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Abstract

In frontier analysis, most of the nonparametric approaches (FDH,DEA) are based
on envelopment ideas and their statistical theory is now mostly available. However, by
construction, they are very sensitive to outliers. Recently, a robust nonparametric esti-
mator has been suggested by Cazals, Florens and Simar (2002). In place of estimating
the full frontier, they propose rather to estimate an expected frontier of order m. Sim-
ilarly, we construct a new nonparametric estimator of the efficient frontier. It is based
on conditional quantiles of an appropriate distribution associated with the production
process. We show how these quantiles are interesting in efficiency analysis. We provide
the statistical theory of the obtained estimators. We illustrate with some simulated
examples and a frontier analysis of French post offices, showing the advantage of our
estimators compared with the estimators of the expected maximal output frontiers of
order m.
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1 Introduction

An important problem in productivity and efficiency analysis is to characterize and to esti-
mate the production frontier, i.e., the set of the most efficient production process. The idea
is to analyze how firms combine their inputs to produce in an efficient way the output. We
are then interested in the production frontier because it represents a reasonable benchmark
value or reference frontier. Let us introduce the basic concepts and notation.

According to economic theory (Koopmans, 1951, Debreu, 1951, Shephard, 1970), the
production set, where the activity is described through a set of p inputs x ∈ R

p
+ used to

produce an univariate output y ∈ R+, is defined as the set of physically attainable points
(x, y)

Ψ = {(x, y) ∈ R
p+1
+ | x can produce y}.

This set can be described mathematically by its sections Y (x) = {y ∈ R+| (x, y) ∈ Ψ} where,
for any level of inputs x, the requirement set Y (x) represents the set of all outputs that a firm
can produce using x as inputs. Assuming that Ψ is compact, the maximal achievable level of
output for a given level of inputs x defines the output-efficient function ∂Y (x) = maxY (x).
From an economic point of view, this function is supposed monotone nondecreasing and it is
then called the production function and its graph, which represents the efficient boundary of
Ψ, is called the production frontier. Different other assumptions can be assumed on Ψ like
free disposability, i.e., if (x, y) ∈ Ψ then (x′, y′) ∈ Ψ for any x′ ≥ x and y′ ≤ y; or convexity,
i.e., every convex combination of feasible production plans is also feasible; or no free lunch,
i.e., for all y > 0 we have y /∈ Y (0); ... (see, e.g., Shephard, 1970).

The production process, which generates observations Xn = {(Xi, Yi)| i = 1, · · · , n} is
defined, e.g., through the joint distribution of a random vector (X, Y ) on R

p
+ × R+, where

X represents the inputs and Y is the output. In the case where Ψ is equal to the support
of the distribution of (X, Y ), another way for defining the production frontier is given as
follows. The production function, which we denote from now on by ϕ, is characterized for a
given level of inputs x by the upper boundary of the support of the conditional distribution
of Y given X ≤ x, i.e.,

ϕ(x) = sup{y ∈ R+| F (y/x) < 1}, (1)

where F (·/x) = F (x, ·)/FX(x) is the conditional distribution function of Y givenX ≤ x, with
F being the joint distribution function of (X, Y ) and FX the marginal distribution function
of X. It is supposed here that FX(x) > 0 or that x is an interior point of the support of the
distribution of X. The inequality X ≤ x has to be understood componentwise. As a matter
of fact, the function ϕ is the smallest monotone nondecreasing function which is larger than
or equal to the output-efficient function ∂Y (·). Its graph defines the production frontier.
If the efficient boundary of Ψ is monotone nondecreasing (a quite reasonable assumption
in practice), it coincides with the production frontier. So, we have, in some sense, just
reparametrized the definition of the efficient frontier of Ψ. This new formulation of the
production frontier is due to Cazals, Florens and Simar (2002).

A large amount of literature is devoted to the estimation of the production frontier
from a random sample of production units Xn. Two different approaches have been mainly
developed: the deterministic frontier models which suppose that with probability one, all
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the observations in Xn belong to Ψ, and the stochastic frontier models where random noise
allows some observations to be outside of Ψ.

In deterministic frontier models, there are mainly two nonparametric methods based
on envelopment techniques: the free disposal hull (FDH) and the data envelopment analysis
(DEA). The FDH estimator was introduced by Deprins, Simar and Tulkens (1984) and relies
only on the free disposability assumption on Ψ. The DEA estimator, which was initiated
by Farrell (1957) and popularized as linear programming estimator by Charnes, Cooper and
Rhodes (1978), requires stronger assumptions: it relies on the free disposability assumption
and the convexity of Ψ. Note that the convexity assumption is widely used in economics, but
it is not always valid. The production set might admit increasing returns to scale, i.e., the
output increases faster than the inputs, or there might be lumpy goods, i.e., fractional values
of inputs or outputs do not exist. Hence, the FDH is a more general estimator than the DEA.
The asymptotic distribution of the FDH estimator was derived by Park, Simar and Weiner
(2000) in the case of multivariate input and output, and the asymptotic distribution of the
DEA estimator was derived by Gijbels, Mammen, Park and Simar (1999) in the univariate
case. The statistical theory of these estimators is now mostly available. See Simar and
Wilson (2000) for a recent survey of the available results.

In stochastic frontier models, where noise is allowed, only parametric restrictions on the
shape of the frontier and on the data generating process allow identification of the noise from
the efficiency frontier and estimation of this frontier. Aigner, Lovell and Schmidt (1977),
Meeusen and van den Broek (1977), Olsen, Schmidt and Waldman (1980), Stevenson (1980)
and Battese and Coelli (1988) specified a model for the production function and a specific
distributional form for the error and then used maximum likelihood methods to estimate the
parameters of the production function. These methods may lack robustness if the assumed
distributional form does not hold. In particular, outliers in the data may unduly affect the
estimate of the frontier function, or, it may be biased if the error structure is not correctly
specified. Furthermore, as illustrated by Caudill, Ford and Groper (1995), heteroscedasticity
in the error term, if not properly accounted for, can lead to significant biases when estimating
the production frontier.

Nonparametric deterministic frontier models are very appealing because they rely on
very few assumptions but, by construction, they are very sensitive to extreme values and to
outliers. Recently, a robust nonparametric envelopment estimator of the production frontier
has been suggested by Cazals, Florens and Simar (2002). They introduce the concept of
expected maximal output frontier of order m ∈ N∗, where N∗ denotes the set of all integers
m ≥ 1. It is defined as the expected maximum achievable level of output among m firms
drawn in the population of firms using less than a given level of inputs. Formally, for a fixed
integer m ∈ N∗ and a given level of inputs x, the frontier function of order m is defined as

ϕm(x) = E[max(Y 1, · · · , Y m)] =

∫ ∞

0

(1− [F (y/x)]m)dy,

where (Y 1, · · · , Y m) are m independent identically distributed random variables generated
by the distribution of Y given X ≤ x. Its nonparametric estimator is defined by

ϕ̂m,n(x) =

∫ ∞

0

(1− [F̂ (y/x)]m)dy,
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where F̂ (y/x) = F̂ (x, y)/F̂X(x) is the empirical version of F (y/x), with

F̂ (x, y) =
1

n

n∑

i=1

1(Xi ≤ x, Yi ≤ y) and F̂X(x) =
1

n

n∑

i=1

1(Xi ≤ x).

As pointed out in Cazals et al. (2002), the FDH estimator of the production function can
be viewed as a plug-in estimator of ϕ(x), where the unknown F (y/x) in the formulae (1)

has been replaced by its empirical analog F̂ (y/x). It is given by

ϕ̂n(x) = sup{y ≥ 0| F̂ (y/x) < 1} = max
i|Xi≤x

Yi.

