
 
 
 
 
 
 
 
 
 
 

LONG RUN AND CYCLICAL DYNAMICS 
IN THE US STOCK MARKET 

 
 

GUGLIELMO MARIA CAPORALE 
LUIS A. GIL-ALANA 

 
 

CESIFO WORKING PAPER NO. 2046 
CATEGORY 10: EMPIRICAL AND THEORETICAL METHODS 

JULY 2007 
 

 
 
 
 
 
 

 
An electronic version of the paper may be downloaded  
• from the SSRN website:              www.SSRN.com 
• from the RePEc website:              www.RePEc.org 

• from the CESifo website:           Twww.CESifo-group.deT 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6634881?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


CESifo Working Paper No. 2046 
 
 
 

LONG RUN AND CYCLICAL DYNAMICS 
IN THE US STOCK MARKET 

 
 

Abstract 
 
This paper examines the long-run dynamics and the cyclical structure of various series related 
to the US stock market using fractional integration. We implement a procedure which enables 
one to consider unit roots with possibly fractional orders of integration both at the zero (long-
run) and the cyclical frequencies. We examine the following series: inflation, real risk-free 
rate, real stock returns, equity premium and price/dividend ratio, annually from 1871 to 1993. 
When focusing exclusively on the long-run or zero frequency, the estimated order of 
integration varies considerably, but nonstationarity is found only for the price/dividend ratio. 
When the cyclical component is also taken into account, the series appear to be stationary but 
to exhibit long memory with respect to both components in almost all cases. The exception is 
the price/dividend ratio, whose order of integration is higher than 0.5 but smaller than 1 for 
the long-run frequency, and is between 0 and 0.5 for the cyclical component. Also, mean 
reversion occurs in all cases. Finally, we use six different criteria to compare the forecasting 
performance of the fractional (at both zero and cyclical frequencies) models with others based 
on fractional and integer differentiation only at the zero frequency. The results show that the 
former outperforms the others in a number of cases. 
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The Efficient Market Hypothesis (EMH) in its weak form states that it is not possible to trade 

profitably on the basis of historical stock market prices and/or return information (see Fama, 

1970). This proposition has been tested in numerous empirical studies by trying to establish 

whether stock prices are I(1) and consequently stock market returns I(0) series. This is based on 

the idea that if stock prices fully reflect available information they should follow a random 

walk process, which implies unpredictable returns, and rules out systematic profits over and 

above transaction costs and risk premia. Therefore, a finding of mean reversion in returns is 

seen as inconsistent with equilibrium asset pricing models (see the survey by Forbes, 1996). 

Note, however, that if risk factors change systematically over the business cycle, expected 

returns should also be time-varying. Similarly, allowing for business cycle variation and short-

range dependence might also result in rejecting long memory in stock prices (see Lo, 1991). In 

general, as stressed in Caporale and Gil-Alana (2002), the unit root tests normally employed 

impose too restrictive assumptions on the behaviour of the series of interest, in addition to 

having low power. That study suggests instead using tests which allow for fractional 

alternatives, and finds that US real stock returns are close to being I(0) (which raises the further 

question whether the shocks are autocorrelated, with the implication that markets are not 

efficient). Fractional integration models (at the long run or zero frequency) have also been used 

for inflation and interest rates (see, e.g., Shea, 1991; Backus and Zhin, 1993; Hassler and 

Wolters, 1995; Baillie et al., 1996, etc.).  

However, it has become increasingly clear that the cyclical component of economic and 

financial series is also very important. This has been widely documented, especially in the case 

of business cycles, for which non-linear (Beaudry and Koop, 1993, Pesaran and Potter, 1997) 

or fractionally ARIMA (ARFIMA) models (see Candelon and Gil-Alana, 2004) have been 

proposed. Furthermore, from a pure time series viewpoint, it has been argued that cycles should 

be modelled as an additional component to the trend and the seasonal structure of the series 
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(see Harvey, 1985, Gray et al., 1989). The available evidence suggests that the periodicity of 

the series ranges between five and ten years, in most cases a periodicity of about six years 

being estimated (see, e.g., Baxter and King, 1999; Canova, 1998; King and Rebelo, 1999). 

In view of these findings, the present paper extends the earlier work by Caporale and 

Gil-Alana (2002) by adopting a modelling approach which, instead of considering exclusively 

the component affecting the long-run or zero frequency, also takes into account the cyclical 

structure. Furthermore, the analysis is carried out for the US inflation rate, real risk-free rate, 

equity premium and price/dividend ratio, in addition to real stock returns. More precisely, we 

use a procedure, which enables one to test simultaneously for roots with possibly fractional 

orders of integration at both zero and the cyclical frequencies. This approach, due to Robinson 

(1994), has several distinguishing features compared with other methods, the most noticeable 

one being its standard null and local limit distributions.1 Moreover, it does not require 

Gaussianity (a condition rarely satisfied in financial time series), a moment condition only of 

order two being sufficient. Also, modelling simultaneously the zero and the cyclical 

frequencies can solve at least to some extent the problem of misspecification that might arise 

with respect to these two frequencies. We are able to show that our proposed method represents 

an appealing alternative to the increasingly popular ARIMA (ARFIMA) specifications found in 

the literature. It is also consistent with the widely adopted practice of modelling many 

economic series as two separate components, namely a secular or growth component and a 

cyclical one. The former, assumed in most cases to be nonstationary, is thought to be driven by 

growth factors, such as capital accumulation, population growth and technology improvements, 

whilst the latter, assumed to be covariance stationary, is generally associated with fundamental 

factors which are the primary cause of movements in the series.2  

The structure of the paper is as follows. Section 1 briefly describes the statistical model. 

Section 2 introduces the tests used for the empirical analysis. Section 3 discusses an application 
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to annual data on the US stock market. Section 4 is concerned with model selection for each 

time series, and the preferred specifications are compared with other more classical 

representations. Section 5 contains some concluding comments.  

 

1. The statistical model 

Let us suppose that {yt, t = 1, 2, …, n} is the time series we observe, which is generated by the 

model: 

       ,..,2,1t,uy)LLwcos21()L1( tt
d2d 21 ==+−−        (1) 

where L is the lag operator (Lyt = yt-1), w is a given real number, ut is I(0)3 and d1 and d2 can be 

real numbers. Let us first consider the case of d2 = 0. Then, if d1 > 0, the process is said to be 

long memory at the long-run or zero frequency, also termed ‘strong dependent’, because of the 

strong association between observations widely separated in time. The differencing parameter 

d1 plays a crucial role from both economic and statistical viewpoints. Thus, if d1 ∈ (0, 0.5), the 

series is covariance stationary and mean-reverting, with shocks disappearing in the long run; if 

d1 ∈ [0.5, 1), the series is no longer stationary but still mean-reverting, while d1  ≥  1 means 

nonstationarity and non-mean-reversion. It is therefore crucial to examine if d1 is smaller than 

or equal to or higher than 1. For example, if d1 < 1, there is less need for policy action than if d1 

