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1 Introduction

The paper explores the effect of measurement errors on the estimation
of a linear panel data regression model. The conventional fixed effects
least squares estimator, which ignores measurement errors, is biased.
By correcting for the bias we can construct consistent and asymptot-
ically normal estimators, where asymptotically here means that the
number of sample units tends to infinity.

Measurement errors can be additive or multiplicative. Additive
measurement errors in panel data models have been extensively stud-
ied in the literature, Griliches and Hausman (1986), Hsiao and Tay-
lor (1991), Wansbeek and Kooning (1991), Biørn (1996), Wansbeek
(2001), Biørn and Krishnakumar (2008). But multiplicative measure-
ment errors, though not uncommon in other models (see, e.g., Hwang
(1986), Lin (1989), Carroll et al. (2006)), have not found much atten-
tion in the context of panel data models.

The present paper is a first attempt to fill this gap. It was moti-
vated by the various worldwide endeavors to find methods for mask-
ing data so that their disclosure risk becomes negligible, see, e.g.,
Domingo-Ferrer and Saygin (2008). Data and in particular panel data
that are released to the public should be not only nominally but also
factually anonymous. Making them anonymous in this sense can be
done by (slightly) distorting them. The distortion, of course, should be
such that the disturbing effects on any subsequent scientific analysis of
the data should be minimal or should be amenable to correction. One
way of perturbing data is to mix them with random noise, see Kim
(1986) as an early reference. This can be done by adding random
measurement errors to the data or by multiplying them with mea-
surement errors. The latter procedure is often preferred, as it takes
automatically into account that large values of a sensitive variable are
more prone to disclosure and hence need to be better protected. In
contrast to an additive error, a multiplicative error will distort large
values more than small values.

Another aspect of statistical disclosure control techniques is that
the procedure used is typically made known to the public. In our
case, this means that the measurement error variance is known to the
statistician working with the data.

Although linear panel regressions can also be estimated without
this knowledge, we here assume that the error variance is known. This
assumption not only leads to simpler estimators but also to more ef-
ficient ones. Indeed, we use this knowledge as prior information to
construct consistent estimators. In addition, we find estimates for the
asymptotic variances of these estimators.
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We only deal with one type of estimators, the familiar “within” LS
estimator and its corrections. It uses the “within” variances and co-
variances for each sample unit over time instead of the overall (total)
variances and covariances. In doing so, the unobserved heterogene-
ity which is present in the panel data is eliminated. There are other
estimators that can do the same, especially instrumental variable es-
timators that use lagged values of the variables as instruments. But
in order for them to function properly some assumptions about the
variables must be satisfied. E.g., for instrumental variables to work
the variables must be autocorrelated. No such assumptions are needed
for the “within” estimators.

Although this paper is mainly concerned with multiplicative mea-
surement errors, we also deal briefly with the additive case, just to
show the parallel development in both cases.

While iid measurement errors are the main subject of our investi-
gation, we also explore a special case of autocorrelated errors, a case
which has been suggested especially for masking panel data: In ad-
dition to an iid part, the measurement error has a component which
is random over the sample units but constant in time. It thus has a
common factor structure, see Biørn(1996) and Höhne (2008).

The principles involved for constructing consistent estimators can
be most easily presented in the context of a simple linear model with
only one slope parameter. The procedures developed can then be
extended to the case of a multiple regression, which, however, is not
done in the present paper.

In Section 2 the linear panel model with measurement errors is
presented. Section 3 introduces the within LS (naive) estimator of
the slope parameter. In Section 4 the bias of the naive estimator
is derived, and in Section 5 a corrected estimator is constructed. A
corrected estimator of the regression error variance is presented in
Section 6. Section 7 deals with the case of a common factor structure
in the error process. In Section 8 asymptotic variances for the various
corrected slope estimators are presented. Section 9 has a simulation
study, where the asymptotic properties of the estimators are studied
under small to medium size samples. Section 10 concludes. In an
appendix, we demonstrate the equivalence of the delta method and
the sandwich formula.
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2 The model

2.1 Linear panel regression model

A panel consists of a sample of i = 1, · · · , N sample units (individuals,
households, companies) observed over t = 1, · · · , T points of time
(waves). Typically T is small and N is large. Asymptotics in this
context therefore means asymptotics for N → ∞.

For each individual and each wave, two variables are observed,
a regressor (or independent) variable x and a response (or depen-
dent) variable y. The panel data consists of the set (xit, yit), i =
1, · · · , N, t = 1, · · · , T . We assume a linear relation between x and y
as follows:

yit = γi + βxit + εit, i = 1, · · · , N, t = 1, · · · , T, (1)

where ε is the error in the equation, and γi is the individual effect,
giving rise to unobserved heterogeneity. β is the slope parameter to
be estimated.

All variables including the γi are assumed to be random. However,
the subsequent results, which are all of an asymptotic nature, remain
valid if instead the γi or xit are taken to be deterministic as long as
their empirical moments behave asymptotically (i.e., for N → ∞) in
the same way as if they were random. (Exact conditions could be
formulated, but are not presented in this paper.)

The εit follow the usual assumptions: they are iid with mean 0
and variance σ2

ε and they are independent of the γi and xit. As to the
latter, we assume that the vectors (γi, xi1, · · · , xiT ), i = 1, · · · , N ,
are iid. We make no assumptions about the joint distribution of
(γi, xi1, · · · , xiT ) except that the moments as far as necessary exist.
In particular, the xit may be autocorrelated and the γi may be corre-
lated with the xit.

2.2 Measurement errors

The variables x and y are not known to the statistician. Instead surro-
gate variables xa and ya, which are the original variables intermingled
with error, are released to him. In the case of additive errors these
are given by

xa
it = xit + uit, ya

it = yit + vit (2)

and for multiplicative errors by

xa
it = xitUit, ya

it = yitVit (3)
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with
Uit = 1 + uit, Vit = 1 + vit.

In both cases, the pairs (uit, vit) are iid with mean (0,0) and vari-
ances σ2

u, σ2
v and covariance σuv. They are independent of all the

(xit, yit). If the measurement errors u and v are used to mask the
data, they will typically be uncorrelated. However, to cover the gen-
eral case, we do not assume σuv = 0.

3 Estimators

The conventional “within” estimator of β constructed from the true
data is given by:

β̂ =
Sxy

Sxx
, (4)

where

Sxy :=
1

NT

∑

i

∑

t

(xit − xi)(yit − yi)

Sxx :=
1

NT

∑

i

∑

t

(xit − xi)
2

with xi = 1
T

∑

t xit and yi = 1
T

∑

t yit. The use of the within vari-
ance Sxx and within covariance Sxy results in the elimination of the
individual effects γi. Sxx and Sxy can also be written as

Sxy = sxy

Sxx = sxx,

where

sxy := (sxy)i =
1

T

∑

t

(xit − xi)(yit − yi)

sxx := (sxx)i =
1

T

∑

t

(xit − xi)
2

are, respectively, the covariance of x and y and the variance of x
for an individual i over time t, and the bar denotes averaging over
i = 1, · · · , N , e.g.: sxy = 1

N

∑

i(sxy)i.
This estimator of β is not feasible, as it uses the true data, which

are unknown to the statistician. A feasible estimator can be con-
structed in the same way but with the randomly perturbed data in
place of the original data:

β̂a =
Sa

xy

Sa
xx

(5)
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with

Sa
xy :=

1

NT

∑

i

∑

t

(xa
it − xa

i )(y
a
it − ya

i ) = sa
xy

Sa
xx :=

1

NT

∑

i

∑

t

(xa
it − xa

i )
2 = sa

xx,

where the superscript a indicates the use of the variables xa and ya.
This estimator may be called a naive estimator, as it does not take
the perturbations into account. Indeed, the naive estimator turns out
to be biased. Derivation of the bias is the subject of the next section.