Due to the trimming nature of the order-m frontier, the estimator ϕ̂m,n(x) does not envelop
all the data points, and so it is more robust to extreme values than the FDH estimator
ϕ̂n(x). By choosing m appropriately as a function of the sample size n, ϕ̂m,n(x) estimates
the production function ϕ(x) itself while keeping the asymptotic properties of the FDH
estimator.

Hendricks and Koenker (1992, p. 58) stated, “In the econometric literature on the
estimation of production technologies, there has been considerable interest in estimating
so called frontier production models that correspond closely to models for extreme quantiles
of a stochastic production surface”. The present paper can be viewed as the first work to
actually implement the idea of Hendricks and Koenker: we construct a new nonparametric
estimator of the production frontier which is more robust to extreme values than the standard
DEA/FDH estimators and than the nonparametric estimator of Cazals et al. It is based on
extreme quantiles of the conditional distribution of Y given X ≤ x. These non standard
conditional quantiles define a natural concept of a partial production frontier in place of
the m-trimmed frontier. The idea is nice and attractive, because here the “trimming” is
continuous in terms of the order-α quantile where α ∈ [0, 1]. Quantile methods are known
for their robustness. More precisely, conditional quantiles are not very sensitive to large
observations in the output direction. We show that our new partial frontier and its resulting
estimator share most of the properties of the order-m frontier and its estimator.

The paper follows the structure of Cazals et al. (2002) initially very closely, adapting
their technique to the output oriented case and extending their basic ideas, thus sharing
similar comments. It is organized as follows. Section 2 motivates our concept of quantile-
frontier of order α and investigates its properties and its relation to the order-m frontier and
to the true production frontier. In section 3, we define a nonparametric estimator of our
order-α frontier, which is very easy to derive, very fast to compute and does not envelop all
the observed data points. In section 4, we show that this estimator converges at the rate√
n and is asymptotically normally distributed. We also derive a nonparametric estimator

of the efficient production frontier and analyze its asymptotic distribution. In section 5, a
numerical illustration is proposed with some simulated examples and a data set on labor (as
input) and mail volumes (as output) about 10.000 French post offices. We show how resistant
to outliers our estimators are compared with the estimators of the expected maximal output
frontiers of order m. Section 6 concludes the paper.
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2 A New Concept of Production Frontier

Let (Ω,A, P ) be the probability space on which the vector of inputs X and the output
variable Y are defined. In this approach, we define the attainable set Ψ to be the support of
the joint distribution of (X, Y ) and we will concentrate on the set Ψ∗ = {(x, y) ∈ Ψ|FX(x) >
0} which contains the interior of Ψ.

From its definition, ϕ(x), the value of the production function coincides with the order
one quantile of the law of Y given X ≤ x,

q1(x) = inf{y ≥ 0|F (y/x) = 1}.

This suggests to introduce a concept of production function of continuous order α ∈ [0, 1],
as the quantile function of order α of the law of Y given that X does not exceed a given
level of inputs. This function takes, for a given level of inputs x, the value

qα(x) := F−1(α/x) = inf{y ≥ 0|F (y/x) ≥ α}.

This conditional quantile is the production threshold exceeded by 100(1−α)% of firms that
use less than the level x as inputs. The function F−1(./x) is the so called generalized inverse
of F (·/x). If the distribution function F (·/x) is strictly increasing, its inverse coincides with
the generalized inverse F−1(./x). Using this property, we easily obtain the following result.

Proposition 2.1. Assume that for every x such that FX(x) > 0, the conditional distribution
function F (·/x) is strictly increasing on the support [0, ϕ(x)]. Then,

∀(x, y) ∈ Ψ∗ we have y = qα(x) with α = F (y/x). (2)

From property (2), we see that any production unit (x, y) in Ψ∗ belongs to some α-
order quantile curve. Then unit (x, y) produces more than 100α% of all production units
using inputs smaller than or equal to x and produces less than the 100(1− α)% remaining
units. Thus the quantile function qα(x) quantifies the production efficiency of unit (x,y) by
comparing it with all units which use the same level of inputs x as well as with those which
use strictly less than x. This motivates our interest in the distribution of Y given X ≤ x.

But the most attractive property of this quantile function is that it can be easily nonpara-
metrically estimated without the drawbacks of the methods trying to estimate the frontier
function itself: it will be less sensitive to noise, extreme values or outliers. This is developed
in the next section.

As it is shown by property (2), the quantile curves {(x, qα(x))|FX(x) > 0} cover the
whole production set Ψ∗. As can be seen in the next proposition, this does not hold for
expected order-m frontiers of Cazals et al. {(x, ϕm(x))|FX(x) > 0}.
Proposition 2.2. Under the assumption of Proposition 2.1 and if we assume furthermore
the free disposability of outputs, i.e.,

y ∈ Y (x) and y′ ≤ y =⇒ y′ ∈ Y (x),

then the functions ϕm do not satisfy the following property

∀(x, y) ∈ Ψ∗, ∃m ∈ N∗ s.t. y = ϕm(x).
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Let us compare how the expected maximal production function and the quantile function
can be useful in terms of practical efficiency analysis. Suppose a production unit uses a
quantity of inputs x0 and produces an output y0, ϕm(x0) gives the expected maximum
production among a fixed number of m firms using less than x0 as inputs. This value
indicates how efficient the unit (x0, y0) is, compared with these m units. This is achieved by
comparing its level y0 with the value of ϕm(x0). For this particular unit, we know that it
belongs to a quantile frontier. The order of this frontier, which is known, gives the proportion
of units that produce less than y0 among all firms using less than x0. Hence the quantile
function gives a clearer indication on the production performance and it can be viewed as a
reasonable benchmark value.

We can however establish an asymptotic relationship between the two families of pro-
duction functions ϕm and qα. Namely,

Proposition 2.3. For every x such that the conditional distribution function F (·/x) is twice
differentiable with first derivative f(·/x) strictly positive on the support [0, ϕ(x)], we have as
m→∞ and α→ 1,

ϕm(x)− qα(x) =

{
1

f(ϕ(x)/x)
+ (α− 1) [ψ′x(α) + o(α)]

}

× O
(
m−3/4(logm)1/2(log logm)1/4

)
+ o(α) (3)

where ψ′x(α) = −F ′′(qα(x)/x)/f 3(qα(x)/x).

From its definition, it is clear that for any fixed x such that FX(x) > 0, qα(x) is a
monotone nondecreasing function of α. The limiting case when α → 1 is of particular
interest. It converges to the efficient frontier: by letting m tend to infinity in (3) and using
limm→∞ ϕm(x) = ϕ(x), we obtain ϕ(x) − qα(x) = o(α) when α → 1. We can prove this
property directly by using the monotonicity of quantiles qα(x) with respect to α as indicated
by the next proposition. Even more strongly it is shown, under some regularity conditions,
that the order-α production function qα converges uniformly to the true production function
ϕ.

Proposition 2.4.

1. For any fixed value of x such that FX(x) > 0, we have limα→1 ↗ qα(x) = ϕ(x).

2. Assume that for every α ∈ [0, 1], the quantile function qα(.) is continuous on the
interior of the support of X. Then for any compact K interior to the support of X,

sup
x∈K

|qα(x)− ϕ(x)| −→ 0 as α↗ 1.