≥ 1, since the series will return to its original level some time in the future. On the contrary, if 

d1 ≥ 1, shocks will be permanent, and active policies are required to bring the variable back to 

its original long-term projection. In fact, this is one of the most hotly debated topics in 

empirical finance. Lo and MacKinlay (1988) and Poterba and Summers (1988) used variance-

ratio tests and found evidence of mean reversion in stock returns. On the contrary, Lo (1991) 

used a generalised form of rescaled range (R/S) statistic and found no evidence against the 

random walk hypothesis for the stock indices. Other papers examining the persistence of 
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shocks in financial time series are Lee and Robinson (1996), Fiorentini and Sentana (1998) and 

May (1999).4 

 Let us now consider the case of d1 = 0 and d2 > 0. The process is then said to exhibit 

long memory at the cyclical frequency. This model was introduced by Andel (1986) and has 

been studied, among others, by Gray et al. (1989, 1994), who showed that the series is 

stationary if ⏐cos w⏐ < 1 and d2 < 0.50 or if ⏐cos w⏐ = 1 and d2 < 0.25.5 They also showed that 

the second polynomial in (1) can be expressed in terms of the Gegenbauer polynomial 
2, djC , 

such that, defining µ = cos w, 

,L)(C)LL21( j

0j
d,j

d2
2

2 µ∑=+µ−
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−    (2) 
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where Γ(x) represents the Gamma function. For a formal treatment of Gegenbauer polynomials, 

see, for example, Szego (1975). Lildholdt (2002) shows that this model can result from cross-

sectional aggregation of certain AR(2) processes, while Bierens (2001) concludes that US real 

GDP can be well characterised as a model of this form with d2 = 1. These processes, for which 

the crucial issue is to have a spectral density with a peak at (0, π], were later extended to the 

case of a finite number of peaks by Giraitis and Leipus (1995) and Woodward et al. (1998).  

Modelling periodicity in stock market returns has been studied by Andersen and 

Bollerslev (1997). They found evidence of strong intraday periodicity in return volatility in 

foreign exchange and equity model markets. To model this kind of phenomenon they noted that 

the lag-j autocovariance was proportional to cos(λj)2d-1 as j → ∞, which has the long memory 

property of non-summability. However, these autocovariances also oscillate, changing sign 

every π/λ lags, a property that is satisfied by the Gegenbauer processes described above. The 
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economic implications in (2) are similar to the previous case of long memory at the zero 

frequency. Thus, if d2 < 1 and │µ│ < 1, or if d2 < 0.5 and │µ│ = 1, shocks affecting the 

cyclical part will be mean reverting (see Gray et al., 1989; Smallwood and Norrbin, 2006), 

while d2 ≥ 1 (with │µ│ < 1) implies an infinite degree of persistence of the shocks. This type of 

model for the cyclical component has not been much used for financial time series, (some 

recent examples are the papers of Bisaglia et al., 2003, and Smallwood and Norrbin, 2006), 

though Robinson (2001, pp. 212-213) suggests its adoption in the context of complicated 

autocovariance structures. 

 Finally, note that the model in (1) (with w ≠  0) encompasses many specifications that 

have been used in financial time series including ARMA, ARIMA and long memory fractional 

models. Note that the autocovariances not only decay at a hyperbolic rate typical of ARFIMA 

models, but also exhibit periodic behaviour associated with the cosine function. This is an 

important feature of the present model, since unlike fractional or ARIMA models, it can 

capture strong cyclical characteristics that have been observed in the autocorrelation functions 

of economic and financial data. 

 

2. The testing procedure 

Robinson (1994) adopts the following model: 

      ,...,2,1txz'y ttt =+β=                  (3) 

where yt is the observed time series; zt is a (kx1) vector of deterministic regressors that may 

include, for example, an intercept, (e.g., zt ≡ 1), or an intercept and a linear time trend (in the 

case of zt = (1,t)T); β is a (kx1) vector of unknown parameters; and the regression errors xt are 

such that: 

                  ,...,2,1tux);L( tt ==θρ             (4) 
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where ρ is a given function which depends on L, and the (px1) parameter vector θ, adopting the 

form: 

        ,)LLwcos21()L1()L1();L(
1p

2j

d2dsd jjss
11 ∏ +−−−=θρ

−

=

θ+θ+θ+              (5) 

for real given numbers d1, ds, d2, … dp-1, integer p, and where ut is I(0), and thus it can be 

specified as white noise or any type of weak autocorrelated structure. Note that the second 

polynomial in (5) refers to the case of seasonality (i.e. s = 4 in case of quarterly data, and s = 12 

with monthly observations). Under the null hypothesis, defined by: 

     Ho:   θ  =  0               (6) 

(5) becomes: 

       .)LLwcos2(1)L(1L)(1(L)ρ0)θ;(Lρ
1p

2j

jd2sds1d ∏ +−−−===
−

=
          (7) 

This is a very general specification that makes it possible to consider different models under the 

null. In this paper we are concerned with both the long run and the cyclical structure of the 

series, and thus we assume that ds = 0 and p = 3. In such a case (5) can be expressed as: 

      ,)LLwcos21()L1();L( 2211 d2d θ+θ+ +−−=θρ             (8) 

and, similarly, (7) becomes: 

     .)LLwcos21()L1()L( 21 d2d +−−=ρ        (9) 

Here, d1 represents the degree of integration at the long run or zero frequency (i.e., the 

stochastic trend), while d2 affects the cyclical component of the series. The functional form of 

the test statistic, (denoted by R̂ ) is described in Appendix 1. 

Based on Ho (6), Robinson (1994) established that, under certain regularity conditions:6  

,,ˆ 2
2 ∞→→ nasR d χ      (10) 
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where n is the sample size and “→d” means convergence in distribution. Thus, as shown by 

Robinson (1994), unlike in other procedures, we are in a classical large-sample testing 

situation, and furthermore the tests are efficient in the Pitman sense against local departures 

from the null.7 Because R̂  involves a ratio of quadratic forms, its exact null distribution could 

have been calculated under Gaussianity via Imhof’s algorithm. However, a simple test is 

approximately valid under much wider distributional assumptions: a test of (6) will reject Ho 

against the alternative Ha: θ ≠ 0 if R̂  > 2
,2 αχ , where Prob ( 2

2χ  > 2
,2 αχ ) = α. A similar version 

of Robinson’s (1994) tests (with d1 = 0) was examined in Gil-Alana (2001), where its 

performance in the context of unit-root cycles was compared with that of the Ahtola and Tiao’s 

(1987) tests, the results showing that the former outperforms the latter in a number of cases. 

Other versions of his tests have been applied to raw time series in Gil-Alana and Robinson 

(1997, 2001) to test for I(d) processes with the roots occurring at zero and the seasonal 

frequencies respectively. However, this is the first empirical finance application testing 

simultaneously for the roots at zero and the cyclical frequencies, a statistical approach which is 

shown in the present paper to represent a convenient alternative to the more conventional 

ARIMA (ARFIMA) specifications used for the parametric modelling of many time series. 