4 Derivation of bias

4.1 Probability limits

In order to derive the bias of β̂a, we need to compute the probability
limits of Sa

xy and Sa
xx. We do this separately for the two cases of ad-

ditive and multiplicative errors.

4.1.1 Additive errors

From the definition of Sa
xy and Sxy and because of (2) it follows that

Sa
xy − Sxy = sa

xy − sxy

= sxv + syu + suv, (6)

where the last three terms are defined in the same way as sxy above.
As N → ∞ these terms go to the corresponding expected values:

plim(Sa
xy − Sxy) = Esxv + Esyu + Esuv. (7)

Note that, e.g., Esxv is actually E(sxv)i, where (sxv)i = 1
T

∑

t(xit −
xi)(vit − vi). But since the expectation of this term is independent of
i, we omit the index i. Now, because of the independence assumption,
Esxv = Esyu = 0. As to Esuv, we have

Esuv = (1 −
1

T
)σuv.

Consequently,

plim(Sa
xy − Sxy) = (1 −

1

T
)σuv. (8)
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In a similar way or just by setting y = x and v = u, we obtain

plim(Sa
xx − Sxx) = (1 −

1

T
)σ2

u (9)

plim(Sa
yy − Syy) = (1 −

1

T
)σ2

v (10)

The factor 1− 1
T

= T−1
T

, which appears in (8) and (9) and in many
of the subsequent expressions is of course the correction for degrees
of freedom. As typically T is not large in panel data, this factor can
never be suppressed. It is an important distinction of panel data anal-
ysis from cross section data analysis.

4.1.2 Multiplicative errors

For multiplicative errors, we replace, in the arguments above, uit and
vit with xituit and yitvit, respectively. We then obtain in place of (7)

plim(Sa
xy − Sxy) = Esx(yv) + Esy(xu) + Es(xu)(yv), (11)

where, e.g.,

s(xu)(yv) := (s(xu)(yv))i =
1

T

∑

t

(

xituit −
1

T

∑

t

xituit

)(

yitvit −
1

T

∑

t

yitvit

)

.

Again by the independence assumption, Esx(yv) = Esy(xu) = 0. As to
Es(xu)(yv), we obtain

Es(xu)(yv) =
1

T

∑

t

E(xityituitvit) −
1

T 2

∑

t

∑

s

E(xityisuitvis)

= σuvEmxy −
1

T
σuvEmxy

= (1 −
1

T
)σuvEmxy, (12)

where mxy := (mxy)i = 1
T

∑

t(xityit). Consequently,

plim(Sa
xy − Sxy) = (1 −

1

T
)σuvEmxy. (13)

By setting y = x and v = u, we finally obtain

plim(Sa
xx − Sxx) = (1 −

1

T
)σ2

uEmxx (14)

plim(Sa
yy − Syy) = (1 −

1

T
)σ2

vEmyy. (15)
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4.2 Bias

Substituting the probability limits in (5), we immediately obtain ex-
pressions for the probability limit of the naive estimator and thus
implicitly for the (asymptotic) bias.

4.2.1 Additive errors

By (5), (8), and (9),

plimβ̂a =
plimSxy + (1 − 1

T
)σuv

plimSxx + (1 − 1
T

)σ2
u

=
βEsxx + (1 − 1

T
)σuv

Esxx + (1 − 1
T

)σ2
u

, (16)

where we used plimSxx = Esxx and plimSxy = βEsxx, which follows
from (1).

4.2.2 Multipicative errors

By (5), (13), (14), and the model equation (1),

plimβ̂a =
plimSxy + (1 − 1

T
)σuvEmxy

plimSxx + (1 − 1
T

)σ2
uEmxx

=
βEsxx + (1 − 1

T
)σuvEmxy

Esxx + (1 − 1
T

)σ2
uEmxx

. (17)

In the additive case, the bias depends on Esxx, and in the mul-
tiplicative case, it depends in addition on Emxx and, if σuv 6= 0, on
Emxy. These expectations in turn depend on the joint distribution
of the vector (γi, xi1, · · · , xiT ), e.g., on whether the xit are iid or are
autocorrelated or whether the individual effects are uncorrelated or
correlated with the xit. To derive more explicit expressions for the
bias, one would thus have to know the stochastic law governing the γi

and the xit. We do not pursue this line, but see Ronning (2007). It
turns out that for constructing consistent estimators it is not necessary
to know the distribution of (γi, xi1, · · · , xiT ). However, the asymptotic
variances of the estimators depend on this distribution, see Section 9.

5 Bias correction

We can derive correction formulas either by solving the bias formulas
(16) and (17), respectively, for β or by using (4) directly. Taking the
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latter course, we construct a corrected estimator of β as

β̂c =
Sc

xy

Sc
xx

, (18)

where Sc
xx and Sc

xy are suitable “corrections” of Sxx and Sxy, re-
spectively, which we obtain from Section 4.1 for the additive as well
as for the multiplicative case, such that p lim(Sc

xy − Sxy) = 0 and
p lim(Sc

xx − Sxx) = 0.

5.1 Additive errors

In the additive case, we use (8) and (9) to estimate Sxy and Sxx,
respectively, and obtain the following corrected estimator of β:

β̂c =
Sa

xy − (1 − 1
T

)σuv

Sa
xx − (1 − 1

T
)σ2

u

. (19)

5.2 Multiplicative errors

In the multiplicative case, we use (13) and (14) to estimate Sxy and
Sxx, respectively, and obtain the following corrected estimator of β:

β̂c =
Sa

xy − (1 − 1
T

)σuvÊmxy

Sa
xx − (1 − 1

T
)σ2

uÊmxx

, (20)

where Êmxy and Êmxx are suitable estimates of Emxy and Emxx. In
order to find these estimates, we consider

ma
xy :=

1

NT

∑

i

∑

t

xa
ity

a
it. (21)

We have

ma
xy =

1

N

∑

i

1

T

∑

t

xityitUitVit,

which tends in probability to

1

T

∑

t

E(xityitUitVit) = E

(

1

T

∑

t

xityit

)

E(UV ) = Emxy (σuv + 1).

It follows that

Êmxy :=
ma

xy

1 + σuv
(22)

is a consistent estimate of Emxy. Similarly,

Êmxx :=
ma

xx

1 + σ2
u

(23)
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is a consistent estimate of Emxx, where

ma
xx :=

1

NT

∑

i

∑

t

xa2
it . (24)

With the abbreviations quv := (1 − 1
T

) σuv

1+σuv
and qu := (1 − 1

T
) σ2

u

1+σ2
u
,

we can write the corrected estimator as

β̂c =
Sa

xy − quvma
xy

Sa
xx − quma

xx

. (25)

6 Consistent estimation of σ2
ǫ

In a similar way we can also construct estimators of the regression
error variance σ2

ǫ . For the undisturbed data (xi, yi), the estimator is

σ̂ǫ
2 = Syy − Sxyβ̂.

For the disturbed data (xa
i , y

a
i ), the naive estimator is

σ̂ǫ
a2 = Sa

yy − Sa
xyβ̂

a.