The function qα converges to a monotone nondecreasing function ϕ as α → 1, but it is
not monotone nondecreasing itself unless we add the following assumption

∀y ≥ 0, ∀x1 ≤ x2 s.t. FX(x1) > 0, we have F (y/x1) ≥ F (y/x2). (4)

This assumption is not needed for all the results of this paper except for the next Proposition,
but it appears to be quite reasonable: it says that the chance of producing less than a value
y decreases if a firm uses more inputs. This assumption is necessary as well as sufficient.
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Proposition 2.5. The quantile function x 7→ qα(x) is monotone nondecreasing on the set
{x ∈ R

p
+|FX(x) > 0} for every order α ∈ [0, 1] if and only if the function x 7→ F (y/x) is

monotone nonincreasing on the set {x ∈ R
p
+|FX(x) > 0} for any output y ∈ R+.

Note that the results established in Proposition 2.4 are very similar to those obtained
for the order-m frontier. Indeed ϕm(x) converges simply and uniformly to ϕ(x) as m→∞.
However for Proposition 2.5, Cazals et al. (2002, Theorem A.3) only prove that if assumption
(4) holds then ϕm(x) is monotone nondecreasing in x.

3 Nonparametric Estimation

To estimate the conditional quantile qα(x), it is natural to use the conditional empirical

quantile obtained by inverting the conditional empirical distribution function F̂ (·/x),

q̂α,n(x) := F̂−1(α/x) = inf{y|F̂ (y/x) ≥ α}.

This estimator may be computed explicitly as follows. Let Nx be the number of observations
Xi smaller than or equal to x, i.e., Nx =

∑n
i=1 1(Xi ≤ x), and, for j = 1, · · · , Nx, denote by

Y(ij) the j-th order statistic of the observations Yi such that Xi ≤ x : Y(i1) ≤ Y(i2) ≤ . . . ≤
Y(iNx). We have, for x such that Nx 6= 0,

F̂ (y/x) =

∑
i|Xi≤x 1(Yi ≤ y)

Nx
=

∑Nx

j=1 1(Y(ij) ≤ y)

Nx
.

Hence,

F̂ (y/x) =





0 if y < Y(i1)

k/Nx if Y(ik) ≤ y < Y(i{k+1}), 1 ≤ k ≤ Nx − 1

1 if y ≥ Y(iNx).

Therefore, we obtain for every α > 0,

ϕ̂n(x) = Y(iNx) = max
i|Xi≤x

Yi, q̂α,n(x) =

{
Y(i{αNx})

if αNx ∈ N∗

Y(i{[αNx]+1}) otherwise,
(5)

where [αNx] denotes the integral part of αNx: the largest integer less than or equal to αNx.
The conditional empirical quantile q̂α,n(x) is thus computed very easily as being the simple
empirical quantile of observations yi such that xi ≤ x.

For comparison, note that an exact formula is available in order to compute ϕ̂m,n(x). It
is as simple as the formula (5) but restricted to the case of no ties among the inputs. The
nonparametric estimator ϕ̂m,n(x) can also be approximated in practice by using a Monte-
Carlo algorithm, even in the full multivariate case (several inputs and several outputs), which
we do not treat in our paper. For instance, in the univariate output case, the Monte-Carlo
method can be described as follows. For a given x, draw a random sample of size m with
replacement among these yi such that xi ≤ x and denote this sample by (y1

b , · · · , ym
b ). Then
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compute ϕ̃b,m(x) = maxi=1,··· ,m(yi
b). Redo this for b = 1, · · · , B where B is large. Finally, we

have

ϕ̃m,n(x) ≈ 1

B

B∑

i=1

ϕ̃b,m(x),

where the quality of the approximation can be tuned by the choice of B.
Note also that the relation between the order-m frontier and the true frontier remains

valid with their estimators ϕ̂m,n(x) and ϕ̂n(x), i.e., limm→∞ ↗ ϕ̂m,n(x) = ϕ̂n(x). Similarly
it is easily seen, for any fixed value of inputs x for which the estimator q̂α,n(x) is well defined
for every order α ∈ [0, 1], that q̂α,n(x) is a monotone nondecreasing function of α, and thus

lim
α→1

↗ q̂α,n(x) = ϕ̂n(x).

Note that even for large values of α < 1, the estimator q̂α,n(x) is less sensitive to extreme
values than the FDH estimator ϕ̂n(x) which by construction, envelopes all the observations.
The asymptotic theory is discussed in the next section. Note also that q̂α,n(x) is not neces-
sarily monotone nondecreasing with respect to x. Indeed, even if assumption (4) is assumed
for the true conditional distribution function, it could happen that its empirical counterpart
does not satisfy it. Of course we know that for large sample size n, it will mostly be the
case.

Another property that q̂α,n(x) shares with ϕ̂m,n(x) lies in the fact that both the nonpara-
metric partial frontiers underestimate the full frontier ϕ(x), for every order. In our case, for
any value of inputs x for which ϕ(x) and q̂α,n(x) are well defined for any order α ∈ [0, 1], we
have

q̂α,n(x) ≤ ϕ̂n(x) ≤ ϕ(x) a.s, ∀α ∈ [0, 1].

Indeed, since the production function ϕ(·) is monotone nondecreasing and greater than or
equal to the efficient-output function ∂Y (.), for each i such that Xi ≤ x we have almost
surely Yi ≤ ∂Y (Xi) ≤ ϕ(Xi) ≤ ϕ(x). Therefore ϕ̂n(x) = max{Yi | Xi ≤ x} ≤ ϕ(x) a.s. On
the other hand we have q̂α,n(x) ≤ q̂1(x) = ϕ̂n(x) for every α ∈ [0, 1].

4 Asymptotic Properties

For the unconditional case where ξα denotes the order-α quantile of a distribution function
FZ of a random variable Z, and ξ̂α denotes the empirical quantile of a sample (Z1, · · · , Zn)
of Z, if FZ is differentiable in ξα and such that F ′

Z(ξα) > 0, the Bahadur representation
theorem gives,

√
n

(
ξ̂α − ξα

)
L−→ N

(
0,
α(1− α)

[F ′
Z(ξα)]2

)
as n→∞.

The direct application of this result to the distribution function FZ(·) = F (·/x) does not
serve our purpose because our data do not yield a sample from this distribution. However,
as for unconditional quantiles ξα, we focus here on pairs (x, α) which satisfy the following
property

F (·/x) is differentiable at qα(x) s.t. F ′(qα(x)/x) > 0. (6)
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As a consequence of this property, F (·/x) is a bijective transformation from a neighborhood
of qα(x) onto a neighborhood of α. In particular the generalized inverse F−1(·/x) is equal to
the inverse of F (·/x) in the neighborhood of α. This property will be used in the proof of
the following theorem which summarizes the asymptotic properties of our estimator q̂α,n(x).

Theorem 4.1. Let α ∈ (0, 1) be a fixed order and let x be a fixed value such that FX(x) >
0. Assume that the conditional distribution function F (·/x) is differentiable at qα(x) with
derivative f(qα(x)/x) > 0. Then,

1. q̂α,n(x)
P−→ qα(x) as n→∞;

2.
√
n (q̂α,n(x)− qα(x))

L−→ N (0, σ2(x, α)) as n→∞,

where
σ2(x, α) = α(1− α)/

(
f 2(qα(x)/x)FX(x)

)
.

It is important to note that here also, the equivalent properties hold with the nonpara-
metric estimator of the order-m frontier. Indeed it is easy to see that ϕ̂m,n(x) converges at the
rate

√
n, is asymptotically unbiased and normally distributed: L (

√
n(ϕ̂m,n(x)− ϕm(x))) →

N (0, σ2(x,m)), where σ2(x,m) = E[Γ2
m(x,X, Y )], with

Γm(x,X, Y ) =
m

FX(x)
1(Xi ≤ x)

∫ ∞

0

Fm−1(y/x) [F (y/x)− 1(Yi ≤ y)] dy.