 

3.     An empirical application for the US stock market 

Our dataset includes annual series for US inflation, real risk-free rate, real stock returns, equity 

premium and price/dividend ratio from 1871 to 1993, and is a slightly updated version of the 

dataset used in Cecchetti et al (1990) (see that paper for further details on sources and 

definitions).8 

Figure 1 contains plots of the original series with their corresponding correlograms and 

periodograms. All of them, with the exception of the price/dividend ratio, appear to be 
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stationary. However, deeper inspection of the correlograms shows that there are significant 

values even at some lags relatively distant from zero, along with slow decay and/or cyclical 

oscillation in some cases, which could indicate not only fractional integration at the zero 

frequency but also cyclical dependence. Similarly, the periodograms also have peaks at 

frequencies other than zero. For the price/dividend ratio, the slow decay in the correlogram 

clearly suggests that the series is not I(0) stationary. 
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FIGURE 1 
Raw time series, with their corresponding correlograms and periodograms 
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FIGURE 2 
First differenced time series, with their corresponding correlograms and periodograms 
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Figure 2 displays similar plots for the first differenced data. The correlograms and 

periodograms now strongly suggest that all series are overdifferenced with respect to the 0 

frequency. On the other hand, there are significant peaks in the periodograms at frequencies 

different from zero. In view of this, it might be of interest to examine more in depth the 

behaviour of these series using a fractional model at both the zero and the cyclical frequencies. 

As a first step, we focus exclusively on the long-run frequency and implement a simple 

version of Robinson’s (1994) test, which is based on a model given by (3) and (4), with zt = 

(1,t)T, t ≥ 1, (0,0)T otherwise, and ρ(L; θ) = (1 – L)d+θ. Thus, under Ho (6), we test the model: 

...,2,1t,xty t10t =+β+β=                (11) 

 ,...,2,1t,ux)L1( tt
d ==−              (12) 

for values d = 0, …, (0.01), …, 2, that is, we test from d = 0 to d = 2 with 0.01 increments, and 

use different types of disturbances. In such a case, the test statistic greatly simplifies, taking the 

form given by R̂  in Appendix 1, with ψ(λs) being exclusively defined by ψ1(λs) and 

.w'ˆy)L1(û tt
d

t β−−=  The null limit distribution will then be a 2
1χ  distribution. However, if 

ρ(L; θ) = (1 – L)d+θ, then p = 1,  and therefore we can consider one-sided tests based on 

,R̂r̂ =  with a standard N(0,1) distribution. Note that testing the null hypothesis with d = 1 

means that this becomes a classical unit-root model of the same form as those proposed by 

Dickey and Fuller (1979) and others. However, instead of using autoregressive (AR) structures 

of the form: (1 – (1+θ)L)xt = ut, we use fractional alternatives. Moreover, the use of AR 

alternatives results in a dramatic change in the asymptotic behaviour of the tests: if θ < 0, xt is 

stationary; it contains a unit root if θ = 0, and it becomes nonstationary and explosive for θ > 0. 

On the contrary, under fractional alternatives of the form as in (12), the behaviour of xt is 

smooth across d, this being the intuitive reason for its standard asymptotic behaviour.9 
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Table 1 displays the test results. Note that Robinson’s (1994) parametric approach does 

not require preliminary differencing; thus, it allows us to test any real value d, encompassing 

both stationary and nonstationary hypotheses. The numbers in parentheses are the estimates of 

d obtained with the Whittle function. We also report the 95% confidence bands for the non-

rejections of d. We examine separately the cases of β0 = β1 = 0 a priori (i.e., with no regressors 

in the undifferenced model (11)); β0 unknown and β1 = 0 (with an intercept); and β0 and β1 

unknown (an intercept and a linear time trend). The inclusion of a linear time trend may appear 

unrealistic in the case of financial time series. However, it should be noted that in the context of 

fractional (or integer) differences, the time trend disappears in the long run. For example, 

suppose that ut in (12) is white noise. Then, testing Ho (6) in (11) and (12) with d = 1, the series 

becomes, for t > 1, a pure random walk process if β1 = 0, and a random walk with an intercept 

if both β0 and β1 are unknown.10 The results differ substantially from one series to another. For 

instance, for inflation and the real risk-free rate the values are always higher than 0 but smaller 

than 0.5, oscillating between 0.07 (inflation rate with a linear trend) and 0.49 (real risk-free rate 

with no regressors). For real stock returns and equity premium, the values of d for which Ho (6) 

cannot be rejected oscillate widely around 0, ranging between –0.18 (equity premium with a 

linear trend) and 0.14 (stock returns with no regressors). Finally, for the price/dividend ratio all 

the non-rejection values are higher than 0.5, implying nonstationarity with respect to the zero 

frequency. 
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TABLE 1 

Confidence intervals of the non-rejection values of d using R̂  in Appendix 1 with ρ(L; θ) = (1 
– L)d+θ  and white noise ut

 

Time Series  No regressors An intercept A linear trend 

INFLATION RATE [0.12  (0.25)  0.45] [0.13  (0.25)  0.46] [0.07  (0.22)  0.44] 

R. RISK-FREE RATE [0.19  (0.31)  0.49] [0.17  (0.30)  0.47] [0.15  (0.29)  0.47] 

R. STOCK RETURN [-0.09  (0.00)  0.14] [-0.10  (0.00)  0.13] [-0.10  (0.00)  0.13] 

EQUITY PREMIUM [-0.12  (-0.04)  0.10] [-0.14  (-0.04)  0.10] [-0.18  (-0.07)  0.08] 

PRICE / DIVIDEND  [0.72  (0.83)  1.02] [0.58  (0.73)  0.92] [0.59  (0.73)  0.92] 

We test the null hypothesis: d = do in the model (1-L)dxt = εt. In parentheses, the Whittle estimates for d. 

 

TABLE 2 

Confidence intervals of the non-rejection values of d using R̂  in Appendix 1 with ρ(L; θ) = (1 
– L)d+θ  and AR(1) ut

 

Time Series  No regressors An intercept A linear trend 

INFLATION RATE [-0.13  (-0.07)  0.19] [-0.18  (-0.08)  0.20] [-0.44  (-0.18)  0.11] 

R. RISK-FREE RATE [-0.11  (0.04)  0.33] [-0.08  (0.04)  0.28] [-0.14  (-0.06)  0.27] 

R. STOCK RETURN [-0.17  (-0.04)  0.20] [-0.25  (-0.04)  0.18] [-0.26  (-0.05)  0.18] 

EQUITY PREMIUM [-0.22  (-0.11)  0.00] [-0.30  (-0.12)  0.00] [-0.41  (-0.19)  -0.04] 

PRICE / DIVIDEND  [0.24  (0.72)  0.83] [0.15  (0.55)  0.58] [0.13  (0.48)  0.60] 

We test the null hypothesis: d = do in the model (1-L)dxt = ut;  ut = τut-1 + εt. 
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The significance of the results in Table 1 may be partly due to the fact that I(0) 

autocorrelation in ut has not been taken into account. Thus, we also performed the tests 

imposing AR(1) disturbances (see Table 2). Higher AR orders were also tried and the results 

were very similar. For all series, except the price/dividend ratio, the values oscillate around 0, 

implying that the series may be I(0) stationary. However, for the price/dividend ratio, the 

values are still above 0, ranging from 0.13 (with a linear time trend) to 0.83 (in the case of no 

regressors). Comparing the results of Table 2 with those of Table 1, one can see that the orders 

of integration are smaller by about 0.20 when autocorrelation is allowed for. This might reflect 

the fact that the estimates of the AR coefficients are Yule-Walker, which entails AR roots that, 

although automatically less than one in absolute value, can be arbitrarily close to one. Hence, 

they might compete with the order of integration at the zero frequency when describing the 

behaviour at such a frequency.11 

We also examined d, independently of the way of modelling the I(0) disturbances, at the 

same zero frequency. For this purpose, we used two semiparametric methods: an approximate 

local Whittle approach (Robinson, 1995), and an exact local Whittle estimator recently 

proposed by Phillips and Shimotsu (2005). In the two cases the conclusions were very similar: 

for inflation and the real risk-free rate: some estimates are within the I(0) interval, especially if 

the bandwidth parameter is small; however, for most of values of that parameter, they are not. 