Using (8) and (10), we find the corrected estimator for the additive
case:

σ̂ǫ
c2 = Sa

yy − (1 − 1
T

)σ2
v − (Sa

xy − (1 − 1
T

)σuv)β̂
c,

and using (13) and (15) we have for the multiplicative case:

σ̂ǫ
c2 = Sa

yy − (1 − 1
T

)σ2
vÊmyy − (Sa

xy − (1 − 1
T

)σuvÊmxy)β̂
c,

where

Êmyy =
ma

yy

(1 + σ2
v)
, ma

yy = (ma
yy)i =

1

T

T
∑

t=1

ya2
it .

7 Common factor in the error process

7.1 The model

Höhne (2008) suggests a different kind of (additive or multiplicative)
random noise. It is characterized by having a common factor structure:

uit = di + u∗it

vit = ei + v∗it, (26)

where di and ei are random variables with Edi = Eei = 0 and finite
variances.
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In studying disclosure control techniques, Höhne assumes a very
special distribution for these variables, e.g., di is of the form di = δDi,
where Di is a variable which takes the values 1 and −1, each with
probability 1

2 , and δ is a known constant. Moreover, he sets di =
ei, which is motivated by the idea that then ratios of variables such
as x/y are only slightly affected by the random noise, see Ronning
(2009). We do not make these special assumptions, but, of course,
this case is covered by our general approach. However, we do require
independence and iid assumptions for these new error terms similar
to those of Section 2.2.

Independence assumptions: As before, the set of pairs (uit, vit) is
independent of the set of pairs (xit, yit). In addition, the set of pairs
(ei, di) is independent of the set of pairs (u∗it, v

∗

it).
Iid assumptions: The pairs (u∗it, v

∗

it) and the pairs (di, ei) are iid.
These assumptions differ from the corresponding ones in Section

2.2 in that the uit and vit are no more iid, but are serially correlated.
Instead, the u∗it and v∗it are now iid. This has consequences for the
derivation of bias and correction formulas.

As to the relation between d and e, there are two main cases con-
sidered in the literature. They can be independent or they can be
equal.

There is also the possibility that we have iid pairs (dit, eit) instead
of (di, ei). In this case, the previous theory goes through unchanged.

7.2 Additive errors

In the additive case, the within variances and covariances depend on
the error terms uit and vit only through the differences uit − ui and
vit − vi, see (6). But since

uit − ui = u∗it − u∗i
vit − vi = v∗it − v∗i ,

we get the the same results as before except that uit and vit have to
be replaced with u∗it and v∗it, respectively.

Thus the bias is given by

plimβ̂a =
βEsxx + (1 − 1

T
)σu∗v∗

Esxx + (1 − 1
T

)σ2
u∗

,

and the corrected estimator of β is

β̂c =
Sa

xy − (1 − 1
T

)σu∗v∗

Sa
xx − (1 − 1

T
)σ2

u∗
.
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The corrected estimator of σ2
ǫ is given by

σ̂ǫ
c2 = Sa

yy − (1 − 1
T

)σ2
v∗ − (Sa

xy − (1 − 1
T

)σu∗v∗)β̂
c.

7.3 Multiplicative errors

In the multiplicative case, we need to proceed more carefully. We start
with the probability limits of the within variances and covariances as
in Section 4.1. The general formula (11) for the probability limit of
Sa

xy is still true and, again because of the independence assumption,
Esx(yv) = Esy(xu) = 0. However, Es(xu)(yv) is different. First note that

xituit − (xu)i = di(xit − xi) + xitu
∗

it − (xu∗)i

yitvit − (yv)i = ei(yit − yi) + yitv
∗

it − (yv∗)i,

where, e.g., (xu)i = 1
T

∑

t xituit. It follows that

Es(xu)(yv) = E
1

T

∑

t

(xituit − (xu)i)(yitvit − (yv)i)

= E

[

diei
1

T

∑

t

(xit − xi)(yit − yi)

+ di
1

T

∑

t

(xit − xi)(yitv
∗

it − (yv∗)i)

+ ei
1

T

∑

t

(yit − yi)(xitu
∗

it − (xu∗)i)

+
1

T

∑

t

(xitu
∗

it − (xu∗)i)(yitv
∗

it − (yv∗)i)

]

= E(de)Esxy + Es(xu∗)(yv∗)

= σdeEsxy + (1 −
1

T
)σu∗v∗Emxy.

Therefore,

plim(Sa
xy − Sxy) = σdeEsxy + (1 −

1

T
)σu∗v∗Emxy. (27)

Similarly with (x, u, d) in place of (y, v, e),

plim(Sa
xx − Sxx) = σ2

dE sxx + (1 −
1

T
)σ2

u∗Emxx. (28)

(27) and (28) imply the following bias formula

plimβ̂a =
plimSxy + σdeEsxy + (1 − 1

T
)σu∗v∗Emxy

plimSxx + σ2
dEsxx + (1 − 1

T
)σ2

u∗Emxx

=
β(1 + σde)Esxx + (1 − 1

T
)σu∗v∗Emxy

(1 + σ2
d)Esxx + (1 − 1

T
)σ2

u∗Emxx

. (29)
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A bias correction for estimating β is found by evaluating

β̂c =
Sc

xy

Sc
xx

. (30)

We find an estimator for Sxy from (27) as follows:

Sc
xy = Sa

xy − Sc
xy σde − (1 −

1

T
)σu∗v∗Êmxy,

where Êmxy is a suitable estimator of Emxy, and so

Sc
xy =

Sa
xy − (1 − 1

T
)σu∗v∗Êmxy

1 + σde

. (31)

Similarly,

Sc
xx =

Sa
xx − (1 − 1

T
)σ2

u∗Êmxx

1 + σ2
d

(32)

Substituting (31) and (32) in (30) results in

β̂c =
Sa

xy − (1 − 1
T

)σu∗v∗Êmxy

Sa
xx − (1 − 1

T
)σ2

u∗Êmxx

·
1 + σ2

d

1 + σde

. (33)

It remains to construct estimators of Emxy and Emxx. We start with

ma
xy :=

1

N

1

T

∑

i

∑

t

xa
ity

a
it

=
1

N

∑

i

1

T

∑

t

xityit(1 + di + u∗it)(1 + ei + v∗it)

=
1

N

∑

i

1

T

∑

t

xityit(1 + di + ei + diei + u∗it + v∗it + div
∗

it + eiu
∗

it + u∗itv
∗

it),

which converges in probability to Emxy(1+σed+σu∗v∗). An estimator
of Emxy is thus given by

Êmxy =
ma

xy

1 + σed + σu∗v∗
. (34)

Similarly,

Êmxx =
ma

xx

1 + σ2
d + σ2

u∗
. (35)

The corrected estimator of σ2
ǫ is given by

σ̂ǫ
c2 =

Sa
yy − (1 − 1

T
)σ2

v∗Êmyy

1 + σ2
e

−
Sa

xy − (1 − 1
T

)σu∗v∗Êmxy

1 + σde

β̂c,

where

Êmyy =
ma

yy

1 + σ2
e + σ2

v∗
.
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8 Asymptotic variances

8.1 Estimating equations

The asymptotic variances of the various estimators can be found from
the general theory of unbiased estimating equations. Let zi, i =
1, · · · , N , be a set of iid vector-valued random variables and θ a p-
dimensional parameter vector pertaining to the distribution of z. Sup-
pose a p-dimensional vector-valued function ψ of z and θ exists such
that Eψ(z, θ) = 0. We call ψ an unbiased estimating function and the
equation

N
∑

i=1

ψ(zi, θ̂) = 0

an unbiased estimating equation, Heyde (1997). Under general condi-
tions, the solution θ̂ to this equation exists uniquely, at least for large
N , and is a consistent estimator of θ. In addition, θ is asymptotically
normal with an asymptotic covariance matrix given by the sandwich
formula

V(θ̂) =
1

N
(Eψθ)

−1
Eψψ⊤

E(ψθ)
−⊤,

where

ψθ :=
∂ψ(z, θ)

∂θ⊤
,

which is a (p × p)-matrix. A consistent estimator of the asymptotic
covariance matrix is given by

V̂(θ̂) =
1

N
(ψθ)

−1ψψ⊤(ψθ)
−⊤,

where

ψθ =
1

N

∑

i

ψθ(zi, θ̂) (36)

ψψ⊤ =
1

N

∑

i

ψ(zi, θ̂)ψ(zi, θ̂)
⊤ =

1

N
Ψ⊤Ψ, (37)

where Ψ⊤ is the matrix
(

ψ(z1, θ̂), · · · , ψ(zN , θ̂)
)

.