Moreover for a vector (ϕ̂m,n(x1), · · · , ϕ̂m,n(x
r)), the asymptotic r-variate normal distribution

is obtained with asymptotic covariances given by Σm(xk, xl) = E[Γm(xk, X, Y )Γm(xl, X, Y )].
Similarly we have the following more general result for the estimator of the conditional
quantile frontier function.

Theorem 4.2. Let x1, · · · , xr be r levels of the input X which satisfy the assumption of
Theorem 4.1 for a given order α ∈ (0, 1). Then,

√
n

(
q̂α,n(x1)− qα(x1), · · · , q̂α,n(xr)− qα(xr)

) L−→ Nr(0,Σα) as n→∞,

where

Σα(xk, xl) = E
[
hα(xk, X, Y )hα(xl, X, Y )

]
,

with

hα(x,X, Y ) =
α1(X ≤ x)− 1(X ≤ x, Y ≤ qα(x))

f(qα(x)/x)FX(x)
.

In applied work, the variance factors σ2(x, α) and Σα(xk, xl) must be estimated. For
instance, consistent estimators for these factors can be obtained by plugging nonparametric
estimators for the conditional density f(·/x) and the marginal distribution function FX(x)
and taking the empirical mean for the expectation. Note that, as for unconditional quantiles,
quantiles in the tail of the conditional distribution where the conditional density is low are
inherently more difficult to estimate.
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Note also that Cazals et al. (2002) obtained an asymptotic representation for their
nonparametric estimator ϕ̂m,n(x) where the error term is uniform in x, whereas the error
term involved in our approach depends on x (see the proof of Theorem 4.1). This can
be explained as follows. Both ϕ̂m,n(x) and q̂α,n(x) are representable as functionals of the

empirical distribution function F̂ . The corresponding functional for ϕ̂m,n(x) is differentiable
in the Frechet sense w.r.t. the sup-norm, whereas that corresponding to q̂α,n(x) is only
differentiable in the Gâteaux sense. The uniformity of the error term allowed Cazals et
al. (2002, Appendix B) to improve the convergence results of ϕ̂m,n(x) by a functional limit
theorem, which is not the case in our approach.

It is also interesting to compare q̂α,n(x) with the estimator of the standard conditional
quantile of the distribution of Y given X = x. First note that this latter estimate requires
a smoothing procedure which is not the case when the distribution of Y is conditioned by
X ≤ x. To compare their asymptotic variance, let us recall that the smooth estimators
of the quantiles ξα(x) of the distribution function Fx of Y given X = x, are obtained by
inverting a kernel estimator of Fx and satisfy the following result

√
nhn

(
ξ̂α(x)− ξα(x)

)
L−→ N

(
0, µ2(x, α)

)
,

where µ2(x, α) = α(1− α)R(K)/f 2
x(ξα(x)), with fx(y) = ∂

∂y
Fx(y), R(K) =

∫
K2(u)du, and

K and hn are respectively a kernel and a bandwidth satisfying some specific constraints (see,
e.g., Berlinet et al., 2001, Ducharme et al., 1995).

Let us now turn to the convergence to the full frontier function ϕ(x). We know that the
estimator q̂α,n(x) converges to the FDH estimator ϕ̂n(x) as α→ 1. We also know from Park,
Simar and Weiner (2000), that under regularity conditions, as n → ∞, the FDH estimator
ϕ̂n(x) converges to the true unknown frontier ϕ(x). The idea is then to define α as a function
of n such that α(n) → 1 and q̂α(n),n(x) → ϕ(x) as n → ∞. We thus derive an estimator
of the true production frontier ϕ(x) and show in the next theorem that it converges to the
same asymptotic distribution as the FDH estimator and as the nonparametric envelopment
estimator of Cazals et al. (2002). The rate of convergence of the order α(n) to 1 is provided.

Theorem 4.3. Assume that the joint probability measure of (X, Y ) on the compact support
Ψ provides a strictly positive density on the frontier {(x, ϕ(x))|FX(x) > 0} and that the
function ϕ is continuously differentiable. Then, for any x interior to the support of X we
have as n→∞,

n1/(p+1)
(
ϕ(x)− q̂α(n),n(x)

) L−→Weibull(µp+1
x , p+ 1)

where µx is a constant and the order α(n) is such that

n(p+2)/(p+1) (1− α(n)) −→ 0 as n→∞.

The constant µx appearing in the limiting Weibull depends on the slope of the frontier
and the value of the density near the frontier point (x, ϕ(x)). A consistent nonparametric
estimator of this unknown constant has been proposed in Park et al. (2000).

Like the approach of Cazals et al. (2002), here also we loose the
√
n-consistency because

we use q̂α,n(x) to estimate the full frontier ϕ(x) and not the partial frontier qα(x).
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5 Numerical Illustrations

In this section, we illustrate our procedure through some numerical examples with simulated
and real data. In the simulation study, the observations are simulated according the same
data generating process used in Simar (2003).

5.1 Example 1

We first consider a situation where the attainable set is convex. We simulate a sample of
n = 500 data points (xi, yi) according to the Cobb-Douglas log-linear frontier model given
by Y = X0.5 ∗ exp (−U), where X is uniform on (0, 1) and U is exponential with mean 1/3.
The true frontier function is ϕ(x) = x0.5.

Figure 1 illustrates the simulated data and the quantile curves q̂α,n and the expected
maximal frontiers ϕ̂m,n (B = 1000) for several different values of α and m. In solid lines,
the estimates q̂α,n on the left with α = .7, .97, .98, .99, 1, are compared with the estimates
ϕ̂m,n on the right with m = 2, 25, 50, 75,∞. The true frontier ϕ is in dash-dotted lines. The
frontiers are monotone nondecreasing with respect to the order. For Figure 2, we add in the
data set three outliers and we plot the same frontiers q̂α,n and ϕ̂m,n.
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Figure 1: n=500: Comparison between q̂α,n (left) and ϕ̂m,n (right), output vs input.

From Figures 1 and 2, it is clear that the frontiers ϕ̂m,n are more resistant to the three
outliers than the FDH frontier, but they are less resistant to the outliers than the quantile
frontiers of orders α < 1. Indeed, the quantile frontier q̂.99,n is influenced by only one outlier
and it comes back down immediately, whereas the frontiers ϕ̂m,n with m = 25, 50, 75 are
attracted by all the outliers and moreover continue to grow after each jump. So in this
particular example the frontier q̂.99,n is more robust to the outliers than the three frontiers
ϕ̂m,n, whereas it envelopes all these frontiers in absence of the three outliers.
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Figure 2: n=503: Same as above with 3 outliers included, output vs input.

5.2 Example 2

We now simulate a sample of n = 500 data points (xi, yi) with a non-convex production set.
We choose here the model Y = exp (−5 + 10X)/(1 + exp (−5 + 10X)) exp (−U), where X
is uniform on (0, 1) and U is exponential with mean 1/3.
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Figure 3: n=500: Comparison between q̂α,n (left) and ϕ̂m,n (right), output vs input.