For real stock returns and the equity premium almost all values are within the I(0) confidence 

intervals, but not so for the price/dividend ratio. Also, for the latter series, the values are lower 

than those within the unit root interval, clearly suggesting that d is greater than 0 but smaller 

than 1. Therefore, the findings are the same as with the parametric procedure, namely there is 

strong evidence in favour of I(0) stationarity for real stock returns and the equity premium, 

some evidence of long memory for inflation and the real risk-free rate, and strong evidence of 

fractional integration for the price/dividend ratio. Of course, stationarity of stock returns and 
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equity premium is not a surprising result, as the absence of long memory in these two series is a 

well-established fact in the literature (Lo, 1991; Cheung and Lai, 1995, etc.) 

The above approach to investigating the long-run behaviour of time series consists in 

testing a parametric model for the series and estimating two semiparametric ones, relying on 

the long run-implications of the estimated models. The advantage of the first procedure is the 

precision gained by providing all the information about the series through the parameter 

estimates. A drawback is that these estimates are sensitive to the class of models considered, 

and may be misleading because of misspecification. It is well known that the issue of 

misspecification can never be settled conclusively in the case of parametric (or even 

semiparametric) models. However, the problem can be partly addressed by considering a larger 

class of models. This is the approach used in what follows, where we employ another version 

of the tests of Robinson (1994) that enables us simultaneously to consider roots at zero and the 

cyclical frequencies.12 

Before discussing the test results we describe a small Monte Carlo experiment we have 

carried out to examine the power properties of the procedure employed below. We suppose that 

the true model is given by equation (1) with d1 = 0.7; d2 = 0.1 and w = wr = 2π/6, implying long 

memory and nonstationarity at the long run frequency, stationary long memory behaviour of 

the cyclical component, and cycles with a periodicity of about 6 periods. We also assume that 

ut is white noise, though similar conclusions were obtained under weak autocorrelation for the 

error term. 

We perform the procedure described in Section 3, testing the null hypothesis for d1o-

values equal to 0, 0.1, …, 2, and d2o = -0.5, -0.4, …, 1.5, and r = 6, for sample sizes T = 120, 

240, 360, 480 and 960 observations. We generated Gaussian series using the routines GASDEV 

and RAN3 of Press, Flannery, Teukolsky and Vetterling (1986), with 10,000 replications in 

each case. 
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Table 3 reports the rejection frequencies of the testing procedure at the 5% significance 

level. Thus, the values corresponding to d1o = 0.7 and d2o = 0.1 indicate the size of the test. 

TABLE 3 

Rejection frequencies of Robinson’s (1994) procedure described in Section 3 

d1 d2 T = 120 T = 240 T = 360 T = 480 T = 960 

0.7 -0.2 0.851 0.996 1.000 1.000 1.000 
0.8 -0.2 0.833 0.995 1.000 1.000 1.000 
0.9 -0.2 0.842 0.995 1.000 1.000 1.000 
1.0 -0.2 0.859 0.998 1.000 1.000 1.000 
1.1 -0.2 0.888 0.999 1.000 1.000 1.000 
0.5 -0.1 0.880 1.000 1.000 1.000 1.000 
0.6 -0.1 0.691 0.985 1.000 1.000 1.000 
0.7 -0.1 0.535 0.916 0.995 0.999 1.000 
0.8 -0.1 0.524 0.896 0.991 0.998 1.000 
0.9 -0.1 0.578 0.934 0.992 1.000 1.000 
1.0 -0.1 0.679 0.985 1.000 1.000 1.000 
1.1 -0.1 0.816 1.000 1.000 1.000 1.000 
0.5  0   0.693 0.973 0.999 1.000 1.000 
0.6  0   0.323 0.717 0.911 0.975 1.000 
0.7  0   0.143 0.338 0.550 0.731 0.967 
0.8  0   0.160 0.377 0.615 0.769 0.995 
0.9  0    0.305 0.723 0.944 0.987 1.000 
1.0  0.  0.601 0.974 1.000 1.000 1.000 
1.1  0   0.898 1.000 1.000 1.000 1.000 
0.4  0.1 0.870 0.995 1.000 1.000 1.000 
0.5  0.1 0.558 0.896 0.976 0.998 1.000 
0.6  0.1 0.202 0.392 0.578 0.688 0.925 
0.7  0.1 0.075 0.068 0.054 0.047 0.051 
0.8  0.1 0.207 0.334 0.490 0.588 0.912 
0.9  0.1 0.521 0.878 0.977 0.996 1.000 
1.0  0.1 0.856 0.996 1.000 1.000 1.000 
0.4 0.2 0.857 0.993 1.000 1.000 1.000 
0.5 0.2 0.583 0.912 0.985 0.999 1.000 
0.6 0.2 0.319 0.598 0.781 0.887 0.998 
0.7 0.2 0.331 0.561 0.736 0.843 0.989 
0.8 0.2 0.621 0.904 0.976 0.991 1.000 
0.9 0.2 0.897 0.996 0.999 1.000 1.000 
0.5 0.3 0.746 0.986 1.000 1.000 1.000 
0.6 0.3 0.662 0.964 0.998 1.000 1.000 
0.7 0.3 0.795 0.973 0.999 1.000 1.000 

 

One can see  that if the sample size is small (e.g. T = 120) the size of the test is slightly 

above its nominal value, though it approximates the 5% level with T. Looking at local 
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departures from the null (e.g., d1 = 0.6 & d2 = 0.1, and d1 = 0.8 & d2 = 0.1), one finds that the 

rejection frequencies with T = 120 are 0.202 and 0.207 respectively. For T = 240 the 

corresponding values are 0.392 and 0.334, and, for T = 480 or 960, they are higher than 0.9 in 

all cases. For the remaining departures from the null, the rejection probabilities are higher than 

0.9 in practically all cases, even for small sample sizes. Similar conclusions were reached with 

other values of d1 and d2.13 

The procedure is then applied to the five series under examination. For this purpose, let 

us consider now the model given by (3) and (4), with ρ(L; θ) as in (8) and zt = (1,t)T. Thus, 

under Ho (6), the model becomes: 

...,2,1t,xty t10t =+β+β=              (13) 

....,,2,1t,ux)LLwcos21()L1( tt
d2d 21 ==+−−            (14) 

and, if d2 = 0, the model reduces to the case previously studied of long memory exclusively at 

the long-run or zero frequency. We assume that w = wr = 2πj/n, j = n/r, and r indicating the 

number of time periods per cycle. 
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TABLE 4 