In the context of our panel model, zi = (xi1, · · ·xiT , yi1, · · · yiT ) is
the data vector for individual i of the panel population. The parameter
vector θ has β in the first component as our parameter of interest
and in addition possibly other (nuisance) parameters in the remaining
components. The asymptotic variance of β̂ is then given by

V̂(β̂) = e⊤1 V̂(θ̂)e1,
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where e1 = (1, 0, · · · , 0)⊤ is the p-dimensional first unit vector.
We apply this theory to the various error corrected estimators of

our panel model by constructing an estimating function for each of
the estimators.

8.2 Additive errors

From the corrected estimator of β (19), we obtain the estimating func-
tion

ψ = ψ(x, y, β) = (sa
xx − (1 −

1

T
)σ2

u)β − (sa
xy − (1 −

1

T
)σuv)

and

ψβ = sa
xx − (1 −

1

T
)σ2

u.

In this case, ψ is a scalar function, and so ψψ⊤ = ψ2.

8.3 Multiplicative errors

In the case of multiplicative errors, θ = (β,Emxx,Emxy)
⊤, and the

estimating function for θ, as implied by (18), (20), and (21), is given
by a vector ψ = (ψ1, ψ2, ψ3)

⊤ with

ψ1 = [sa
xx − (1 −

1

T
)σ2

uEmxx]β − [sa
xy − (1 −

1

T
)σuvEmxy]

ψ2 = (1 + σ2
u)Emxx −ma

xx

ψ3 = (1 + σuv)Emxy −ma
xy.

For ψθ, we find

ψθ =





sa
xx − (1 − 1

T
)σ2

uEmxx −(1 − 1
T

)σ2
uβ (1 − 1

T
)σuv

0 1 + σ2
u 0

0 0 1 + σuv



 .

In case σuv = 0, ψ3 and the last row and last column of ψθ can be
dropped.

8.4 Common factor structure

If the measurement errors have a common factor structure, the esti-
mators of Section 7 are relevant.

For additive errors, we have, according to Section 7.2, the same
estimating function as in Subsection 8.2 except that σ2

u and σuv have
to be replaced with σ2

u∗ and σu∗v∗ , respectively. Thus

ψ = ψ(x, y, β) = (sa
xx − (1 −

1

T
)σ2

u∗)β − (sa
xy − (1 −

1

T
)σu∗v∗).
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For multiplicative errors, we find the estimating function from (33).
We have θ = (β,Emxx,Exy)

⊤ and ψ = (ψ1, ψ2, ψ3)
⊤ with

ψ1 = [sa
xx − (1 −

1

T
)σ2

u∗Emxx]β − [sa
xy − (1 −

1

T
)σu∗v∗Emxy]

1 + σ2
d

1 + σde

ψ2 = (1 + σ2
d + σ2

u∗)Emxx −ma
xx

ψ3 = (1 + σde + σu∗v∗)Emxy −ma
xy.

For ψθ, we find

ψθ =







sa
xx − (1 − 1

T
)σ2

u∗Emxx −(1 − 1
T

)σ2
u∗β (1 − 1

T
)σu∗v∗

1+σ2

d

1+σde

0 1 + σ2
d + σ2

u∗ 0
0 0 1 + σde + σu∗v∗






.

Again, if σu∗v∗ = 0, ψ3 and the last row and last column of ψθ can be
dropped.

It may be noted that in all the above cases the asymptotic variance
of β̂ can also be computed by the delta method. An example is given
in the appendix.

9 Simulation

In our simulation study we analyze the performance of both the naive
estimator (4) and the corrected estimators when both x and y are
observed with multiplicative measurement errors. We do not present
results for the more familiar case of additive errors.

For the iid case, as given in (3), the corrected estimator is given
in (20) and for the (multiplicative) common factor model (26) the
corrected estimator is given in (33). In all scenarios we used 2000
replications.

For the regressor variables we assumed the stationary AR(1) pro-
cess

xit = φ + ̺ xi,t−1 + ωit (38)

with |̺| < 1 and Eωit = 0,Vωit = σ2
ω for all i = 1, . . . , N and t =

1, . . . , T . We use

φ = (1 − ̺)Exit, σ
2
ω = Vxit(1 − ̺2),

so that for each ̺ (see below) we have the same expected value and
variance of all xit.

In order to study the effect of correlation of the individual effect γ
with the regressor x we assume that the effect is given by

γi = [xi − Exi] λ + wi,
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where wi is normal white noise with expectation 0 and variance σ2
w

distributed independently of x. The variance of wi is defined by

σ2
w = Vγi − λ2σ2

x̄ ,

so that the variance of the individual component is kept constant for
any λ (see below). This specification of correlated individual effects
has been proposed by Biørn (1996) p. 260. Note that, for positive λ,
the correlation of γi with xi is given by

̺xγ =
1

√

1 + σ2
w

λ2σ2
x̄

,

where

σ2
x̄ =

σ2
x

T 2

{

T + 2(T − 1)ρ1 + 2(T − 2)ρ2 + · · · + 2 · 2ρT−2 + 2 · 1ρT−1
}

under the autoregressive scheme (38), Hamilton (1994). This correla-
tion will tend to 1 for λ→ ∞ and to 0 for T → ∞.

In our simulations we fixed ̺xγ and σ2
γ and derived the two remaing

parameters as follows:

λ =
̺xγ σγ

σx̄

σ2
w = σ2

γ(1 − ̺2
xγ).

When studying the common factor structure we use the special
specification of Höhne(2008), which we already mentioned in section
7.1: We set di = ei in (26) and use the special structure

ei = δD with D =

{

1 with probability 0.5
−1 with probability 0.5

.

This special specification implies σ2
d = σde so that the corrected esti-

mator from (33) is given by

β̂c =
Sa

xy − (1 − 1
T

)σu∗v∗Êxy

Sa
xx − (1 − 1

T
)σ2

u∗Êx
2

.

The following parameters were fixed throughout the whole simu-
lation study: In the linear panel model (1) we used

β = 1, Exit = 2, Vxit = 1.52, Vεit = 0.52, Vγi = 1,

and for the measurement errors we used

Vuit = 0.22, Vvit = 0.22

17



for the iid case (3) and

δ = 0.14, Vu∗it = 0.142, Vv∗it = 0.142

for the common factor case (3). Note that the total variance of mea-
surement error in the latter case is given by Vuit = δ2 + Vu∗it =
0.142 +0.142 = 0.0392, which is (almost) equal to the variance in case
of (3).

For both the iid case and the common factor case, we studied the
effects of varying the sample size N , the number of waves T , the au-
toregressive parameter ̺, the correlation between u and v, which we
denote by ρuv (ρu∗v∗ for the common factor model), and the correla-
tion between γ and x. Table 1 has the details. We use alternatively
a ”moderate” and a large sample size. The number of waves is kept
very small. The autoregressive parameter specifies both positive and
negative autocorrelation besides the case of no autocorrelation. Ad-
ditionally, we consider zero and non-zero correlation between u and v
(u∗ and v∗ for the common factor model). Finally, a non-zero param-
eter ̺xγ indicates correlation of individual effects with the regressor
x.