Figure 3 plots the simulated data and, in solid lines, the frontiers q̂α,n and ϕ̂m,n (B = 1000)
with the same orders as in the preceding example and, in dash-dotted lines, the true frontier
ϕ. Note that, here also, the frontier q̂.99,n is above all the frontiers ϕ̂m,n. We again add in
the data set three outliers, as shown in Figure 4, and we plot the frontiers q̂α,n and ϕ̂m,n for
the same orders. It is clear that the quantile curves of orders α < 1 are more resistant to the
three outliers than the expected maximal output frontiers ϕ̂m,n and the FDH frontier q̂1,n.
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Figure 4: n=503: Same as above with 3 outliers included, output vs input.

5.3 Example 3

We now test the robustness of both estimators ϕ̂m,n and q̂α,n for a small sample size n= 100.
In each side of Figure 5 we plot, in dotted line, the quantile frontier of order α = .93, and
in solid lines, the frontiers ϕ̂m,n (B = 1000) of orders m = 5, 7, 50, 75. On the left-hand
side, the data points are simulated according to the same model used in Example 1, and
on the right-hand side, they are simulated according to the same model used in Example 2.
Observe that the quantile frontier q̂.93,n is below the frontiers ϕ̂m,n of orders m = 50, 75,
and is above those of orders m = 5, 7.
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Figure 5: n=100: In solid lines, the order-m frontiers ϕ̂5,n, ϕ̂7,n, ϕ̂50,n, ϕ̂75,n, and in dotted
line, the quantile frontier q̂.93,n.

In Figure 6 we add to the above two data sets the same three outliers used in Examples 1
and 2 and we plot the same frontiers. We remark that the frontiers ϕ̂m,n of orders m = 50, 75
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Figure 6: n=103: Same as above with 3 outliers included.

are highly influenced, even those of very low orders m = 5, 7 are attracted by the three
outliers, while the quantile frontier is slightly perturbed.

We repeated the same exercise with many other simulated data sets leading to the same
kind of results.

5.4 Frontier analysis of French post offices

We examine here a real data set in an univariate situation: this data set about the cost of the
delivery activity of the postal services in France is analyzed by Cazals, Florens and Simar
(2002). There are n = 9521 post offices observed in 1994. For each post office i, the input xi

is the labor cost measured by the quantity of labor, which represents more than 80% of the
total cost of the delivery activity. The output yi is defined as the volume of delivered mail
(in number of objects).

The 4000 observed post offices with the smallest input levels are plotted in Figure 7,
along with the estimates of quantile frontiers on the left and of expected maximal output
frontiers on the right, for several different orders α and m. Here we obtain the frontiers ϕ̂m,n

with B = 2000 bootstrap loops.
By using (5), it is very easy to check that every post office i belongs to the quantile curve

of order αi = F̂ (yi/xi). On the other hand, the frontiers ϕ̂m,n do not cover the observations
below the first frontier ϕ̂1,n (12% of the observed data) and the observations between the
frontiers of successive orders ϕ̂m,n and ϕ̂m+1,n. This disadvantage of frontiers ϕ̂m,n with
respect to frontiers q̂α,n is due to the fact that the order m is discrete.

Note that the order αi of the quantile frontier which passes through the post office (xi, yi)
is equal to the percentage of post offices that produce less than yi among all the post offices
using inputs smaller than or equal to xi. In other words, this order indicates that the ith
post office produces more than 100α% of all post offices using inputs smaller or equal to xi

and produces less than the 100(1− α)% remaining post offices. This is why one sees in the
left side of Figure 7 that, if αi is close to one, then the post office (xi, yi) can be seen to
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be performing relatively efficiently, and likewise, if αi is close to zero, then the post office
would be performing relatively inefficiently. Thus the order of the empirical quantile frontier
q̂α,n defines a reasonable benchmark value. Note also that the nonparametric estimation
of the expected frontier ϕ̂m,n can be viewed as a mark of good practice for post offices
when studying their performance. However, this benchmark is less clear than the empirical
quantile frontier because it is less easy to interpret and does not cover the whole data set.
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Figure 7: The 4000 observations with the smallest input levels. On the left, the frontiers
q̂α,n of orders α = .3, .5, .7, .9, .97, .98, .99, .995, .999, and the FDH frontier (α = 1). On
the right, the frontiers ϕ̂m,n of orders m = 1, 2, 25, 50, 100, 200, 300, 400, 600, and the FDH
frontier (m = ∞). Output vs input.

We also remark that the frontiers ϕ̂m,n (right side of Figure 7) are perturbed by the
extreme observations from the order m = 25, whereas the frontiers q̂α,n are not influenced
except for those having orders almost equal to one (α ≥ .999).

The left side (resp. the right side) of Figure 8 indicates how the percentage p(α) (resp.
p(m)) of observations above the quantile estimates q̂α,n (resp. the expected maximum cost
estimates ϕ̂m,n) decreases with α (resp. m). We remark that the percentage p(α) decreases
very slowly until the order α = .8 of approximately 24% of observations. It means that
the quantile frontiers of orders 0 ≤ α ≤ .8 are very tight. The 24% observations below the
frontier q̂.8,n have an intermediate production performance and can be relatively inefficient.
However, the percentage p(α) falls dramatically from the order α = .8, which means that
the quantile frontiers of extreme orders .8 ≤ α ≤ 1 are very spaced and are spread out over
76% of the observations. In particular, 10% of the observations are above the frontier q̂.995,n

and 3% of the observations are above the frontier q̂.999,n. It is what explains notably the fact
that only quantile frontiers of orders very close to one are influenced by super-efficient units.

On the right-hand side of Figure 8, we observe an opposite phenomenon: first the per-
centage p(m) falls severely until the order m = 50 of approximately 80% of observations
and then it continues to decrease but very slowly. Consequently the frontiers ϕ̂m,n of orders
m ≥ 50 are very tight. In particular we just have 9% of observations between the two fron-
tiers ϕ̂100,n and ϕ̂600,n, and only 3% of observations are above the frontier ϕ̂600,n. The 20%
observations above the frontier ϕ̂50,n are extreme and could be outliers or noisy observations.
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Figure 8: Evolution of the percentage of observations above the frontiers q̂α,n (left) and ϕ̂m,n

(right).

In summary the frontiers ϕ̂m,n are very tight from the order m = 50 and are spread out over
extreme observations, it is then natural that these frontiers be more sensitive to extreme
values than the quantile frontiers.

We can illustrate this result more clearly by considering the following inverse problem: for
a given percentage p0, denote by α(p0) (resp. m(p0)) the order of the frontier q̂α,n (resp. ϕ̂m,n)
above which the percentage of observations is equal to p0, we have p(α(p0)) = p(m(p0)) = p0.
Inverting the relationship between α and p(α) and between m and p(m) in Figure 8, we get
the evolution of α and m as functions of p. When the percentage p varies between 0 and
10%, we remark that the order α(p) is almost constant (α(p) ≈ 1) while the order m(p) falls
rapidly from m = 600 to m ≈ 100. This means that the 10% extreme observations influence
all the frontiers ϕ̂m,n with orders 100 ≤ m ≤ ∞, whereas only the frontiers q̂α,n with orders
almost equal to 1 are influenced by these extreme observations. This can be understood
since the FDH frontier q̂1 envelopes all the observed data.

This result is also illustrated in Figure 9 where the curve of evolution of α(p) with respect
tom(p) is nearly flat from the point (100, .995) which corresponds to the percentage p ≈ 10%.
This plot establishes an empirical relationship between the two families of frontiers {q̂α,n}
and {ϕ̂m,n}. Given a frontier q̂α,n, we can determine the frontier ϕ̂m,n above which we have
the same percentage of observations, and vice versa.