Testing Ho (6) in (14), (4) and (8) with zt ≡ 1, w = wr, r = 6 and white noise ut 

d1 d2 INFLATION RISK RATE STOCK RT PREMIUM PRICE / DIV 

-0.10 -0.10 39.49 51.69 4.03 4.84 236.63
-0.10  0.00 36.06 55.05 3.38* 0.69* 254.45
-0.10  0.10 36.86 58.98 4.64* 0.90* 265.93
-0.10  0.20 37.25 60.01 6.61 3.03* 272.99
 0.00 -0.10 28.25 30.70 0.14* 4.35* 170.35
 0.00  0.00 16.73 24.09 0.43* 0.54* 186.83
 0.00  0.10 13.29 23.03 2.96* 1.81* 197.19
 0.00  0.20 12.66 22.78 6.60 5.29* 202.97
 0.10 -0.10 25.25 22.51 1.32* 5.49* 112.99
 0.10  0.00 8.42 9.72 1.95* 2.74* 125.92
 0.10  0.10 3.04* 6.19 5.64* 5.11* 133.05
 0.10  0.20 2.72* 6.26 10.39 9.57 137.62
 0.10   0.30 4.70* 7.72 15.49 14.84 141.08
 0.20 -0.10 24.90 20.29 3.41* 6.91 68.85
 0.20  0.00 5.70* 4.50* 5.18* 5.48* 76.73
 0.20  0.10 0.20* 0.50* 9.78 8.87 81.48
 0.20  0.20 1.09* 1.78* 15.19 13.99 83.13
 0.20  0.30 4.84* 5.32* 20.69 19.63 82.15
 0.30 -0.10 25.10 20.09 5.89* 8.23 38.97
 0.30  0.00 5.65* 3.62* 8.78 8.19 41.56
 0.30  0.10 0.98* 0.40* 14.06 12.43 43.27
 0.30  0.20 3.32* 3.19* 19.81 18.00 43.31
 0.30  1.00 26.02 25.29 32.69 34.37 4.71*

  0.40  0.00 6.45 4.45* 12.23 10.73 19.63
 0.40  0.10 3.30* 2.70* 17.98 15.68 19.12
 0.40  0.70 34.13 23.32 31.40 31.13 5.73*

 0.40  0.80 26.00 25.28 31.98 32.02 5.08*

 0.40  0.90 27.50 26.85 32.64 32.80 5.11*

 0.50  0.00 7.49 5.84* 15.38 13.12 7.89
 0.50  0.10 6.14 5.83* 21.44 18.62 6.30
 0.50  0.20 11.24 11,36 27.34 24.62 5.81*

 0.50  0.30 18.20 18.46 32.72 30.33 5.86*

 0.60  0.00 8.59 7.38 18.23 15..40 2.70*

 0.60  0.10 9.02 9.15 24.48 21.31 1.00*

 0.60  0.20 15.22 15.70 30.31 27.36 1.25*

 0.60  0.30 22.70 23.22 35.51 32.95 2.59*

 0.60  0.40 29.91 30.36 40.08 37.95 4.70*

 0.70  0.00 9.77 9.00 20.82 17.60 1.22*

 0.70  0.10 12.04 12.49 27.15 23.80 0.04*

 0.70  0.20 19.01 19,76 32.86 29.84 1.26*

 0.70  0.30 26.72 27.46 37.85 35.28 3.77*

 0.80  0.00 11.09 10.73 23.20 19.75 1.72*

 0.80  0.10 14.97 15.66 29.54 26.13 1.39*

  0.80  0.20 22.57 23.51 35.10 32.10 3.57*

 0.90  0.00 12.57 12.58 25.41 21.85 3.19*

 0.90  0.10 17.86 18.77 31.70 28.33 3.82*

 1.00  0.00 14.22 14.56 27.49 23.90 5.05*

The non-rejection values of the null hypothesis at the 5% significance level are in bold and with an asterisk. 
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 We first computed the statistic R̂  given in Appendix 1 for values of d1 and d2 = -0.50, 

…, (0.10), …, 2, and r = 2, …, (1), …,  n/2,14  assuming that ut is white noise. For brevity, we 

do not report the results for all statistics. In brief, the null hypothesis (6) was rejected for all 

values of d1 and d2 if r was smaller than 4 or higher than 9, implying that, if a cyclical 

component is present, its periodicity is constrained to be between 4 and 9 years. This is 

consistent with the empirical finding in Canova (1998), Burnside (1998), King and Rebelo 

(1999) and others that cycles have a periodicity between five and ten years. We report in Table 

4 the non-rejection cases at the 5% level only for the case of an intercept and r = 6. The results 

for the case of a linear time trend were very similar, and the coefficient corresponding to the 

trend was found to be insignificantly different from zero in virtually all cases. Note that the test 

statistic is obtained from the null differenced model, which is assumed to be I(0), and therefore 

standard t-tests apply. Further, we focus on r = 6 since the non-rejection values with r = 4, 5, 7, 

8 and 9 formed a proper subset of those non-rejections obtained with r = 6. We see that for 

inflation and the real risk-free rate the non-rejection values oscillate between 0.10 and 0.40 for 

d1, and between 0 and 0.3 for d2. They are slightly smaller for d2 in the case of stock returns 

and the equity premium, in some cases even being negative. Finally, for the price/dividend 

ratio, the values of d1 range between 0.5 and 1, while d2 seems to be constrained between 0 and 

0.5.15 
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FIGURE 3 

Non-rejection values of d1 and d2 in (14), (4) and (8) with r = 6 and white noise ut 
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d1 represents the order of integration at the zero frequency while d2 is the cyclical one. 
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 In order to have a more precise view about the non-rejection values of d1 and d2, we re-

computed the tests but this time for a shorter grid, with d1, d2 = -0.50, …, (0.01), …, 2. Figure 3 

displays the regions of (d1, d2) values where Ho cannot be rejected at the 5% level. It shows that 

the combination of non-rejection (d1o, d2o)-values form clusters, though there are also some 

values away from the clusters in four of the five series examined. These values of the statistics 

are in fact close to the critical values of the 2
2χ - distribution. Essentially, the series can be 

grouped into three categories: inflation and the real risk-free rate; real stock returns and the 

equity premium; finally, the price/dividend ratio. Starting with the first group (inflation and the 

real risk-free rate), we observe that the values of d1 range between 0.1 and 0.5 while d2 seems 

to lie between 0 and 0.3. Thus, there appears to be a slightly higher degree of integration at the 

long-run or zero frequency compared to the cyclical one. For real stock returns and equity 

premium, the values of both orders of integration oscillate around 0. Finally, for the 

price/dividend ratio the values of d1 range between 0.5 and 1, while d2 is between 0 and 0.5, 

implying nonstationarity with respect to the zero frequency but stationarity with respect to the 

cyclical component, and mean reversion with respect to both. Consequently, shocks to the latter 

series will disappear in the long run, with those affecting the cyclical part tending to disappear 

faster than those affecting its long-run or trending behaviour. This procedure was also applied 

in the context of autocorrelated (AR(1) and AR(2)) disturbances and the results did not 

substantially differ from those reported here based on white noise ut. In the AR(1) case, the AR 

parameter was not significantly different from zero for most series. The only exception was the 

price/dividend ratio, for which values of d1 close to zero are obtained for an AR parameter 

close to one, suggesting once more that the order of integration at the zero frequency and the 

AR parameter are in competition. When using AR(2) disturbances the results were again very 

similar, though with larger regions for the (d1, d2)- non-rejection values. 
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4. Forecasting and comparisons with other models 

In this section, we try first to determine the best model specification for each time series. Then, 

we compare the selected models with other approaches based on I(0) and I(1) hypotheses. 

