXm

(f(B)({ξn}n≥1)(C∞(B))) ∩ ProjXm
(C∞(A)) 6= ∅. By

projection, we get that ξm+1(Cm(B)) ∩ Cm(A) 6= ∅, and since Definition 6(ii) applies to

ξm+1, ξm+1(Cm(A)) = ξm+1(Cm(B)) ∩ Cm(A). Since this is true for each m, it follows that

f(B)({ξn}n≥1)(C∞(A)) = f(B)({ξn}n≥1)(C∞(B)) ∩ C∞(A) and thus Definition 6(ii) is satis-

fied. It remains to prove that K(S×T0(B),B) ⊂ f(B)(T1(B)). Let ξ ∈ K(S×T0(B),B), and

for any B ∈ B and n ≥ 1, define ξn(Cn−1(B)) = ProjXn−1
(ξ(C∞(B))) ∈ K(Xn−1). It is suffi-

cient to prove that {ξn}n≥1 ∈ T1(B). First, it is clear that, by construction, ξn(Cn−1(B)) =

ProjXn−1
(ξn+1(Cn(B))) for any n ≥ 1. Hence, we need only to prove that for each n ≥ 1,

ξn ∈ K(Xn−1,B). First, since ξ ∈ K(S × T0(B),B), one must have ξ(C∞(B)) ⊂ C∞(B)

for any B ∈ B, hence ξn(Cn−1(B)) ⊂ Cn−1(B) by projection on Xn−1. Thus Definition 6(i)

holds. Now suppose that for some A,B ∈ B, A ⊂ B, we have ξn(Cn−1(B)) ∩ Cn−1(A) 6= ∅.
Then by projection on X0 = S, we have that ξ1(C0(B)) ∩ A 6= ∅ which implies that

ξ(C∞(B)) ∩ C∞(A) 6= ∅. Hence, by Definition 6(ii), ξ(C∞(A)) = ξ(C∞(B)) ∩ C∞(A). It

follows then by projection on Xn−1 that ξn(Cn−1(A)) = ξn(Cn−1(B)) ∩ Cn−1(A), and thus

Definition 6(ii) is satisfied. ¤

Proof of Proposition 5. First, if t ∈ T1(B) and for each B ∈ B, f(B)(t)(B) ⊂ B ×
T∞(B), then f(B)(t)(B) ⊂ B × Tk(B) for each k ≥ 1 and therefore t ∈ ⋂

k≥1 Tk(B) =

T∞(B). Reciprocally, if t ∈ T∞(B), then for each B ∈ B and k ≥ 1, f(B)(t)(B) ⊂
B × Tk(B) and therefore f(B)(t)(B) ⊂ B × ⋂

k≥1 Tk(B) = B × T∞(B). Thus T∞(B) =

{t ∈ T1(B) | f(B)(t)(B) ⊂ B × T∞(B); B ∈ B}. It follows therefore that f(B)(T∞(B)) =

{ξ ∈ K(S × T0(B),B) | ξ(B × T0(B)) ⊂ B × T∞(B); B ∈ B} = K(S × T∞(B),B), which im-

plies the result. ¤
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