6 Conclusions

In this paper, we propose a new statistical concept of a production frontier which allows
a more subtle tuning than the expected maximal output frontier of order m ∈ N∗ (Cazals,
Florens and Simar, 2002). We define a frontier of continuous order α ∈ [0, 1] of the production
set Ψ, for a given level of inputs x, by the conditional α-quantile of the distribution of Y
given X ≤ x.

Our quantile frontiers satisfy at least the same statistical properties as the expected
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Figure 9: An empirical relationship between q̂α,n and ϕ̂m,n.

maximal output frontiers of order m. Moreover they have the advantage, from an economic
point of view, to cover the interior of the attainable set entirely thus given a clearer indication
on the production efficiency. This benefit is due to the continuity of the index α of our
conditional quantiles.

A nonparametric estimator of the quantile function of order α < 1 is very easy to de-
rive by inverting the empirical version of the conditional distribution function. It does not
envelop all the observed data points, and so it is more robust to extreme values than the
standard DEA/FDH nonparametric envelopment estimators. Also it is easier to interpret
than the nonparametric estimator of the expected function of order m. Moreover our es-
timator achieves the

√
n-consistency, is asymptotically unbiased and normally distributed,

which is reasonable since the conditioning set X ≤ x has a positive probability measure.
By choosing α as an appropriate function of n, it estimates the true frontier function and
satisfies the asymptotic properties of the FDH estimator.

The method is illustrated using simulated and real data. It shows that the nonparametric
quantile frontiers are more resistant to large observations in the output direction than the
nonparametric estimates of expected maximal output frontiers, and that the continuous order
α represents a good benchmark value. The robustness revealed by the numerical illustrations
needs to be confirmed by some theoretical properties. This question is currently investigated.

It should be clear that, unlike the approach of Cazals et al. (2002), the conditional quan-
tile approach is not extended here to multivariate Y . Serfling (2001) stated, “Despite the
absence of a natural ordering of Euclidean space for dimension greater than one, effort to
define vector-valued quantile functions for multivariate distributions has generated several
approaches”. The methods based on depth functions recommended by Serfling might be
adapted to generalize in a reasonable way our univariate conditional quantiles. This prob-
lem is worth investigating.
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useful suggestions.
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APPENDIX: PROOFS

Proof of Proposition 2.1. Let (x, y) ∈ Ψ∗ and set α = F (y/x). It is an immediate
consequence of the strict monotonicity of F (·/x) that qα(x) = F−1(α/x) = y. �

Proof of Proposition 2.2. Let us assume the contrary. Then we obtain,

∀x ∈
◦

̂Supp(X), ∀y ∈ Y (x), ∃mx,y ∈ N∗ : y = ϕmx,y
(x) (7)
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where Supp(X) is the support of the distribution of X and

◦
̂Supp(X) denotes its interior. Let

x ∈
◦

̂Supp(X) be fixed such that ∂Y (x) > 0. Since the production function ϕ is greater than
or equal to the output-efficient function ∂Y (.), we have ϕ(x) = ∂Y (x) or ϕ(x) > ∂Y (x).

If ϕ(x) = ∂Y (x), we know from Cazals, Florens and Simar (2002, Appendix A) that
ϕ(x) = lim ↗m→∞ ϕm(x), so there exists an integer mx ∈ N∗ such that ϕmx

(x) <
ϕmx+1(x) ≤ ∂Y (x) (else, we would have ϕm(x) = ϕm+1(x) for every m ∈ N∗, so that

ϕ(x) = ϕ1(x), consequently we would obtain
∫ ϕ(x)

0
F (y/x)dy = 0 which is impossible be-

cause the function F (·/x) is strictly increasing on [0, ϕ(x)]). Let y be a real number such
that ϕmx

(x) < y < ϕmx+1(x). Using the free disposability assumption of outputs, it is
easily seen that Y (x) ≡ [0, ∂Y (x)], so that y ∈ Y (x). Then by (7), there exists an integer
mx,y ∈ N∗ such that y = ϕmx,y

(x). It follows that ϕmx
(x) < ϕmx,y

(x) < ϕmx+1(x), and
thus mx < mx,y < mx + 1 since ϕm(x) is a monotone nondecreasing function of m. This
contradicts the fact that mx,y is an integer.

Now if ϕ(x) > ∂Y (x), first note that ∂Y (x) ∈ Y (x) yields by (7) that ∂Y (x) =
ϕmx,∂Y (x)

(x) where mx,∂Y (x) ∈ N∗. Due to lim ↗m→∞ ϕm(x) = ϕ(x), there exists an or-
der mx > mx,∂Y (x) such that ϕ(x) ≥ ϕm(x) > ∂Y (x) when m ≥ mx, and ϕm(x) ≤ ∂Y (x)
when m < mx. For any y ∈ Y (x) we have y ≤ ∂Y (x) so that y < ϕmx

(x). We also have
by (7) y = ϕmx,y

(x) where mx,y ∈ N∗. Hence ϕmx,y
(x) < ϕmx

(x). Therefore, using again the
monotonicity of ϕm(x) with respect to m, we get mx,y < mx. In summary,

∀y ∈ Y (x), ∃mx,y ∈ {1, · · · , mx − 1} : y = ϕmx,y
(x).

Since ϕm(x) ∈ [0, ∂Y (x)] = Y (x) for every m < mx, the map m 7→ ϕm(x) is well defined and
is onto from {1, · · · , mx−1} to Y (x). As a consequence, the finite set {ϕ1(x), · · · , ϕmx−1(x)}
coincides with the interval [0, ∂Y (x)], which implies the contradiction. �

Proof of Proposition 2.3. Let x be an input which satisfies the condition of Proposition
2.3. We have by definition ϕm(x) = E[max(Y 1, · · · , Y m)], where Y 1, · · · , Y m are m indepen-
dent identically distributed random variables generated by the distribution function F (·/x).
Let Fm,x(y) = 1

m

∑m
i=1 1(Y i ≤ y) be the empirical distribution function of (Y 1, · · · , Y m).

The empirical quantile of order α ∈ (0, 1] of this sample is then defined by

qm
α (x) := F−1

m,x(α) = inf{y| Fm,x(y) ≥ α}.

We know that qm
α (x) is equal to Y (αm) if αm is an integer and to Y ([αm]+1) otherwise. Then

qm
1 (x) = Y (m). Since the family (qm

α (x))0<α<1 increases to qm
1 (x) when α→ 1, the dominated

convergence theorem yields ϕm(x) = limα→1E[qm
α (x)], and thus we can write ϕm(x) =

E[qm
α (x)] + ε1(α), where ε1(α) = o(α) when α → 1. On the other hand, according to the

representation theorem of Bahadur (see, e.g., Serfling, 1980, Theorem 2.5.1, p. 91), we have
for every α ∈ (0, 1),

qm
α (x)− qα(x) =

α− Fm,x(qα(x))

f(qα(x)/x)
+Rm,x(α),

where, with probability 1, Rm,x(α) = O
(
m−3/4(logm)3/4

)
as m → ∞. By using Kiefer’s

Theorem (see, e.g., Serfling, 1980, Theorem D, p. 101), it can easily be seen that a more
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precise expression of the remainder is given by

Rm,x(α) =
1

f(qα(x)/x)
Rm,x

where, almost surely and uniformly in α, we have

Rm,x = O
(
m−3/4(logm)1/2(log logm)1/4

)
, m→∞.

It follows that,

ϕm(x)− qα(x) =
1

f(qα(x)/x)
O

(
m−3/4(logm)1/2(log logm)1/4

)
+ ε1(α), m→∞.