 Given the lack of efficient procedures for estimating the parameters in the model in (13) 

and (14), we use the following strategy: after computing the values of the test statistic for d1, d2 

= -0.50, …, (0.01), …, 2 and r = 2, …, (1), .., n/2, for the three cases of no regressors, an 

intercept and an intercept with a linear time trend, we discriminate between these three cases on 

the basis of the significance of the estimated coefficients in (13), and choose the values of d1, d2 

and r which produce the lowest statistic. Note that, for each r, the values of d1 and d2 producing 

the lowest statistic should be an approximation to the maximum likelihood estimates since the 

procedure employed in the paper is based on the LM principle and uses the Whittle function, 

which is an approximation to the likelihood function. The selected model for each time series is 

reported in the second column of Table 5. We find that, for the inflation rate and the real risk-

free rate, both orders of integration are between 0.10 and 0.30, the order of integration at zero 

being slightly higher than the cyclical one; for real stock returns and the equity premium, the 

values of the d’s are close to zero, being slightly negative for the zero frequency; finally, the 

price-dividend ratio appears to be nonstationary at the long-run frequency (d1 = 0.68), and 

stationary with d2 close to zero (d2 = 0.09) for the cyclical component. Note that in this case all 

models are based on white noise disturbances, the reason being that, as mentioned in the 

previous section, the inclusion of autocorrelated disturbances did not alter the conclusions 

except for the price/dividend ratio - for this series the associated AR coefficient was very close 

to one, thus making the estimate of d1 invalid. Moreover, the cyclical fractional polynomial can 

be considered as an alternative to the ARMA specification when describing the short-run 

dynamics of the series. 
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TABLE 5 

Selected models for each time series 

 Models  / 

Series 
Fractional and cyclical differencing 

(FCD) 

Fractional differencing          

(FD) 

Integer differencing         

(ID) 
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Standard errors are in parentheses. 

 The third column of the table reports the selected models taking into account only the 

component affecting the long run or zero frequency, while the fourth refers to the case of 

integer differentiation with respect to such a frequency. In both cases, we model the cyclical 
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structure using ARMA specifications. Starting with the case of fractional integration, we 

observe that the highest degree of integration is obtained for the price/dividend ratio (d = 0.73), 

followed by inflation (d = 0.19). For the remaining three series, the values are practically zero 

(0.04 for the real risk-free rate; 0.01 for real stock returns, and –0.04 for the equity premium). 

Here we have followed the same strategy as in the fractional cyclical case, i.e., testing 

sequentially for a grid of values of d1, and then choosing the value that produces the lowest 

statistic in absolute value.16,17 Imposing integer orders of integration, for the first four variables, 

we use d = 0 while for the price-dividend ratio we try both d = 0 and 1. For the short-run 

components we use ARMA(p, q) models, with p, q ≤ 3, and choose the best specification using 

both LR tests and likelihood criteria (AIC, BIC). We see that, for most of the series, the short-

run structure can be described by simple MA models, the only exceptions being the real risk-

free rate where an AR(1) process is imposed, and the inflation rate (ARMA(2,1)). 

Next, we compare the various models in terms of their forecasting performance. 

Standard measures of forecast accuracy are the following: Theil’s U, the mean absolute 

percentage error (MAPE), the mean-squared error (MSE), the root-mean-squared error 

(RMSE), the root-mean-percentage-squared error (RMPSE) and mean absolute deviation 

(MAD) (Witt and Witt, 1992). These measures are described in Appendix 2.  

The three selected time series models (fractional and cyclical differencing, FCD; 

fractional differencing, FD; and integer differencing, ID) for each of the series were used to 

generate the following 5-year-ahead out-of-sample forecasts. Each forecast value was 

calculated and compared with the actual value of the series. Then, the above six criteria were 

used to rank the three forecasting models for each series. The ranking in terms of forecasting 

performance is given in Table 6, and is based on the average value of the forecasts for each 

criterion. We observe that for inflation and the real risk-free rate the FCD model outperforms 

FD and ID according to all the criteria. For real stock returns and the equity premium, the ID 
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specification seems to be the most adequate, while for the price/dividend ratio the results are 

mixed. Therefore, on the basis of the MAPE, MSE, RMPSE and RMSE criteria, the fractional 

and cyclical (FCD) model emerges as the best specification, while the other two criteria, MAD 

and Theil’s U, suggest that the simple fractional model (with d = 0.73) is the most adequate 

one. 

TABLE 6 

Overall ranking of forecasting performance using different criteria 

Series Model Theil’s U MAPE MSE RMSD RMSE MAD 

FCD 2 1 1 1 1 1 

FD 1 2 2 2 2 3 Inflation rate 

ID 3 3 3 3 3 2 

FCD 1 1 1 1 1 1 

FD 3 3 3 3 3 2 

Real risk  

free rate 
ID 2 2 2 2 2 3 

FCD 3 3 3 3 2 3 

FD 2 2 2 2 3 2 

Real stock  

return 
ID 1 1 1 1 1 1 

FCD 3 3 3 3 3 3 

FD 1 2 2 2 2 1 

Equity  

premium 
ID 2 1 1 1 1 2 

FCD 2 1 1 1 1 2 

FD 1 2 2 2 2 1 

Price – Dividend 

ratio 

ID 3 3 3 3 3 3 

FCD stands for Fractional and Cyclical Differentiation, FD for Fractional Differentiation, and ID for Integer 
Differentiation. Five out-of-sample observations were considered in each case and the ranking was computed 
on the basis of the average value of the forecasts for each criterion. 
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In Table 7 we focus on the forecasts for inflation and the price/dividend ratio over a 

longer time-horizon. The reason for focusing on these two series is that they are the two that 

clearly exhibit non-zero (and fractional) degrees of integration. We consider the forecasting 

performance of the three types of models discussed above (FCD, FD and ID) over the period 

1979 – 1993, based on specifying and estimating the models over the time period 1871 – 1978. 

The new selected models are displayed in Table 7 and we observe that they are very similar to 

those presented in Table 5. 