Table 1: Parameter variation in the simulation study
parameter values used

N 100 ; 1000
T 3 ; 10
̺ -0.5 ; 0 ; +0.5

ρuv(ρu∗v∗) -0.9 ; 0 ; +0.9
̺xγ 0 ; 0.975

The four tables contain the simulation results for the iid case (ta-
bles 2 and 3) and for the common factor case (tables 4 and 5). For
each case, the second table reports results concerning correlation of
individual effects with the regressor. In all four tables, we use the
following notation: β̂ and s

β̂
give mean and standard deviation of the

2000 replications concerning the naive estimator, β̂c and s
β̂c the corre-

sponding results for the corrected estimator. σ̂
β̂c denotes the estimate

of the theoretical (asymptotic) standard deviation discussed in section
8, and sσ̂

β̂c
reports the standard error of this estimate. Finally, qα

β̂c
is

the α-quantile of the corrected estimator for three different levels of
α.

Tables 2 , 3, 4 and 5 about here

18



For large samples (N = 1000), our simulations support our theo-
retical findings: The corrected slope estimator β̂c shows practically
no bias, and the average estimate of the theoretical (asymptotic)
standard deviation of the estimator β̂c corresponds very accurately
to the empirical variance of the estimates β̂c in the simulation runs.
The asymptotic results seem to apply almost as well to samples of
small to medium size (N = 100): the corrected slope estimator shows
hardly any bias, and the theoretical standard deviation still corre-
sponds rather closely to the empirical standard deviation. Of course,
for smallerN , these standard deviations are (about three times) larger.

The simulations also highlight the considerable amount of bias in
the uncorrected (naive) estimator of the slope parameter. The bias
tends to increase for increasing ρ and for decreasing ρuv – the latter in
accordance with (17). The bias is considerably smaller for errors with
a common factor structure, which is plausible considering the fact
that, by using inner variances and covariances for constructing the
estimator, the common factor is largely eliminated – it is completely
eliminated in the additive case – so that the, much smaller, remaining
error components u∗ and v∗ are now relevant for the bias. The presence
of a medium correlation between individual effect and regressor (̺xγ =
0.5) has almost no effect on the bias (not shown in the tables). But
for ̺xγ = 0.975, the bias is clearly smaller than in the case of no
correlation if σuv 6= 0. This is in agreement with the theoretical result
(17) on the bias.

The standard deviation of the corrected estimator can also be seen
to depend on the various model parameters. It decreases for increas-
ing T , decreasing ρ, and increasing ρuv. It is a good deal smaller in
the common factor case. The dependence on λ is negligible. The stan-
dard deviation of the corrected estimator is, of course, larger than for
the naive estimator, but not very much. The increase in variance is
outweighed by the elimination of bias. Finally, it may be noted that
the estimate of the standard deviation is very precise in view of its
own standard deviation, in particular for large N .

10 Conclusion

Measurement errors in a linear regression result in biased estimates
of the slope parameter when Least Squares is applied without regard
to the measurement errors. This is true for panel data models just
as for cross sectional models, except that, in panel models, within LS
estimators instead of the ordinary LS estimators are used in order
to get rid of the unobservable individual effects. As a result of this
difference, a degree of freedoms factor enters the bias formula, which
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is not present in the well-known bias formula for cross sectional data.
When correcting for the bias in panel data models, this factor has
again to be taken into account.

We focus our investigation on multiplicative iid. errors. They can
be treated in a similar way as the more conventional additive errors,
but with some characteristic differences. In the bias formula as well as
in the expression for the bias corrected estimator, nuisance parameters
appear, which have to be estimated, too. Their presence results in a
substantially more complicated computation of the asymptotic vari-
ance of the slope estimator than in the additive case. The variance is
computed with the help of the sandwich formula, which, however, has
to take the nuisance parameters into account.

The results for iid errors can be generalized to the case of a common
factor structure in the error process. Again, bias corrected estimators
and asymptotic variances can be derived both for the additive and for
the multiplicative case.

An extensive simulation study was carried out. It fully corrob-
orates our theoretical findings on the asymptotics of our estimators
and shows that the asymptotic results seem to apply almost as well
to samples of small to medium size (N = 100). The simulations also
make evident the dependence of the asymptotic variance on the var-
ious model parameters, e.g., on the autocorrelation of the regressor
variable or on the correlation of regressor variable and individual ef-
fect variable.

Finally, they show how close the asymptotic variance of the cor-
rected estimator may come to that of the uncorrected estimator, at
least for large N. Thus the correction is fully justified both on the
ground that it eliminates the bias and that it implies only a small
increase in variance.
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Appendix: Equivalence of delta method

and sandwich formula

The delta method and the sandwich formula are two methods to es-
timate the asymptotic variance of β̂c. We show their equivalence by
way of example in a special case. Consider the corrected estimator
(20) of β in a model with multiplicative iid. measurement errors for
the special case σuv = 0:

β̂c =
sa
xy

sa
xx − qma

xx

, q :=
T − 1

T

σ2
u

1 + σ2
u

.

By the delta method, an estimate of the asymptotic variance of β̂c is
given by

V̂β̂c =
β̂c2

Sa2
xy

(

1 −β̂c qβ̂c
)





v11 v12 v13
v21 v22 v23
v31 v32 v33









1

−β̂c

qβ̂c



 ,

where

v11 = V̂(sa
xy) =

1

N
(sa2

xy − sa
xy

2)

v12 = Ĉov(sa
xy, s

a
xx) =

1

N
(sa

xys
a
xx − sa

xy s
a
xx)

v13 = Ĉov(sa
xy,m

a
xx) =

1

N
(sa

xym
a
xx − sa

xy m
a
xx)

v22 = V̂(sa
xx) =

1

N
(sa2

xx − sa
xx

2)

v23 = Ĉov(sa
xx,m

a
xx) =

1

N
(sa

xxm
a
xx − sa

xx m
a
xx)

v33 = V̂(ma
xx) =

1

N
(ma2

xx −ma
xx

2
).

This is the same as what we would get by the sandwich formula. To
see this, write the estimated vector ψ for individual i as

ψ̂i =

(

[(sa
xx)i − qma

xx ]β̂c −(sa
xy)i

ma
xx − (ma

xx)i

)

,

from which the inner part of the sandwich follows as

ψ̂ψ̂′ =

(

[(sa
xx − qma

xx)β̂c − sa
xy]

2 [(sa
xx − qma

xx)β̂c − sa
xy][m

a
xx −ma

xx]

[(sa
xx − qma

xx)β̂c − sa
xy][m

a
xx −ma

xx] [ma
xx −ma

xx]2

)

.

Furthermore,

(ψ̂θ)i =

(

(sa
xx)i − qma

xx −(1 − 1
T

)σ2
uβ̂

c

0 1 + σ2
u

)
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and

ψ̂θ =

(

sa
xx − qma

xx −(1 − 1
T

)σ2
uβ̂

c

0 1 + σ2
u

)

=

(

sa
xy

β̂c
−(1 − 1

T
)σ2

uβ̂
c

0 1 + σ2
u

)

.

It follows that

ψ̂θ

−1
=

β̂c

sa
xy(1 + σ2

u)

(

1 + σ2
u (1 − 1

T
)σ2

uβ̂
c

0
sa
xy

β̂c

)

With the first unit vector e′ := (1, 0), we get

e′ψ̂θ

−1
=

β̂c

sa
xy

(

1 qβ̂c
)

.