Now consider the function ψx(p) = 1/f(qp(x)/x), p ∈ [0, 1]. We have as m→∞,

ϕm(x)− qα(x) = [ψx(1)− (ψx(1)− ψx(α))]O
(
m−3/4(logm)1/2(log logm)1/4

)
+ ε1(α).

Since F (·/x) has a positive continuous density f(./x) in the neighborhood (0, ϕ(x)) of qα(x),
for any α ∈ (0, 1), we obtain according to Shorack and Wellner (1986, Proposition 6, p.
9) that the partial derivative (∂/∂α)qα(x) exists and equals 1/f(qα(x)/x). Then, for every
α ∈ (0, 1), the derivative of ψx(α) with respect to α is given by

ψ′x(α) = − ∂

∂α
qα(x)F ′′ (qα(x)/x) /f 2(qα(x)/x).

Using the fact that ψx(1)− ψx(α) = (1− α)ψ′x(α) + (1− α)ε2(α), where ε2(α) = o(α) when
α→ 1, we obtain as m→∞ and α→ 1,

ϕm(x)− qα(x) = {ψx(1)− (1− α)[ψ′x(α) + o(α)]}O
(
m−3/4(logm)1/2(log logm)1/4

)
+ o(α),

which proves (3). �

Proof of Proposition 2.4. 1. Since the family {qα(x)}0≤α≤1 is monotone nondecreasing
and bounded by q1(x), qα(x) converges pointwise to q1(x) when α→ 1.

2. Let K be a compact subset of

◦
̂Supp(X). {qα(.)}0<α<1 is a nondecreasing sequence of

real valued functions which are continuous on K. Moreover it converges pointwise to the
continuous function q1(.) as α tends to one. Then by Dini’s theorem (Schwartz, 1991, p.
325) the convergence is uniform on K. �

Proof of Proposition 2.5. Suppose that for every y ≥ 0, the function x 7→ F (y/x)
is monotone nonincreasing on {x ∈ R

p
+|FX(x) > 0}. Let α ∈ [0, 1] and x1 ≤ x2 such

that FX(x1) > 0. Then F (qα(x2)/x1) ≥ F (qα(x2)/x2) ≥ α. It follows that qα(x2) ≥
inf{y| F (y/x1) ≥ α} = qα(x1).

Conversely, suppose that the quantile function is monotone nondecreasing for every order
on {x ∈ R

p
+|FX(x) > 0}. Let y ∈ R+ and x1 ≤ x2 such that FX(x1) > 0. Set α = F (y/x2).

We have qα(x2) = inf{u| F (u/x2) ≥ α}, so that y ≥ qα(x2). Since qα(x1) ≤ qα(x2),
y ≥ qα(x1), and thus F (y/x1) ≥ F (qα(x1)/x1) ≥ α = F (y/x2). �

The following lemma will be useful in the proof of Theorem 4.1.
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Lemma 6.1. Let {Vn}, {Wn} be two sequences of random variables satisfying the following
conditions
i) For all δ > 0, there exists a λ (depending on δ) s.t. P (|Wn| > λ) < δ.
ii) For all k and all ε > 0

lim
n→∞

P (Vn ≤ k,Wn ≥ k + ε) = 0

lim
n→∞

P (Vn ≥ k + ε,Wn ≤ k) = 0.

Then Vn −Wn
P−→ 0 as n→∞.

The proof of this lemma can be found in Ghosh (1971, Lemma 1, p. 1958). Now let us
demonstrate Theorem 4.1.

Proof of Theorem 4.1. Consider the statistical functional T α,x which associates to a
distribution function G on R2 the real value

T α,x(G) = inf

{
y| G(x, y)

G(x,∞)
≥ α

}
.

The conditional quantile qα(x) and its estimator q̂α,n(x) are then given by qα(x) = T α,x(F )

and q̂α,n(x) = T α,x(F̂ ). Let

Rα,x
n = (T α,x(F̂ )− T α,x(F ))− 1

n

n∑

i=1

d1T
α,x (F ; 1(Xi ≤ ., Yi ≤ .)− F ) (8)

where

d1T
α,x (F ; 1(Xi ≤ ., Yi ≤ .)− F ) =

d

dλ
T α,x(F + λ(1(Xi ≤ ., Yi ≤ .)− F ))|λ=0+

is the first Gâteaux differential of T α,x at F in the direction of 1(Xi ≤ ., Yi ≤ .). Using
property (6), we obtain by a straightforward computation,

T α,x(F + λ(1(Xi ≤ ., Yi ≤ .)− F )) = F−1

(
α +

αλ1(Xi ≤ x)

(1− λ)FX(x)
/x

)
1(Yi > qα(x))

+ F−1

(
α− λ(1− α)1(Xi ≤ x)

(1− λ)FX(x)
/x

)
1(Yi < qα(x)) + qα(x)1(Yi = qα(x)).

Hence,

d1T
α,x (F ; 1(Xi ≤ ., Yi ≤ .)− F )

=
α1(Xi ≤ x)1(Yi > qα(x)) + (α− 1)1(Xi ≤ x)1(Yi < qα(x))

f(qα(x)/x)FX(x)
.

Therefore,

1

n

n∑

i=1

d1T
α,x (F ; 1(Xi ≤ ., Yi ≤ .)− F ) =

1

n

n∑

i=1

hα(x,Xi, Yi) (9)
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where

hα(x,X, Y ) =
α1(X ≤ x)− 1(X ≤ x, Y ≤ qα(x))

f(qα(x)/x)FX(x)
.

We have
V ar[hα(x,X, Y )] = E[(hα(x,X, Y ))2] = σ2(x, α),

so that, by the central limit theorem,

W α,x
n =

1√
n

n∑

i=1

d1T
α,x (F ; 1(Xi ≤ ., Yi ≤ .)− F )

L−→ N
(
0, σ2(x, α)

)
as n→∞, (10)

and by the law of large numbers,

1√
n
W α,x

n
P−→ 0 as n→∞. (11)

Let V α,x
n =

√
n (q̂α,n(x)− qα(x)). Then we obtain via (8)

√
nRα,x

n = V α,x
n −W α,x

n .

Using Lemma 6.1, we will show that
√
nRα,x

n converges in probability to zero. We have for
every real number t,

{V α,x
n ≤ t} =

{
q̂α,n(x) ≤ qα(x) +

t√
n

}
=

{
α ≤ F̂ (qα(x) +

t√
n
/x)

}
= {Zt,n ≤ Tn} , (12)

where

Zt,n =

√
nF̂X(x)

f(qα(x)/x)FX(x)
[F (qα(x) +

t√
n
/x)− F̂ (qα(x) +

t√
n
/x)]

and

Tn =

√
nF̂X(x)

f(qα(x)/x)FX(x)
[F (qα(x) +

t√
n
/x)− α].

Since F (·/x) is differentiable at qα(x) with derivative f(qα(x)/x), F (qα(x) + t√
n
/x) − α =

t√
n
f(qα(x)/x)+ t√

n
o(1) as n→∞, which implies Tn = F̂X(x)

FX(x)
t+ tF̂X(x)

f(qα(x)/x)FX (x)
o(1) as n→∞.

We know from the law of large numbers that F̂X(x)
P→ FX(x), and thus,

Tn
P→ t as n→∞. (13)

On the other hand we have

Zt,n −W α,x
n =

√
nF̂X(x)

f(qα(x)/x)FX(x)

×
[(

F (qα(x) +
t√
n
/x)− F̂ (qα(x) +

t√
n
/x)

)
−

(
α− F̂ (qα(x)/x)

)]
.
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By a simple computation we find that,

{
f 2(qα(x)/x)F 2

X(x)
}
E[(Zt,n −W α,x

n )2] = αFX(x)− α2FX(x)− FX(x)F 2(qα(x) +
t√
n
/x)

+ FX(x)F (qα(x) +
t√
n
/x) + 2αFX(x)F (qα(x) +

t√
n
/x)− 2FX(x)F (qα(x) + (

t√
n
∧ 0)/x).