 

TABLE 7 

Selected models for Inflation and Price/Dividend ratio (1871 – 1978) 
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TABLE 8 

MSE forecasts for inflation and price/dividend ratio 

a) inflation 

 1 period 3 period 6 period 9 period 12 period 15 period 

FCD 1.3732 1.6221 1.5902* 1.6114 1.6110* 1.7071* 

FD 1.2165* 1.4093 1.7735 1.6551 1.6895 1.8112 

ID 1.3233 1.3921 1.7483 1.6643 1.7420 1.9921 

a) price/dividend ratio 

 1 period 3 period 6 period 9 period 12 period 15 period 

FCD 2.2819 2.0420 1.9617* 1.8447* 3.3683* 3.9035* 

FD 2.3850 2.1614 2.1920 2.9957 4.9017 4.8902 

ID 2.3480 1.7070 2.4346 2.1656 4.2935 5.1132 
 
 Table 8 reports the MSE forecasts for the two series, using the time horizons h = 1, 3, 6, 

9, 12 and 15. We observe that for the two series in many cases the lowest MSEs are obtained 

with the fractional cyclical models. However, the MSE measure used for comparing the relative 

forecasting performance of our models is a purely descriptive device. There exist several 

statistical tests for comparing different forecasting models. One of these tests, widely employed 

in the time series literature, is the asymptotic test for a zero expected loss differential of 

Diebold and Mariano (1995).18 However, Harvey, Leybourne and Newbold (1997) note that the 

Diebold-Mariano test statistic could be seriously over-sized as the prediction horizon increases, 

and therefore provide a modified Diebold-Mariano test statistic given by: 

,
n

n/)1h(hh21nDMDMM −+−+
=−  

where DM is the original Diebold-Mariano statistic, h is the prediction horizon and n is the 

time span for the predictions. Harvey et al. (1997) and Clark and McCracken (2001) show that 

this modified test statistic performs better than the DM test statistic (though still poorly in finite 
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samples), and also that the power of the test is improved when p-values are computed with a 

Student distribution. 

Using the M-DM test statistic, we further evaluate the relative forecast performance of 

the different models by making pairwise comparisons. In Table 8 we indicate with an asterisk, 

for each prediction-horizon, the rejections of the null hypothesis that the forecast performance 

of model i and j is equal in favour of the one-sided alternative that model i’s performance is 

superior at the 5% significance level.19 Given the fact that we have three potential models for 

each prediction and we make pairwise comparisons, only the preferred model - when there is 

consistency for all three specifications - is indicated with an asterisk, cases not being 

chracterised by consistency being left out. We note here that over long horizons the fractional 

cyclical model produces for both series significantly superior forecasts. Similar results were 

obtained when using other sets of forecasts based on rolling window statistics. 

 

5. Conclusions 

In this paper we have examined the time series behaviour of five series related to the US stock 

market by means of statistical techniques based on long memory processes. Specifically, we 

have used a procedure that has enabled us to test for unit roots with integer or fractional orders 

of integration, not only at zero but also at the cyclical frequencies. These tests have standard 

null and local limit distributions and can easily be applied to raw time series.20  

 Initially, we focused only on the long-run or zero frequency, applying a suitable version 

of Robinson’s (1994) parametric tests along with various semiparametric estimation 

procedures. We used these methods because of the distinguishing features that make them 

particularly relevant in the context of financial time series. Specifically, they do not require 

Gaussianity (which is an assumption that is not satisfied by most financial series), but only a 

moment condition of order two. Additionally, they have standard null limit distributions, which 
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is another advantage of these tests compared to other procedures based on AR alternatives. The 

order of integration estimated using these methods varies considerably from one series to 

another, but nonstationarity is found only in the case of the price/dividend ratio. 

However, the non-rejection values obtained at the zero frequency could be partly due to 

the fact that attention has not been paid to other possible (cyclical) frequencies of the process. 

Thus, we adopted a method suitable for simultaneously testing for the presence of roots at the 

zero and the cyclical frequencies. The results suggest that the periodicity of the series ranges 

between 5 and 10 years, which is consistent with most of the empirical literature on cycles 

finding a periodicity of about six years (see, e.g., Baxter and King, 1999, Canova, 1998, and 

King and Rebelo, 1999). Further, the series can be grouped into three different categories: 

inflation and the real risk-free rate, with the order of integration at the zero frequency 

fluctuating between 0 and 0.5 and d2 (cyclical integration) between 0 and 0.3; real stock returns 

and the equity premium, with both orders of integration fluctuating around 0; and finally, the 

price/dividend ratio, with d1 ranging between 0.5 and 1 and d2 between 0 and 0.5. Thus, we 

found evidence of stationary long memory with respect to both components for inflation and 

the real risk-free rate; I(0) stationarity for stock returns and the equity premium; and 

nonstationary long memory at the zero frequency but stationarity at the cyclical component for 

the price/dividend ratio. Finally, the fact that all orders of integration are smaller than 1 

suggests that mean reversion takes place with respect to both components for all series, though 

the rate of adjustment varies across them. 

 A criticism that could be made of this type of model for the cyclical component is that, 

unlike seasonal cycles, business cycles are typically weak and irregular and are spread evenly 

over a range of frequencies rather than peaking at a specific value. A strong counterargument is 

that, in spite of the fixed frequencies used in this specification, flexibility can be achieved 

through the first differenced polynomial, the ARMA components and the error term.  In fact, 
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Bierens (2001) uses a model of this kind (with d2 = 1) to test for the presence of business cycles 

in the annual change of monthly unemployment in the UK. Our analysis also yields clear-cut 

results, which are consistent with earlier findings on the periodicity of cycles.  

 The selected models for each time series were then compared with other approaches 

based on fractional and integer differentiation at the zero frequency. Six forecasting criteria 

were employed and the results showed that the fractional cyclical model outperforms the others 

in a number of cases. 

 Clearly, for the sample period examined in this study, structural breaks could also be an 

issue.  Note that fractional integration and structural break are issues which are intimately 

related (see Bos et al., 1999; Diebold and Inoue, 2001; Granger and Hyung, 2004; Gil-Alana, 

2007). However, a theoretical framework for structural breaks and fractional integration at both 

the zero and the cyclical frequencies has yet to be developed.  

It would also be worthwhile to obtain point estimates of the fractional differencing 

parameters in this context of trends and cyclical models. For the trending component the 

literature is vast (see, e.g., Fox and Taqqu, 1986; Dahlhaus, 1989; Sowell, 1992; Robinson, 

1995; Tanaka, 1999; Phillips and Shimotsu, 2005; Mayoral, 2007 etc.). For the cyclical part, 

there are fewer contributions such as Arteche and Robinson (2000), Arteche (2002) and Dalla 

and Hidalgo (2005) and no likelihood estimation methods have been proposed for the joint 

estimation of the two orders of integration. However, the goal of this paper is to show that a 

model with fractional orders of integration at both the zero and the cyclical frequencies can be a 

credible alternative to the conventional ARIMA (ARFIMA) specifications. In fact, our 

approach produces unambiguous results, with the periodicity ranging between 4 and 10 years 

and most of the orders of integration within the intervals (0, 0.5) and (0.5, 1) depending on the 

series and the component under study. 
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 Further research could be carried out using this framework. For instance, the tests can 

be extended to allow for more than one cyclical component. The existence of multiple cycles in 

financial series has not yet been examined empirically, and might be of interest in the context 

of various latent variates. Note that the periodograms displayed in Figures 1 and 2 show in 

some cases multiple peaks at the cyclical frequencies. However, for real stock returns and 

equity premium, the estimated order of integration at the zero frequency is extremely close to 0 

and the periodograms of the original data (in Figure 1) exhibit a single clear significant peak. 