We thus have all the necessary parts to construct the estimate of the
asymptotic variance of β̂c:

V̂(β̂c) =
1

N
e′ψ̂θ

−1
ψ̂ψ̂′(e′ψ̂θ

−1
)′.

We now only have to further expand the inner part of the sandwich

ψ̂ψ̂′. The upper left corner is given by

(sa2
xx − 2qsa

xxm
a
xx + q2ma

xx
2
)β̂c2 − 2(sa

xxs
a
xy − qma

xxs
a
xy)β̂

c + sa2
xy

=(Nv22 + sa
xx

2
− 2qsa

xxm
a
xx + q2ma

xx
2
)β̂c2 − 2(Nv12 + sa

xy s
a
xx − qma

xxs
a
xy)β̂

c +Nv11 + sa
xy

2

=Nv22β̂
c2 + (sa

xx − qma
xx)2β̂c2 − 2Nv12β̂

c − 2(sa
xx − qma

xx)sa
xyβ̂

c +Nv11 + sa
xy

2

=Nv22β̂
c2 + sa2

xy − 2Nv12β̂
c − 2sa2

xy +Nv11 + sa2
xy

=Nv22β̂
c2 − 2Nv12β̂

c +Nv11

=N
(

1 −β̂c
)

(

v11 v12
v21 v22

)(

1

−β̂c

)

.

Similarly, the right upper and left lower corners are

N
(

v13 v23
)

(

1

−β̂c

)

.

Finally the right lower corner is Nv33.
Collecting terms we have

ψ̂ψ̂′ = N









(

1 −β̂c
)

(

v11 v12
v21 v22

)(

1

−β̂c

)

(

v13 v23
)

(

1

−β̂c

)

(

1 −β̂c
)

(

v13
v23

)

v33
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and

V̂(β̂c) =
β̂c2

Sa2
xy

(

1 qβ̂c
)









(

1 −β̂c
)

(

v11 v12
v21 v22

)(

1

−β̂c

)

(

v13 v23
)

(

1

−β̂c

)

(

1 −β̂c
)

(

v13
v23

)

v33









(

1

qβ̂c

)

=
β̂c2

Sa2
xy

(

1 −β̂c qβ̂c
)





v11 v12 v13
v21 v22 v23
v31 v32 v33









1

−β̂c

qβ̂c



 ,

which is the variance formula according to the delta method.
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Table 2: Simulation results for the iid case - uncorrelated individual effects

̺ ρuv N β̂ s
β̂

β̂c s
β̂c σ̂

β̂c sσ̂
β̂c

q0.05

β̂c
q0.50

β̂c
q0.95

β̂c

T = 3

-0.50 -0.90 100 0.84283 0.05066 0.99924 0.05891 0.05782 0.00872 0.90154 0.99830 1.09681
1,000 0.84489 0.01648 0.99997 0.01889 0.01871 0.00100 0.96914 0.99956 1.03066

-0.50 0.00 100 0.91859 0.04105 1.00083 0.04540 0.04439 0.00637 0.92737 1.00093 1.07725
1,000 0.91875 0.01339 1.00050 0.01475 0.01439 0.00070 0.97608 1.00041 1.02393

-0.50 0.90 100 0.99148 0.02554 0.99966 0.02693 0.02673 0.00354 0.95457 0.99940 1.04433
1,000 0.99182 0.00800 0.99999 0.00843 0.00858 0.00036 0.98640 0.99997 1.01394

0.00 -0.90 100 0.81154 0.05494 1.00371 0.06589 0.06434 0.00956 0.89923 1.00156 1.11200
1,000 0.80980 0.01765 1.00030 0.02094 0.02083 0.00112 0.96597 0.99979 1.03525

0.00 0.00 100 0.89991 0.04435 1.00107 0.05037 0.04927 0.00701 0.92314 0.99979 1.08438
1,000 0.90033 0.01392 1.00044 0.01589 0.01592 0.00076 0.97440 1.00034 1.02637

0.00 0.90 100 0.98919 0.02832 0.99923 0.03047 0.03000 0.00371 0.95045 0.99839 1.04919
1,000 0.99029 0.00883 1.00030 0.00946 0.00962 0.00039 0.98470 1.00054 1.01586

0.50 -0.90 100 0.69584 0.06767 1.00409 0.09125 0.08734 0.01473 0.86124 1.00040 1.16018
1,000 0.69625 0.02224 1.00038 0.02893 0.02830 0.00166 0.95370 0.99998 1.04780

0.50 0.00 100 0.84122 0.05552 1.00288 0.06816 0.06568 0.00985 0.89316 1.00238 1.11608
1,000 0.84001 0.01798 1.00043 0.02185 0.02133 0.00115 0.96501 1.00066 1.03558

0.50 0.90 100 0.98248 0.03604 0.99825 0.04094 0.04056 0.00539 0.93236 0.99821 1.06745
1,000 0.98331 0.01117 0.99930 0.01280 0.01293 0.00056 0.97738 0.99917 1.02029

T = 10

-0.50 -0.90 100 0.82120 0.02626 1.00055 0.03112 0.03101 0.00334 0.94925 1.00073 1.05115
1,000 0.82125 0.00822 1.00010 0.00979 0.00991 0.00037 0.98374 1.00042 1.01594

-0.50 0.00 100 0.90569 0.02138 1.00000 0.02363 0.02341 0.00240 0.96126 0.99982 1.03805
1,000 0.90610 0.00665 1.00034 0.00745 0.00753 0.00025 0.98817 1.00035 1.01254

-0.50 0.90 100 0.99015 0.01343 0.99960 0.01398 0.01391 0.00131 0.97677 0.99939 1.02260
1,000 0.99062 0.00421 1.00001 0.00440 0.00443 0.00013 0.99263 1.00004 1.00721

0.00 -0.90 100 0.81098 0.02709 1.00155 0.03199 0.03193 0.00344 0.94922 1.00060 1.05344
1,000 0.80996 0.00852 0.99984 0.01021 0.01022 0.00035 0.98369 0.99964 1.01726

0.00 0.00 100 0.90057 0.02235 1.00076 0.02511 0.02423 0.00235 0.95949 1.00064 1.04204
1,000 0.89992 0.00694 0.99994 0.00781 0.00776 0.00025 0.98693 0.99970 1.01265

0.00 0.90 100 0.98946 0.01424 0.99945 0.01490 0.01441 0.00127 0.97498 0.99964 1.02414
1,000 0.99005 0.00425 1.00010 0.00443 0.00459 0.00013 0.99278 1.00028 1.00704

0.50 -0.90 100 0.77289 0.03006 1.00004 0.03464 0.03513 0.00406 0.94285 0.99969 1.05504
1,000 0.77404 0.00960 1.00014 0.01135 0.01127 0.00042 0.98176 1.00005 1.01912

0.50 0.00 100 0.88009 0.02384 0.99906 0.02697 0.02662 0.00286 0.95383 0.99827 1.04515
1,000 0.88097 0.00761 1.00004 0.00866 0.00852 0.00029 0.98526 1.00003 1.01384

0.50 0.90 100 0.98794 0.01498 0.99993 0.01579 0.01593 0.00152 0.97297 0.99996 1.02554
1,000 0.98815 0.00473 1.00006 0.00499 0.00508 0.00015 0.99181 1.00017 1.00841
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Table 3: Simulation results for the iid case - correlated individual effects