Using the continuity of F (·/x) in qα(x), we get E[(Zt,n −W α,x
n )2] → 0 as n→∞, and thus,

Zt,n −W α,x
n

P→ 0 as n→∞. (14)

Now, using the results (9) and (12)-(14), we will show that V α,x
n and W α,x

n satisfy the two
conditions of Lemma 6.1. As E[(W α,x

n )2] = σ2(x, α), the first condition follows from a trivial
application of the Markov inequality. For any k and any ε > 0, setting t = k, we have by
(12),

{V α,x
n ≤ k,W α,x

n ≥ k + ε} = {Zt,n ≤ Tn,W
α,x
n ≥ t + ε} ⊂ {(W α,x

n − Zt,n) ≥ ε− (Tn − t)} .

Hence,
P (V α,x

n ≤ k,W α,x
n ≥ k + ε) ≤ P (|(W α,x

n − Zt,n) + (Tn − t)| ≥ ε) .

Therefore, combined with (13) and (14), limn→∞ P (V α,x
n ≤ k,W α,x

n ≥ k + ε) = 0. Now
applying (12) to t = k + ε, we get

P (V α,x
n ≥ k + ε,W α,x

n ≤ k) ≤ P (|(Zt,n −W α,x
n )− (Tn − t)| ≥ ε) .

Then (13) and (14) yield limn→∞ P (V α,x
n ≥ k + ε,W α,x

n ≤ k) = 0. Hence, the second

condition of Lemma 6.1 is also satisfied. Therefore V α,x
n −W α,x

n
P→ 0, as n→∞, that is,

√
nRα,x

n
P−→ 0 as n→∞.

In particular Rα,x
n converges in probability to zero as n→∞. Thus,

q̂α,n(x)− qα(x) =
1√
n
W α,x

n +Rα,x
n =

1√
n
W α,x

n + op(1) as n→∞, (15)

√
n(q̂α,n(x)− qα(x)) = W α,x

n +
√
nRα,x

n = W α,x
n + op(1) as n→∞. (16)

The consistency follows from results (11) and (15), and the asymptotic normality is obtained
by (10) and (16). �

Proof of Theorem 4.2. It follows from (16), as n→∞,

√
n

(
q̂α,n(x1)− qα(x1), · · · , q̂α,n(xr)− qα(xr)

)

=
1√
n

n∑

i=1

(
hα(x1, Xi, Yi), · · · , hα(xr, Xi, Yi)

)
+ op(1).
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Hence, the multivariate central limit theorem yields,

√
n

(
q̂α,n(x1)− qα(x1), · · · , q̂α,n(xr)− qα(xr)

) L−→ Nr(0,Σα) as n→∞,

where
Σα(xk, xl) = Cov

(
hα(xk, X1, Y1), hα(xl, X1, Y1)

)
.

This ends the proof. �

Proof of Theorem 4.3. From Park, Simar and Weiner (2000) and Cazals, Florens and
Simar (2002) we know that

n1/(p+1)(ϕ(x)− ϕ̂n(x))
L−→Weibull(µp+1

x , p+ 1) as n→∞.

So by using the following decomposition

n1/(p+1)(ϕ(x)− q̂α,n(x)) = n1/(p+1)(ϕ(x)− ϕ̂n(x)) + n1/(p+1)(ϕ̂n(x)− q̂α,n(x))

we want to find a function α of n such that,

α(n) → 1 and n1/(p+1)(ϕ̂n(x)− q̂α(n),n(x))
L−→ 0, as n→∞.

From (5) we have for any α > 0,

ϕ̂n(x)− q̂α,n(x) =
(
Y(iNx) − Y(i{αNx})

)
1(αNx ∈ N∗)

+
(
Y(iNx ) − Y(i{[αNx]+1})

)
1(αNx /∈ N∗). (17)

Set for every k ∈ {1, · · · , Nx − 1},

Cx,k(n) =
Y(iNx ) − Y(ik)

1− k
Nx

,

and let Cx(n) = max{Cx,k(n) | 1 ≤ k ≤ Nx − 1}. Then we have

(
Y(iNx) − Y(i{αNx})

)
1(αNx ∈ N∗) =

(
Y(iNx) − Y(i{αNx})

) Nx∑

k=1

1(αNx = k)

=

Nx−1∑

k=1

(
Y(iNx ) − Y(ik)

)
1(αNx = k)

=
Nx−1∑

k=1

Cx,k(n)(1− k

Nx
)1(α =

k

Nx
)

≤ Cx(n)

Nx∑

k=1

(1− α)1(αNx = k)

= Cx(n)(1− α)1(αNx ∈ N∗) (18)
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since 1(αNx ∈ N∗) =
∑Nx

k=1 1(αNx = k).

Now, using that 1(αNx /∈ N∗) =
∑Nx−1

k=0 1(αNx ∈ (k, k + 1)), we get

(
Y(iNx) − Y(i{[αNx]+1})

)
1(αNx /∈ N∗) =

Nx−1∑

k=0

(
Y(iNx) − Y(i{k+1})

)
1(αNx ∈ (k, k + 1))

=

Nx−2∑

k=0

(
Y(iNx) − Y(i{k+1})

)
1(αNx ∈ (k, k + 1))

=
Nx−2∑

k=0

Cx,k+1(n)(1− k + 1

Nx
)1(αNx ∈ (k, k + 1))

≤ Cx(n)(1− α)

Nx−2∑

k=0

1(αNx ∈ (k, k + 1))

≤ Cx(n)(1− α)1(αNx /∈ N∗). (19)

It follows from (17)-(19) that,

ϕ̂n(x)− q̂α,n(x) ≤ Cx(n)(1− α)1(αNx ∈ N∗) + Cx(n)(1− α)1(αNx /∈ N∗)

= Cx(n)(1− α),

so that

n1/(p+1)(ϕ̂n(x)− q̂α,n(x)) ≤ n1/(p+1)Cx(n)(1− α). (20)

Since the support Ψ of (X, Y ) is compact, the support of Y is bounded. Let M > 0 be its
upper bound. Then for any k = 1, · · · , Nx − 1,

Y(iNx) − Y(ik) ≤ Y(iNx ) ≤M a.s, and
1

1− k
Nx

≤ Nx.

Hence,

∀k = 1, · · · , Nx − 1 : Cx,k(n) =
Y(iNx) − Y(ik)

1− k
Nx

≤MNx a.s.

Therefore,
Cx(n) = max

1≤k≤Nx−1
Cx,k(n) ≤MNx a.s.

We deduce from (20),

n1/(p+1)(ϕ̂n(x)− q̂α,n(x)) ≤MNxn
1/(p+1)(1− α) = MF̂X(x)n(p+2)/(p+1)(1− α) a.s.

We know from the strong law of large numbers that F̂X(x)
a.s→ FX(x). So to achieve our goal,

it is sufficient to choose α(n) such that,

n(p+2)/(p+1)(1− α(n)) → 0 as n→∞.

Indeed we find,

α(n) → 1 and n1/(p+1)(ϕ̂n(x)− q̂α(n),n(x))
a.s−→ 0 as n→∞.

This completes the proof. �
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