Moreover, for the remaining three series the orders of integration at the long run frequency 

range between 0 and 1, and the periodograms of the first differenced data (in Figure 2) clearly 

show that type of behaviour along with a single peak at the non-zero frequency. Further, daily 

data could also be used to examine intraday periodicity, e.g. in the volatility of asset returns. As 

an alternative to the cyclical fractional approach, Andersen and Bollerslev (1997) modelled 

periodicity in returns by means of deterministic weights. The inclusion of deterministic 

components is possible in Robinson’s (1994) set-up, and its significance can be tested by 

means of a joint test of the deterministic regressors and of the order of integration. The 

univariate nature of the present study is also a limitation in terms of theorising, policy-making 

or forecasting. Theoretical models and policy-making involve relationships between many 

variables, and forecast performance can be improved through the use of many variables (e.g., 

factor-based forecasts based on hundreds of time series beat univariate forecasts, as shown, 

e.g., in Stock and Watson, 2002). However, the univariate approach taken in the present paper 

is useful, as it enables one to decompose the series into a long-run and a cyclical component. 

Moreover, theoretical econometric models for both long-run and cyclical fractional structures 

in a multivariate framework are not yet available. In this respect, the present study can be seen 

as a preliminary step in the analysis of financial data from a different time series perspective. 

Of particular interest in future work would be a more extensive study of the out-of-sample 
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forecasting performance of our preferred model. In order to increase the number of out-of-

sample observations and gain power, a rolling design (e.g. McCracken, 2000) with larger 

samples could be used. Data mining is an additional relevant issue worth exploring. 
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Appendix 1 

We observe {(yt, zt), t = 1,2,…n}, and suppose that the I(0) ut in (4) have parametric spectral 

density given by: 

π≤λ<π−τλ
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=τλ ),;(g

2
);(f

2
, 

where the scalar σ2 is known and g is a function of known form, which depends on frequency λ 

and the unknown (qx1) vector τ. Based on Ho (6), the residuals in (3), (4) and (9) are: 
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 Unless g is a completely known function (e.g., g ≡ 1, as when ut is white noise), we 

need to estimate the nuisance parameter τ, for example by )(minargˆ 2
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The test statistic, which is derived through the Lagrange Multiplier (LM) principle, takes the 

form: 
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and the sums in â  and Â  in the above expressions are over all frequencies except those which 

are unbounded.  

 

Appendix 2 

Let yt be the actual value in period t; ft the forecast value in period t, and n the number of 

periods used in the calculation. Then: 

a) Theil’s U: 
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b) Mean absolute percentage error (MAPE):  
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;
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n
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 c) Mean squared error (MSE): 
( )

n
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d) Root-mean-percentage-squared error (RMPSE):  
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;
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e) Root-mean-squared error (RMSE): 
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f) Mean absolute deviation (MAD): .
n
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Footnotes 

1. Note that, for example, most of the “classic” unit root tests (i.e., Dickey and Fuller, 

1979; Phillips and Perron, 1988; Kwiatkowski et al., 1992; etc.) are non-standard, in the sense 

that the critical values have to be calculated numerically on a case-by-case simulation 

approach. 

2. Note that, although the model presented in Section 1 only has a single innovation term, 

this is obtained by combining two fractional processes, one for the long run and the other for 

the cyclical structure. 

3. For the purposes of the present paper, we define an I(0) process as a covariance 

stationary process with spectral density function that is positive and finite at any frequency. 

4. In the context of financial data, Peters (1994) defined the Fractional Market Hypothesis 

for modelling long-term dependence features in financial time series. 

5. Estimation methods in this context have been proposed by Chung (1996a,b) and more 

recently by Dalla and Hidalgo (2005). 

6. These conditions are very mild and concern technical assumptions to be satisfied by 

ψ1(λ) and ψ2(λ). 

7. In other words, if the tests are implemented against local departures of the form: Ha: θ = 

δn-1/2, for δ ≠ 0, the limit distribution is a )(2
2 vχ with a non-centrality parameter v, which is 

optimal under Gaussianity of ut.   

8. It might be argued that the number of observations used in this application is not 

sufficiently large to justify the use of fractional integration methods. However, in Gil-Alana 

and Robinson (1997) similar methods to those employed here were successfully applied to 

macroeconomic series of smaller sample sizes than in the present study.  

9. It is well know that in finite samples it is difficult to distinguish between short and long 

memory processes, many tests not being sufficiently powerful. Agiakloglou, Newbold and 
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Wohar (1993) and Agiakloglou and Newbold (1993) show that it is difficult to detect long 

memory in the presence of AR and MA processes. However, several Monte Carlo experiments 

conducted in Robinson (1994) suggest that his tests have enough power to detect long memory 

with weak parametric autocorrelation even with small samples. 

10. See Robinson and Iacone (2005) for a recent paper on fractional integration (and 

cointegration) in the context of deterministic trends. 

11. The estimates of d at the long run or zero frequency were also computed using other 

procedures like Sowell’s (1992) maximum likelihood estimation in the time domain, and the 

results were completely in line with those reported here. 

12. Moreover, if cyclical components are present in the series and we do not take them into 

account, the estimation of d at the zero frequency may create biases in favour of long memory. 

(See, e.g., Montanari, Rosso and Taqqu, 1996, 1997). 

13. If r = 5 or 7, with T = 120, the rejection frequencies are found to be low for departures 

close to the null, though when increasing the sample size they tend to 1 in all cases. 

14. Note that, in the case of r = 1, the model reduces to the case previously studied of long 

memory exclusively at the long-run frequency. 

15. It should be noted that, although d2 = 0 cannot be statistically rejected in most cases, in 

general, it is “less clearly non-rejected” than for positive values of d2. (By “less clearly non-

rejected” we mean that the value of the test statistic is closer to the critical value. See the results 

in Table 4). 

16. We discriminate between the white noise and the AR specification by looking at the 

significance of the AR parameter: if it is statistiscally close to 0 or 1, we choose the white noise 

model for ut. In fact, this is what we have done for the equity premium and the price/dividend 

ratio. Also, note that for the real risk-free rate, the inclusion of AR disturbances substantially 
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reduces the order of integration at the zero frequency (from 0.25 in the FCD model to 0.04 in 

FD). 

17. Moreover, the use of standard criteria such as AIC and BIC is not necessarily optimal 

for applications involving fractional differences, as these criteria focus on the short-term 

forecasting ability of the fitted model and may not give sufficient attention to the long-run 

properties of the ARFIMA models (see, e.g. Hosking, 1981, 1984). Another recent paper about 

model selection in the presence of long and short memory processes is Beran et al. (1998). 

They propose versions of the AIC, BIC and the HQ (Hannan and Quinn, 1979) which are 

suitable for fractional autoregressions, but do not consider MA components. 

18. An alternative approach is the bootstrap-based test of Ashley (1998), though this 

method is computationally more intensive. 

19. Note that, since the forecasts are measured by MSE, the quadratic loss function is 

)( htiteg −  = .2
htite −  Similar results were obtained when using the absolute values, .e htit −

 

20. A diskette containing the FORTRAN programs is available from the authors upon 

request. 
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