̺ ρuv N β̂ s
β̂

β̂c s
β̂c σ̂

β̂c sσ̂
β̂c

q0.05

β̂c
q0.50

β̂c
q0.95

β̂c

T = 3

-0.50 -0.90 100 0.84053 0.05337 1.00471 0.06200 0.05958 0.00911 0.90212 1.00423 1.10365
-0.50 -0.90 1000 0.83811 0.01714 1.00015 0.01986 0.01922 0.00104 0.96743 1.00030 1.03357
-0.50 0.00 100 0.91995 0.04237 1.00232 0.04676 0.04524 0.00656 0.92776 1.00098 1.08232
-0.50 0.00 1000 0.91829 0.01344 1.00008 0.01479 0.01468 0.00073 0.97606 1.00003 1.02419
-0.50 0.90 100 0.99780 0.02599 0.99892 0.02736 0.02709 0.00348 0.95484 0.99884 1.04426
-0.50 0.90 1000 0.99918 0.00829 1.00034 0.00870 0.00870 0.00039 0.98580 1.00019 1.01496
0.00 -0.90 100 0.79779 0.05781 1.00260 0.06932 0.06759 0.01064 0.89045 1.00292 1.11316
0.00 -0.90 1000 0.79799 0.01856 1.00037 0.02190 0.02182 0.00123 0.96435 1.00053 1.03682
0.00 0.00 100 0.89952 0.04636 1.00019 0.05172 0.05129 0.00788 0.91810 0.99872 1.08645
0.00 0.00 1000 0.89971 0.01465 0.99969 0.01651 0.01649 0.00084 0.97274 0.99946 1.02676
0.00 0.90 100 1.00240 0.02829 1.00026 0.03037 0.03036 0.00390 0.95087 0.99971 1.05111
0.00 0.90 1000 1.00225 0.00914 1.00011 0.00976 0.00973 0.00041 0.98358 1.00012 1.01679
0.50 -0.90 100 0.67100 0.07454 1.00618 0.09625 0.09506 0.01792 0.84582 1.00710 1.16736
0.50 -0.90 1000 0.66977 0.02416 1.00076 0.03056 0.03058 0.00195 0.95008 1.00010 1.05047
0.50 0.00 100 0.84164 0.05639 1.00528 0.06957 0.07030 0.01140 0.89500 1.00395 1.12159
0.50 0.00 1000 0.84049 0.01872 1.00075 0.02284 0.02255 0.00124 0.96320 1.00078 1.03795
0.50 0.90 100 1.01084 0.03683 1.00040 0.04250 0.04091 0.00562 0.93068 1.00103 1.07040
0.50 0.90 1000 1.01019 0.01145 0.99976 0.01313 0.01318 0.00060 0.97824 0.99992 1.02079

T = 10

-0.50 -0.90 100 0.81771 0.02711 1.00100 0.03188 0.03136 0.00343 0.94769 1.00063 1.05634
-0.50 -0.90 1000 0.81742 0.00876 1.00005 0.01018 0.01006 0.00036 0.98373 0.99978 1.01790
-0.50 0.00 100 0.90702 0.02155 1.00169 0.02396 0.02386 0.00242 0.96318 1.00161 1.04065
-0.50 0.00 1000 0.90557 0.00685 0.99965 0.00763 0.00762 0.00027 0.98749 0.99941 1.01255
-0.50 0.90 100 0.99438 0.01333 1.00001 0.01381 0.01398 0.00133 0.97809 0.99992 1.02319
-0.50 0.90 1000 0.99441 0.00425 0.99998 0.00445 0.00445 0.00013 0.99287 0.99989 1.00734
0.00 -0.90 100 0.80262 0.02880 0.99975 0.03337 0.03278 0.00381 0.94516 0.99990 1.05352
0.00 -0.90 1000 0.80328 0.00894 0.99991 0.01040 0.01049 0.00038 0.98309 0.99964 1.01725
0.00 0.00 100 0.90022 0.02277 1.00034 0.02588 0.02470 0.00257 0.95914 1.00007 1.04374
0.00 0.00 1000 0.89992 0.00692 0.99994 0.00784 0.00793 0.00027 0.98698 1.00008 1.01310
0.00 0.90 100 0.99655 0.01400 0.99979 0.01466 0.01448 0.00130 0.97635 0.99939 1.02568
0.00 0.90 1000 0.99642 0.00430 0.99978 0.00450 0.00462 0.00013 0.99239 0.99973 1.00728
0.50 -0.90 100 0.76155 0.03299 1.00154 0.03735 0.03662 0.00431 0.93898 1.00155 1.06335
0.50 -0.90 1000 0.76113 0.01053 1.00028 0.01206 0.01178 0.00048 0.98089 1.00048 1.02083
0.50 0.00 100 0.88084 0.02420 1.00014 0.02738 0.02759 0.00305 0.95500 0.99943 1.04608
0.50 0.00 1000 0.88069 0.00780 0.99983 0.00884 0.00882 0.00033 0.98505 0.99990 1.01420
0.50 0.90 100 1.00036 0.01479 0.99948 0.01576 0.01609 0.00155 0.97314 0.99947 1.02521
0.50 0.90 1000 1.00078 0.00493 0.99988 0.00526 0.00514 0.00016 0.99116 0.99989 1.00859
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Table 4: Simulation results for the common factor case - uncorrelated indi-
vidual effects

̺ ρu∗v∗ N β̂ s
β̂

β̂c s
β̂c σ̂

β̂c sσ̂
β̂c

q0.05

β̂c
q0.50

β̂c
q0.95

β̂c

T = 3

-0.50 -0.90 100 0.92168 0.04152 1.00010 0.04460 0.04313 0.00642 0.92761 0.99981 1.07544
1,000 0.92227 0.01282 1.00024 0.01377 0.01400 0.00069 0.97732 1.00019 1.02295

-0.50 0.00 100 0.95940 0.03429 1.00066 0.03576 0.03480 0.00478 0.94435 1.00066 1.06085
1,000 0.95913 0.01051 1.00011 0.01099 0.01128 0.00053 0.98239 1.00004 1.01839

-0.50 0.90 100 0.99696 0.02475 1.00112 0.02543 0.02474 0.00317 0.96071 1.00055 1.04261
1,000 0.99606 0.00766 1.00013 0.00787 0.00796 0.00033 0.98694 1.00001 1.01269

0.00 -0.90 100 0.90301 0.04485 1.00063 0.04874 0.04809 0.00727 0.92040 1.00134 1.08118
1,000 0.90374 0.01370 1.00017 0.01498 0.01543 0.00075 0.97615 1.00032 1.02483

0.00 0.00 100 0.95125 0.03752 1.00247 0.03966 0.03868 0.00525 0.93777 1.00201 1.06933
1,000 0.94936 0.01151 1.00017 0.01221 0.01247 0.00054 0.97991 1.00024 1.02007

0.00 0.90 100 0.99619 0.02630 1.00137 0.02722 0.02786 0.00357 0.95706 1.00117 1.04480
1,000 0.99530 0.00845 1.00038 0.00876 0.00891 0.00037 0.98620 1.00042 1.01513

0.50 -0.90 100 0.84030 0.05733 1.00153 0.06412 0.06369 0.00944 0.89518 1.00084 1.10874
1,000 0.84089 0.01796 1.00054 0.02013 0.02046 0.00108 0.96704 1.00111 1.03269

0.50 0.00 100 0.91643 0.04770 1.00120 0.05248 0.05084 0.00704 0.91432 1.00064 1.08891
1,000 0.91629 0.01411 1.00023 0.01556 0.01635 0.00079 0.97557 1.00018 1.02679

0.50 0.90 100 0.99077 0.03442 0.99919 0.03700 0.03694 0.00493 0.93823 0.99973 1.06088
1,000 0.99157 0.01081 0.99994 0.01158 0.01187 0.00049 0.98069 1.00002 1.01906

T = 10

-0.50 -0.90 100 0.91033 0.02136 1.00091 0.02312 0.02292 0.00243 0.96371 1.00044 1.03878
1,000 0.90978 0.00689 1.00021 0.00748 0.00736 0.00025 0.98809 1.00011 1.01232

-0.50 0.00 100 0.95266 0.01726 1.00041 0.01821 0.01842 0.00187 0.97034 1.00104 1.03013
1,000 0.95234 0.00559 0.99992 0.00586 0.00589 0.00019 0.99030 0.99973 1.00974

-0.50 0.90 100 0.99553 0.01250 1.00030 0.01279 0.01291 0.00126 0.97957 1.00032 1.02092
1,000 0.99529 0.00390 1.00003 0.00398 0.00413 0.00012 0.99345 1.00000 1.00653

0.00 -0.90 100 0.90314 0.02193 0.99979 0.02380 0.02368 0.00246 0.96016 0.99989 1.03824
1,000 0.90339 0.00709 0.99977 0.00764 0.00760 0.00025 0.98729 0.99955 1.01254

0.00 0.00 100 0.94956 0.01804 1.00038 0.01908 0.01909 0.00188 0.96886 1.00051 1.03246
1,000 0.94935 0.00577 1.00005 0.00611 0.00607 0.00019 0.98984 0.99996 1.01049

0.00 0.90 100 0.99476 0.01279 0.99987 0.01320 0.01341 0.00126 0.97766 0.99969 1.02234
1,000 0.99496 0.00404 1.00002 0.00414 0.00427 0.00012 0.99310 1.00014 1.00687

0.50 -0.90 100 0.88376 0.02337 1.00022 0.02520 0.02647 0.00287 0.95938 1.00069 1.04097
1,000 0.88413 0.00761 1.00005 0.00819 0.00846 0.00030 0.98662 0.99975 1.01396

0.50 0.00 100 0.93864 0.01981 0.99972 0.02080 0.02096 0.00218 0.96598 0.99918 1.03464
1,000 0.93892 0.00625 0.99990 0.00666 0.00669 0.00022 0.98905 0.99997 1.01089

0.50 0.90 100 0.99406 0.01409 1.00017 0.01468 0.01486 0.00147 0.97606 0.99993 1.02431
1,000 0.99393 0.00438 0.99999 0.00452 0.00474 0.00014 0.99271 1.00014 1.00745
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Table 5: Simulation results for the common factor case - correlated individual
effects (̺xγ = 0.975)

̺ ρu∗v∗ N β̂ s
β̂

β̂c s
β̂c σ̂

β̂c sσ̂
β̂c

q0.05

β̂c
q0.50

β̂c
q0.95

β̂c

T = 3

-0.50 -0.90 100 0.91782 0.04274 1.00002 0.04607 0.04415 0.00662 0.92459 0.99971 1.07690
1000 0.91896 0.01327 1.00041 0.01421 0.01426 0.00074 0.97694 1.00022 1.02420

-0.50 0.00 100 0.95886 0.03408 1.00023 0.03581 0.03543 0.00493 0.93990 0.99959 1.05895
1000 0.95916 0.01047 1.00016 0.01100 0.01145 0.00055 0.98205 0.99998 1.01846

-0.50 0.90 100 0.99855 0.02441 0.99909 0.02508 0.02494 0.00324 0.95802 0.99823 1.04062
1000 0.99947 0.00763 1.00003 0.00785 0.00802 0.00034 0.98723 0.99994 1.01283

0.00 -0.90 100 0.89798 0.04530 1.00163 0.04921 0.04965 0.00730 0.92211 1.00204 1.08206
1000 0.89771 0.01391 1.00048 0.01514 0.01605 0.00079 0.97592 1.00017 1.02563

0.00 0.00 100 0.95034 0.03779 1.00142 0.04013 0.03985 0.00559 0.93552 1.00022 1.06809
1000 0.94972 0.01195 1.00049 0.01266 0.01280 0.00061 0.97952 1.00040 1.02096

0.00 0.90 100 1.00093 0.02660 0.99975 0.02761 0.02786 0.00352 0.95343 0.99948 1.04466
1000 1.00121 0.00842 1.00010 0.00874 0.00896 0.00037 0.98566 1.00017 1.01404

0.50 -0.90 100 0.82617 0.06098 1.00224 0.06854 0.06787 0.01118 0.88785 1.00266 1.11473
1000 0.82648 0.01934 0.99981 0.02147 0.02184 0.00131 0.96506 0.99961 1.03423

0.50 0.00 100 0.91766 0.04810 1.00294 0.05279 0.05272 0.00754 0.91648 1.00248 1.09066
1000 0.91644 0.01493 1.00057 0.01640 0.01700 0.00087 0.97272 1.00060 1.02776

0.50 0.90 100 1.00738 0.03376 1.00192 0.03639 0.03718 0.00478 0.94246 1.00035 1.06331
1000 1.00589 0.01109 1.00046 0.01193 0.01193 0.00050 0.98080 1.00049 1.02032

T = 10

-0.50 -0.90 100 0.90746 0.02165 1.00006 0.02321 0.02333 0.00253 0.96166 1.00008 1.03801
1000 0.90774 0.00694 1.00009 0.00749 0.00747 0.00027 0.98814 1.00009 1.01199

-0.50 0.00 100 0.95225 0.01717 0.99991 0.01808 0.01857 0.00197 0.96915 1.00003 1.02980
1000 0.95226 0.00564 0.99983 0.00595 0.00595 0.00020 0.99002 0.99981 1.00944

-0.50 0.90 100 0.99679 0.01262 0.99955 0.01297 0.01294 0.00125 0.97842 0.99915 1.02165
1000 0.99728 0.00393 1.00009 0.00404 0.00414 0.00013 0.99342 1.00001 1.00678

0.00 -0.90 100 0.89985 0.02270 0.99969 0.02437 0.02439 0.00260 0.96076 0.99965 1.03900
1000 0.90014 0.00741 0.99985 0.00792 0.00781 0.00027 0.98686 0.99987 1.01319

0.00 0.00 100 0.94907 0.01826 0.99986 0.01933 0.01923 0.00189 0.96943 0.99925 1.03314
1000 0.94930 0.00580 1.00001 0.00617 0.00616 0.00020 0.98972 1.00004 1.01010

0.00 0.90 100 0.99849 0.01258 1.00025 0.01298 0.01343 0.00127 0.97862 1.00021 1.02179
1000 0.99829 0.00398 0.99997 0.00411 0.00429 0.00013 0.99295 0.99999 1.00680

0.50 -0.90 100 0.87789 0.02487 1.00071 0.02645 0.02772 0.00312 0.95739 1.00000 1.04397
1000 0.87742 0.00795 0.99991 0.00849 0.00886 0.00034 0.98612 0.99977 1.01456

0.50 0.00 100 0.93853 0.01983 0.99962 0.02099 0.02138 0.00228 0.96545 0.99949 1.03381
1000 0.93903 0.00637 1.00004 0.00676 0.00684 0.00024 0.98908 0.99985 1.01119

0.50 0.90 100 1.00034 0.01417 0.99980 0.01476 0.01491 0.00144 0.97494 0.99980 1.02364
1000 1.00054 0.00445 1.00008 0.00461 0.00475 0.00014 0.99230 1.00008 1.00766
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